1.7 Linear independence despite the allow notation, we auplicates A set { vi,..., vp ? CIR" is linearly dependent if there are constants ci,..., cp, not all zero, such that $C_1 \vec{v}_1 + \dots + C_p \vec{v}_p = \vec{O} \leftarrow a \ linear \\ dependence \\ relation \end{cases}$ The set is linearly independent otherwise. Expl 1 $\vec{v}_{1} = \begin{pmatrix} i \\ 2 \\ 3 \end{pmatrix}, \vec{v}_{2} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \vec{v}_{2} = \begin{pmatrix} 2 \\ i \\ 0 \end{pmatrix}$ Is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ lin. indep? If not, find a lin. dep. relation. Want a nontrivial solu to $\chi_1 \overrightarrow{V}_1 + \chi_2 \overrightarrow{V}_2 + \chi_3 \overrightarrow{V}_3 = \overrightarrow{O}$ $(\vec{v}_1, \vec{v}_2, \vec{v}_3) \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} = \vec{O}$ A Tr $A\vec{x} = 0$

$$\begin{pmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{pmatrix} \stackrel{R_2 - 2R_1 \rightarrow R_2}{R_3 - 3R_2 \rightarrow R_3} \begin{pmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -6 & -6 & 0 \end{pmatrix}$$

$$R_3 - 2R_2 \rightarrow R_3 \begin{pmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{\chi_3}{\text{there are northvial solus}} \stackrel{\chi_3}{[\bar{\nabla}_1, \bar{\nabla}_2, \bar{\nabla}_2]} \text{ are lin, dep.}$$

$$-\frac{1}{3}R_2 \rightarrow R_1 \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{\chi_1 - 2\kappa_3 = 0 \rightarrow \chi_1 = 2\kappa_3}{\chi_2 + \kappa_3 = 0 \rightarrow \chi_2 = -\kappa_3}$$

$$\bar{\chi} = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \kappa_3 \end{pmatrix} = \begin{pmatrix} 2\kappa_3 \\ -\kappa_3 \\ \chi_3 \end{pmatrix} = \chi_3 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
Any soln will do (other them $\kappa_3 = 0$).
$$Take \ \kappa_3 = 1 : \qquad \chi_1 = 2, \ \kappa_2 = -1, \ \kappa_3 = 1$$

$$2\bar{\chi}_1 - \bar{\chi}_2 + \bar{\chi}_3 = \overline{O}$$

$$A = (\vec{a}, \cdots, \vec{a}_n)$$

$$A\vec{x} = \vec{o} \text{ has only the trivial solu } \vec{x} = \vec{o}$$

iff

 $\chi_{,\dot{\alpha},+\cdots+\chi_{n}\dot{\alpha}_{n}=\vec{O}}$ has only the trivial solu $\chi_{,=\cdots=\chi_{n}=0$

iff

$$\{\vec{a}_{1},...,\vec{a}_{n}\} \text{ are lin. indep.} \\ \text{Cols of A are lin. indep. iff } A\vec{\pi} = \vec{o} \text{ has} \\ \text{only the trivial soln.} \\ \text{Expl 2} \qquad A = \begin{pmatrix} 0 & i & 4 \\ i & 2 & -i \\ 5 & 8 & 0 \end{pmatrix} \\ \text{Are the cols. of A lin. indep?} \\ \begin{pmatrix} 0 & i & 4 \\ i & 2 & -i \\ 5 & 8 & 0 \end{pmatrix} \\ \text{R}_{i} \leftrightarrow \mathbb{R}_{2} \\ (s = 1 + 1) \\ (s$$

Pf: Suppose $\xi \nabla \tilde{f}$ is lin. dep. Then $\exists c \neq 0$ s.t. $c \nabla = \tilde{O}$. Since $c \neq 0$, $\exists is a number, and we$ $may write <math>\nabla = \exists c \nabla = \exists \vec{O} = \vec{O}$. Now suppose $\nabla = \vec{O}$. Then $1 \forall = \vec{O}$ is a lin. dep. relation, so $\xi \nabla \tilde{f}$ is lin. dep. \Box Thin { vi, vz } is lin. dep. iff one vector is a multiple of the other.

Now suppose one vector is a multiple of the other. If $\vec{v}_1 = c\vec{v}_2$, then $1\vec{v}_1 - c\vec{v}_2 = \vec{O}$ is a lin, dep. velation. If $\vec{v}_2 = c\vec{v}_1$, then $-c\vec{v}_1 + 1\vec{v}_2 = \vec{O}$ is a lin. dep. relation, Thus, here wight be $\vec{v}_1, \vec{v}_2 \vec{\gamma}$ is lin. dep. \Box

Thun 7 (characterization of lin. dep. sets) $S = \{ \vec{v}_{1}, ..., \vec{v}_{p} \}$ is lin, dep. iff af least one vector in S can be written as a linear combination of the other vectors in S.

In fact, if S is lin. dep. and $\vec{v}_{,} \neq \vec{O}$, then $\exists j > 1$ such that \vec{v}_{j} is a linear combination of $\vec{v}_{,,...,,} \vec{v}_{j-1}$.

