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Preface

These notes are for a two-semester course in measure-theoretic probability the-
ory. The first semester covers Chapters 1-10. The second semester covers the
rest. After the end of the sequence, the student will be ready to study stochastic
calculus, using texts such as [8] and [11].

The notes stand alone in one sense, and do not stand alone in another.
Although I do not recommend it, you can read these notes front to back without
ever opening another book. The notes include every definition you will need.
You do not have to go elsewhere to understand any of the terms or notation.
In this sense, they stand alone. That said, we do omit the proofs of many
theorems. A select number of proofs are included. This is usually when those
proofs illustrate important techniques that we need later. To see every proof,
one must consult the cited entries in the bibliography. In this sense, the notes
do not stand alone.

You should regard these notes as a reference. Do not think you need to learn
and internalize everything in these notes in a single year. They contain much
more than can be covered in such a short time. Occasionally, I present material
that goes beyond the basics of measure-theoretic probability. I sometimes in-
clude more general and advanced results that you may need in the future. You
can regard these extra bits as optional on a first reading. It is my hope that
these notes will be something you can come back to. There is a common core
of material that one needs for research in probability. These notes provide a
single, consolidated source for this material.

Part I of these notes covers measure and integration. It should take about
half a semester to cover Part I. In such a short time, you should not try to
“learn” measure theory. What I mean by this is best understood by analogy.
Consider a calculus student. They must borrow many results from physics
during their first-year calculus classes. But they do not “learn” physics in those
classes, and physics is not a prerequisite for those classes. In the same way, we
will borrow results from measure theory. We will take them on faith, and use
them in the service of our main goal, which is to do probability. Now, to be
fair, measure theory is the foundation of modern probability. So the amount
of measure theory we use is much more than the amount of physics used by a
calculus student. But your attitude about it, for now at least, should be the
same. Do not think you must have a full and deep understanding of measure
theory before moving past Part I. If you do, then you will be overwhelmed and



probably unable to finish Chapters 1-10 in a single semester.

The only prerequisite for reading these notes is mathematical maturity. You
should be comfortable with reading and writing rigorous mathematics. You
should have taken one or more courses that provide you with this level of com-
fort. If you have, then you are in a fine position to take a two-semester sequence
based on these notes. If you plan to take such a sequence in the future, and
would like to do something now to get a leg up, here are some ideas. These are
completely optional and you can do fine without them.

1. Take an undergraduate probability course. Probability is counter-intuitive.
It can be difficult to develop the right intuition about the subject. In
an undergraduate course, you don’t have the burden of learning rigorous
mathematics. This makes it a good time to work on your intuition.

2. Take an undergraduate course in mathematical analysis. This would
heighten your mathematical maturity. It would also introduce you to
topics such as cardinality, countability, limsup, and so on. See [5, Chapter
0] for a rather complete list (and overview) of important topics that would
be covered in such a class.

3. Read a book (or take a course) on measure theory. As noted above, our
attitude toward measure theory will be that it is something we borrow
from. We will survey the results we need, take them on faith, and use
them for our purposes. But if you plan to do research in probability, then
you will one day need to understand it at a deeper level. If you want, you
can start that process now.
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Measure and Integration






Chapter 1

Measures

1.1 o-algebras

If X is a set, we write 2% for the power set of X.
Let X be a nonempty set and M < 2% a nonempty collection of subsets of
X. If

e Fy,...,E, € M implies U;‘l=1 E; e M, and
e F e M implies E¢ e M,

then M is an algebra (or field) on X. If
e E1,E,,...€ M implies | J)_, E,, € M, and
e £ e M implies E¢ € M,

then M is a o-algebra (or o-field) on X.

If M is a o-algebra, and B, Es,...€ M, then (\_, E, = (U,_, ES)¢ € M.
The smallest o-algebra on X is {, X}, which is called the trivial o-algebra.
The largest o-algebra on X is 2X.

If £ e M, define
Mp={AnE:AeM}={AeM:AcE}.
Then M|g is a o-algebra on E (check).

Proposition 1.1. If € = {M, : a € A} is a nonempty collection of o-algebras
on X, then

(Y Mo ={EcX:EeM, foralac A}

a€eA

s a o-algebra.

Proof. Exercise 1.1. O

11
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Let £ < 2%, Let € = {M, : a € A} denote the collection of all o-algebras
M, on X such that &€ ¢ M,. Note that € is nonempty, since 2¥ € F.
It therefore follows that o(&) := (),ca Ma is a o-algebra. We call o(&) the
o-algebra generated by £. It is usually described as the smallest o-algebra
containing £. This description is justified by the following proposition.

Proposition 1.2. If £ < 2%, then o(€) is the unique o-algebra such that
(a) € c o), and
(b) if G is a o-algebra on X such that £ = G, then o(€) < G.

Proof. Exercise 1.4. O

1.1.1 Borel o-algebras
Let X be a set and T < 2X. If

e XeT,HeT,
e Uy,...,U, € T implies ﬂ;.l:l UjeT,and
o {Uy:ae A} < T implies |J,coUa €T,

then T is a topology on X and (X, 7T) is a topological space. A set U e T
is called an open set. A neighborhood of x € X is any U € 7T such that
xeU. If {x,} is a sequence in X and z € X, then we say z, converges to z,
written z,, — x, if, for any neighborhood U of x, there exists N € N such that
x, € U whenever n = N. If (Y,U) is another topological space, then f : X - Y
is continuous if f~1(U) € T for all U € Y. We say that f is continuous at
x € X if, for any neighborhood V of f(x), there exists a neighborhood U of x
such that f(U) < V. A function f : X — Y is continuous if and only if it is
continuous at z for all z € X (see [10, Theorem 18.1]). If f is continuous at
x, then f(x,) — f(x) whenever x,, — x (see [10, Theorem 21.3]). Unlike in
metric spaces, the converse is not true in general. A partial converse, however,
is provided by Lemma 1.10.

If (X,p) is a metric space, then the collection of subsets of X which are
open (in the sense of a metric space) forms a topology on X called the metric
topology. Moreover, the definitions of convergence and continuous functions on
a metric space are equivalent to the topological definitions applied to the metric
topology (see [10, Section 20]). A topological space (X,7) is metrizable if
there exists a metric p on X such that 7 is the metric topology for (X, p).

If (X, T) is a topological space and X # ¢, then Bx := o(T) is called the
Borel o-algebra on X. A set E € By is called a Borel set.

The following is in [5, Proposition 1.2].

Proposition 1.3. Consider the following subsets of 2% :

(a) the open intervals: & = {(a,b) : a < b},
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(b) the closed intervals: E2 = {[a,b] : a < b},

(¢) the half-open intervals: € = {(a,b] : a < b} or & = {[a,b) : a < b},
(d) the open rays: Es = {(a,0) : a € R} or & = {(—0,a) : a € R},

(e) the closed rays: & = {[a,®) : a € R} or & = {(—0,a] : a € R}.

Then Bg = o(&;) for any i€ {1,...,8}.

1.1.2 Product o-algebras

Let {X, : a € A} be an indexed collection of nonempty sets. Let X =[] .4 Xa
be the Cartesian product of this collection. A typical element of X has the form
T = (To)aea, where z, € X, for all a. Let 7w, : X — X, denote the projection
onto the a-th component. That is, 7, (z) = x4.

For each a € A, let M, be a o-algebra on X,. We define

&R My =o({n; (Es) : Eq € Mgy, a € A}), (1.1)

acA

which we call the product o-algebra on X.
The following propositions are from [5, Section 1.2].

Proposition 1.4. If A is countable, then

@Ma—a({nEa:EaeMa}).

acA a€eA
Proposition 1.5. If, for each a € A, we have M, = o(&,), then

QR Mo =o({n;(Es) : Eq € Eq,a € A}),
acA

Proposition 1.6. If A is countable and, for each a € A, we have M, = 0(&,),
then

®Ma —0({ 1_[ E,: E, Ec’i’a}).

a€EA a€EA

Proposition 1.7. Let Xy,...,X,, be metric spaces and let X = H?Zl X; be
equipped with the product metric. Then ®?:1 Bx, < Bx. If the X;’s are
separable, then ®?=1 Bx, = Bx. In particular, ®?=1 Br = Bgn.

Remark 1.8. We will adopt the notation R = Br and R™ = Bgn.



14 CHAPTER 1. MEASURES

1.1.3 The topology of pointwise convergence

Let X be a set and B < 2X. If Upes B = X and, whenever By, B, € B and
x € By n By, there exists B3 € B such that x € B3 © By n By, then B is a basis
for a topology on X.

If B is a basis for a topology on X and

T—{UA:ACB},

Ae A

then 7T is a topology on X. Moreover, U € T if and only if for all x € U, there
exists B € B such that x € B < U. In particular, this implies that for each
U e T, there exists A < B such that U = |44 A. We call T the topology
generated by B and say that B is a basis for 7 (see [10, Section 13]).
Let {(Xa,7Ta) : « € A} be an indexed collection of nonempty topological
spaces and let X =[] ., Xo. A set of the form
T Uay) 0 -1 (Uy,) © X,

a1 Qn

where Uy, € T,;, is called a cylinder set. If B — 2% is the collection of
cylinder sets, then B is a basis for a topology on X. The topology generated
by B is called the product topology (see [10, Section 19]). The product
topology is the unique topology on X that satisfies the following property: if
(Y,U) is a topological space and f : Y — X, then f is continuous if and only
if T 0 f 1Y — X, is continuous for all o € A (see [10, Theorem 19.6] and [9,
Theorem 3.37]).

In the product topology, z,, — = in X if and ouly if 7w, (z,) — 7o (z) in X,
for all « € A (see [10, Exercise 19.6]).

If A and B are sets, we write AP for the set of all functions from B to A.
Let X be a topological space and T a set. The set X7 can be identified with
[[,cr X and endowed with the product topology. Since f(t) = m¢(f), it follows
that f, — f in the product topology if and only if f,(¢t) — f(t) for all t € T.
It is for this reason that the product topology is also called the topology of
pointwise convergence.

We now wish to compare the Borel g-algebra generated by the product
topology with the product o-algebra. We will present a theorem giving sufficient
conditions for them to be equal. Before presenting this theorem, we need some
final preliminary definitions.

Let (X,T) be a topological space. Suppose that for all € X, there exists
a countable set of neighborhoods of z, denoted B,, such that for any neigh-
borhood U of z, there exists A € B, with A < U. Then we say that A is
first-countable. If there exists B < 7 such that B is countable and B is a
basis for T, then (X, 7) is said to be second-countable. Second-countability
implies first-countability (see Exercise 1.7). A metric space is second-countable
if and only if it is separable (see [10, Theorem 30.3(b) and Exercise 30.5(a)]).
Moreover, a countable product of second-countable spaces is second-countable
(see [10, Theorem 30.2]). A sometimes useful result in connection with this
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is that a countable product of metric spaces is metrizable (see [10, Exercise
21.3(b)]).
The following is a generalization of Proposition 1.7.

Theorem 1.9. Let {(Xa,Ta) : @ € A} be an indexed collection of topological
spaces and let X = [[,c4 Xa, endowed with the product topology. Let Bx be
the Borel o-algebra on X and B, the Borel o-algebra on X,. Then ®a€A B, c
Bx. If A is countable and (X, Te) is second-countable for all o € A, then

& pes Ba = Bx.

Proof. By Proposition 1.5,

X Ba = ({73 (Ua) : Ugy € T, € A}).
acA

Since each 7,1 (U, ) is a cylinder set and cylinder sets are open, it follows that
®a€A Ba = Bx.
Now suppose A is countable and (X4, 7,) is second-countable for all « € A.
It will suffice to show that for every open U < X, we have U € ), 4 Bo. Let
BAu be a countable basis for X, and let B be the collection of cylinder sets of
the form
7 Usy) 0 - 01 (Ug,)s

a1 Qn

where U, € éaj. Then B is countable and, by the proof of [10, Theorem 30.2],
B is a basis for the product topology. Note that B < X), 4 Ba. Let U € X be

open. Then there exists A ¢ B such that U = Uaea A Since this is a countable
union and each A € A satisfies A € X, 4 Ba, it follows that U € )4 Ba. O

We now provide a useful application of the above theorem. The lemma below
is [10, Theorem 30.1(b)].

Lemma 1.10. Let (X,7T) and (Y,U) be topological spaces and f : X — Y.
Suppose X is first-countable and that f(xz,) — f(x) whenever x, — x. Then f
18 continuous at x.

Theorem 1.11. Let (X,T) be a second-countable topological space (this is the
case, for example, if X is a separable metric space), and let T' be a countable
set. Let M = Bx and MT = &)y Bx be the product o-algebra on XT. Let
(Y,U) be a topological space and G : XT — Y. If G(f.) — G(f) whenever
fn(t) = f(t) for allt € T, then G1(U) € MT whenever U € U.

Proof. Let us endow X T with the product topology (or the topology of pointwise
convergence). Suppose G(f,) — G(f) whenever f,(t) — f(t) forallt e T. In
other words, G(f,) — G(f) whenever f,, — f. Since a countable product of
second-countable spaces is second-countable, and second-countability implies
first-countability, Lemma 1.10 implies that G is continuous.

Now let U € U. By the definition of continuity, G=!(U) is open and therefore,
G~Y(U) € Bxr. But by Theorem 1.9, Bxr = MT. O
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Remark 1.12. As we will see in Section 2.1 (specifically Proposition 2.2),
under the hypotheses of Theorem 1.11, we may conclude that G is “(MT, By)-
measurable”.

Exercises

1.1. Prove Proposition 1.1.

1.2. Provide an example of a nonempty family of o-algebras, € = {M, : a €
A}, such that

UMaz{ECX:EeMa for some o € A}

aEA
is not a o-algebra.
1.3. Prove that if My © My < -+ are o-algebras, then | J"_, M,, is an algebra.
1.4. Prove Proposition 1.2.

1.5. A o-algebra M is said to be countably generated if there exists a count-
able set C = 2% such that M = o(C). Prove that R is countably generated.

1.6. Show that every infinite o-algebra is uncountable.

1.7. Prove that second-countability implies first-countability.

1.2 Measures

Let X be a nonempty set and M a o-algebra on X. Then (X, M) is called
a measurable space and the sets £ € M are called measurable sets. A
measure on (X, M) is a function u: M — [0, 0] such that

() 4(2) = 0, and
(ii) if {E,}x_; © M are disjoint, then

;(@EQ—iM&»

n=1 n=1

Note that an indexed collection of sets { F, } is disjoint if E,, " F,, = & whenever
n # m. Also note that [ means the same thing as | J, except it indicates that
the sets in the union are disjoint.

Property (ii) is called countable additivity. It implies finite additivity:

(ii") if {E;}}_; = M are disjoint, then
(W) = X ueE.
=1 =

Jj=1
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since one can take E; = & for j > n. A function p : M — [0, 0] that satisfies
(i) and (ii’), but not necessarily (ii), is called a finitely additive measure on
(X, M).

If i is a measure on (X, M), then (X, M, ) is called a measure space.
If u(X) < oo, then p is a finite measure. If there exists {F,}*_; < M such
that X = |J;_, B, and p(E,) < o for all n, then u is a o-finite measure. If
(X)) =1, then p is called a probability measure. If ;4(X) = 0, then we say
p is trivial. If p(X) > 0, then p is nontrivial.

Example 1.13. Let (X, M) be any measurable space. For F € M, let u(FE) =
|E|. That is, p(E) is the number of elements in E. Then p is a measure on
(X, M) and is called counting measure.

Example 1.14. Let (X, M) be any measurable space and fix zop € X. For
E e M, define p(E) = 1if zg € E and p(E) = 0 otherwise. Then p is a measure
on (X, M) and is called the point mass measure (or Dirac measure) at z.

The following is in [5, Theorem 1.8].
Theorem 1.15. Let (X, M, 1) be a measure space.
(a) (Monotonicity) If E,F e M and E c F, then u(E) < pu(F).
n=1

(
(b) (Subadditivity) If {E,}*_, =« M, then (U, En) < Yo, u(Ey).
(

(¢) (Continuity from below) If {E,}?_, ¢ M and E; < Ey < ---, then
M(Ule En) = hmn—>oo N’(En)

(d) (Continuity from above) If {F,}*; ¢ M and E; D E; D ---, and
w(Er) < oo, then p((_; En) = lim, o pu(Ey).

Proof. Recall that for any two sets A and B, we have A\B = A n B°.
For (a), let E, F € M with E c F. Since F = E w (F\E), we have
w(F) = u(E) + p(F\E).

Since u(F\E) = 0, it follows that u(F') = u(E).
For (b), let {E,}%_; < M. Define Fy = E; and, for n > 2, let

F, = En\(U Ej).

j=1

Then {F,}>_; are disjoint, Lﬂ;'f:l F, = UOO E,, and F,, ¢ E,. Thus,

u(['] B,) - u(@ R - ni”(F") < niu(En»

where the final inequality follows from (a).
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For (c), let {E,}>_; € M with Fy ¢ Ey < ---. Define {F,}*_; as above.
Then

M<Q1En> —u( @ Fn) = i 1(Fn)

n=1

where we have used the fact that W;_, F; = Uj_, E; = Ey.

Finally, for (d), let {E,}>_; € M with E; D E5 o ---. Define E!, = E1\E,.
Then Fj c Ey < ---. Let E = ﬂf:l E, and E' = U;il E! . Then, by (c), we
have u(E’) = lim, o n(E}). Also note that

0 [e¢] (e @] c

E = U(ElmEfL)zElm(UEfL> =Em(ﬂEn> = F)\E.
n=1 n=1 n=1

Thus, p(F1\E) = lim, o p(E1\Ey). Next, since By = E w (E1\E), we have

w(Eq) = p(E) + p(F1\E). By (a), we have pu(E) < u(E;) < oo. Therefore, we

may subtract it from both sides, giving u(E1\E) = p(E1) — p(E). Similarly, we

have u(E\\E,) = p(E1) — p(Ey). Tt follows that

w(Er) — p(E) = p(Er) — nlglgo w(Ey).
Lastly, since u(E7) < oo, this implies the conclusion of (d). 0

Let (X, M,u) be a measure space. If N € M and pu(N) = 0, then N is
called a null set. If something is true for all x € X, except for z in some null
set, then we say the property is true py-almost everywhere, abbreviated p-a.e.
For example, if f : X — R, then f = 0 p-a.e. means there exists a null set N
such that f(z) = 0 for all x € N°. When the measure is understood, we drop
the p and simply write f = 0 a.e.

