4.1 Vector spaces and subspaces

A (real) vector space is a nonempty set V,
together with two operations, addition and
scalar multiplication, satisfying the following 10 axions:
(1) if
$$\vec{u}, \vec{v} \in V$$
, then $\vec{u} + \vec{v} \in V$
(2) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
(3) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
(4) $\exists \vec{o} \in V$ s.t. $\vec{u} + \vec{O} = \vec{u} \quad \forall \vec{u}$
(5) $\forall \vec{u} \in V, \exists -\vec{u} \in V \text{ s.t. } \vec{u} + (-\vec{u}) = \vec{O}$
(6) if $\vec{u} \in V$ and $c \in \mathbb{R}$, then $c\vec{u} \in V$
(7) $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
(8) $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
(9) $c(d\vec{u}) = (cd)\vec{u}$
(10) $1\vec{u} = \vec{u}$

• Can prove that \vec{O} and $-\vec{u}$ are unique. • Can prove that $O\vec{u} = \vec{O}$, $C\vec{O} = \vec{O}$, $(-1)\vec{u} = -\vec{u}$ • A "complex vector space" is the same, but scalars are in C. We will assume scalars are in R, but all theorems in Ch. 4 are also true for complex vector spaces.

$$\frac{Expl 1}{R^{n} \text{ is a vector space.}}$$

$$\frac{Expl 5}{Let A be a set.}$$
Let V be the set of functions $f: A \rightarrow R$.
For $f, g \in V$, define $f+g \in V$ by
 $(f+g)(x) = f(x) + g(x)$.
For $f \in V$ and $c \in \mathbb{R}$, define $cf \in V$ by
 $(cf)(x) = cf(x)$.
Then V is a vector space.
(The zero vector here is the zero function.)

Expl3
In the last example, let
$$A = \mathbb{Z}$$
.
If $y \in V$, then $y \colon \mathbb{Z} \to \mathbb{R}$.
Write y_k instead of $y(k)$.
Then y is a "doubly infinite sequence":
 $\xi \ldots, \xi \ldots, \xi \ldots, \xi \ldots, \xi \ldots, \xi \ldots, \xi \ldots$

$$\frac{E \times pl \ 4}{Let \ n \ge 0.}$$

$$P_n = set of all polynomials of degree \le n.$$
(also includes the zero polynomial, whose degree is undefined in our book)
$$P_n \text{ is a vector space}$$

$$A \quad \underline{subspace} \quad of \ a \quad vector \quad space \quad \forall \ is \ a \ subset \\ H \quad of \quad \forall \ s.t.$$
(a) $\vec{O} \in H$
(b) $ff \quad \vec{u}, \vec{v} \in H, \ then \quad \vec{u} + \vec{v} \in H$
(c) $if \quad \vec{u} \in H \quad and \quad c \in \mathbb{R}, \ then \quad c \vec{u} \in H$
• Every subspace is a vector space.

Expl 6
If V is a vector sp., then
$$EO3$$
 is a subspace.
It's called the zero subspace.
 $Expl 7$
 $P = set of all polynomials (of any degree)$
 P is a vector space.
Is P_n a subspace of P ?
 $P_n \subset P \checkmark$
Zero polynomial is in $P_n \checkmark$
 P_n is closed under addition and scalar multiplication \checkmark
 Yes , P_n is a subspace of P .

$$\frac{Expl 9}{H} = \begin{cases} \begin{pmatrix} x \\ y \\ o \end{pmatrix} : x, y \in \mathbb{R} \\ \end{cases}$$
(a) Is H a subspace of \mathbb{R}^{3} ?
(b) Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ?

(a)
$$H \subset \mathbb{R}^{3} \checkmark$$

 $\overline{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in H \checkmark$
H is closed under operations \checkmark
Yes, H is a subspace of \mathbb{R}^{3}
(b) [No, \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}]

linear combination and span can be defined
as usual in a general vector sp.
Expl
Let V be a vector sp. Let
$$\overline{V}_1, \overline{V}_2 \in V$$
.
Show that Span $\{\overline{V}_1, \overline{V}_2\}$ is a subspace of V.
H = Span $\{\overline{V}_1, \overline{V}_2\} = \{c_1\overline{V}_1 + c_2\overline{V}_2: c_1, c_2\in\mathbb{R}\}$
H $\subset V \vee$
 $\overline{O} \in H$?
 $\overline{O} = O \overline{V}_1 + O \overline{V}_2 \in H \vee$

Closed under addition? $\vec{u}, \vec{v} \in H$, $\vec{u} + \vec{v} \in H$? $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2$ $\vec{v} = d_1 \vec{v}_1 + d_2 \vec{v}_2$ $\vec{u} + \vec{v} = (c_1 + d_1) \vec{v}_1 + (c_2 + d_2) \vec{v}_2 \in H/$ Closed under scalar multiplication? $\vec{u} \in H$, $c \in \mathbb{R}$ $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2$ $c \vec{u} = (cc_1) \vec{v}_1 + (cc_2) \vec{v}_2 \in H/$

Thus $f = \vec{v}_1, ..., \vec{v}_p \in V$, then Span $\{\vec{v}_1, ..., \vec{v}_p\}$ is a subspace of V. "subspace spanned (or generated) by $\vec{v}_{1,..., \vec{v}_p}$ "

Let $H \subset V$ be a subspace and $\{\vec{v}_1, ..., \vec{v}_p\} \subset V$. If $\text{Span} \{\vec{v}_1, ..., \vec{v}_p\} = H$, then $\{\vec{v}_1, ..., \vec{v}_p\}$ is a spanning (or generating) set for H.

$$E_{xpl} 12$$

$$H = \begin{cases} \begin{pmatrix} a - 3b \\ b - a \\ a \end{pmatrix} : a, b \in \mathbb{R} \end{cases} . Show that H$$
is a subspace of \mathbb{R}^{4} .
$$\begin{pmatrix} a - 3b \\ b - a \\ a \end{pmatrix} = a \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -3 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

$$H = \begin{cases} a \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -3 \\ 1 \\ 0 \\ 1 \end{pmatrix} : a, b \in \mathbb{R} \end{cases}$$

$$= Span \begin{cases} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -3 \\ 1 \\ 0 \\ 1 \end{pmatrix} : a, b \in \mathbb{R} \end{cases}$$
By Thm 1, H is a subspace.