5.4 Supplement
(SI, F, P): prob. 5P.

$$X_{i}, X_{z}, X_{z}, \dots$$
 real-val. rvs
 $S_{n} = X_{i} + X_{2} + \dots + X_{n}$
 $\{X_{i}, X_{z}, \dots\}$ are independent if, for all neN
and all $B_{j} \in \mathbb{R}$,
 $P(\bigcap_{j=1}^{n} \{X_{j} \in B_{j}\}) = \prod_{j=1}^{n} P(X_{j} \in B_{j})$
They are i.i.d. if they are independent
and they all have the same distribution.
Then (LLN) (will see later)
If X_{i}, X_{z}, \dots are i.i.d. and $X_{i} \in L^{1}(\Omega, F, P)$
then
 $\frac{S_{n}}{n} \xrightarrow{n \to \infty} \int_{\Omega} X_{i} dP$ a.s.
 $=: E[X_{i}] ("expected]$

c

Special case:

$$X_n = f_{A_n}$$

Then $S_n = \# \text{ of events in } A_{1,...,A_n}$
Then $S_n = \# \text{ of events in } A_{1,...,A_n}$
and $\int_{\Omega} X_1 dP = \int_{\Omega} f_{A_1} dP = P(A_1)$
and $\int_{\Omega} X_1 dP = \int_{\Omega} f_{A_1} dP = P(A_1)$
will define later
So if $A_1, A_2, ... \text{ are independent}$
and $P(A_n)$ does not depend on n ,
then $\frac{S_n}{n} \xrightarrow{n \to \infty} P(A_1)$ a.s.
 $\int_{Proportion of A_{1,...,A_n}}$
that are true

Expected value should be interpreted in the context of this theorem (and others like it)

Thun (CLT) (will see later) Suppose X_1, X_2, \dots are i.i.d and $X_1 \in \lfloor^2(\Omega, \mathcal{F}, P)$. Let $Y_n = \sqrt{n} \left(\frac{S_n}{n} - E[X_i] \right)$, and let F_n be the distribution function of Yn. Let Z~N(0,1), and, for 0>0, let For be the distribution function of oZ. Then Fn > Fo pointwise, where $\sigma^2 = \int_{\Omega}^{1} (X_1 - E[X_1])^2 dP$ =: var(X)

"variance"

Varian ce	should be interpreted in the	
context	of this theorem (and others like	¦+)

Expected value for simple rvs EA.,.., Ang CF a partition of 12 $c_1, \ldots, c_n \in \mathbb{R}$ $X = \sum_{j=r}^{n} c_j \mathcal{I}_{A_j}$ (simple rv) · Aj's are events, or "sentences" · exactly one of them is true • $\chi_j = c_j$ in the case that A_j is true $E[X] = \int X dP = \int \sum_{j=1}^{n} c_j I_{A_j} dP$ $= \sum_{j=i}^{n} c_j P(A_j) = \sum_{j=i}^{n} c_j P(X = c_j)$ E[X] is a weighted average of C1,..., Cn, the possible values of X where C_j gets weight $P(X = C_j)$.