1.9 The matrix of a linear transformation standard basis vectors of IR": $\vec{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{e}_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \vec{e}_{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ Thum 10 Let T: R" -> R" be a linear transformation. Let $A = (T(\vec{e}_1) T(\vec{e}_2) \cdots T(\vec{e}_n)) = \max_{matrix}$ Vector in RM Then $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. Moreover, A is the unique matrix with this property. \underline{Pf} : Let $\overline{x} \in \mathbb{R}^n$ be arbitrary. Then $\vec{\chi} = \prod_{n} \vec{\chi} = \left(\vec{e}_{1} \cdot \vec{e}_{2} \cdot \vec{e}_{3} \cdots \cdot \vec{e}_{n}\right) \begin{pmatrix} \vec{\chi}_{1} \\ \vdots \\ \ddots \end{pmatrix}$ $=\chi_{e}\vec{e}_{1}+\chi_{2}\vec{e}_{2}+\cdots+\chi_{n}\vec{e}_{r}.$

Therefore, $T(\vec{x}) = T(\gamma_i \vec{e}_i + \dots + \gamma_n \vec{e}_n)$ $= \gamma_i T(\vec{e}_i) + \dots + \gamma_n T(\vec{e}_n)$

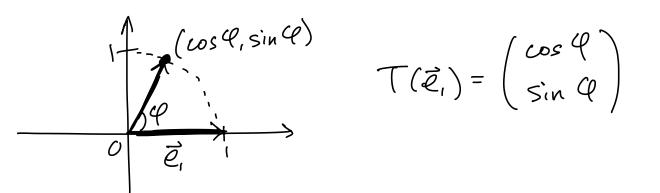
$$= \left(T(\vec{e}_{1}) \cdots T(\vec{e}_{n}) \right) \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = A\vec{x}.$$
Proving the uniqueness of A is Exer. 1.9.41
(unassigned). \Box
The matrix A in The 10 is called the
standard matrix for the linear transformation T
(or just the matrix for T).
Expl1
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear with
 $T(\vec{e}_{1}) = \begin{pmatrix} 5 \\ -7 \\ 2 \end{pmatrix}, T(\vec{e}_{2}) = \begin{pmatrix} -3 \\ 8 \\ 0 \end{pmatrix}.$
Find the matrix for T.
By The 10, the matrix for T is
 $A = (T(\vec{e}_{1}) T(\vec{e}_{2})) = \begin{bmatrix} 5 & -3 \\ -7 & 8 \\ 2 & 0 \end{bmatrix}$

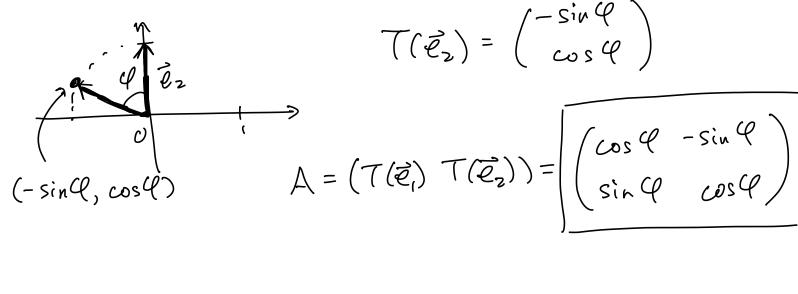
Let T be the dilation transformation on \mathbb{R}^2 , $T(\vec{x}) = 3\vec{x}$. Find the matrix for T.

$$T(\vec{e}_{1}) = 3\vec{e}_{1} = 3\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$$
$$T(\vec{e}_{2}) = 3\vec{e}_{2} = 3\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\3 \end{pmatrix}$$
$$A = (T(\vec{e}_{1}) \ T(\vec{e}_{2})) = \boxed{\begin{pmatrix} 3&0\\0&3 \end{pmatrix}}$$

Expl 3 Let Q be a real number. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the transformation that rotates a vector counterclockwise by q radians. The transformation T is linear. Find the matrix of T.

 $T(\vec{e}_2) = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$





Look af Tables 1-4 on p.78 A function T: IR" -> IR" is onto if the range of T is IR^m (OR for all to ERM, there exists of least one RERM such that $T(\vec{x}) = \vec{B}$ existence question surjective is a synanym for "onto" A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if $T(\vec{x}) = T(\vec{y})$ implies $\vec{x} = \vec{y}$ $(OR \vec{x} \neq \vec{y} \text{ implies } T(\vec{x}) \neq T(\vec{y}))$ (OR for all BEIRM, there is at most one REIR such that $T(\vec{x}) = \vec{5}$ (miqueness question injective is a synonym for "one-to-one" bijective means "one-to-one and onto" Expl Let T be the linear transformation w/ matrix $A = \begin{pmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix}$ Is Tonto? Is Tone-to-one?