A set is called negligible if it is a subset of a null set. A measure space
(X, M, n) is complete if M contains all negligible sets. That is, a complete
measure space has the property that if N € M, u(N) = 0, and F' < N, then
F e M. Note that by monotonicity, we necessarily have u(F) = 0 in this case.

The following is [5, Theorem 1.9].

Theorem 1.16. Let (X, M, 1) be a measure space, and let N be the collection
of null sets. That is, N = {N € M : u(N) = 0}. Let

M={EUF:EeMand F = N for some N € N'}.

Then M is a o-algebra on X and there exists a unique measure fi on (X, M)
such that

(a) W(E) = u(E) for all E € M, and
(b) (X, M, Qi) is a complete measure space.

The measure i is called the completion of i, and M is the completion of M
with respect to p.



1.3. PREMEASURES AND OUTER MEASURES 19

Exercises

1.8. Prove that counting measure, defined in Example 1.13, is a measure.
1.9. Prove that the point mass measure, defined in Example 1.14, is a measure.

1.10. Let X = R and
={F cR: E or Eis countable}.
Define p : M — [0, 0] by

0 if E is countable,
WE) = e e -
1 if E° is countable.

Prove that (R, M, p) is a complete measure space.

1.3 Premeasures and outer measures

Let X be a nonempty set and A an algebra on X. A premeasure on (X, .A) is
a function g : A — [0, 0] such that

(i) po(¥) =0, and
(ii) if {A,}2_, < A are disjoint and |4/, A, € A, then

Ho<”@1An> = i f1o(An)

n=1

Example 1.17. Let X = R and let A be the collection of sets of the form

3

A=+ (aj7 bj]7
j=1
where —0 < a; < b; < oo. (If a; = b;, we interpret (a;,b;] = &, and if b; = o0,
we interpret (a;,b;] = (aj, 00).) For any such A, let us define
A) = Z(bj
j=1

Then A is an algebra on R and puo is a premeasure on (R,.A). For a proof of
this, see, for example, [5, Proposition 1.15].

Let X be a nonempty set. An outer measure on X is a function p* : 2% —

[0, 00] such that

(i) p*(@) =0,
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(ii) if A < B, then u*(A) < p*(B), and
(i) p* (Uny An) < 2z 15 (An).

A set A c X is called p*-measurable if
p*(E) = p*(E n A) + p*(E n A%),

forall E < X.
The following is [5, Proposition 1.10 and Proposition 1.13a].

Proposition 1.18. Let A be an algebra on a nonempty set X, and let pg be a
premeasure on (X, A). For any E c X, define

p*(E) = inf{ Dino(An) i Ane AEC An}. (1.2)

n=1

Then p* is an outer measure on X with p*|4 = po, and every A € A is p*-
measurable.

The following theorem is the foundation for the creation of measures such as
Lebesgue measure on the real line. It can be found, for example, in [5, Theorem
1.11].

Theorem 1.19 (Carathéodory’s extension theorem). Let pu* be an outer mea-
sure on a nonempty set X, let M* be the collection of u*-measurable sets, and
let it = p*|pm%. Then (X, M*,T1) is a complete measure space.

Remark 1.20. If p* is created from a premeasure according to Proposition
1.18, then o(A) = M*, so we may define u = p*|,(4y. Then (X,0(A),p) is a
measure space, but it is not necessarily complete. This gives us a way to take a
premeasure po on (X,.A), and extend it to a measure p on (X, o(A)).

There may, however, be other ways to extend pg. Suppose v is another
measure on (X, o (A)) such that v|4 = pg. We cannot necessarily conclude that
u = v. However, we can say two things:

(i) For any F € o(A), we have v(E) < pu(E), with equality when p(FE) < co.

(ii) If there exists {A4,}%_; = A such that X = J"_; A,, and uo(A,) < oo for
all n, then p = v.

If the conditions of (ii) hold, then we say 1 is a o-finite premeasure on (X, .A).
If po is o-finite, then according to (ii), the measure p is the unique extension of
o from A to o(A). Moreover, if 11 is o-finite, then (X, M* 1) is the completion
of (X,0(A), p).

Example 1.21. Continuing Example 1.17, recall the premeasure pg we defined
on (R, A). Let us define the outer measure u* on R by (1.2). It can then be
shown that for any F < R, we have

0

pr(E) = inf{ D (b —ay): Ec Ql(ajabj]}-

n=1
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Let £ be the collection of p*-measurable subsets of R, and let A = p*|.. Accord-
ing to Carathéodory’s extension theorem, (R, £, \) is a complete measure space
with M(A) = uo(A) for all A € A. In particular, A\((a,b]) = b — a. The mea-
sure X is called Lebesgue measure, the o-algebra £ is called the Lebesgue
o-algebra, and the sets E € L are called Lebesgue measurable sets.

It can be shown that o(A) = R, the Borel o-algebra on R. Let A = A|g.
Then (R, R, \) is a measure space, although it is not complete. By an abuse of
terminology, the measure X is also called Lebesgue measure, even though it is
only defined for Borel sets. According to Remark 1.20, Lebesgue measure A is
the unique measure on (R, R) that satisfies A\((a,b]) = b — a for all half-open
intervals, and (R, £, \) is the completion of (R, R, \).

As one further abuse of notation, we will typically omit the bar, writing
(R, L, \) instead of (R, £, \). The reader will often need to rely on context to
determine whether the domain of A is meant to be £ or R.

Exercises

1.11. Let p* be an outer measure on a nonempty set X, and let M* be the
collection of p*-measurable sets. Suppose {4,}X_; < M* are disjoint. Prove

that
e} 0
w* (Em ( L—i_—J An>> = Z w*(En Ay),
n=1 n=1

for any F < X.

1.4 Borel measures on R

Let X be a topological space. A Borel measure on X is a measure p on (X, Bx).
The following is [5, Theorem 1.16]. In these notes, “increasing” is synonymous
with “nondecreasing”.

Theorem 1.22. If F : R — R is any increasing, right-continuous function,
then there is a unique Borel measure up on R such that

pr((a,0]) = F(b) = F(a),

for all a,b e R with a < b. If G is another such function, then prp = pug if and
only if F — G is constant.

Conversely, if p is a Borel measure on R that is finite on all bounded sets,
then the function

w((O,]) i >0,
F(z)=<0 ifx=0,
—u((z,0]) iz <0,

18 increasing, right-continuous, and p = pp.
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Remark 1.23. The measure pp is constructed as in Example 1.21, using the
outer measure

pb(E) = int { Y(F0) - Fla): £= bt} (3)

for all E < R. We then have pp = ph|%.

If Mp is the collection of all p}-measurable sets and fip = pi|a,, then
(R, Mp,ip) is the completion of (R, R, ur). As with Lebesgue measure, we
will typically omit the bar and write (R, Mg, up) instead of (R, Mp,Tip). The
reader must depend on context to determine whether the domain of up is R
or Mp. The measure pp, in either case, is called the Lebesgue-Stieltjes
measure associated to F.

When F(z) = z, we have Mp = L, which is the Lebesgue o-algebra, and
wr = A, which is Lebesgue measure.

Equation (1.3) is useful for doing calculations, and it is often helpful to
recognize that we can use open intervals, instead of half-open intervals. This
is often useful when combined with the fact that any open subset of R can be
written as a countable union of disjoint open intervals. The following is [5,
Lemma 1.17].

Lemma 1.24. Let pup be a Lebesque-Stieltjes measure. Then
0 [e¢]
ur(B) = int { Y (F05) = Flay): £.= (a0}
Jj=1 j=1

for all E € Mp.

Another helpful tool in calculating Lebesgue-Stieltjes measures is the follow-
ing, which is [5, Theorem 1.18].

Theorem 1.25. Let up be a Lebesgue-Stieltjes measure. Then

wrp(E) =inf{up(U): Ec U and U is open}, and
wp(E) =sup{up(K): K c E and K is compact},

for all E e Mp.

Recall that A denotes the symmetric difference, E A A = (E\A) u (A\E).

The following proposition is an example of the so-called Littlewood’s first
principle of real analysis: Every measurable set is nearly a finite union of inter-
vals. This proposition can be found in [5, Proposition 1.20].

Proposition 1.26. Let up be a Lebesque-Stieltjes measure. Let E € Mp with
pr(E) < oo. Then for every e > 0, there is a set of the form A = U?=1(aj7bj)
such that pp(E A A) < e.
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At this point, it is possible to prove that Lebesgue measure behaves as
you would anticipate with respect to translations and dilations. The following
theorem is [5, Theorem 1.21].

Theorem 1.27. If E € L, then

E+s:={x+s:xe€E}eLl, and
rE:={rx:xzeE}eL.

Moreover, A\(E + s) = ME) and A\(rE) = |r|\(E).

The previous two results show that Lebesgue measure fits with our intuition
in some rather important ways. However, there are still many counterintuitive
facts about Lebesgue measure that can catch us off guard. An important source
of counterexamples is the Cantor set and the associated Cantor function.

The Cantor set, C, is the set obtained iteratively from [0, 1] by successively
removing the middle third from each remaining subinterval. Informally, we
generate a sequence of sets that begins with

Ey = [0’ 1]v
E, =1[0,1/3] U [2/3,1],
By =[0,1/9] U [2/9,1/3] U [2/3,7/9] L [8/9, 1].

This pattern continues, and we define C' = ﬂf:o E,,. For a rigorous definition
of the Cantor set using ternary expansions, see [5, Section 1.5].

The Cantor set is compact. It is also nowhere dense, which means its closure
has empty interior. The Cantor set is totally disconnected, meaning the only
connected subsets of C' are single points. Moreover, the Cantor set contains no
isolated points. It can be shown that the Cantor set is uncountable, and also
that A\(C) = 0.

A variant on the Cantor set is something called the generalized Cantor
set. Instead of removing the middle thirds at the n-th stage, we remove the
middle a,,-ths, where each «,, € (0,1). The resulting generalized Cantor set, K,
is compact, nowhere dense, totally disconnected, and uncountable. However, if
{a,} is chosen so that a, — 0 sufficiently fast, then A(K) > 0. Generalized
Cantor sets can provide examples of nowhere dense sets with positive Lebesgue
measure. For details, see [5, Section 1.5].

The complement of the Cantor set, relative to [0,1], is C¢ = | J;—_, E<. Note
that

E§ - 2,
B =(1/3,2/3),
ES = (1/9,2/9) U (1/3,2/3) U (7/9,8/9),

and, in general, ES = Lﬂ?i{l I, where Iy y,...,Ian_1, are open intervals,
ordered so that the endpoints of I} ,, are less than the endpoints of I; 1 ,,. With
this notation, the Cantor function (or Cantor-Lebesgue function) is the

unique function f : [0,1] — [0, 1] such that
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o f(x)=j27" forall x € I},, and
e f is continuous.

For a rigorous definition of the Cantor function using ternary expansions, see
[5, Section 1.5]. The Cantor function is an increasing function. Since it is also
continuous, it is a surjection from [0, 1] onto itself. Note that f is constant on
every open subinterval of C¢. Thus, for every x € C¢, we have that f'(x) exists
and f’(xz) = 0. Since A(C) = 0, we have f" =0 a.e. on [0,1]. Thus, the Cantor
function is an example of a continuous, nonconstant function whose derivative
is zero almost everywhere.

The Cantor function can be used to construct sets which are Lebesgue mea-
surable, but not Borel measurable. For an example, see [5, Exercise 2.9].

Exercises
1.12. Let pp be a Lebesgue-Stieltjes measure. For x € R, define

which exists, since F is increasing. Prove that
) pr(fa}) = F(a) = Fla—),

b) pr(la,

(¢) pr(la,b]) = F(b) = F(a—), and
(d) pr((a;b)) = F(b=) = F(a).

1.13. Let E € £ with A\(E) > 0. Prove that for any o < 1, there is an open
interval I such that A(E n I) > aA(I).

a

(
(



Chapter 2

Integration

2.1 Measurable functions
Let X and Y be sets, and let f: X — Y. Recall that if £ < Y, then
f_l(E) ={reX: f(x)e E}.

Also recall that

(U E) = Ur

acA acA
f‘l( N E) — N E,
acA acA

and f7H(E¢) = (f~H(E))"

Now let (X, M) and (Y, ) be measurable spaces. A function f: X — Y is
said to be (M, N)-measurable if f~1(E) € M whenever E € . The following
propositions are from [5, Section 2.1].

Proposition 2.1. Let (X, M), (Y,N), and (Z,0) be measurable spaces. If
f:X > Y is (M,N)-measurable and g : Y — Z is (N,O)-measurable, then
gof: X — Z is (M,0O)-measurable.

Proof. Exercise 2.1. O

Proposition 2.2. Let (X, M) and (Y,N') be measurable spaces. Suppose N =
o(E) for some & < 2¥, and let f : X — Y. Then f is (M, N)-measurable if
and only if f~1(A)e M for all Ac&.

Consequently, if X andY are topological spaces, then every continuous func-
tion f: X —Y is (Bx,By)-measurable.

[134

Proof. We will just prove the “if” part of the first claim. The remainder of the
proof is Exercise 2.2.

25
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Suppose f71(A) € M for all A € £&. We want to show that f~1(E) e M
for all E € o(&). Unfortunately, there is no nice way of taking a set F € o(&)
and writing it in terms of sets in £. We therefore employ the following common
proof technique.

Let

L={EcY:f'(F)eM)}.
Suppose {E,}* | = £ and let E = |J;_, E,. Then

Fim) = (Cj B.) - an‘l(En).

Since each f~(E,) € M and M is a o-algebra, it follows that f~1(E) € M.
Thus, FE € L, and we have shown that L is closed under countable unions.

Next, suppose E € £, and note that f~1(E¢) = (f~}(F))¢. Since f~}(F) e
M and M is a o-algebra, it follows that f~1(E¢) € M. Thus, E¢ € L, and we
have shown that L is closed under complements.

Since L is closed under countable unions and complements, it follows that
L is a o-algebra. Moreover, by hypothesis, £ < L. Since L is a o-algebra, it
follows that o(£) < L. In other words, if E € ¢(&), then E € L, which implies
fYE) e M. O

The technique in the above proof is very common. In general, there is no
good way to represent a generic set E € o(€) in terms of the generating sets
A e &£ (It is possible using something called transfinite induction, but few
people would consider that a “good” way.) So the typical approach is to define
the collection of sets, £, that satisfy the property we wish to prove, and then
show that this collection is a o-algebra that contains &.

Sometimes, however, it can be difficult to prove that £ is a g-algebra. In
this case, we can use something called the 7-A theorem, which is often used in
probability theory.

To state the theorem, we first need two pieces of terminology. Let X be a
set. Then & < 2% is a m-system if it is closed under intersections, meaning
that AN B e & whenever 4, B € £. Also, £ c 2% is a A\-system if the following
three properties hold.

(a) X eL.

(b) If A,Be L and A c B, then B\A € L.

(c) f {A,}* ;< L and A, c A4 for all n e N, then UTOLOZI A,eL.
The following is [2, Theorem 2.1.2].

Theorem 2.3 (The 7-A theorem). If £ is a w-system, L is a A-system, and
Ec L, theno(€) c L.



2.1. MEASURABLE FUNCTIONS 27

For an example of the 7-X theorem in action, see the proof of Theorem 6.11.

Let (X, M) be a measurable space and Y a topological space. If f : X — Y is
(M, By )-measurable, then we will just say f is M-measurable, or we shorten
it further to simply say f is measurable. In other words, we always take
the o-algebra on the range space to be the Borel o-algebra, unless otherwise
specified.

For example, if we say that f : R — R is Lebesgue measurable, then it means
that f is (£, R)-measurable. But if we say that f : R — R is Borel measurable,
then it means that f is (R, R)-measurable.

Also note that, especially in probability, we will often use the abuse of no-
tation, f € M, to mean that f is M-measurable.

Remark 2.4. Proposition 2.1 shows that the composition of Borel measur-
able functions is Borel measurable. But note that the composition of Lebesgue
measurable functions is not necessarily Lebesgue measurable.

Proposition 2.5. If (X, M) is a measurable space and f : X — R, then the
following are equivalent:

(a) f is M-measurable.

(b) f~*((a,0)) € M for all a € R.
(¢) fYa,x)) e M for all a € R.
(d) f~1((—0,a)) e M for alla € R.
(e) f~2((—0,a]) € M for all a € R.
Proof. Exercise 2.4. 0

Let X be a set and (Y, N') a measurable space. Let f: X — Y and define

o(f) = {fTH(E): EeN}.

Then o(f) is a o-algebra, and f is (o(f), N )-measurable. Moreover, if M is
another o-algebra on X such that f is (M, N)-measurable, then o(f) € M. In
other words, o(f) is the smallest o-algebra on X that makes f a measurable
function. We call o(f) the o-algebra generated by f.

More generally, if {(Ya,Ny)}laca is a family of measurable spaces, and for
each a € A, we have a function f, : X — Y, then

o{fa:aeA}) =c({f ;' (Ey): Eq € Ny, € A}).

This is the o-algebra generated by the family {f,}, and it is the smallest
o-algebra on X that makes all of the f,’s measurable.

As an example, take X = [] ., Y, and let f, = m, be the coordinate
projections. By (1.1), we have o({ms : @ € A}) = Q) c4 Na- In other words, the
product og-algebra is just the o-algebra generated by the coordinate projections.

The following propositions are from [5, Section 2.1].
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Proposition 2.6. Let (X, M) and {(Ya,Na)}aca be measurable spaces. Let
Y =[[,caYe and N = @ caNa. Let mo : Y — Y, be the coordinate projec-
tions. Then f : X — Y is (M, N)-measurable if and only if fo := mo 0 [ is
(M, Ny)-measurable for all a € A.

Corollary 2.7. Let (X, M) be a measurable space and f : X — R Let
fi,..., fa be the components of f, so that f(x) = (f1(x),..., fa(x)). Then f is
M-measurable if and only if f1,..., fa are all M-measurable.

Corollary 2.8. Let (X, M) be a measurable space and f : X — C. Then f is
M-measurable if and only if Ref and Imf are both M-measurable.

Proposition 2.9. Let (X, M) be a measurable space and f,g : X — C. If f
and g are both M-measurable, then so are f + g and fg.

We frequently need to allow our functions to take on the values co and —oo.
For this reason, let us introduce the extended real line, R* = [—o0,0]. We
equip R* with the metric p(z,y) = |A(z) — A(y)|, where A(z) = tan~!(x). This
generates a topology on R* allowing us to define the Borel o-algebra, Brs. It
can be shown that B+ = {E c R* : EnR € R}. We will adopt the notation
R* = Bgx.

