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w̅ is a unitvector

If V40 we can normalize w̅ by creating a new

vector I w̅ Then it is a unit vector with

the sawedrection as w̅
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it and I are orthogonal or perpendicular

if w̅ I 0
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Let A be an mxn matrix Then

ÑTuA Row A and Nul AT ColA
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In other words I and I are orthogonal Since
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so that ñe Nul A Since I was arbitrary

Row A C NulA Combined with Nul A C RowA

which we proved earlier this gives
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