Pf: Suppose that at least one vector in S can

be written as a lin. combo. of the others. So
there is some k with
$$1 \le k \le p$$
 and
 $\overline{V}_{k} = C_{1}\overline{V}_{1} + \cdots + C_{k-1}\overline{V}_{k-1} + C_{k+1}\overline{V}_{k+1} + \cdots + C_{p}\overline{V}_{p}$.
(Any or all of these c's might be 0.) This gives
 $C_{1}\overline{V}_{1} + \cdots + C_{k-1}\overline{V}_{k-1} + (-1)\overline{V}_{k} + C_{k+1}\overline{V}_{k+1} + \cdots + C_{p}\overline{V}_{p} = \overline{O}$
Since the coeff. of \overline{V}_{k} is nonzero, this is a lin. dep.
relation, so $\{\overline{V}_{1}, ..., \overline{V}_{p}\}$ is lin dep.
Now suppose S is lin. dep.
 $(Aue \ 1 : \overline{V}_{1} = \overline{O}$. In this case,
 $\overline{V}_{1} = \overline{O}\overline{V}_{2} + \overline{O}\overline{V}_{3} + \cdots + \overline{O}\overline{V}_{p}$,
and the proof is done.
 $(Aue \ 2 : \overline{V}_{1} \neq \overline{O}$. Let
 $C_{1}\overline{V}_{1} + \cdots + C_{p}\overline{V}_{p} = O$
be a lin. dep. velation, so that at least one
 C_{k} is nonzero. Let $j = \max\{k : C_{k} \neq 0\}$.
Then $C_{k} = O \quad \forall k \ge j$, so the above becomes
 $C_{1}\overline{V}_{1} + \cdots + C_{j}\overline{V}_{j} = \overline{O}$.
Since $C_{i} \neq 0$, we can write

$$\vec{\nabla}_{j} = \left(-\frac{C_{i}}{C_{j}}\right)\vec{\nabla}_{i} + \left(-\frac{C_{2}}{C_{j}}\right)\vec{\nabla}_{2} + \dots + \left(-\frac{C_{j-1}}{C_{j}}\right)\vec{\nabla}_{j-1},$$

showing that
$$\vec{V}_{j}$$
 is a line combol of $\vec{V}_{1},...,\vec{V}_{j-1}$. $\vec{U} = \frac{\sum y_{i}}{Are} \quad \vec{V}_{i} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \vec{V}_{z} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ line indep?
 $\vec{V}_{z} = 2\vec{V}_{i}$. [No, they are line dep.]

Expl 36 Are $\vec{v}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ lin. indep? Neither is a mult. of the other, so [Yes, they are lin. indep.] Expl 4 $\vec{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix}$ Describe Span { u, v } geometrically. Explain why we Span {u, v} iff {u, v, w} is lin. dep.

0 Span { i, v } is the x, x_- plane $\hat{u} \neq \hat{O}$, so $\{\hat{u}, \hat{v}, \hat{u}\}$ is lin. dep. iff $\vec{v} = c\vec{u}$ or $\vec{w} = c_r\vec{u} + c_2\vec{v}$ (Thum. 7) But V + cū. ìff {ū, √, ŵ} is lin. dep. So $\vec{\omega} = c_1 \vec{u} + c_2 \vec{\nabla} \quad \text{iff}$ ω ESpan ξū, vg. Thun 8 Let $S = \{\vec{v}_1, ..., \vec{v}_p\}$ be a set of vectors in R. If p>n, then S is lin. dep. Thun 8 (matrix version) Let A be an nxp matrix. If p>n, then the cols. of A are (Converse not true!) lin. dep.

Pf: Write $A = (\vec{v}_1 \cdots \vec{v}_p)$. The eqn. Azz= Thas augmented matrix $(\vec{v}_1, ..., \vec{v}_p | \vec{O})$. Since the number of rows is n and n < p, there must be at least one free variable. Thus, Azz= Thas nontrivial solus, so Vi,..., Vp are lin. dep. II Expl5 Are $\begin{pmatrix} 2\\ 1 \end{pmatrix}, \begin{pmatrix} 4\\ -1 \end{pmatrix}, \begin{pmatrix} -2\\ 2 \end{pmatrix}$ lin. dep. or lin. indep? There are 3 vectors in 12° and 3>2, so they are lin. dep. Then 9 If S= EV, ,..., Vp? contains the zero vector, then S is lin, dep. Pf: Suppose there is a k with 1≤ k≤p and $\vec{v}_k = \vec{O}$. Then $0\vec{v}_1 + \dots + 0\vec{v}_{k-1} + 1\vec{v}_k + 0\vec{v}_{k+1} + \dots + 0\vec{v}_p = \vec{O}$ is a lin. dep. relation, so S is lin. dep. II

$$Expl 6a$$
Are $(\frac{1}{6}), (\frac{2}{9}), (\frac{3}{5}), (\frac{4}{8})$ lin. dep?
4 vectors in $\mathbb{R}^3, 24>3$, so Yes, lin. dep.

$$Expl 6b$$
Are $(\frac{2}{3}), (\frac{0}{0}), (\frac{1}{8})$ lin. dep?
Contains $\overline{O}, so [Yes, lin. dep.]$

$$Expl 6c$$

$$Expl 6c$$

$$Expl 6c$$

$$Are $(-\frac{2}{4}), (-\frac{3}{-9}), (\frac{3}{-9})$ lin. dep?
Only 2 vectors. Neither is a multiple of
the other (no common ratio; $-\frac{2}{2}$ for three
entries, $\frac{3}{2}$ for the fourth). [No, lin. indep.]$$