When working in R*, keep in mind that oo — oo is undefined. However, we
will adopt the convention that 0 - oo = 0.

Proposition 2.10. Let (X, M) be a measurable space and let f,g: X — R* be
M-measurable.

(i) The function fg is M-measurable.
(i) Fiz a € R* and define

h(z) = {a if f(z) ‘+ g(x) is undefined,
f(x) +g(x) otherwise.

Then h is M-measurable.
Proof. Exercise 2.6. O

If a,b € R*, then a v b = max(a,b) and a A b = min(a,b). The following
propositions are from [5, Section 2.1].

Proposition 2.11. If {f,} is a sequence of R*-valued measurable functions on
(X, M), then the functions sup,, fn, limsup,,_, ., fn, inf, f, and iminf, o f,
are all measurable. If f(x) = lim,_q frn(x) exists for all x € X, then [ is
measurable.

Corollary 2.12. If f,g: X — R* are measurable, then so are f v g and f A g.

Corollary 2.13. If {f.} is a sequence of C-valued measurable functions on
(X, M), and f(x) = lim, o fn(x) exists for all x € X, then f is measurable.
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It is often useful to combine these propositions with the following.

Proposition 2.14. If {f,} is a sequence of R*-valued measurable functions on
(X, M), then {x : lim,, o fr(x) exists} is a measurable set.

Proof. Exercise 2.7. ]

If f: X — R*, then the positive part and negative part of f are f™ =
fv0and f~ = (=f) v 0, respectively. Note that if f is measurable, then so
are f* and f~.

If F < X, then the indicator function of F is defined by

@) =90 e m

{1 if z e E,
It is easy to verify that 1 is M-measurable if and only if E € M.

A simple function on (X, M) is an M-measurable function ¢ : X — C
such that the range of ¢ is a finite subset of C. Let ¢ be a simple function
with range {a1,...,a,} and let E; = ¢ '(a;). Then the a;’s are distinct,
the collection {F;} is a partition of X, and we can write ¢ = >7_, a;lp,.
This expression is called the standard representation of . Note that there
may be a j such that a; = 0, but this term is still included in the standard
representation.

We say that f, — f pointwise if f,(z) — f(z) for all z € X. An essential
part of the theory of integration is that a function is measurable if and only if it
is a pointwise limit of simple functions. This is formally stated in the following
theorem, which is [5, Theorem 2.10].

Theorem 2.15. Let (X, M) be a measurable space.

(a) If f : X — [0,00] is measurable, then there exists a sequence {©n} of
simple functions with 0 < ¢1 < w2 < -+ < f and satisfying pn, — f
pointwise and v, — f uniformly on any set on which f is bounded.

(b) If f : X — C is measurable, then there exists a sequence {@,} of simple
functions with 0 < |p1| < |p2| < -+ < | f] and satisfying o, — [ pointwise
and @, — [ uniformly on any set on which f is bounded.

With this result in hand, we can present a result which is closely related to
the 7-\ theorem.

Theorem 2.16 (monotone class theorem). Let X be a set and P < 2% a
w-system such that X € P. Let H be a collection of functions from X to R
satisfying:

(i) If Ae P, then 14 € H.

(ii) If f,ge H and ce R, then f +geH and cf € H.
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(iii) If f, € H are nonnegative and there exists a bounded f such that f, 1 f,
then f e H.

Then H contains all bounded functions that are o(P)-measurable.

Proof. Let L = {E : 1g € H}. Since X € P, (ii) and (iii) imply that £ is a
A-system. Condition (i) implies that P < £. By the m-A theorem, o(P) < L.
Therefore, by (ii), H contains all simple, o(P)-measurable functions.

Let f be bounded and o(P)-measurable. By considering f* and f~, we
may assume without loss of generality that f is nonnegative. Choose simple,
o(P)-measurable functions ,, such that 0 < ¢,, 1 f. As above, each ¢,, € H.
And so by (iii), f € H. O

The last two results of this section deal with complete measure spaces. The
proof of the first is an exercise. The second is [5, Proposition 2.12].

Proposition 2.17. The following implications are valid if and only if the mea-
sure space (X, M, ) is complete.

(a) If f is measurable and f = g p-a.e., then g is measurable.

(b) If f., is measurable for eachn € N and f,, — f p-a.e., then f is measurable.

Proof. Exercise 2.8. |

Proposition 2.18. Let (X, M, i) be a measure space and (X, M, 1) its com-
pletion. If f is an M-measurable function, then there exists an M-measurable
function g such that f = g Gi-a.e.

Proposition 2.11 and Theorem 2.15 together show that a real-valued function
is measurable if and only if it can be written as the pointwise limit of simple
functions. The restriction that these functions be real (or extended real, or
complex) is not necessary. This is in fact true for any separable metric space.

If (X, M) is a measurable space and (M, p) is a metric space, then an M-
valued simple function is a measurable function f : X — M with a finite
range.

Theorem 2.19. If M is totally bounded and f : X — M is measurable, then
there exists a sequence of M -valued simple functions ¢, such that ¢, — f
uniformly.

Proof. Let n € N. Choose y1,...,¥Ym(n) € M such that U;n:(?) By (y;) © M.
Let

j—1

Ajn = Bim(y)\ U Bin(yr)
k=1

and E; = f~1(A;,) € M. Define ¢,, = Z;;(?) yile,.
Let ¢ > 0. Choose N € N such that 1/N < e. Let n > N and let z € X.
Choose j € {1,...,m(n)} such that f(x) € A;,. Then

p(f(x),y;) = p(f(2), pn(x)) <1/n <e,
which shows that ¢, — f uniformly. O
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Corollary 2.20. If M 1is separable and f : X — M is measurable, then there
exists a sequence of M -valued simple functions @, such that p, — f pointwise.

Proof. By [12, p. 182], a metric space is separable if and only if it is homeomor-
phic to a totally bounded metric space. Let (M p) be totally bounded and let
v: M — M be a homeomorphism. Choose M-valued simple functions @,, such
that &, — ¢ o f uniformly. Let ¢, =1 ~! 0 &,. Then ¢, are M-valued simple
functions with ¢,, — f pointwise. O

Theorem 2.21. Let M be separable and f, : X — M a sequence of measurable
functions. If f,, — f pointwise, then f is measurable.

Proof. Let {qi} be a countable dense set in M. Let U € M be open. Let z € X.
Suppose f(z) € U. Choose r € Q n (0,00) such that Ba,(f(x))  U. Choose
n such that g, € B,/5(f(x)). Note that B,(qx) < Bs,/2(f(z)) = U. Also note
that f(z) € B,/2(qx), so there exists N € N such that for all n > N, we have
fn(z) € Bya(gk).

Let S = {(r,k) e Q x N:r > 0,B,.(qx) < U}. We have shown here that if
f(z) € U, then there exists (r,k) € S and N € N such that for all n > N, we
have f,,(z) € B,/2(qx). In other words,

f_l U U ﬂ 'r/2 Qk)

(r,k)eS N
Conversely, if there exists (r, k) € S and N € N such that for all n > N, we
have f,,(x) € B, 2(qr), then p(f(z),qrx) <1/2, 50 f(x) € B,(qx) = U. Hence,
0 a0
= U U () 5 Gl
(r,k)eS N=1n=N

Since S is countable and each f,, is measurable, it follows that f~1(U) € M,
and so f is measurable. O]

More generally, this last result is true when M is a second countable, regular
topological space. See https://math.stackexchange.com/q/2587155.
It can sometimes be helpful to combine Theorem 2.21 with the following.

Theorem 2.22. Let M be complete and separable, and f, : X — M a se-
quence of measurable functions. Then E = {x € X : lim,_,qo fn(x) exists} is
measurable.

Proof. If M is complete, then z € E if and only if {f,(x)}>_; is Cauchy. In
other words, x € F if and only if, for all € > 0, there exists NV € N such that for
all n,m = N, we have p(f,(z), fm(x)) < €. Since it suffices that this holds for
¢ of the form 1/k, this means that

ﬂ U () {zeX:p(fal@), fm(@)) < 1/k}.

k=1 NeNnm>=N


https://math.stackexchange.com/q/2587155
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Define g m : X — M x M by gnm(x) = (fu(x), fm(z)), so that the above may
be rewritten as

2=V U N 0o (10.1/8)
k=1 NeNn,m>=N

By Proposition 2.6, the functions g, ., are (M, By ® Bas)-measurable. By
Theorem 1.9, we have By ® By = Basxar- In general, a metric is a continuous
function, so it follows that p : M x M — [0,0) is By xa-measurable. Thus,
P © Gn,m is measurable, which implies £ is measurable. O

Exercises

2.1. Prove Proposition 2.1.
2.2. Complete the proof of Proposition 2.2.

2.3. Let f and g be measurable functions from a measurable space (X, M) to
R. Let E € M and define h: X — R by

W) = f(x) %fx €E,

g(z) ifze E°.
Prove that h is measurable.
2.4. Prove Proposition 2.5.

2.5. Let X be a set and (Y, N)) a measurable space, with N = (&) for some
Ec2Y. Let f: X — Y and show that o(f) = o({f1(A4) : Ae E}).

2.6. Prove Proposition 2.10.
2.7. Prove Proposition 2.14.
2.8. Prove Proposition 2.17.

2.2 Integration of nonnegative functions

Let (X, M, 1) be a measure space and let ¢ be a nonnegative simple function
with standard representation ¢ = Z;Lzl a;jlg;. Then we define the integral of
 with respect to pu to be

deu = iaju(Ej)-

Note that ¢ dp € [0,00]. When it helps to explicitly display the argument of
p, we will write

| et = [ o dn.
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Other notation for the integral includes {¢ and §p(z) du(z).
If Ae M, then @1, is also a nonnegative simple function, and we define

J edp = f@lAdw
A

Note, then, that §, ¢ du = §@dpu.

All of these notational conventions will also apply to integrals of more general
functions, which we will be defining shortly.

If f: X — [0,00] is measurable, then we define

deuzsup{fgodumpis simple andogwgf}.

It can be shown that this definition agrees with the previous definition when f
is simple.
The following results are all contained in [5, Section 2.2].

Proposition 2.23. Let f,g: X — [0,00] be measurable.
(a) Ifc =0, then §cf du = ¢ fdp.
(b) §(f+9)du="T{fdu+§gdu.
(c) If f < g a.e., then § fdu < §gdu.
(d) If f = g a.e., then § fdp = §gdp.
(e) §fdpu=0if and only if f =0 a.c.
(f) If § fdp < o0, then f < o0 a.e.

Theorem 2.24 (Monotone convergence theorem). Let {f,}>_; be a sequence
of measurable functions from X to [0,00]. Suppose that for each n € N, we have

fn < fas1 a.e. Also suppose f, — f a.e. for some measurable function f.

Then
lim andu = J lim f,du = deu.
n—0oo n—0o0

Theorem 2.25 (Fatou’s lemma). Let {f,}>_; be a sequence of measurable
functions from X to [0,00]. Then

fhgrggf fondp < hnnllorolfffn dp.
Remark 2.26. To remember the direction of the inequality in Fatou’s lemma,
keep in mind the following example. Define f, : R — [0,0] by f, = nl(g1/n)-
Recall that A denotes Lebesgue measure. Then {f,d\ = 1 for all n, but
§lim f,, dX = 0, since f,, — 0 pointwise.



34 CHAPTER 2. INTEGRATION

Exercises

2.9. Let (X, M, ) be a measure space and let f : X — [0, 0] be measurable.
Define v : M — [0, 0] by v(E) = {, f du. Prove that v is a measure on (X, M)

and that
Jg dv = Jgf dp,

for all measurable g : X — [0, 00]. (Hint: Use Theorem 2.15.)

Remark: We often use the shorthand dv = f du to indicate that v is defined
by v(E) = {, fdu. This shorthand also reminds of the above formula for
transforming integrals.

2.10. Let {f,} be a sequence of M-measurable functions from X to [0, o0]. Let
f= 270?:1 fn- Show that f is well-defined and measurable, and that

niffndu _ fnifndu - [ #an

2.11. Let {f,} be a sequence of M-measurable functions from X to [0,c0].
Assume for each n € N, we have f, > f,41 a.e. Also assume { f1 du < 0. Prove
that

lim | fndu= f lirréo fndu.

n—o0

2.12. Let f: X — [0,00] be M-measurable with § fdu < co. Prove that for
each £ > 0, there exists F € M such that u(E) < oo and

fEfdu>deu—5.

2.3 General integration

Let (X, M, 1) be a measure space. If f: X — R* is measurable, then f* and
f~ are both measurable and nonnegative, and we define

ffdu: ff*du—ff‘dm

provided at least one of the integrals on the right-hand is finite. We say that f
is integrable if {|f|du < co. Since |f| = f* + f~, we have that f is integrable
if and only if § f du exists and is real.

If g : X — C is measurable, then we say g is integrable if { g du < 0. Since
lg| < |Reg| + |Img| < 2|g], it follows that g is integrable if and only if both Reg
and Img are integrable. In this case, we define

Jgdu = J(Reg) dp +1 J(Img) dp.
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Note that if f : X — R* is integrable, then |f| < o a.e., so there exists
g : X — R such that f = g a.e. Since R = C, we can regard g as a map from
X to C. Therefore, when talking about integrable functions, we will generally
assume they are complex-valued, unless otherwise specified.
More generally, if £ € M, we say that f is integrable on E if § | f| du < 0.
The proof of the following proposition can be found in [5, Section 2.3].

Proposition 2.27. Let f,g: X — C be integrable, and let a,b e C.
(a) af + by is integrable and §(af + bg)dp =a§ fdu+ 0§ gdpu.

(b) |§ fdul <§|f|dp.

(c) The following are equivalent:

(i) $p fdp =15, g9du for all Ee M.
(ii) §|f —gldu = 0.
(iii) f =g a.e.

We can define an equivalence relation on the set of integrable functions f :
X — C, where f and g are equivalent if f = g a.e. We then define L' (X, M, p)
to be the set of equivalence classes under this relation. More specifically, if
f: X — C is integrable, then [f] € L*(X, M, i), where [f] = {g: f = g a.e.}.
By the previous proposition, the value of §, g du is the same for all g € [f]. In
other words, we can change a function on a null set, and this will not affect the
integral of this function over any measurable set.

Instead of writing L' (X, M, 1), we will frequently abuse notation and drop
one or more of X, M, and p. We will also abuse notation and write f €
L'(X, M, 1) when what is meant is [f] € L' (X, M, p).

It is easy to check that L' is a normed vector space over C with norm
I[/1li = §|f]dp. (The aforementioned equivalence relation is needed to ensure
that [|[[f]|l1 = 0 implies [f] = [0].) Again, we usually abuse notation by writing
| flx = §|f|dp. The norm on L' induces a metric, so that the distance between
fand gin L' is ||f — g|1. Convergence in this metric is called convergence in
L'. That is, f, — f in L' means that | f, — f|1 — 0 as n — oo.

The following two theorems can be found in [5, Section 2.3].

Theorem 2.28 (The dominated convergence theorem). Let {f,}>_; be a se-
quence in L'(X, M, u). Suppose there exists a measurable function f such that
fn — f a.e. Also suppose there exists g € L' such that for each n € N, we have
|ful < g a.e. Then fe L' and

tn [ udu= [ £

Theorem 2.29 (A generalized dominated convergence theorem). Let {f,}%_;
be a sequence in L*(X, M,u). Suppose there exists f € L' such that f, — f
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a.e. Also suppose there exist gn,qg € L' such that g, — g a.e., Sgndu — §gdu,
and for each n € N, we have |f,| < gn a.e. Then

lim | fodp = de,u.
n—o0

The following result is part of [5, Theorem 2.26]. It is an example of the so-
called Littlewood’s second principle of real analysis: Every integrable function
is nearly continuous.

Theorem 2.30. Let pup be a Lebesque-Stieltjes measure on (R, Mp). Let f €
LY (up) and let € > 0. Then there exists a continuous g : R — C that vanishes
outside a bounded interval such that || f — g|1 < €.

The next theorem is [5, Theorem 2.27]. It gives criteria for differentiation
under the integral. The proof uses the dominated convergence theorem. Varia-
tions on this theorem can also be found in [2, Section A.5].

Theorem 2.31. Let (X, M, ) be a measure space and —o0 < a < b < 00. Let
f: X x[a,b] = C and suppose that f(-,t) is integrable for each t € [a,b]. Let

nw=Lfmwmw»

(a) Suppose there exists g € L'(u) such that |f(z,t)| < g(x) for all x and t. If,
for every x € X, we have f(x,t) — f(x,tg) as t — to, then F(t) — F(to)
as t — to. In particular, if f(x,-) is continuous for each x € X, then F is
continuous.

(b) Suppose the partial derivative 0Oy f(x,t) exists for all x and t. If there
exists g € L'(w) such that |0:f(x,t)] < g(z) for all x and t, then F is
differentiable and

PO =5 | St = | aren o).

A special case of the following theorem can be found in [2, Theorem 1.6.9].

Theorem 2.32. Let (X, M, u) be a measure space, and (S,S) a measurable
space. Let h: X — S be (M, S)-measurable and let f : S — C be S-measurable.
If either f o h is nonnegative or f o h e L*(u), then

L(fohdu = Lfd(,uoh’l).

Remark 2.33. Since h: X — S is (M, S)-measurable, it follows that h~! is a
function from S to M. Thus po h~! is a function from S to [0, 0], and it can
be shown that this function is a measure on (5, S).
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Proof of Theorem 2.32. Let us first assume that f = 15, where B € S. Then

| rondi= [ a0 ude) = [ 1yagen (@) uto)
= [ Vs doe = il )
X

On the other hand,

| raten ) = [ tadteen ) = o ®) = w8,
S S

and so the result holds. By linearity, the result also holds whenever f is a simple
function.

Now suppose f o h is nonnegative. In this case, f o h = f* o h, so without
loss of generality, we may assume f is nonnegative. Choose simple ¢,, such that
0 < ¢, T f pointwise. Then 0 < ¢, o h 1 f o h pointwise, and so by monotone
convergence,

f fohdu= lim | ¢,ohdu= lim J @nd(ﬂoh*1)=J fd(poh™b),

and the result holds for all f > 0.

