1.8 Introduction to linear transformations A transformation T from IRn to IRM is a function T: Rⁿ → R^m codomain of T domain of T $T(\bar{x}) \leftarrow image of \bar{x}$ under T{T(x): x EIR" } - range of T If A is an man matrix, then Arx makes sense whenever rice Rn and Ark is a vector in IR^m. $T(\bar{x}) = A\bar{x}$ is a transformation from R" to R". Any transformation of this type is called a matrix transformation. Expl 1 $A = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix}, \quad T(\vec{x}) = A\vec{x}$

A is
$$3 \times 2$$
, $T: \mathbb{R}^2 \to \mathbb{R}^3$
(a) Find the image of $\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ under T .
(b) Find an $\vec{x} \in \mathbb{R}^2$ whose image is $\vec{b} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$.

(c) is there more than one
$$\vec{x} \in \mathbb{R}^2$$
 whose
image is \vec{b} ?
(d) is $\vec{c} = \begin{pmatrix} 3\\ 2\\ 5 \end{pmatrix}$ in the range of T ?

$$(a) T(\vec{u}) = A\vec{u} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{pmatrix}$$

(b)
$$T(\vec{x}) = \vec{b}$$
 iff $A\vec{x} = \vec{b}$

$$\begin{pmatrix} 1 & -3 & | & 3 \\ 3 & 5 & | & 2 \\ -1 & 7 & | & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & | & 3 \\ 0 & 14 & | & -7 \\ 0 & 4 & | & -2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & | & 3 \\ 0 & 1 & | & -\frac{1}{2} \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{\chi_2} = -\frac{1}{2}$$

$$\chi_1 = -\frac{1}{2}$$

$$\chi_2 = -\frac{1}{2}$$

$$\chi_1 = -\frac{1}{2}$$

$$\chi_2 = -\frac{1}{2}$$

(c) No. solution in (b) is unique
(d) Does
$$T(\bar{x}) = \bar{c}$$
 have a soln?
 $A\bar{x} = \bar{c}$
 $\begin{pmatrix} 1 & -3 & | & 3 \\ 3 & 5 & | & 2 \\ -1 & 7 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & | & 3 \\ 0 & 14 & | & -7 \\ 0 & 4 & | & 8 \end{pmatrix}$
 $\sim \begin{pmatrix} 1 & -3 & | & 3 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & -1 \\ 0 & 0 & | & -1 \\ 0 & 0 & | & -1 \\ 10 \end{pmatrix}$ No soln
 $\boxed{No, \bar{c} \text{ is not in range of } T}$
 $\boxed{No, \bar{c} \text{ is not in range of } T}$
 $\boxed{Expl 2}$ Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by
 $T(x,y, z) = (x, y, 0)$. Is T a matrix
transformation? (T projects \mathbb{R}^3 onto the xy -plane)
In our notation,
 $T(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$

Want a 3×3 matrix A such that $T(\vec{x}) = A\vec{x}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\boxed{Y_{er}, T(\vec{x}) = A_{\vec{x}}, \text{ where } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 0 \end{pmatrix}}.$$

$$\boxed{Expl 3}$$
Let $A = \begin{pmatrix} 1 & 2 \\ 0 & i \end{pmatrix} \text{ and define } T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
by $T(\vec{x}) = A_{\vec{x}}.$ Find a formula for $T(x,y).$

$$\boxed{T(x,y) = \begin{pmatrix} 1 & 2 \\ 0 & i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ y \end{pmatrix}}}$$

$$\boxed{T(x,y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, T(\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, T(\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}}$$

$$T(\begin{pmatrix} 0 \\ 0 \end{pmatrix}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, T(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}}$$
(alled a shear transformation

A transformation is linear if
(i)
$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$
 $\forall \vec{u}, \vec{v}$
(ii) $T(c\vec{v}) = c T(\vec{u})$ $\forall c, \vec{u}$
Every linear transformation from \mathbb{R}^n to \mathbb{R}^m
is a matrix transformation. (Will see that
in Section 1.9.)
And every matrix transformation is linear
Thus if T is a linear transformation, then
(a) $T(\vec{o}) = \vec{O}$
(b) $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$, and
(c) $T(c_1\vec{v}_1 + \cdots + c_p\vec{v}_p) = c_1T(\vec{v}_1) + \cdots + c_pT(\vec{v}_p)$.
Pf: (a) $T(\vec{o}) = T(c\vec{u}) + T(d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$.
(c) Use (b) multiple times. \square
 $Exp(H)$ Let $r \in \mathbb{R}$ and define $T: \mathbb{R}^2 \to \mathbb{R}^2$
by $T(\vec{x}) = r\vec{x}$. Show that T is linear.
($0 \le r \le 1 \to T$ is a dilation)

$$T(\vec{u} + \vec{v}) = r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v} = T(\vec{u}) + T(\vec{v}) \checkmark$$
$$T(c\vec{u}) = r \cdot c\vec{u} = c \cdot r\vec{u} = cT(\vec{u}) \checkmark$$

$$T(\vec{x}) = A\vec{x}$$

$$T(\vec{u}) = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad T(\vec{v}) = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) = \begin{pmatrix} -4 \\ 6 \end{pmatrix}.$$