1.7 Linear independence despite the allow despite A set { $\vec{v}_1,...,\vec{v}_p$ } \leq IR" is linearly dependent if there are constants $c_1,...,c_p$, not all zero, such that $C_1\vec{V_1} + \cdots + C_p\vec{V_p} = \vec{O}$ \leftarrow dependence
relation The set is linearly independent otherwise. $Expl$ 1 $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ 16 $5\overline{v}_1$, \overline{v}_2 , \overline{v}_3 3 \overline{v}_1 . indep? If not, find a lin. dep. relation. Want a nontrivial soln to $\chi_1 \overrightarrow{v}_1 + \chi_2 \overrightarrow{v}_2 + \chi_3 \overrightarrow{v}_3 = \overrightarrow{0}$ $(\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3)$ $(\begin{matrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{matrix})$ = \vec{O} $\begin{array}{ccc} \begin{array}{ccc} \nearrow & \nearrow & \nearrow \\ \nearrow & \nearrow & \nearrow \\ \nearrow & \nearrow & \nearrow \end{array} \end{array}$ $A\vec{a} = \vec{0}$

$$
\begin{pmatrix}\n1 & 4 & 2 & 0 \\
2 & 5 & 1 & 0 \\
3 & 6 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_2 - 2R_1 - R_2 \\
8_5 - 3R_2 - R_3 \\
0_5 - 6 - 6\n\end{pmatrix} \begin{pmatrix}\n1 & 4 & 2 & 0 \\
0 & -6 & -6 & 0\n\end{pmatrix}
$$
\n
$$
R_3 - 2R_2 - R_3 \begin{pmatrix}\n1 & 4 & 2 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & -6 & -6 & 0 \\
0_1 & 1 & 0 & 0 \\
0_2 & 0 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & -8 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_2 & 0 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & -8 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_2 & 0 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & -8 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_2 & 1 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0\n\end{pmatrix} \begin{pmatrix} R_5 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0 \\
0_1 & 1 & 0 & 0\n\end{pmatrix} \begin{pmatrix}
$$

$$
A = (\vec{a}, \dots \vec{a}_{n})
$$

 $A \vec{x} = \vec{0}$ has only the initial solu $\vec{x} = \vec{0}$
iff

 $x, a + \cdots + x_n a_n = 0$ has only the trivial solu
 $x, z \cdots = x_n = 0$

if
$$
\{\vec{a}_1, ..., \vec{a}_n\}
$$
 are $\[\text{in. index}\]$

\nAs of A are $\[\text{in. index}\]$. If $A\vec{x} = \vec{0}$ has only the trivial solution.

\nExpl 2

\n
$$
A = \begin{pmatrix} 0 & 1 & 4 \\ 5 & 8 & 0 \end{pmatrix}
$$
\nAns. $\[\text{the} \text{abs. of } A \text{ bin. index}\]$

\n $\left(\begin{array}{ccc} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{array}\right) \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & -2 & 5 & 0 \end{pmatrix}$

\n $R_3 + 2R_2 - R_3 \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 13 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 13 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 13 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 13 \end{pmatrix}$

\nThus, $\{\vec{v}\}$ is $\[\text{in. deg. iff } \vec{v} = \vec{0}\]$.

 Pf : Suppose $\{ \nabla^2 f \}$ is lin. dep. Then $\exists c \neq 0$ s.t. $C\vec{v} = \vec{O}$. Since $C \neq 0$, $\frac{1}{C}$ is a number, and we may unite $\vec{v} = \frac{1}{C} c \vec{v} = \frac{1}{C} \vec{\sigma} = \vec{\sigma}$. Now suppose $\vec{v} = \vec{0}$. Then $1 \vec{v} = \vec{0}$ is a lin. dep. relation, so $\{\vec{v}\}$ is lin. dep. \Box

 $\overline{u}_{\mu\nu}$ $\{\vec{v}_1,\vec{v}_2\}$ is lin. dep. iff one vector is a multiple of the other

 $Pf:$ Suppose $\{\vec{v}_1,\vec{v}_2\}$ is lin. dep. Let $c_1\vec{v}_1 + c_2\vec{v}_2 = \vec{0}$ be a lin. dep. relation. Then cither $c_1 \neq 0$ or $c_2 \neq 0$. If $c_1 \neq 0$, then $\vec{v}_1 = \frac{C_2}{C_1}\vec{v}_1$. If $C_2 \neq 0$, then $\vec{v}_2 = \frac{C_1}{C_2}\vec{v}_1$.