Finally, assume f o h € L'(u). Since Re(f oh) = (Ref) o h and Im(f o h) =
(Imf) o h, we may assume without loss of generality that f is real-valued. In
this case, we have that

Lfohdu = L(foh)+d“_fX(foh>_dﬂ’

and both integrals are finite. Since (foh)™ = ffoh and (foh)”™ = f~ oh, it
follows from the result for nonnegative functions that

| sondu= | frawen | - den,
X s s
and both integrals are finite. Thus, f € L'(uoh™1), and

Lfohdu - Lfd(uoh’lh

which finishes the proof. O

Remark 2.34. The technique used in the above proof is extremely common in
the theory of measure and integration. The result is proved in four stages. First,
it is proved for indicator functions, then for simple functions by linearity, then
for nonnegative functions by monotone convergence, and finally for integrable
functions by considering the positive and negative parts. This proof technique
is a reflection of the manner in which the integral is defined.
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If fe LY(R,L,)\), then { fdX is called the Lebesgue integral of f. The
Lebesgue integral is a generalization of the Riemann integral. If a function f
is Riemann integrable on a bounded interval [a,b], then flp,;) € L'(\) and
S[a’b] f dX\ agrees with the value of the Riemann integral of f over [a,b]. Since
A({a}) = 0, it does not matter whether we integrate over [a, b] or (a,b]. We will
henceforth adopt the notation that

b
J fl@x)de = fadi.
a (a,b]

While it is true that the Lebesgue integral can handle a larger class of integrands
than the Riemann integral, the real power of the Lebesgue integral comes from
its associated convergence theorems: monotone convergence, Fatou’s lemma,
and dominated convergence. For a detailed discussion of the connection between
the Riemann and Lebesgue integrals, see [5, Section 2.3].

Remark 2.35. Suppose p is counting measure on (N, 2Y) and f € L'(u). Then
f:N— Cand §|f|duy < c0. If we write f, instead of f(n), then we have
SIfldp =30 |fal and § fdu = 37 | fn. In other words, L!(u) is the space
of absolutely convergent series, and the integral is just the sum. In this way, we
can apply monotone convergence, Fatou’s lemma, and dominated convergence
to infinite series.

Remark 2.36. Let {x,}aca be a (possibly uncountable) collection of extended
real numbers. Suppose z, = 0 for all a. Then we define

Zxa—sup{ Zxa:FcAandFisﬁnite}.

acA a€eF

It can be shown that if S = {a € A : 2, > 0} is uncountable, then > _, o = 0.
Of course, if S if finite, then Y] _, Zo = > cg Ta- On the other hand, if S is
countably infinite, and g : N — S is any bijection, then

Z Ta = ,}2& Z Zg(j)-
j=1

acA

In other words, this definition of summation agrees with the usual definition of
an infinite series.

Let us now drop the assumption that each x, is nonnegative, and assume
instead that > 4 |7a| < 0. Then S = {a € A : z, # 0} is countable. If
S is finite, then we define Y, Ta = X, cq%a. Assume S is countably in-
finite and let g : N — S be a bijection. Then the series Z;il Tg(j) is abso-
lutely convergent, and its sum does not depend on g. We can therefore define
Yioea Ta = Z;il Lg(5)-

Let X be any set, let u be counting measure on (X,2%), and let f : X — C.
Then f is p-integrable if and only if >, _ |f(x)| < o0, and in this case, we have
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Remark 2.37. There are a number of wonderful exercises at the end of [5,
Section 2.3]. Some involve proving general, abstract results, and some involve
calculations with specific integrals and series. These exercises are an excellent
resource for reviewing.

2.4 Modes of convergence

Let (X, M, 1) be a measure space, {f,} a sequence of C-valued functions on X,
and f: X — C.

As usual, we say f,, — f uniformly if sup,.x |fn(z) — f(2)] = 0 as n — .
As defined earlier, f,, — f pointwise if, for all x € X, we have f,(z) — f(x) as
n — o. We also saw earlier that f,, — f a.e. if there exists a null set N such
that, for all z € N€¢, we have f,(z) — f(z).

Uniform convergence implies pointwise convergence, and pointwise conver-
gence implies a.e. convergence.

We also saw that f, — f in L' if §|f, — f|du — 0 as n — o0. Another
important mode of convergence is convergence in measure. We say that f, — f
in measure as n — oo if, for every ¢ > 0,

Tim p({e ¢ [fule) - F@)] = <)) = 0.
The following results can be found in [5, Section 2.4].

Proposition 2.38. If f, — f in L', then f, — f in measure.

Proposition 2.39. If f,, — f in measure, then there exists a subsequence { fy,,}
such that f,, — f a.e.

Proposition 2.40. If u(X) < o0 and f, — f a.e., then f, — f in measure.

Exercises

2.13. Let (X, M, i) be a finite measure space and let LY(X, M, i) denote the
space of measurable f : X — C. (As with L!, this space actually consists of
equivalence classes, where two functions are equivalent if they are equal a.e.)

For f,g € L°, define
lf — 4
N N
p(f.9) fl+|f—g 1

Prove that p is a metric on L° and f,, — f in this metric if and only if f,, — f
in measure.

2.14. Suppose f,, — f in measure and g, — ¢ in measure.
(a) Prove that f, + g, — f + ¢ in measure.

(b) Prove that if u(X) < oo, then f,g, — fg in measure.
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(¢) Give an example to show that the conclusion of (b) can be false when
w(X) = o0.

2.15. Let f € L'(X, M, ). Prove that for all € > 0, there exists § > 0 such
that

| 191du <
E
whenever u(E) < 4.

2.5 Useful inequalities

Let a,b e R* with a < b. A function ¢ : (a,b) — R is convex if

Az + (1= Ny) < Ap(x) + (1= N)p(y),

for all Ae (0,1) and z,y € (a,b).
The following is [2, Theorem 1.5.1], as well as [5, Exercise 3.42(d)].

Theorem 2.41 (Jensen’s inequality). Let (X, M, u) be a measure space with
w(X) = 1. Suppose f : X — (a,b) is integrable, and ¢ : (a,b) — R is convez.
Then § o fdu exists, and

o([ran) < [ooran

Corollary 2.42. Let (X, M, u) be a finite, nontrivial measure space. Suppose
f: X — (a,b) is integrable, and ¢ : (a,b) — R is convex. Let ¢ = p(X) € (0, 00).
Then

1
o([ran) < ¢ [etcspuan
where the integral on the right-hand side exists.

Proof. Let v = ¢ 'y and ¥(x) = p(cx). Then v(X) = 1 and ¥ is convex, so by
Jensen’s inequality,

o([ran) = o ([rar) < [wisnvian) = [etesw)utan)

where the integral on the right-hand side exists. O

Let (X, M, u) be a measure space. If f : X — C is measurable and p €

(0,00), then we define
1/p
7ty = ([ 1 an)

We let LP(X, M, 1) denote the set of all functions f such that ||f||, < co. As
with L', we identify any two functions that are equal almost everywhere.
When dealing with L? spaces, it is often helpful to remember the inequality,

o+ 6" < (2(Jal v [0))? = 2°(al” v [b]7) < 2"(lal” + [b]").

The following is [2, Exercise 1.5.3], as well as [5, Theorem 6.5].
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Theorem 2.43 (Minkowski’s inequality). If p € [1,00) and f,g € L?, then

I+ gl < [flp + ll9llp-

Using Minkowski’s inequality, it is easy to check that || - ||, is a norm on L?
when p > 1. The norm on L? induces a metric, so that the distance between f
and g in L? is |f — g|,. Convergence in this metric is called convergence in
LP. That is, f, — f in L” means that | f, — f|l, — 0 as n — co. By [5, Exercise
6.9], if f,, — f in L? for some p € [1,00), then f, — f in measure.

By induction, Minkowski’s inequality extends to finite sums, so that

Z I
j=1

whenever p € [1,00) and f; € LP. It is frequently useful to note, however, that
it also extends to integrals.
The following is [5, Theorem 6.19].

n
< D15l
P j=1

Theorem 2.44 (Minkowski’s inequality for integrals). Suppose (X, M, u) and
(Y,N,v) are o-finite measure spaces.

(a) If f: X xY — [0,0] is M @ N -measurable and p € [1,00), then

H [ 1) via

< f 1G9l v(dy). (2.1)

(b) Let f : X xY — C be M QN -measurable and p € [1,0). Assume that
f(Gyy) € LP(u) for v-a.e. y, and that y — | f(-,y)|, is in L'(v). Then
f(z,-) e LP(v) for p-a.e. z, § f(-,y)v(dy) € LP(u), and (2.1) holds.

Remark 2.45. Note that

(J|f stz vian wtao)) UL ([15 v atan) " viay

is equivalent to (2.1).

If f: X — C is measurable, then we define the essential supremum of f
to be
£l = inf(M >0 ] < M ac.}.

It can be shown that the infimum is actually obtained, that is, one can show
that |f] < || f]e a.e. Welet L®(X, M, ) denote the set of all functions f such
that | f]oo < 00. As with L', we identify any two functions that are equal almost
everywhere.

A function f € L® need not be bounded. But if f € L, then there exists a
bounded, measurable g such that f = g a.e. For example, we can take g = 1 f,
where E = {@: | £(2)] < | /).
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By [5, Theorem 6.8], | - |« is a norm on L*. The norm on L* induces a
metric, so that the distance between f and g in L® is | f — g|«. Convergence in
this metric is called convergence in L*. That is, f,, — f in L* means that
| fn = fllo = 0 as n — co.

Also by [5, Theorem 6.8], we have f, — f in L* if and only if there exists
N € M such that u(N) =0 and f,, — f uniformly on N°.

If p,ge (1,0) and 1/p+ 1/q = 1, then p and ¢ are conjugate exponents.
In addition, we say that 1 and oo are conjugate exponents. Note that each
p € [1,00] has a unique conjugate exponent. Also note that p = 2 is its own
conjugate exponent.

The following is a slight generalization of [2, Theorem 1.5.2], as well as a
combination of [5, Theorems 6.2 and 6.8].

Theorem 2.46 (Holder’s inequality). Let p € [1,00] and let g be its conjugate
exponent. If f,g: X — C are measurable, then | fg|1 < | flplglq-

Remark 2.47. The case p = 2 is called the Cauchy-Schwarz inequality.

Exercises

2.16. Let (X, M, 1) be a measure space with u(X) =1, and let f: X — C be
measurable. Show that if 0 < p < ¢ < oo, then | f|, < | flq-

2.17. Let (X, M, 1) be a measure space with u(X) =1, and let f: X — C be
measurable. Show that |||, — || f]x as p — co.

2.18. Let (X, M, i) be a measure space with p(X) = 1, and suppose | f], < o
for some p > 0. Prove the following.

(a) §log|f|dp <loglf|, for all g € (0,p).

(b) log | fllq < ¢ ' (§If]*dp — 1) for all ¢ € (0,p).

(c) ¢ Y (§1f1%du —1) — Slog|f| du as ¢ — 0.
)

(d) Ifllq = exp(§log|f|du) as ¢ — 0.

2.6 Product measures

Let {(X;, M;, puj)}7_; be o-finite measure spaces. Let X = ]_[?:1 Xjand M =
®?=1 M. Then there exists a unique measure p = p; X --- X p, on (X, M)
such that

Ay x-ox Ap) = [ T ri(4)),
j=1

for all A; € M;. Moreover, the measure space (X, M,u) is o-finite. The
measure y is called the product measure.
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The main results concerning integration with respect to product measures
are the theorems of Tonelli and Fubini. The construction of the product measure
and the proof of Fubini-Tonelli can be found in [5, Section 2.5], which was the
primary source for this section of the notes. This material is also found in [2,
Section 1.7].

Theorem 2.48. Let (X, M, u) and (Y,N,v) be o-finite measure spaces.
(a) (Tonelli) Suppose f: X xY — [0,0] is MQN - measumble Then f( )

is N-measurable for all x € X and the function x — g(x) = {, f(
is nonnegative and M-measurable. Szmzlarly, f( , y) is M measumble for
all y € Y and the function y — h(y) = SX y) du is nonnegative and

N -measurable. Finally,

L(nyd(,u x¥) = ngdu - fyhdy.

(b) (Fubini) Suppose f € LY (X x Y, MQN,u x v). Then f( ) € Ll(Y 1/)

for p-a.e. x € X and the a.e.-defined function x — g(x) = SY
is in LY(X,p). Similarly, f(7 y) € Ll(X w) for v-a.e. y ey and the
a.e.-defined function y — h(y) = § f(-.y) dp is in L*(Y,v). Finally,

Remark 2.49. Notice that

L gdu = JX g9(z) p(dz)
~ [ [ st = [ [[ 56000 vt tan

[ na=| [ [ s u(dw)] v(dy).

Hence, the theorems of Tonelli and Fubini are saying that the integral over the
product space can be computed as an iterated integral in either order.

Similarly,

Remark 2.50. The theorems of Tonelli and Fubini are typically used in tan-
dem. For example, before one can use Fubini’s theorem, one must know that
Sxuy |fld(nxv) < oo. But |f| is nonnegative, so one can use Tonelli’s theorem
to verify this.

The measure space (X X Y, M @ N, x v) is typically not complete. It is
therefore often desirable to work with its completion, which we shall denote by
(X xY,0,w). In that case, however, one usually encounters functions f(z,y)
that are only O-measurable, and not M®A -measurable. Therefore, the version
of Fubini-Tonelli given above will not apply. Instead, one can use the following,
which is [5, Theorem 2.39)].
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Theorem 2.51 (Fubini-Tonelli for complete measures). Let (X, M,u) and
(Y,N,v) be complete, o-finite measure spaces, and let (X x Y,0,w) be the
completion of (X x Y, MQN, i x v).

(a) (Tonelli) Suppose f: X xY — [0,00] is O-measurable. Then f(z,-) is
N- measumble for p-a.e. x € X and the a.e.-defined function x — g(x) =

SY ) dv is nonnegative and M-measurable. Similarly, f(-,y) is M-
measumble for v-a.e. y €Y and the a.e.-defined function y — h(y) =
SX y) du is nonnegative and N -measurable. Finally,

f fdw:Jgdu:fhdu.
XxY X Y

(b) (Fubini) Suppose f € L*(X x Y,0,w). Then f ,0) € (Y v) for p-
a.e. x € X and the a.e.-defined function v — g(x) = S N dv is in
LY(X,p). Similarly, f(, y) € Ll(X w) for v-a.e. y ey and the a.e.-
defined function y — h(y) = § f(-,y) dp is in L' (Y,v). Finally,

J fdw=fgdu=fhdz/.
XxY X Y

The above treatment of product measures, which comes from [5], concerns
only product measures on finite product spaces. This is insufficient for probabil-
ity theory, so we consider one final topic in this section: Kolmogorov’s extension
theorem.

Let R® = 1—[;0:1 R and R* = ®;O:1 R. Kolmogorov’s extension theorem is
concerned with the existence of probability measures on (R*, R™). Before we
can state the theorem, we need a piece of terminology.

For each n € N, let yu, be a probability measure on (R", R™). We say that
the measures {u,}°_; are consistent if, for all n € N,

png1((ar,b1] X -+ X (an,bp] X R) = pn((a1,b1] x -+ X (an,by)),

whenever —o0 < a; < b; < 00.
The following is [2, Theorem A.3.1].

Theorem 2.52 (Kolmogorov’s extension theorem) For each n € N, let u, be
a probability measure on (R™, R™). If {u,}>_, are consistent, then there exists
a unique probability measure p on (R%, ROO) such that

p(fw : wj € (aj,b5] for 1 < j <n}) = pn((az,b1] x - - x (an, bn]),

for allne N and all —00 < a; <b; <

Exercises

2.19. Let (X, M, u) be a o-finite measure space and let f : X — [0,00) be
measurable. The region under the graph of f is

Gy ={(z,y) € X x[0,00) : y < f(z)}.
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(a) Show that Gy e M@TR.

Hint: Let g : X x [0,00) — [0,00)2 be given by g(z,y) = (f(z),y) and let
h:[0,00)? — R be given by h(u,y) = u—y. Then (hog)(x,y) = f(x) —y
and Gy = (hog)~'((0,0)).

(b) Show that the integral of f is the area under its graph. That is, show that
| ran= v,

(¢) Show that
(4 x N(Gy) = f u({a s f(x) > y}) dy.

2.7 Lebesgue integration on R"

Recall that (R, £, )\) is the Lebesgue measure space. It is the completion of
(R, R, \), where A is the unique measure on (R, R) such that A((a,b]) =b— a.

The Lebesgue measure space on R™ is the completion of the product of
(R, R, \) with itself n-times. More specifically, consider the following. Note
that R™ = [[7_; R. Also recall that R" = );_, Br = Bg~. Using the results
from the previous section, we can now define the product measure, A" = H?=1 A,
giving us the product measure space, (R™, R™, A"™). Let us denote its completion
by (R", Lgn, A"). The measure \" is Lebesgue measure on R", the o-algebra
Lgn is the Lebesgue o-algebra on R", and sets £ € Lr» are Lebesgue
measurable subset of R”. It can be shown that (R”,ERn,V) is also the
completion of the product measure space (R™, ®?=1 L,X”).

As usual, we will typically omit the bar, and use A" for both Lebesgue
measure on Lgn» and Lebesgue measure on R™. Also, when there is little chance
of confusion, we will often write A instead of A™ and £ instead of Lg». We will
also write § f(z) dz to mean { fd\™, although in the case n > 1, one should
remember that x is a vector.

The following is [5, Proposition 2.40]. The first part expresses a regularity
property of Lebesgue measure, and is an extension of Theorem 1.25. The second
part is an instantiation of Littlewood’s first principle, and is an extension of
Theorem 1.26.

Proposition 2.53. Suppose E € Lgn. Then:
(a) M(E) =inf{\(U) : Ec U,U open} = sup{\(K) : K ¢ E, K compact}.

(b) If \(E) < o, then for any € > 0, there exist disjoint sets {R;}}_, with
n N
Rj =TIi_1(aij,bis] and ME A (U2 Rj)) <e.
Now let U < R™ be open. For j € {1,...,n}, let g; : U — R and let

G : U — R" be given by G(x) = (g1(),...,9n(x)). Suppose G € CY(U),
meaning that 0;¢; exists and is continuous for each ¢ and j. For z € U, let
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D,G : R™ — R™ be the linear map whose matrix representation in the standard
basis is [D;G] = [0jgi(x)]. Note that if G is linear, then D,G = G forall z € U.

The function G is called a C! diffeomorphism if G is injective and D, G is
invertible for all z € U. If G is a C! diffeomorphism, then it can be shown that
G :G(U) - Uis a C! diffeomorphism and Dy(G™') = (Dg-1(4,)G) ™! for all
ze GU).

