Ch. 4 continued

Let (SL, F, P) be a prob. space. The set Ω is called the sample space. Elements we Ω are called <u>outcomes</u>. Set $A \in F$ are called <u>events</u>.

A random variable is a mible function $X: \mathcal{D} \rightarrow S$, where (S, S) is a mible space. The set S is called the state space of X.

A (measure-theoretic) probability model is a probability space, $(\Omega, \mathcal{F}, \mathcal{P})$, together with a family of random variables, $\{X_i: i \in I\}$, where X_i takes values in a mible space, (S_i, S_i) .

An outcome w can be thought of as a "structure" or an "interpretation". In w, we can interpret sentences that use the "symbols" Xi. Expl $\int = \xi - 1, i \cdot 3 \times [0, i]$ $\mathcal{F} = \mathcal{L}^{\{0,1\}} \otimes \mathcal{B}_{[0,1]}$ $P = \mu \times \lambda$, where $\mu(\xi - 13) = \mu(\xi \cdot 13) = \frac{1}{2}$ Each $\omega \in \Omega$ has the form $\omega = (\omega_0, \omega_1)$, where $w_0 = -1$ or $w_0 = 1$, and $w_1 \in [0, 1]$. Define mble $X: \Sigma \rightarrow \mathbb{R}$ by $X(\omega) = \omega$, and mble Y: I -> R by Y(w) = Wow, Then X and Y are (R,R)-valued random vars. (SL, F, P), X, Y constitute a probability model.

Fix
$$\omega \in \Omega$$
. In ω , we can interpret sentences
that use the symbols "X" and "Y". For
example, the sentence "X = Y" is interpreted
as "X(ω) = Y(ω)".

If
$$w = (1, 0.6)$$
, then "X = Y" is interpreted
as "0.6 = 0.6", which is true.

If
$$w = (-1, \frac{1}{3})$$
, then " $X = Y$ " is interpreted
as " $\frac{1}{3} = -\frac{1}{3}$ ", which is false.

We can identify the sentence "
$$X = Y''$$
 with the
set of interpretations in which it is true:
" $X = Y'' \iff \{w \in \Omega : X(w) = Y(w)\}$, in the "real"
We then say the probability that $X = Y'$ is probabilities
 $P(\{w \in \Omega : X(w) = Y(w)\})$, "measure theory,
 $P(\{w \in \Omega : X(w) = Y(w)\})$, "measure theory,
we assign probabilities
which we write in shorthand as $P(X = Y)$.

relations $\varphi \vdash \psi$ logically implies

 $A_{\varphi} \subset A_{\psi}$

X(w) can be thought of as
the "meaning" of X in the "interpretation" w.
Or in other language:
The sample space
$$\Omega$$
 consists of many possible
states of the world.
The value of the symbol "X" in the
state of the world w is X(w).
In logic, "X" would be a constant symbol.
So "random variable" is maybe not the best
Nome for it. A better name wight be
"uncertain constant".
Where did (Ω, J, P), X, Y come from in that
example? I wanted these statements to be true:
 $P(X \in [0, 1]) = 1$
 $P(X = [a, b]) = b - a$ for $[a, b] \subset [0, 1]$
 $P(Y = X | X) = P(Y = -X|X) = \frac{1}{2}$ will lear about
(Ω, J, P), X, Y was constructed to make this happen.

•