Now suppose one vector is ^a multiple of the other. If $\vec{v}_1 = c \vec{v}_2$, then $1 \vec{v}_1 - c \vec{v}_2 = \vec{0}$ $-c'$ is a lin. dep. velation. If $\vec{v}_2 = c \vec{v}_1$, then here $-c\vec{v}_1$ + $1\vec{v}_2 = \vec{0}$ is a lin. dep. relation. Thus, $\int_{bc}^{m\rightarrow 0} 0$ $\{\vec{v}_1,\vec{v}_2\}$ is lin. dep. \Box

Thum 7 (characterization of In. dep. sets) $S=\{\vec{v}_1,...,\vec{v}_{p}\}$ is lin, dep. iff at least one vector in ^S can be written as ^a linear combination of the other vectors in S

In fact, if S is lin. dep. and \vec{v} , $\vec{\theta}$, then $\exists j>1$ such that \vec{v}_j is a linear combination σ f $\vec{v}_1, ..., \vec{v}_{j-1}$.

 $Pf: Suppose that at least one vector in S can$

be written as a lin. *conv*lo. of the others. So
\nHore is some k with
$$
15k5p
$$
 and
\n $\vec{v}_k = c_1 \vec{v}_1 + \cdots + c_{k-1} \vec{v}_{k-1} + c_{k+1} \vec{v}_{k+1} + \cdots + c_p \vec{v}_p$.
\n(Any or all of these c's might be 0.) This gives
\n $c_1 \vec{v}_1 + \cdots + c_{k-1} \vec{v}_{k-1} + (-1) \vec{v}_k + c_{k+1} \vec{v}_{k+1} + \cdots + c_p \vec{v}_p = \vec{0}$
\nSince the cost f \vec{v}_k is nonzero, this is a lin. dep.
\nrelation, so $\{\vec{v}_1, \dots, \vec{v}_p\}$ is lin dep.
\n(aux 1 : $\vec{v}_1 = \vec{0}$. In this case,
\n $\vec{v}_1 = 0 \vec{v}_2 + 0 \vec{v}_3 + \cdots + 0 \vec{v}_p$,
\nand the proof is done.
\n(aux 2 : $\vec{v}_1 \neq \vec{0}$. Let
\n $c_1 \vec{v}_1 + \cdots + c_p \vec{v}_p = 0$
\nbe a lin. dep. relation, so that at least one
\n c_k is nonzero. Let $j = max\{k : c_k \neq 0\}$.
\nThen $c_k = 0 \forall k > j$, so the above becomes
\n $c_i \vec{v}_1 + \cdots + c_j \vec{v}_j = \vec{0}$.
\nSince $c_j \neq 0$, we can write

$$
\overrightarrow{v}_j = \left(-\frac{c_1}{c_j}\right)\overrightarrow{v}_i + \left(-\frac{c_2}{c_j}\right)\overrightarrow{v}_2 + \cdots + \left(-\frac{c_{j-1}}{c_j}\right)\overrightarrow{v}_{j-1},
$$

showing that
$$
\vec{v}_j
$$
 is a lin. double. of \vec{v}_1 , ..., \vec{v}_{j-1} . \vec{L}
\n $\overline{L} \times \mathfrak{g} \times \overline{S} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\overline{v}_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ 1in. indep?
\n $\vec{v}_2 = 2\vec{v}_1$ \overline{N}_0 , they are lin. dep.