The following is [5, Theorem 2.47]. It states that the usual change of variable
formula for integrals on R™ extends to Lebesgue measure.

Theorem 2.54. Suppose U < R™ is open and G : U — R™ is a C! diffeomor-
phism. If f is a function on G(U) that is Lebesque measurable, then f o G is
Lebesgue measurable. If f is [0, 0]-valued or f € L*(G(U), \), then

f f(x)d:c=f (f o G)(z)|det[D,G]| d.
G(U) U

Example 2.55. Suppose U = R” and G is an affine linear function. Then
G(z) = v + Ax for some linear function A and some v € R™. Suppose further
that A is invertible. Then G(R™) = R™ and [D,G] = [A] for all z € R™. Thus,

f(z)dx = | det[A]] flv+ Az) dx,
R R
whenever f is nonnegative or integrable on R™. In particular, if f = 1g for
some F € Lgn, then
AME) = |det A]A({x : v + Az € E}).
Here are three examples of this:

(i) If A = I, then the result simply expresses the fact that Lebesgue measure
is translation invariant.

(i) If v =0 and A = r~ I for some r # 0, then we obtain A\(rE) = |r|"A\(E).

(iii) If v = 0 and A is a rotation, then the result states that Lebesgue measure
is rotationally invariant.

Exercises

2.20. Show that e~*Y sin z is integrable with respect to A2 on the strip 0 < = <
a, 0 < y. Use Fubini’s theorem to show that

a 0 —ay 0 —ay
J ST g = g — (cosa) J ¢ dy — (sina) f Je dy,
0 0

0o 1+y? 1+y2

and replace 1+ y* by 1 to conclude | { (sinz)/z do — 7/2| < 2/a for a > 1.

2.21. Let E = [0,1] x [0,1]. Investigate the existence and equality of §. fdN?,
S(l) Sé f(z,y) dz dy, and Sé S; f(x,y) dy dx for the following f:
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(a) flz,y) = (2® =) (2 +y*) "
(b) f(z,y) = (1 —2y)~*, where a > 0.
(C) f(xvy) = (IC - 1/2)731{(w,y):0<y<|w—1/2|}'

2.22. Let a > 0 and suppose f is Lebesgue integrable on (0,a). For z €
(0,a), define g(x) = {77! f(t)dt. Show that g is integrable on (0,a) and that

§; 9(z) do = § f() da.
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Chapter 3

Signed Measures and
Integration

3.1 Signed measures

The primary source for the material in this section, as well as Section 3.2, is [5].
However, much of this material is also covered in [2, Section A.4].

Let (X, M) be a measurable space and v : M — R*. Then v is a signed
measure on (X, M) if:

(ii) v¥(M) < (=0, 0] or v(M) < [—0, ), and

(iti) if {E;};2, = M are disjoint, then v(l4); £;) = 3; v(E;), where this sum
converges absolutely whenever v(l); E;) < .

Note that every measure is a signed measure. When helpful for clarity, we will
sometimes refer to a measure as a positive measure.

Example 3.1. Suppose p1 and s are measures on a measurable space (X, M).
If at least one of these is a finite measure, then v = p; — s is a signed measure

on (X, M).

Example 3.2. Let (X, M, ) be a measure space, and let f : X — R* be
measurable. Suppose § f du exists. Then one can check that v(E) = SE fdu
defines a signed measure on (X, M). As in Exercise 2.9, we often use the
shorthand notation dv = f du to indicate that v is defined in this fashion.

Let v be a signed measure on (X, M). A set F € M is positive for v if
v(F) = 0 for all F' < E such that F € M. A set E € M is negative for v
if v(F) < 0 for all F < F such that F' € M. As set F € M is null for v if
v(F) =0 for all F c F such that F' € M.

49
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Example 3.3. Let v be as in Example 3.2. Then E € M is positive for v if
and only if f > 0 py-a.e. on F. Similarly, £ € M is negative for v if and only if
f <0 p-ae on E. And E € M is null for v if and only if f = 0 p-a.e. on E.

The following is [5, Theorem 3.3].

Theorem 3.4 (Hahn decomposition). Let v be a signed measure on (X, M).
Then there exists P, a positive set for v, and N, a negative set for v, such
that PA' N = @ and P U N = X. If P',N’' are another such pair, then
PAP =NA N’ and this set is null for v.

The decomposition X = P u N is called a Hahn decomposition for v.

Let v4 and v be signed measures on (X, M). Suppose there exists F1, a null
set for vy, and Fs, a null set for vy, such that 1 n Ey = § and E; U Fy = X.
Then we say v1 and v are mutually singular, and we denote this by v; | vs.
We may also describe this by saying that 14 is singular with respect to vs,
or vice versa.

The following is [5, Theorem 3.4]

Theorem 3.5 (Jordan decomposition). If v is a signed measure on (X, M),
then there exist unique positive measures vt and v~ such that v = vt —v~ and
vt Lu.

Remark 3.6. Let v be a signed measure on (X, M) and suppose X = PUN is
a Hahn decomposition for v. Then v* and v~ are given by v*(FE) = v(E n P)
and v~ (E) = —v(E n N).

The measures v and v~ are called the positive and negative parts of v,
respectively. The decomposition v = v™ — v~ is called the Jordan decompo-
sition of v. The total variation of v is the measure |v| = vt + v~. We say v
is a finite (or o-finite) signed measure if |v| is a finite or (o-finite) measure.

Proposition 3.7. Let v be a signed measure on (X, M). Then |v| is a finite
measure if and only if v(M) C R, and in this case, v(M) c [—K, K] for some
KeR.

Proof. Suppose |v| is a finite measure and let E € M. Then
W(E)| = [v"(E) — v (E)] < v'(E) + v (E) = [V|(E) < [v|(X).

Since K := |[v|(X) < o0, it follows that v(F) € [-K, K] for all E € M.

It remains only to show that v(M) < R implies that |v| is a finite measure.
Suppose ¥(M) < R. Let X = P u N be a Hahn decomposition for v. Since
v(M) < [—o0, ), it follows that v*(X) = v(X n P) < . Hence, v is a
finite measure. Similarly, since ¥(M) < (-0, 0], it follows that v—(X) =
—v(X n N) < . Hence, v~ is a finite measure. Therefore, |v| = vt + v is a
finite measure. O

Proposition 3.8. Let (X, M) be a measurable space and v : M — R*. Then
v is a signed measure if and only if there exists a measure p on (X, M) and a
measurable function f : X — R such that dv = f du. In this case, dv™ = f+du,
dv™ = f~du, and dlv| = | f|dp.
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Proof. The “if” part is covered by Example 3.2. For the “only if” part, assume v
is a signed measure on (X, M). Let p = |v|and f = 1p— 1y, where X = PUN
is a Hahn decomposition for v. Then

j fdu - j 1p— 1) dlv| = V(P 0 B) = [W|(N A B).
Since P is null for v~ it follows that for any A < P, we have
[V|(A) = v (A)+ v (A) =vH(A) =v(An P) =v(A).

Similarly, for any A < N, we have |v|(4) = —v(A). Thus,
f fdu=v(PnE)+v(NnE)=uv(E),
E

since X = PuU N.
Finally, if dv = fdu, then P = f71([0,00)) and N = P¢ form a Hahn
decomposition for v. Thus,

vH(E) = vEnP) = | 1,

E
v (E)=—-v(EnN) = JE f~dp, and
WI(E) = v+ (B) + v~ (E) = fE Fldu,

for every E € M. Ul
Let v be a signed measure on (X, M). We define L*(v) = L*(v*) n L1 (v7)

and
del/_del/ dey,

for all fe L(v).

Exercises

3.1. Let u,v be a signed measures on (X, M) and E € M. Prove that:
(a) E is null for v if and only if |v|(E) = 0.
(b) The following are equivalent:

(i) v L,
(i) 1] L g
(i) »* L pand v= L p.

3.2. Let v be a signed measure on (X, M). Show that:
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(a) Li(v) = L'(Jv]).
(b) T f € L3(v), then |§ £ dv] < || dlv].
(c) If E e M, then [v|(E) = sup{|§, fdv|: |f] <1}.

3.3. Let v be a signed measure on (X, M) and p1, pus measures on (X, M).
Assume that v = py — po. Prove that p; > v and puy > v

3.4. Let vy, be signed measures on (X, M) with v;(M) < (-0, 0] for j €
{1,2}. Use Exercise 3.3 to prove that |v; + vo| < |v1] + |1l

3.2 The Radon-Nikodym derivative

Let (X, M, u) be a measure space, and v a signed measure on (X, M). We
say that v is absolutely continuous with respect to u if p(E) = 0 implies
v(E) = 0. We denote this by v « p.

The following is [5, Theorem 3.8].

Theorem 3.9 (The Lebesgue-Radon-Nikodym theorem). Let (X, M, pu) be a
o-finite measure space and v a o-finite signed measure on (X, M). Then there
exist unique o-finite signed measures n,p on (X, M) such that n L u, p < p,
and v =mn+ p. Moreover, there is a measurable function f : X — R such that
dp = fdu, and any two such functions are equal p-a.e.

The decomposition v = 1 + p is called the Lebesgue decomposition of v
with respect to pu.

If v « u, then n = 0, and we have dv = f du, for some measurable function
f. This function f is called the Radon-Nikodym derivative of v with respect
to p. Since the function f is only unique p-a.e., the Radon-Nikodym derivative
is only defined up to a null set. We sometimes say that f is a version of the
Radon-Nikodym derivative, and that any two versions are equal pu-a.e.

The Radon-Nikodym derivative is typically denoted by dv/du, so that

dv
I/Ezf—d,
(E) Lan ™

for all E € M. Or, in shorthand,

dv

Note that if v is a positive measure, then dv/du = 0 p-a.e.
The results in the following proposition can be found in [5, Section 3.2].

Proposition 3.10. Let (X, M) be a measurable space, v,v1,vs o-finite signed
measures on (X, M) and p,n o-finite measures on (X, M). Suppose v < p,
vy L W, Vo L p, and p L n. Then:
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(a) 1 +v2 < i and
din tvs) _dv | dia
dp  dp dp
(b) If ge L*(v), then g(dv/du) € L' (i) and

Jgdu = Jg@d,u.
dp

d_dviu
dn_dudn’?7 o

(c) v <n and

(d) If we also have n < p, then

d—nd—'ufl a.e. and p-a.e
dudn—,n.. [-a.e.

Example 3.11. Let pup be the Lebesgue-Stieltjes measure on (R, Bg) associated
with F(z) = 1j9,.0)(z)e”, and let A denote Lebesgue measure. Then we can
write up = do + pg, where §p is the point mass measure at 0 and G(z) =
L{o,00)(2)(e” —1).

Since {0} is null for A\ and R\{0} is null for dy, it follows that 6y L . Let
us defined the measure v by dv = Fd\. It is easily verified that v((a,b]) =
G(b) — G(a) for all a < b. By Theorem 1.22, it follows that v = p¢, and hence,
dpg = Fd)\. In particular, this shows that ug < A, so that up = do + pg is
the Lebesgue decomposition of up with respect to A. Moreover, this shows that
F is a version of the Radon-Nikodym derivative, dug/dX. Any other version of
this Radon-Nikodym derivative will be equal to F' A-a.e.

Exercises

3.5. Let (X, M, u) be a measure space and v a signed measure on (X, M).
Prove that the following are equivalent:

(a) v« p.
(b) o] < p.
(¢) vF <« pand v~ « p.

3.6. Let u be counting measure on ([0, 1], Bo,17) and let A be Lebesgue measure.
Show that A « u, but there does not exist any function f such that d\ = f du.
Why does this not contradict the Lebesgue-Radon-Nikodym theorem?

3.7. Suppose that p, v are o-finite measures on (X, M) with v « u. Let n =
p+ v and let f be a version of dv/dn. Prove that 0 < f < 1 p-a.e. and that
f/(1 = f) is a version of dv/du.
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3.3 Complex measures

The primary source for the material in this section, as well as Section 3.4, is
[5]. This material does not seem to be present in [2]. Even though it is material
that may not be covered in a typical course on measure and integration, I
am nonetheless including it in these notes for completeness. Section 3.4 is
particularly important, as it includes the fundamental theorem of calculus for
Lebesgue integrals, as well as concepts that are needed in the theory of stochastic
integration.

Let (X, M) be a measurable space and o : M — C. Then « is a complex
measure on (X, M) if:

(i) a(¥) =0, and

(ii) if {E;}}2, = M are disjoint, then a(ly; E;) = >J; a(E;), where this sum
converges absolutely.

Note that every finite signed measure is a complex measure.

Every complex measure « can be written as o = «,- + 1oy, where «,., a; are
finite signed measures. By Proposition 3.7, it follows that «(M) is a bounded
subset of C.

We define L'(a) = L'(a,.) n L' () and, for f € L'(a), we define

dea=J-fdar+iffdai.

If « is a complex measure and v is a signed measure, then we say o L vif o, L v
and «; L v. If B is another complex measure, then we say o 1 8 if a L 3, and
a L ﬁi-

If i is a positive measure, then we say a « p if o, « p and «o; < p.

By applying Theorem 3.9 to the real and imaginary parts of a complex
measure, we obtain the following, which is [5, Theorem 3.12].

Theorem 3.12 (The Lebesgue-Radon-Nikodym theorem). Let (X, M, u) be a
o-finite measure space and « a complex measure on (X, M). Then there exists

a unique complex measure n and a p-a.e. unique f € L*(u) such thatn L p and
da =dn+ fdu.

As for signed measures, if @ < p, then the function f is called the Radon-
Nikodym derivative of o with respect to p and denoted by da/dp.

Proposition 3.13. Let o be a complex measure on a measurable space (X, M).
There exists a measure p on (X, M) and an f € L'(u) such that do = f dp.

If v is another measure on (X, M) and g € L'(v) with da = gdv, then
[fldp = |gldv.

Proof. Let p = |a|+|;]. Then o « p, so by Theorem 3.12, we have da = f dp,
where f = da/dpu.
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Suppose we also have da = gdv. Let p = p+v. Then p « p and v < p, so
by Proposition 3.10(b), we have

B)= | fin- fEf%dm

dv
a(E) = Lgdv = JEQ% dp,

for all E € M. By Proposition 2.27(c), this implies

for all E' e M. Similarly,

d—u— dv a.e
dp_gdpp .e.

Since dy/dp and dv/dp are nonnegative functions, this implies

du
115 = lol%. prae.

d dv
[ istau= | ndo= | 101 do = | ol
E E P E P E

for all £ € M. Ol

Hence,

Let o be a complex measure on (X, M). By Proposition 3.13, we can write
da = fdu for some measure p and some f € L'(u). Also by Proposition 3.13,
we may unambiguously define the total variation of a to be the measure ||
on (X, M) given by d|a| = |f|du. By Proposition 3.8, this definition agrees
with our previous definition when « is a signed measure.

Proposition 3.14. If a, 8 are complex measures on (X, M), then |a + B| <
laf + [B].

Proof. Write daw = fdp and df = gdv, where p,v are measures on (X, M),
feLY(u) and ge L' (v). Let p = u + v. We then have

(a+ B)(E ffdu+Jng—JE(f j:) dp,

for all £ € M. Thus,
dp dv
< f—dp-i—f gl=—dp
JE| ‘dp E| |dp

:J |f\du+f g dv = [a| () + |8|(E),
E E

o+ BI(E f ‘f

for all E € M. O
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Let « be a complex Borel measure on R™. Then « is discrete if there exists
a countable set {z;}72; = R™ and complex numbers c; such that Z;O 1leil <o
and o = Z —1Cj0z;, Where d, is the point mass measure at z. On the other
hand, « is continuous if a({z}) = 0 for all x € R™. Note that if o « A, then «
is continuous. Also note that if « is discrete, then o L .

Proposition 3.15. Every complex Borel measure o on R™ can be written
uniquely as

a =g+ Qge + O,

where ag is discrete, age € N\, and o is continuous with ag. L .

Proof. Let E = {x € R" : a({z}) # 0} and let E} = {z € R" : |a({z})| > 1/k},
so that E = | J,_, Ex
Suppose 1, ...,xy are N distinct elements in R™ such that {z,...,z2x5} <
Ej.. Then
N

Z lol({z;}) = lal({z1, .. 2n}) <ol (Ey) < M,

where M = |a|(R™) < o0. Let us write da = f dv, where v is a measure on R”
and f € L'(v). Then

a({z;}) = f Fdv = f(z)v({z;}), and
{z;}
lal({a;}) = j Fldv = ) ({a]).

J

Since v is a positive measure, it follows that |a|({z;}) = |a({z;})|. Thus,

Z ({z; Dl > N/,

since each x; € Ey. It follows that NV < ME, so that Ej has fewer than Mk
elements. In particular, Fy is finite, so F is countable. Therefore, if we define
ad(A) = a(AnE) and a.(A) = a(A\E), then a = ag+ a,, where oy is discrete
and «. is continuous. It is easy to see that this is the unique way to decompose
« into a discrete and continuous part.

Using Theorem 3.12, let a. = age + aqe be the Lebesgue decomposition of
a. with respect to A, where as. L A and o, <« A, and this gives us the desired
decomposition of a. O

Remark 3.16. The “s¢” in ay. stands for “singularly continuous”, to remind
us that a. is singular with respect to Lebesgue measure, but also continuous,
since ag.({x}) = 0 for all z € R™.
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Exercises

3.8. Let (X, M, 1) be a measure space and «, § complex measures on (X, M).
Prove that:

(a) a L g if and only if |a] L |5].

(b) «@ « p if and only if |a] « p.
3.9. Let a be a complex measure on (X, M) with a(X) = |a|(X). Prove that
a=|al.
3.4 Functions of bounded variation

For a function F': R — C, we define

F(z+) = lifn F(y),
Yyix
F(z—) = lim F(y),
ytz
F(o0) = lirr;OF(ac), and
F(—o0) = wE@@F(m),

provided these limits exist. Also, in this section, the phrase “almost everywhere”
will always be with respect to Lebesgue measure.
The following is [5, Theorem 3.23].

Theorem 3.17. Let F : R — R be increasing and define G(x) = F(x+). Then:
(a) The set of points at which F is discontinuous is countable.
(b) The function G is increasing, right-continuous, and G = F a.e.
(c) F and G are differentiable a.e., and F' = G’ a.e.