 $T(\vec{x}) = \vec{b}$ is the same as $A\vec{x} = \vec{b}$ For every \vec{b} , $A\vec{x} = \vec{b}$ is consistent (no row of the form $(0 \cdots 0 \vec{b})$), so at least one soln T is onto in augmented reatrix For every \vec{b} , $A\vec{x} = \vec{b}$ has a free variable (x_2) , so there would be infinitely many solutions T is not one-to-one

Then II: Let T: IR" -> IR" be linear. Then T is one-to-one iff $\overline{x} = \overline{0}$ is the only solu to $T(\overline{x}) = \overline{0}$. (i.e. $A\overline{x} = \overline{0}$ has only one solu) Pf: First note that $T(\vec{o}) = \vec{O}$ because T is linear. Now, assume T is one-to-one. This means that if $\vec{x} \neq \vec{0}$, then $T(\vec{x}) \neq T(\vec{0})$ or $T(\vec{x}) \neq \vec{0}$. So $\vec{x} = \vec{0}$ is the only solu to $T(\vec{x}) = \vec{0}.$ For the converse, assume $\overline{\chi} = \overline{O}$ is the only solu to $T(\vec{x}) = \vec{0}$. Assume $T(\vec{a}) = T(\vec{v})$ for some $\vec{u}, \vec{v} \in \mathbb{R}^n$. Since T is linear, $T(\vec{u} - \vec{v}) = T(\vec{u}) - T(\vec{v}) = \vec{O}.$

Thus,
$$\vec{u} - \vec{v} = \vec{0}$$
, and so $\vec{u} = \vec{v}$. This
shows that T is one-to-one. \Box
Thun 12 Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be linear w/matrix A.
(a) T is onto iff the cols. of A spen \mathbb{R}^m
(b) T is one-to-one iff the cols. of A are lin. indep.
Pf:
(a) Let U be the vange of T and write
 $A = (\vec{a}_1 \cdots \vec{a}_n)$. For any vector $\vec{b} \in \mathbb{R}^m$,
 $\vec{b} \in U$ iff there exists $\kappa \in \mathbb{R}^m$ w/ $T(\vec{r}) = \vec{b}$
iff i $A\vec{r}_k = \vec{b}$
iff $\vec{t} \in Span\{\vec{a}_1, \dots, \vec{a}_n\}$.
Thus, T is onto iff $U = \mathbb{R}^m$ iff $Span\{\vec{a}_1, \dots, \vec{a}_n\} = \mathbb{R}^m$.
Span $\{\vec{a}_1, \dots, \vec{a}_n\} = range of T$
(b)
T is one-to-one iff $\vec{r} = \vec{0}$ is the only solu to $T(\vec{r}) = \vec{0}$
iff i $A\vec{x} = \vec{0}$

iff
$$\chi_1 = \chi_2 = \dots = \chi_n = 0$$
 is the only soluto
 $\chi_1 \overline{\alpha}_1 + \chi_2 \overline{\alpha}_2 + \dots + \chi_n \overline{\alpha}_n = \overline{0}$

$$E_{xp(5)}$$

Let $T(x,y) = (3x+y, 5x+7y, x+3y)$. Show
that T is a one-to-one linear transformation.
Is T onto?

$$T: \mathbb{R}^{2} \to \mathbb{R}^{3}$$

$$\hat{x} = \begin{pmatrix} x \\ y \end{pmatrix}, T(\bar{x}) = \begin{pmatrix} 3x+y \\ 5x+7y \\ x+3y \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$A$$

$$T(\bar{x}) = A\bar{x} \text{ for all } \bar{x}$$
So T is (inear $\sqrt{}$
Cols of $A: \begin{pmatrix} 3\\5\\1 \end{pmatrix}, \begin{pmatrix} 7\\3 \end{pmatrix}$
not multiples, so lin. indep.
 $\therefore T$ is one-to-one $\sqrt{}$
range of $T = Span \left\{ \begin{pmatrix} 3\\5\\1 \end{pmatrix}, \begin{pmatrix} 7\\3 \end{pmatrix} \right\}$.

Then Let
$$A$$
 be an maximum matrix. If $m > n$,
then the cols of A do not span \mathbb{R}^{m} .

Pf: By Tun 4 (sect. 1.4), the cols. of A span \mathbb{R}^{M} iff A has a pivot position in every row. But A has only n columns, so can have at most n pivot positions. And yet there are M > n rows, so this is impossible. Since A is 3×2 and 3 > 2, the cols. of A don't span \mathbb{R}^{3} , and [T is not onto]