Expl 3b	
Are $\vec{v}_i = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ 1in. indeq?	
Naiflar is a mult. of the other, so	
Yes. they are lin. indep.	
Expl 4	$\vec{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 6 \\ 6 \\ 0 \end{pmatrix}$
Describe Span { \vec{u} , \vec{v} } gen { \vec{u} , \vec{v} } 3. 1in. deep.	
Explain why $\vec{u} \in Span$ { \vec{u} , \vec{v} } 4 in. deep.	

 $\mathcal O$ Span $\{\vec{u}, \vec{v}\}$ is the $x_i x_2 - p$ lane $\vec{u} \neq \vec{0}$, so $\{\vec{u}, \vec{v}, \vec{u}\}$ is lin. dep. iff $\vec{v} = c\vec{u}$ or $\vec{w} = c_1\vec{u} + c_2\vec{v}$ (Them. 7) But \vec{v} + $c\vec{u}$. \dot{H} $\xi\vec{u}, \vec{\nu}, \vec{\omega}$ ξ is lin. dep. \int o $\vec{\omega} = c_1 \vec{u} + c_2 \vec{v}$ iff $\vec{w} \in \mathbb{S}$ pan $\{\vec{u}, \vec{v}\}$. Thing Let $S = \{\vec{v}_1, ..., \vec{v}_p\}$ be a set of vectors in R". If p>n, then S is lin. dep. Thus 8 (matrix version) Let A be an NXP matrix. If p>n, then the cols. of A are (Converse not true!) 1in. dep.

 Pf : Write $A = (\vec{v}_1 \cdots \vec{v}_p)$. The eqn. $A\vec{x}=\vec{O}$ has augmented matrix $(\vec{v}_1 \cdot \vec{v}_p \mid \vec{O})$. Since the number of rows is n and $n < p$, there must be at least one free variable. Thus, $A\vec{x} = \vec{0}$ has nontrivial solns, so \vec{v}_i , \vec{v}_p are lin. dep. \Box $E\times plS$ Are $(\begin{array}{cc} 2 \\ 1 \end{array}), (\begin{array}{cc} 4 \\ -1 \end{array}), (\begin{array}{cc} -2 \\ 2 \end{array})$ lin. dep. or lin. indep. ? There are 3 vectors in \mathbb{R}^2 and 3>2, so they are lin. dep. Thin 9 If $S = \{ \overline{v}_1, ..., \overline{v}_{p} \}$ contains the zero vector, then S is lin, dep. $PF:$ Suppose there is a k with $15k 5p$ and $\vec{v}_k = \vec{0}$. Then $\label{eq:22} \mathcal{O} \vec{v}_1 + \cdots + \mathcal{O} \vec{v}_{k-1} + \textcolor{red}{\textcolor{black}{\mathcal{I}}}\vec{v}_k + \mathcal{O} \vec{v}_{k+1} + \cdots + \mathcal{O} \vec{v}_{p} = \textcolor{red}{\vec{O}}$ is a lin. dep. relation, so S is lin. dep. Π

Expl 6a	
Are $\begin{pmatrix} 1 \\ 6 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 9 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 8 \end{pmatrix}$	lin. dep?
If vectors in \mathbb{R}^3 , $\frac{2}{5}$, $\frac{2}{5}$, $\frac{2}{5}$, $\frac{2}{5}$, $\frac{2}{5}$	
See $\begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 8 \\ 8 \end{pmatrix}$	lin. dep.
Corteins \overrightarrow{O} , \overrightarrow{SO} , \overrightarrow{SO} , lin. dep.	
Exercise $\begin{pmatrix} -2 \\ 4 \\ 10 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -6 \\ 15 \end{pmatrix}$	lin. dep?
Only 2 vectors. Neitker is a multiple of the other, \overrightarrow{SO} , \overrightarrow{SO}	
Only 2 vectors. Neitker is a multiple of the other, \overrightarrow{SO}	
And the other (no common ratio; $-\frac{2}{2}$ for three entries, $\frac{3}{2}$ for the fourth).	
Noting 1	Not, \overrightarrow{SO}