Ifa,beR, a <b,and F : [a,b] — C, then the total variation of F' on [a, b]

Sup{Z|F(xj)—F(xj_1):neN,a—x0<---<xn—b}.
j=1

If FF: R — C, then we define the total variation function of F to be

Tr(z) = sup{ Z |F(xz;) — F(zj—1) :ineN —o<zg<- - <zp = :c}
j=1

It can be verified that in this case, if a,b € R and a < b, then the total variation
of F on [a,b] is Tr(b) — Tr(a), provided this latter quantity is well-defined.
Thus, Tr : R — [0, 0] is an increasing function.
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The set of functions F : [a,b] — C that have finite total variation on [a, b] is
denoted by BV ([a,b]). The set of functions F' : R — C that have Tr(0) < o0
is denoted by BV.

If F e BV, then F|i,3 € BV ([a,b]). Conversely, suppose F' € BV([a,b]).
For x < a, define F(x) = F(a), and for z > b, define F(z) = F(b). Then F
extended this way satisfies F' € BV. Consequently, we will lose no generality by
focusing our attention on BV, rather than BV ([a, b]).

Proposition 3.18.

(a) If F : R — R is bounded and increasing, then F € BV and Tr(z) =
F(z) — F(—) for all x € R.

(b) If F,G € BV and a,be C, then aF + bG € BV

(c) If F is differentiable on R and F’ is bounded and a,b € R with a < b, then
F‘[a,b] € BV([avb])

Proof. Exercise 3.10. ]
The following is [5, Theorem 3.27].
Theorem 3.19.
(a) F € BV if and only if ReF' € BV and ImF € BV

(b) If F : R —> R, then F € BV if and only if F is the difference of two
increasing functions. For F € BV, those functions may be taken to be
(Tr + F)/2 and (Tr — F)/2.

(c) If F € BV and z € R, then F(z+), F(x—), F(0), and F(—o0) ezist.
(d) If F € BV and G(z) = F(xz+), then F' and G’ ezist a.e. and F' = G’

a.e.

Let F' € BV. Define Pp = (Tp + F)/2 and Ny = (T — F')/2, so that Pp
and Ny are increasing functions with F' = Prp — Np.

The functions Pr and N are called the positive and negative variations
of F, respectively. Since z+ := z v 0 = (Jz| + z)/2 and 27 := —(z A 0) =
(|z| — )/2, it follows that

)
+sup{ i(F(xj)—F(xj—1))+ ‘neN,—w<zg<- <y _x}’

+Sup{i(F($j)_F(fL'j1))_ZTLEN,—OO<;L'0<...<xn_x}.



3.4. FUNCTIONS OF BOUNDED VARIATION 59

The space of normalized bounded variation functions is defined by
NBV = {F € BV : F is right continuous and F'(—) = 0}.

It can be shown that if F'e BV and G(x) = F(z+) — F(—o0), then G € NBV
and G — F is constant almost everywhere. (See Exercise 3.11.)

The following theorem is a combination of [5, Theorem 3.29] and [5, Exercise
3.29).

Theorem 3.20. If a is a complex Borel measure on R and F(z) = a((—w0,z]),
then F € NBV. Conversely, if FF € NBV, then there is a unique complex
Borel measure ap such that F(x) = ap((—0,z]), and in this case, |ap| = ar,.
Moreover, if F is real-valued, then o = ap, and ap = an,.

A function F': R — C is absolutely continuous if for all € > 0, there exists
0 > 0 such that for any finite set of disjoint intervals, (a1, b1),..., (an,by), we
have

D1(bj —aj) < 6 implies )" |F(b;) — F(a;)| <e.
j=1 j=1

More generally, F' is absolutely continuous on [a,b] if this condition is
satisfied whenever the intervals (a;, b;) all lie in [a, b].

By taking N = 1, we see that absolute continuity implies uniform continuity.
On the other hand, using the mean value theorem, we see that if F’(x) exists
for all z and F” is bounded, then F is absolutely continuous.

The following result is contained in [5, Propositions 3.30 and 3.32].

Proposition 3.21. Let F' € NBV. Then F' € L*(\). Also, ar L X\ if and only
if F' =0 a.e. And ap < X if and only if ' is absolutely continuous.

If FFe NBV, then we will adopt the notation
b
J g(z)dF(xz) = f gdag. (3.1)
a (a,b]

We may also use variations on this notation, such as S(a 09 dF'. Integrals such
as these are called Lebesgue-Stieltjes integrals.
The following integration by parts formula is [5, Theorem 3.36].

Theorem 3.22. If F,G € NBV and at least one of them is continuous, then

FdG = FB)G®) - F(a)Ga) - | GdF.
(a,b] (a,b]

Finally, we have the following, which is [5, Theorem 3.35].

Theorem 3.23 (The fundamental theorem of calculus for Lebesgue integrals).
Let a,be R with a < b and F : [a,b] — C. Then the following are equivalent:

(a) F is absolutely continuous on [a,b].
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(b) There exists f € L'([a,b],\) such that for all x € [a,b], we have
F(z)—F(a) = J f(t)dt.
(c) F is differentiable a.e. on [a,b], F' € L'([a,b],)), and

F(z) — F(a) = f F'(t) dt.

a

Exercises

3.10. Prove Proposition 3.18. (Hint: For Part ((c)), use the mean value theo-
rem.)

3.11. Prove that if F'e BV and G(x) = F(z+) — F(—©), then G € NBV and
G — F is constant almost everywhere.

3.12. Construct an increasing function on R whose set of discontinuities is Q.

3.13. Let F(z) = x*sin(z™")1jgye(2) and G(z) = 2?sin(z~?)1yc(x). Prove
that:

(a) F'(z) and G'(x) exist for all z € R.
(b) Fe BV([—1,1]), but G ¢ BV ([-1,1]).

3.14. Let G : [a,b] — R be continuous and increasing, with G(a) = ¢ and
G(b) = d. Prove that:

(a) If E < [c,d] is a Borel set, then A\(E) = ug(G~H(E)).

(Hint: First consider the case where E is an interval.)

(b) If f € L'([c,d], \), then

d b
j F(y) dy =f £(G(x)) dG(x).

In particular, if G is absolutely continuous, then

d b
f fly)dy = f F(G(2))G (z) dz.

(Remark: This result may fail if G is merely right-continuous.)
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3.5 Functions with one-sided limits

3.5.1 Definition and basic properties

Let (X, d) be a metric space. A function f: R — X is said to have one-sided
limits if, for each t € R, the limits f(t+) = limg; f(s) and f(t—) = limgy f(s)
both exist. These functions are more well-behaved than one might initially
expect, as the following theorems demonstrate.

Theorem 3.24. A function with one-sided limits is bounded on compact sets.

Proof. Let f have one-sided limits and let K < R be compact. Fix any p € X.
We want to show that there exists » > 0 such that f(K) < B,(p).

Fix t € K. Since f(t+) exists, there exists d;. > 0 such that d(f(s), f(t+)) <
1 for all s € (¢,t + ;). Thus, if ryy = 1+ d(f(¢+),p), then

d(f(s),p) < d(f(s), f(t+)) + d(f(t+),p) < T4y

In other words, f(s) € By, (p), for all s € (¢, 4 0;4.).

Similarly, since f(t—) exists, there exists d;— > 0 such that f(s) € By,_(p)
for all s € (t — 6;—,t), where 1, = 1+ d(f(t—),p). Thus, for all se U, = (t —
8t—,t+0:4), we have that f(s) € B, (p), where ry = max{r;_,r¢,d(f(t),p)+1}.

Since {U; : t € K} is an open cover of K, there exists {t1,...,t,} € K such
that K < Uy u -+~ u U,. It follows that, for all s € K, we have f(s) € B,(p),
where r = max{ry,,...,r, }. Thatis, f(K) < B.(p). O

This next theorem shows that a function with one-sided limits cannot have
large discontinuities which accumulate.

Theorem 3.25. Let f have one-sided limits. Then for all t € R and € > 0,
there exists § > 0 such that

d(f(s+), f(s)) +d(f(s), f(s-)) <e,
whenever s #t and |t — s| <.

Proof. Suppose not. Then there exists t € R, ¢ > 0, and a sequence {s,} of real
numbers such that, for all n, we have s, # t, |t — s,| < 1/n, and

d(f(sn+), f(sn)) +d(f(sn), f(sn—)) Z &,

Consider the following four sets:

S1 ={n:s, >tand d(f(s,+), f(sn)) = €/2},
Sa={n:s, >t and d(f(sn), f(sn—)) = €/2},
S3={n:s, <tand d(f(s,+), f(sn)) = ¢&/2},
Sy={n:s, <tand d(f(sn), f(sn—)) = ¢&/2}.
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Since these sets cover N, at least one of them is infinite. By passing to a
subsequence, we may assume that the entire sequence {s,} is contained in one
of these sets.

First assume that each s, € S;. For each n, choose u,, € (s, s, + 1/n) such
that d(f(un), f(sn+)) < e/4. Then

< d(f(snt), f(sn)) < d(f(snt), f(un)) + d(f(un), f(sn))

< Z + d(f(un)’ f(s’ﬂ))

But s, — t* and u, — t*, so d(f(un), f(sn)) — d(f(t+), f(t+)) = 0, a
contradiction.
Next assume that each s, € S3. For each n, choose u,, € (t,s,) such that

d(f(un), f(sn—)) < e/4. Then

[NCRNO)

< d(f(sn), f(sn=)) < d(f(sn), f(un)) + d(f(un), f(sn—))
< d(f(un), f(sn))

But s, — t7 and u, — t*, so d(f(un), f(sn)) — d(f(t+), f(t+))
contradiction.

Next assume that each s, € S3. For each n, choose u, € (s,,t) such that
d(f(uy), f(sn+)) < e/4. Then

DO ™

L€
=
=0

, a

< d(f(sn+), f(sn)) < d(f(snt), f(un)) + d(f(un), f(sn))

€
< Z + d(f(un)a f(sn))
But s, — t~ and u, — t7, so d(f(un), f(s,)) — d(f(t=), f(t=)) = 0, a
contradiction.
Finally assume that each s, € S4. For each n, choose u, € (s, — 1/n,s,)
such that d(f(uy), f(sn—)) < e/4. Then

N ™

S < A(f (0, Fsn=)) < d(Fls): () + d(f (n) f(50-)
< d(F(un), F(s2)) + 5.
But s, — t~ and u, — t7, so d(f(un), f(sn)) — d(f(t—), f(t=)) = 0, a
contradiction. O]

Theorem 3.26. A function with one-sided limits has at most countably many
discontinuities.

Proof. Let f have one-sided limit. Then f is continuous at ¢ if and only if
f(t=) = f(t+) = f(t), which happens if and only if

d(f(t+), f(8) + d(f (1), f(t=)) = 0.
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Let
={teR:d(f(t+), f(t)) +d(f(t), f(t=)) = 1/n}.

Then A = Ufil A, is the set of discontinuities of f.

Fix M,n € N. Fix t € [-M, M]. By Theorem 3.25 with ¢ = 1/n, there exists
0 > 0 such that ((t — 0, ¢) U (t,t+0¢)) N Ay = &. Thus, if Uy = (t — ¢, t + 0y),
then U; n A,, < {t}. Since [-M, M] is compact, and {U; : t € [-M,M]} is
an open cover of [—M, M], it follows that there exists {¢1,...,tx} < [-M, M]
such that [-M, M| c Uy, v --- v Uy,. Hence, [-M,M] n A, < {t1,...,tx}. In
particular, [-M, M| n A,, is finite.

Therefore,
o8]
4=

n=1

—M,M]n A,

CS

=
I

is a countable set. ]

3.5.2 Cadlag functions

If f has one-sided limits, we define fy : R —» Rand f_ : R —» Rby f, () = f(t+)
and f_(t) = f(t—). Note that a function f with one-sided limits is right-
continuous if and only if f(t+) = f(¢) for all ¢ € R, which is equivalent to saying
that f, = f. If f has one-sided limits and is right-continuous, then we say
that f is cadlag. This is an acronym for the French phrase, “continu a droite,
limite & gauche”. If f has one-sided limits and is left-continuous, that is, if
f(t=) = f(t) for all ¢ € R (which is equivalent to f_ = f), then we say that f
is caglad.

If f has one-sided limits, we also define the function Af : R — R by Af =
f+ — f—. Note that, by Theorem 3.26, the set {t : Af(t) # 0} is countable.

Given any f:R — R, let us define Rf : R — R by Rf(t) = f(—t).

Lemma 3.27. If f has one-sided limits, then so does Rf. Moreover, (Rf)y =
Rf_ and (Rf)— = Rfy.

Proof. Let f have one-sided limits. Then

lim R () = lim f(~5) = lim f(2) = f(~1)

and

lgglRf(S) :Eglf(—S) = Z}l(mt)f( z) = f+(=1),

which shows that Rf has one-sided limits, and that (Rf); = Rf_ and (Rf)_ =
Rf,. O

Lemma 3.28. If f : R — R is increasing, then f has one-sided limits, and f
and f_ are both increasing.
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Proof. Fix t € R and fix some strictly increasing sequence {t,} with ¢, — ¢.
Then {f(¢,)} is an increasing sequence of real numbers, bounded above by f(t).
Hence, there exists L € R such that f(t,) — L.

Now let {s,} be any other strictly increasing sequence with s, — t. As
above, f(s,) — L’ for some L' € R. Now fix m € N. Since s,, < t and ¢, — t,
there exists N € N such that for all n = N, we have s, < t,. This implies
f(sm) < f(tn). Letting n — oo, we have f(s,,) < L. But this holds for all m,
so letting m — oo, we have I’ < L. A similar argument shows that L < L.
Thus, L’ = L, so that f(s,) — L. Since this holds for any such sequence {s,,},
we have that L = lim,_,,— f(s), and so f(t—) exists.

A similar argument shows that f(t+) exists for all ¢t € R.

Now let s < t. Choose a strictly decreasing sequence {s,} < (s,t) such that
sn — s, and choose a strictly decreasing sequence {t,} such that ¢, — t. Then
Sp < t <ty for all n. Hence, f(s,) < f(t,) for all n. Letting n — oo gives
f(s+) < f(t+), showing that f. is increasing. A similar argument shows that
f— is increasing. O

Theorem 3.29. If f has one-sided limits, then

for allt € R. In other words, (f1+)+ = (f=)+ = f+ and (f+)- = (f-)- = f-.
In particular, f is cadlag and f_ is caglad.

Proof. Fix t € R and let {t,,} be a strictly decreasing sequence of real numbers
such that ¢, — t. Let € > 0 be arbitrary. Using Theorem 3.25 and the fact
that f(t,) — f(t+), we may choose N € N such that for all n > N, we have
d(f(tn+), f(tn)) <&, d(f(tn—), f(tn)) <&, and d(f(tn), f(t+)) <. By the tri-
angle inequality, this implies that d(f (t,+), f(t+)) < 2e and d(f (¢, —), f(t+)) <
2¢. Since ¢ was arbitrary, this shows that fi(t,) = f(tn+) — f(t+) and
f-(tn) = f(tn,—) — f(t+). Since the sequence {t,} was arbitrary, this shows
that fi(t+) = f(t+) and f_(t+) = f(t+). Since this holds for all ¢ € R, we
have (f+)+ = (f-)+ = f+

Now let g = Rf. We have already shown that (g+)+ = (9-)+ = g+. By
Lemma 3.27, we have g, = Rf_. Therefore, (9+)+ = R(f-)— and similarly,
Eg_;Jr = R(f+)—. Hence, R(f+)- = R(f-)_ = Rf_, which implies (fy)_ =
f-)-=17J-

Lastly, since (f; )+ = f4, it follows that f. is cadlag, and since (f_)_ = f_,
it follows that f_ is caglad. O

Remark 3.30. By Theorem 3.29, if f is cadlag (or any function with one-sided
limits), then g = f_ is caglad. Conversely, if ¢g is any caglad function, then
g =9g- = (9+)—. In other words, g = f_, where f = g, is a cadlag function.
What this shows is that a function g : R — R is caglad if and only if g = f_ for
some cadlag function f.
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3.5.3 Relation to BV functions

By Theorem 3.19, a function G : R — R is in BV if and only if G can be
written as G = G; — G2, where each G; is a bounded, increasing function.
Since increasing functions have one-sided limits, every BV function has one-
sided limits. Moreover, by Lemma 3.28, this shows that G, and G_ are both
BV functions.

If G € BV, then G is right-continuous and BV, and G — G(—o) € NBV.
As in Theorem 3.20, there exists a unique signed Borel measure pg, on R such
that pua, ((s,t]) = G4 (t) — G4 (s) for all s <t. Note that

e ({t)) = limpg, (s, 1)
— lim(G (t) — G (5)

=G1(t) — G4(t-)
=G (t) - G-(1),

by Theorem 3.29. If we recall that AG = G — G_, then ug, ({t}) = AG(1).

In (3.1), we defined the Lebesgue-Stieltjes integral for integrators which are
NBV. We now extend this by defining the Lebesgue-Stieltjes integral of a
Borel measurable function f with respect to a BV function G by

IREE REZE

The following theorem illustrates a relationship between the Lebesgue-Stieltjes
integral and classical Riemann sums.

Theorem 3.31. Let G € BV and let f be a function with one-sided limits.
Fiz a < b. For each m € N, let P,, = {tg-m)}?gg) be a strictly increasing,
finite sequence of real numbers with a = tém) <...< ti:?gl) = b. Assume that

[P = max{|t§m) - tg’f“ :1<j<n(m)} -0asm— . Let

n(m)

1 = 37 FEIDGE™) ~ G, and
j=1

S 4 ) e

I+ — f(t )(G(tj )_G(t]—l))
=1

Then:
(i) If G is cadlag, then m S(a b f-dG as m — 0.

(it) If f and G are both cadlag, then Iim) — S(a,b] fedG = S(a,b]fdG as
m — 0.
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(111) If G is caglad, then Iim) — S[a,b) f+dG as m — 0.

() If f and G are both caglad, then ™ Sab)f dG = S[a,b)fdG as
m — 0.

Proof. In this proof, for notational simplicity, we will suppress the dependence
of n, t;, and I+ on m.
Let us first assume that G is cadlag. Then G = G4, and so

n

L= f(ti-Dne+((ti-1.1]) :J 5 due,

j=1 (a;b]

where

n
= Z f(tj_l)l(t]‘—l,tj] (t)

j=1
For each fixed t we have f7(,L1)( t) = f(tj—1), where t;_y < t and [t —t;_1| <
|Pmll. Thus, £ ( ) — f—(t). By Theorem 3.24, there exists M < oo such that
|f(1)| M for all m. Thus, by dominated convergence, I_ — S 0] f-dpg, =
S(aAb] f— dG, and this proves (i).

Similarly,

Z iha+((t- Mj])-f( b]fﬁf)ducw

where
n

2 2 )Lt (@)-
j=1

For each fixed ¢, we have f,(,?)(t) = f(t;), where t < t; and [t — tj]| < |Ppn].
Because of the possibility that ¢ = ¢;, we cannot conclude that f,(,?) (t) — f+(¢)
as m — o0. However, if we make the further assumption that f is cadlag, so that
f+ = f, then we do obtain fr(,f) (t) — f(t) as m — o0, and again by dominated
convergence, we have I, — S(a’b] fdpa, = S(a’b] fdG, and this proves (ii).

Next assume that G is caglad. Then G = G_ = G — AG, and so for any
s < t, we have

G(t) — G(s) = G (1) — G4 (s) — AG(t) + AG(s)
= pay ((s,t]) = pa, ({t}) + pe. ({s})
= NG+([87t))'

Hence,

I+_Zf MG-&- 7 lvtj)):f fﬁf)duGJra

[a,)
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where

FW) = D7 F ) ) (1)
j=1

For each fixed ¢, we have f>) (t) = f(t;), where t < t; and [t—¢;| < |Pp|. Thus,
7(3)(15) — fi(t). Again, by dominated convergence, I, — S[a b f+dpa, =
S[a p) f+ dG, and this proves (ii).
Similarly,

n

L= 3 f(t-0uc ([t-1.t) = j[ I8 i,

j=1
where

f;ﬁl)(t) = Z f(tj—l)l[tj_l,tj)(t)'
j=1

For each fixed ¢, we have f,(,?)(t) = f(tj—1), where t;_1 <t and |t —t;]| < ||Pn].
Because of the possibility that ¢ = ¢;_1, we cannot conclude that i () — f=(¢)
as m — o0. However, if we make the further assumption that f is caglad, so that
f_ = £, then we do obtain £’ (t) — f(t) as m — o0, and again by dominated
convergence, we have I_ — S[a,b) fdpg, = S[a)b) fdG, and this proves (iv). [

Remark 3.32. In (ii) and (iv) of Theorem 3.31, the assumptions on f cannot
be omitted. For example, let f = 1(g ), G = 1[0,;0), @ = —1, and b = 1. In this

case, (G is cadlag and f is caglad, but L(rm) need not converge to anything.
To see this, let {P,,} be a sequence of partitions with |P,,| — 0, satisfying
the following conditions:

(i) If m is even, then there exists k = k(m) such that t,(gm) =0.
(i) If m is odd, then then there exists k = k(m) such that t,(;f)l <0< t,(cm).

In this case, G(tém)) - G(tET%) = 1if j = k(m), and 0 otherwise. Thus,

0 if m is even
1M — pplmy — )
+ U 1 if m is odd,

and so Iim) does not converge. Similarly, if f = 1[g.0), G = 1(0,00), and {Pp,}
are the above partitions, then 1™ does not converge.
Remark 3.33. If f and G are both cadlag, then

fiG- | fag=| (f-f)a6=| Afdc,.
(a,b] (a,b]

(a,b] (a,b]
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Since A f vanishes outside a countable set, we have

|, Ardne. = 3 Ao, = 3 AS0AGE,

te(a,b] te(a,b]

where this sum is, in fact, a countable sum. In particular, this shows that I(j”)

and Isrm) need not converge to the same limit. More specifically,

7 _ gm zi (L )(G(t) — Glt;-) — Y] AFDAGC(),

te(a,b]
as m — o0. This quantity is called the covariation of f and G.

If f has one-sided limits, but is not of bounded variation, then the integral
S(a,b] G df is undefined. More specifically, the map (s,t] — fi(¢t) — f1(s) cannot
be extended to a signed measure. But, even though the integral is undefined,
we can still obtain convergence of the Riemann sums in Theorem 3.31, provided
that the integrand is of bounded variation.

Theorem 3.34. Let G € BV and let f be a function with one-sided limits.
Assume f and G are both cadlag. Fiz a < b. For each m € N, let P, =

{t(m)}"(m) be a strictly increasing, finite sequence of real numbers with a

t(()m) < t(TT)n) b. Assume that |Pp| = max{|t§-m) - tgim 1<y

n(m)} — O as m — 0. Let

N

T = 3G ™) — £(EM)), and
j=1
T = 3 GEM)FE™) = FED).
j=1
Then
T F(B)G() — Fa)G(b) — . fodG— > Af(H)AG(t), and (3.2)
a, te(a,b)
T s F(D)G(b) — F(a)G(b) — ( b]fdG+ > AfHAG(), (3.3)
a te(a,b]
as m — Q0.

Proof. As before, for notational simplicity, we will suppress the dependence of
n, t;, and Ji on m.
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We begin by observing that

Jo= Y6 )I) — Y Gl
~ FOGE) ~ F@Ca) ~ 3 1(1)(C() ~ Olty-)
j=1

By Theorem 3.31, we have J_ — f(b)G(b) — f(a)G(b) — S(a b] f dG. By Remark
3.33, this prove (3.2).
Next, we write

n+1 n

v = Z Gty f(tj—) = Y. G(t))f(t;-)

j=1
= fB)G(b) — f(@)G(a) = X f(t;-1)(G(t;) — Gt;-1).
j=1
By Theorem 3.31, we have J, — f(b)G(b)— f(a)G(b) _S(a,b] f— dG. By Remark
3.33, this prove (3.3). O
As a corollary, we obtain the following generalizations of Theorem 3.22.

Corollary 3.35. If f and G are both cadlag functions of bounded variation,
then

G_ df:f(b)G(b)—f(a)G(a)—f fodG— Y Af(t)AG(t), and

(a,b] (a,b] te(a,b]
Gdf = f(b)G(b) — f(a)G(a) —f fdG+ >0 Af(H)AG().
(a,b] (a,0] te(a,b]
Proof. Combine Theorem 3.34 with Theorem 3.31. O

3.5.4 The Stratonovich integral for cadlag functions

If ¢ and h are cadlag, with h € BV, then let us define the Stratonovich
integral of g with respect to h as

fg(s)odh(s) ;:J 9—2+gdh

0 (0,¢]

By Theorem 3.31, we have

D LGRLUAY |, oo ancs),

as the mesh of the partition tends to zero.
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Theorem 3.36. Let f, g, and h be cadlag functions, with h € BV . Let

k(t) = f g(s) o dh(s).

Then k is cadlag, k € BV, and
t t 1
JO £(s) o di(s) = J F($)g(s) o dh(s) = 3 3 AS(s)Ag(s)AR(s).

s€(0,t]

Proof. Since

we have

o, U5 (7)o
(

frg-+fg (f=f)g—9g)
5 - 0 ) dh

_g_ 1
- J f-9-+1g dh — = AfAgdh
01 2 4 ).

~ | 1@t 0dnts) = 1 X Afs)Ag(5)AR(s)

0 5€(0,t]
and we are done. O]

Remark 3.37. This theorem shows that as long as f, g, and h have no si-
multaneous discontinuities, then the Stratonovich integral satisfies the usual
transformation rule of calculus that if d& = g o dh, then fodk = fgo dh.
In general, however, the transformation rule involves a correction term which
represents the triple covariation of the three functions, f, g, and h.
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Chapter 4

The Principal Definitions

Probability theory is based on two things.

The first is the notion of a probability space. Recall that a probability space
is a measure space, (€, F, P), such that P(Q) = 1. If A € F, then P(A) is called
the probability of A.

The second is the notion of conditional probability. If A, B € F and P(B) >
0, then the conditional probability of A given B is defined as

P(An B)
Since P(A) = P(A | Q) for all A € F, all probabilities are in fact conditional
probabilities.

Proposition 4.1. Let (2, F, P) be a probability space. Let A € F with P(A) >
0. Define P4 : F — [0,1] by PA(B) = P(B | A). Then P4 is a probability
measure on (Q, F) with PA(A) = 1. Moreover, if B € F and P(A n B) > 0,
then PA(B) > 0 and PA"B(C) = PA(C| B) for allC € F.

Proof. The proof that P4 is a probability measure with P4(A) = 1 is left to
the reader. For the second part, suppose B € F and P(A n B) > 0. Then

(Bn A)

]ﬁ@ﬂ:HBLM:PPM) > 0,

so PA(C | B) is well-defined. We now have

PA“B(C):P(C|AQB):P(AmBmC):P(AQBOC) P(A)

P(An B) P(A) "P(AnB)
PABnO)
= T(B) = PA(C | B),
forall C e F. O
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Corollary 4.2. Let (0, F,P) be a probability space. Let A,B,C € F with
P(C) > 0.

(a) If PLAnB|C) =0, then PLAuB|C)=P(A|C)+ P(B|C).

(b) If PLAnC) >0, then PLAnB|C)=P(A|C)P(B|AnC).
Proof. Since P€ is a finite measure, we have

PY(Au B) = P9(A) + PY(B) — P°(An B),

and (a) follows immediately.
Suppose P(A n C) > 0. Then

c M
PAY(B) = PY(B | A) = W'

Multiplying by P¢(A) gives (b). O

The statements expressed in (a) and (b) are sometimes called the addition
rule and the multiplication rule, respectively, and are often regarded as the
foundational principles of probability. The addition rule comes primarily from
the finite additivity' of the measure P, whereas the multiplication rule comes
primarily from the definition of conditional probability. As such, the probability
space structure and the definition of conditional probability together form the
basis for probability theory. In Chapter 5, we will focus on the probability space
structure. In Chapter 6, we will turn our attention to conditional probability.

Exercises

4.1. Complete the proof of Proposition 4.1.

IThe countable additivity of P is needed so that we may take limits, which is especially
important when we study stochastic processes later in these notes.



Chapter 5

Probability Spaces and
Random Variables

5.1 Probability spaces

This section corresponds to [2, Section 1.1].

Recall that a probability space is a measure space, (2, F,P), such that
P(Q) = 1. Traditionally, elements w € § are referred to as “outcomes” and
measurable sets A € F are referred to as “events”.

Example 5.1. Let © be a countable set and F = 2%, Let p: Q — [0,1] be
such that }} .o p(w) = 1. Define P : F — [0,1] by P(A) = >} 4 p(w). Then
(Q, F, P) is a probability space.

A common special case is where Q) is a finite set and p(w) = 1/|Q] for all
w € Q. The resulting measure P, in this case, is often called the uniform
probability measure on 2.

For instance, if Q = {1,...,6} and P is the uniform measure, then (Q, F, P)
is a common model for the roll of a fair 6-sided die. The subset A = {2, 3,5}
corresponds to the event that the die lands on a prime number.

Or if 2 = {00,0,1,...,36} and P is the uniform measure, then (Q, F, P) is
a common model for the spin of a balanced American roulette wheel. To model
the spin of an imbalanced American roulette wheel, we could use the same
(©2, F), but generate our probability measure P using a nonconstant function
p:Q—[0,1].

Remark 5.2. The elements w € ) can be thought to correspond to possible
“states of the world.” In the fair die example, with Q = {1,...,6}, the element
w = j can be thought to correspond to the aggregate of physical conditions that
results in the die landing on the number j. Suppose S is the sentence, “The die
lands on a prime number.” Then the set A = {2,3,5} consists of all states of
the world that result in S being true. In this way, we can think of probabilities
applying to propositions rather than sets. When thought of in this way, the

(0]
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set operations of union, intersection, and complement correspond to the logical
operations of disjunction, conjunction, and negation, respectively. This point
of view provides an intuitive foundation that is not only useful in applications,
but also in constructing proofs and solving purely mathematical problems in
probability theory. For a somewhat mild example, see Example 5.10.

5.2 Real-valued random variables

This section corresponds to [2, Section 1.2].

A random variable on a probability space (2, F, P) is an F-measurable
function X : Q@ — R. Recall that R is the Borel o-algebra on R. Since X is
(F,R)-measurable, it follows that X! : R — F. (In fact, X! is a Boolean
o-algebra homomorphism from R to F.)

If Be R, then

X 'YB)={w:X(w)eB}eF

It is very common practice in probability to omit w from our notation, so instead
of the above, we usually write

X'(B)={XeB}eF.

The set {X € B} is the event that the random variable takes a value in B. Since
{X € B} € F, it has a probability, P({X € B}). It is also common practice in
probability to omit the curly brackets inside of our probability measure, so we
usually just write this as P(X € B), which is read as “the probability that X is
in B.”

Let X be a random variable on a probability space ({2, F, P). Define the
function p : R — [0,1] by u(A) = P(X € A). Then p is a Borel probability
measure on R, and is called the distribution of X, or the law of X. Note
that 1 = P o X~'. We write X ~ i to indicate that X has distribution p.

The function F' : R — [0,1] given by F(x) = u((—oo,z]) is called the
distribution function of X. Note that F(z) = P(X < x).

By Theorem 1.22, F' is increasing and right-continuous. It is also easy to
check, as in Exercise 1.12, that F(0) = 1, F(—w) = 0, F(z—) = P(X < z),
and P(X =z) = F(z) — F(z—).

Sometimes, u and F' are denoted by ux and Fx to indicate their relationship
to X.

Example 5.3. Let Q = (0,1), F = B, and let P be Lebesgue measure.
Define X : Q@ - R by X(w) = w. Then X is a random variable with distribution
function F: R — R. If z € (0,1), then

If x <0, then
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and if x > 1, then

Thus,
0 ifz<0,
Flz)=<z if0<z<l,
1 ifz>1

Or, more compactly, F'(x) = x1¢,1)(z) + 11,00

The distribution of X is the Borel measure p on R associated with F' accord-
ing to Theorem 1.22. In this case, u(B) = A(B n (0,1)), where X is Lebesgue
measure. The measure p in this example is called the uniform distribution
on (0,1).

More generally, if C € R, 0 < A(C) < w0, and u : R — [0,1] is given by
w(B) = A(B n C)/\C), then p is a Borel probability measure on R and is
called the uniform distribution on C. We sometimes write U(C) for this
distribution. If C' is an interval with endpoints a < b, then we write U(a, b) for
this distribution.

Any random variable on any probability space whose distribution is the
uniform distribution on C' is said to be uniformly distributed on C.

Theorem 5.4. Let F : R — [0,1] be increasing and right-continuous, with
F(w0) =1 and F(—w) = 0. Then there exists a random variable X on some
probability space (, F, P) such that F = Fx.

Proof. If F is strictly increasing and continuous, then F' has an inverse function
F~1:]0,1] — R. More generally, if F' is merely increasing and right-continuous,
then let us define, for x € (0,1),

F~H(z) = sup{y : F(y) < x}.

If F' is strictly increasing and continuous, then this definition agrees with the
usual definition. In the general case, this function F~! is sometimes called
a pseudo-inverse. In the proof of [2, Theorem 1.2.2], it is shown that for all
(x,9) € (0,1) x R, we have F~!(z) < y if and only if z < F(y).

Let U be a random variable on some probability space such that U ~ U(0, 1).
Let X = F~1(U). We will show that F' = Fx. Let x € R. Then

which shows that F' = Fx. O

Remark 5.5. There is an easier way to construct X from F. Namely, take
Q=R, F =R, P=pup, and define X : @ > R by X(w) = w. However,
the above proof is very useful. It shows, in a constructive fashion, how any
distribution can be created from a uniform distribution. This is helpful for
both theoretical and applied purposes. It can aid in the construction of certain
proofs, and it is helpful in designing simulations.
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On a probability space, (2, F, P), the phrase “almost everywhere” is typi-
cally replaced by the phrase “almost surely” with the abbreviation a.s. For
example, if X and Y are random variables defined on (Q, F, P), then X =Y
a.s. means there exists N € F such that P(N) = 0 and X (w) = Y (w) for all
we N°.

Let X be a random variable defined on a probability space, (2, F, P), and
let Y be a random variable defined on a possibly different probability space,
(', F',P"). Then both ux and py are probability measure on (R,R). If
Wx = Wy, then we say X and Y are equal in distribution, or in law, and we
write

x4y,

or X =4 Y. Note that X =; Y if and only if Fx = Fy, that is, X =4 Y if and
only if P(X <z) =P (Y <«z) for all z € R.

Note that the statement, X =Y a.s., implies that X and Y are defined on
the same probability space, but the statement X =; Y does not.

Let X be a random variable with distribution p and distribution function
F'. Suppose that p « A, where X is Lebesgue measure, and let f be a version of
the Radon-Nikodym derivative, du/dA. Then du = f dX and, in particular,

F(z) = f@ £(t) dt.

In this case, we say that f is the density function of X, and we sometimes
denote it by fx. Note that f is nonnegative, integrable, and § f(z) dz = 1.

Conversely, if f is nonnegative and { f(z)dz = 1, then we may define a
probability measure by dy = fdA. By Theorem 5.4, we have that u is the
distribution of some random variable, X. It then follows that f is the density
of X.

By Theorem 3.23, the fundamental theorem of calculus for Lebesgue inte-
grals,

F(z+h)— F(x)

lim A 'P(X € [z,x + h]) = lim
h—0+ h—0+

= F'(z) = f(x),
for Lebesgue a.e. x € R. Thus, if Az is small, then
P(X € [z,z + Az]) = f(x)Ax.

You will sometimes see authors write P(X = x) = f(z). Of course, this is
false. If X has a density function, then P(X = z) = 0 for all z € R. The most
gracious, and perhaps the only sensible, interpretation in such a situation is to
assume the authors meant to refer to the above approximation.

Example 5.6. Fix » > 0 and let f(z) = re™""1(p,o0)(z). Then f > 0 and
§ f(z)dx = 1, so there exists a random variable X that has density f. The
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distribution function of X is then

S Y e

The distribution of X is called the exponential distribution with rate r,
and is denoted by Exp(r).

Note that X ~ Exp(r) if and only if P(X >t) = e " for all ¢ > 0. Thus, if
X ~ Exp(r) and s > 0, then sX ~ Exp(s~!r).

Example 5.7. Let

1 2
_ —x%/2
x) = e .
fa) = o=
Then f is nonnegative and § f(z)dz = 1, so there exists a random variable X
that has density f. The distribution function of X is then

F(z —t*/2 gy

1 T

== e

Ver o
which has no closed form expression. The distribution of X is called the stan-
dard normal distribution, or standard Gaussian distribution, and is
denoted by N(0,1). The distribution function of a standard normal is typically
denoted by ®.

In [2, Theorem 1.2.3], it is shown that

0
<1 _ 13) /2 < J e t/2 gt < 16—902/27
T = T

for all z > 0. Thus, if X ~ N(0,1), then

for all x > 0.

Let X be a random variable with X ~ p. Recall from Proposition 3.15 that
p has a unique decomposition pt = g + flac + fise, Where pig is discrete, pge < A,
and . is continuous with ps. 1 A. Note that X has a density function if and
only if 4 « A, which holds if and only if g = pse = 0. Also note that Fx is
continuous if and only if p is continuous, which holds if and only if pg = 0.

Example 5.8. Let (2, F, P) be a probability space. Choose ¢ € R and define
X :Q > Rby X(w) =cforall we Q. Then X ~ ¢, where . is the point
mass measure at ¢. In this case, X does not have a density function. In order
for X to have a density function, the distribution of X must be absolutely
continuous with respect to Lebesgue measure. But in this case, . L A, that is,
the distribution of X is singular with respect to Lebesgue measure. Note that
in this example, the distribution of X is discrete.
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Example 5.9. Let F' be the Cantor function and let X be a random variable
with distribution function F'. Then X ~ pp. Since F is continuous, the measure
wr is continuous. However, urp 1 A, so X does not have a density function.

Example 5.10. Suppose {X,}>_; is a sequence of random variables defined
on a probability space (2, F, P). Let
A= {w :lim X, (w) = OO}7
n—00

or, as we would more commonly write it in probability,

Az{thﬁzw}

n—o0
Note that X,, — oo if and only if
VM eN,dN e N,Vn > N, X,, > M.

Guided by the intuitive understanding described in Remark 5.2, we are led

immediately to
a0
A= ﬂ U ﬂ{Xn>M}.
MeN NeNn=N

Written in this way, we immediately see that A € F. Moreover, we may now be
able to say something about P(A) using what we may know about P(X,, > M).
We will have many opportunities to work with examples like this, especially
when discussing limit theorems for discrete-time stochastic processes, such as
the law of large numbers and the central limit theorem.

Exercises

5.1. [2, Exercise 1.2.2] Let X ~ N(0,1). Use [2, Theorem 1.2.3] to find upper
and lower bounds on P(X > 4).

5.2. [2, Exercise 1.2.4] Let X be a random variable, and let ¥ = Fx (X). Show
that if F'x is continuous, then Y ~ U(0,1).

5.3. [2, Exercise 1.2.6] Let X ~ N(0,1). Find the density of Y = eX.

5.4. [2, Exercise 1.2.7(i)] Let X be a random variable with density function f.
Find the density function of X? in terms of f.

5.5. [2, Exercise 1.2.5] Let —o0 < o < f < o0 and let X be a random variable
with P(X € (o, 8)) = 1. Assume X has a continuous density function f. Let
g : (o, 8) = R be strictly increasing and differentiable, and define Y = g(X).

(a) Prove that Y has a density function,

h(y) = M (9(a),9(8))

(b) Show that in the case g(x) = ax + b, where a > 0, the density reduces to

hy) = 2 f (y_b>-

a a

(y)-
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5.3 General random variables

This section corresponds to [2, Section 1.3].

Let (Q,F,P) be a probability space, and (S,S) a measurable space. An
S-valued random variable is an (F,S)-measurable function X : Q@ — S.
Since X is (F,S)-measurable, it follows that X! : S — F. (In fact, X ! is a
Boolean o-algebra homomorphism from S to F.)

If Be S, then

X YB)={w:X(w)e B}e F,

which we usually write as
X YB)={XeB}eF.

The set {X € B} is the event that the X takes a value in B, and P(X € B) is
the probability of this event.

Let X be an S-valued random variable. Define the function p : S — [0, 1]
by u(A) = P(X € A). Then p is a probability measure on (5,S), and is called
the distribution of X, or the law of X. Note that u = Po XL

We write X ~ p to indicate that X has distribution p. More generally, if v
is a finite, nontrivial measure on (5,S), then we write X ~ v to indicate that
X has distribution v/v(.5).

Sometimes p is denoted by px to indicate its relationship to X. If X and YV
are S-valued random variables defined on possibly different probability spaces,
then we write

X<y,

or X =4 Y, to mean that ux = py, and we say X and Y are equal in
distribution, or in law.

If p is any probability measure on (S,S), then we can create a random
variable with distribution g simply by taking @ = S, F = S, P = pu, and
defining X : Q - S by X(w) = w.

Typically, when we say X is a random variable, we will mean X is a real-
valued random variable, unless otherwise specified, either explicitly or by con-
text. An S-valued random variable may sometimes be called a random element
of S. If elements of S have a particular names, we may use that instead. For
example, an R"-valued random variable may sometimes be called a random
vector.

Example 5.11. Let S = C[0, 1], the set of all continuous functions from [0, 1]
to C. The mapping f — [f| = sup,epo1)|f(z)| defines a norm on S, which
yields a metric. We can therefore let S = Bg be the Borel o-algebra on S. An
S-valued random variable is an F-measurable function X : 2 — S.

For each w € Q, we have that X(w) is a function from [0,1] to C. We
typically write X (t,w) = (X(w))(¢t). The object X is a random continuous
function on [0, 1]. An example of such a C[0, 1]-valued random variable, which
we will learn about much later on, is Brownian motion.
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5.4 Expected value

This section corresponds to [2, Section 1.6].
If X is a real-valued random variable on (2, 7, P), then the expected value
of X is defined as

E[X] = L X dP,

provided this integral exists. We frequently drop the brackets, writing £X when
non confusion is likely to arise. The expected value of X is also called the mean
of X.

On a probability space, constant random variables are integrable, and the
expected value of a constant is that constant itself. So in addition to the
usual properties of integration (linearity, monotonicity, etc.), we also have that
E[aX +b] = aE[X] + b.

You will occasionally see the notation E[X;A] = E[X14], where A € F.
We will try to avoid this notation in these notes, writing simply E[X14].

Since the expected value is an integral, we have at our disposal all the usual
inequalities and limit theorems from measure and integration, such as Jensen’s
inequality, Holder’s inequality, Fatou’s lemma, and so on. In addition to these,
here are two theorems that will be especially useful to us.

The following theorem is [2, Theorem 1.6.4].

Theorem 5.12 (Chebyshev’s inequality). Let X be a real-valued random vari-
able and ¢ : R — [0,0). For A€ R, let ma = inf{p(x) : x € A}. Then

P(xX e 4) < ZeD)
ma

Y

for all A e R such that ma > 0.

Proof. Since ¢ = 0, we have
Elp(X)] = Elp(X)1lxeay] = E[malixcay] = maE[lixea)] = maP(X € A).
Dividing by m 4 finishes the proof. O

Remark 5.13. Many authors use the phrase “Chebyshev’s inequality” to refer
to the special case, p(z) = |z|" and A = (—a,a)¢. In this case, the inequality
reduces to P(|X| = a) < E[|X]|"]/a".

If limg o f(z) = lim,,_o f(2) = L, then we say f(z) — L as |z| — oo.
The following is [2, Theorem 1.6.8]. See the book for the proof.

Theorem 5.14. Let X,,, X be real-valued random variables with X,, — X a.s.
Let g : R — [0,00) and h : R — R be continuous. Assume that

(i) g(x) — 0 as |z| — o,

(ii) |h(z)|/g(x) — 0 as |x| > oo, and
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(iii) sup,, Eg(X,) < oo.
Then Eh(X,) — Eh(X) as n — .

Corollary 5.15. Let X, X be real-valued random variables with X,, — X a.s.
Let p > 1 and suppose sup,, E|X,|P < 0. Then EX, - EX asn — o0.

Proof. Take g(x) = |z|? and h(z) = x. 0

Let X be an S-valued random variable, where (S, S) is a measurable space.
If g : S —> R is S-measurable, then g(X) is a real-valued random variable.
Assume either g(X) > 0 a.s. or E|g(X)| < 0. Then by Theorem 2.32, we have

Eg(X) =J gonP=f gd(PoX_l) =J gdu,
Q s s

where p is the distribution of X. For example, if (S,S) = (R™,R"), then this
formula allows us to compute expected values by performing integrals on the
more familiar space R™, rather than some abstract probability space (2, F, P).

Example 5.16. Let X be a real-valued random variable with distribution p
and distribution function F. If X > 0 or F|X| < oo, then taking g(z) = = in
the above, we have

EX = JR x p(dx).

Since p is the Lebesgue-Stieltjes measure associated with F', we can also write
this as

EX = JR x dF(x).

More generally,

Eg(X) = ng@s) dF(z),

whenever g : R — R is measurable and either g(X) = 0 a.s. or E|g(X)| < .
Example 5.17. Let X be a real-valued random variable with density f. Then

X ~ p, where du = f(x)dx. As a special case of Example 5.16, if X > 0 or
E|X| < oo, then

EX = J zf(x)dx.
R
More generally,

Eg(X) = f o(2)f(z) dz,

R

whenever g : R — R is measurable and either g(X) = 0 a.s or E|g(X)| < oo.
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Example 5.18. Let X be a real-valued random variable with a discrete distri-
bution. That is, X ~ p and there exists a countable S < R such that u(S) = 1.
As a special case of Example 5.16, if X > 0 or E|X| < oo, then

EX = Y ap({z}) = ) aP(X = z).
zeS zeS

More generally,

zeS
whenever g : R — R is measurable and either g(X) = 0 a.s. or E|g(X)| < o0.
If k € N, then E[X*] is called the k-th moment of X. Suppose X is a
square-integrable random variable, that is, X has a finite second moment. By

Exercise 2.16, this implies X is integrable. Let © = EX € R. Then the variance
of X is defined to be var(X) = E[|X — u|?]. Note that

var(X) = E[X? — 2uX + p?] = B[X?] - 2uE[X] + p* = E[X?] — 1.

From this, we get var(X) < E[X?]. Also, suppose Y = aX + b, where a,b € R.
Then EY =ap+b,s0Y — EY = a(X — p). This gives

var(Y) = E[|Y — EY*] = ¢*E[|X — u|?*] = a® var(X).
The standard deviation of X is defined as 4/var(X).
Example 5.19. Recall Example 5.6 and let X ~ Exp(1). Then X > 0 a.s. and
0
E[X*] = j ke du,
0

for all k € N. Using integration by parts and induction, one finds that F[X*] =
k!. Thus, EX =1 and EX? = 2, which gives var(X) =2 — 12 = 1.

Let 7 >0and Y = X/r. Then Y ~ Exp(r) and E[Y*] = E[X*]/r* = k!/rk
for all k € N. In particular, EY = 1/r and EY? = 2/r%, which gives var(Y) =
1/r%. In other words, if Y is exponentially distributed with parameter r, then
the mean and standard deviation of Y are both 1/r.

Example 5.20. Let us define 0!! = 1!! = 1 and, for integers n > 1, let n!! =
n((n —2)!!). The number n!! is called the double factorial of n.
Recall Example 5.7 and let X ~ N(0,1). Then

1 2
EXF = — | 2Fe 2 dx
V2T J‘]R ’

for all k € N. Using integration by parts and symmetry, one can show that

Bxk 0 if £ is odd,
(k=1 if k is even.
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In particular, EX = 0 and EX? = 1, which gives var(X) = 1.
Let o,u € R with 0 # 0, and let Y = 0 X + p. Then EY = p and var(Y) =
o2. By Exercise 5.5, the random variable Y has density,

1 C(y—u)2 /202
Frl) = Soge W

The distribution of Y is called the normal (or Gaussian) distribution with
mean p and variance o2, and is denoted by N(u,o?). Note that

2
—y-w)?/20% _ =
e exp ( 552 .

Although this is a violation of the order of operations, it is a standard abuse of
notation when writing the density of the normal distribution.

Example 5.21. Let p € [0,1] and let X be a random variable with P(X =
1) = pand P(X =0) = 1—p. The distribution of X is pdy + (1 —p)do, which is
a discrete distribution. This distribution is called the Bernoulli distribution
with parameter p, and is denoted by Bernoulli(p). Note that

Bg(X)= ), g(x)P(X =x) = g(0)(1—p) +g(1)p.
ze{0,1}

In particular, we have EX* = p for all k € N. Thus, var(X) = p—p? = p(1—p).
A frequently useful observation is that X¥ = X a.s., for any k € N.

Example 5.22. Let r > 0 and let X be a random variable such that

for all nonnegative integers k. The distribution of X is called the Poisson
distribution with parameter r, and is denoted by Poisson(r).
Let n € N and note that

(e 5, (Ho-ec-n- g (Heo s
k

—r J- k! r —r,.n < r n
=€ k;ﬂ((k;-n)‘)k':e r ZE:T
Taking n = 1 gives EX = 7, and taking n = 2 gives E[X (X — 1)] = r2. Thus,
EX?=FE[X(X-1)]+EX =r%+r,

and, therefore, var(X) = r2 +r — 12 =r.
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Example 5.23. Let p € (0,1) and let X be a real-valued random variable with
P(X =k)=p(1-p)*,

for each k£ € N. The distribution of X is called the geometric distribution
with parameter p, and is denoted by Geom(p).
By Theorem 2.31,

[e0]
EX =Y kP(X =k)= ) kp(1—p)*!
keN k=1

and, similarly,

E[X(X —1)] = Z k(k — 1)p(1 _p)k-—l =p(1 _p>ai <1) _ 2(1 gp)
k=1

Thus,

var(X) = E[X?] — (EX)? = E[X(X —1)]+ EX — (EX)?
2(1—p) +1_ 1 1-p

P’ p P
A similar technique could be used to derive higher moments of X.

As a closing remark, let us mention that expected values can be used to
derive the inclusion-exclusion formula:

P(Ua)-Srtn-Srns« S rinnaon

1<j i<j<k
— (1)nlp( N Az-).
i=1

See [2, Exercise 1.6.9].

Exercises

5.6. [2, Exercise 1.6.7] Let Q@ = (0,1), F = Bg,), and let P be Lebesgue
measure. Fix a € (1,2) and define X;, = n%1(1/(n41),1/n)-

(a) Show that there does not exist an integrable random variable Y such that
|X,| <Y as. for each n € N. In other words, the dominated convergence
theorem does not apply to this sequence of random variables.



5.4. EXPECTED VALUE 87

(b) Use Theorem 5.14 to show that EX,, — 0 as n — 0.
Hint: Use g(z) = |z|?/*.

5.7. [2, Exercise 1.6.6] Let X be a nonnegative random variable with EX? < oo.
Prove that

(EX)?

EX2

P(X >0)>
Hint: Apply Cauchy-Schwarz to X1{x-o;-

5.8. [2, Exercise 1.6.14] Let X be a nonnegative random variable. Prove that

lim 2E[X {xsq] = lgci%le[X_ll{X”}] = 0.

r—00

Warning: Be careful not to assume that E[X ] < 0.
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Chapter 6

Independence and
Conditional Expectation

6.1 Conditional probability and independence

This section corresponds to [2, Section 2.1].
Let (Q, F, P) be a probability space. Suppose B € F and P(B) > 0. Recall
that the conditional probability of A given B is defined as

P(A|B)=P(;1<;)B)

Clearly, if B c A, then P(A | B) = 1. The following lemma provides a converse
result.

Lemma 6.1. Let A, B € F with P(B) > 0. Then the following are equivalent.
(a) P(A| B) =1.
(b) P(B\A) = 0.
(¢) P(B°U A) = 1.
(d) There exists N € F such that P(N) =0 and B<c AU N.

Remark 6.2. Recall Remark 5.2, in which we discussed the heuristic identifi-
cation of measurable sets with propositions. We noted that the set operations of
union, intersection, and complement correspond to the logical operations of dis-
junction, conjunction, and negation, respectively. We now note that the subset
relation corresponds to the relation of logical implication.

When we think of A and B as representing propositions, we usually interpret
P(A| B) =1 as meaning that B logically implies A. While it is not quite true
that P(A | B) = 1 if and only if B — A, it is true up to null sets, as expressed
by the equivalence between (a) and (d).

89
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It is also interesting to point out that in propositional logic, there is a dif-
ference between logical implication and material implication (sometimes just
called implication). Material implication is an operation, denoted by —. If S
and T are propositions, then T" — S is the statement, “T" implies S”, which is
false when T is true and S is false, and is true otherwise. The statement 7" — S
is logically equivalent to (~ T') v S.

To say that T logically implies S is to say that 7' — S is a tautology,
or equivalently, that (~ T) v S is a tautology. The analogue for events in a
probability space is the equivalence between (a) and (c).

As Example 5.10 demonstrates, the events we work with in probability are
frequently cumbersome to write down, making it sometimes difficult to tell
at a glance when one event is a subset of another. The heuristic identification
between the subset relation and logical implication is frequently useful in making
this determination. We often think in terms of logical relations and operations,
while working with set relations and operations.

Proof of Lemma 6.1. Let A, B € F with P(B) > 0. Since
P(B)=P(An B)+ P(A°n B),

it follows that P(A n B) = P(B) if and only if P(A° n B) = 0. Thus, (a) and
(b) are equivalent. Also, since (B\A)® = B¢ U A, it follows that (b) and (c) are
equivalent.

Now assume (b). Let N = B\A, so that P(N) = 0. Since AUN = Au B,
this gives (d).

Finally, assume (d). Then

BnA°c (AUN)nA°=Nn A°c N.
Thus, P(B n A°) < P(N) = 0, which gives (b). O

If A,Be F,and P(An B) = P(A)P(B), then we say A and B are inde-
pendent.

Lemma 6.3. Let A,B € F with P(A) > 0 and P(B) > 0. Then the following
are equivalent.

(a) P(A]B) = P(A).
(b) P(B|A) = P(B).
(¢) A and B are independent.

Proof. Let A, B € F with P(A) > 0 and P(B) > 0.
Suppose P(A | B) = P(A). Then
P(AnB) P(AnB)P(B) P(B)

PBIA) = =55 = —55 pay ~ PAI B gy = POB)

By reversing the roles of A and B, we have that (a) and (b) are equivalent.
Since P(A n B) = P(A)P(B | A) and P(A) > 0, we have that (b) and (c) are
equivalent. O
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In words, P(A | B) = P(A) means that the probability of A remains unaf-
fected, whether we are given B or not. In other words, A is independent of B.
The lemma shows that this relationship between A and B is symmetric, so we
need only say that A and B are independent.

The lemma only applies when P(A) and P(B) are both positive, whereas
the definition of independence makes sense even when one of these probabilities
is zero.

Lemma 6.4. Let A,Be F. If P(A) € {0,1}, then A and B are independent.

Proof. If P(A) = 0, then P(An B) < P(A) =0, so P(An B) = P(A)P(B),
and A and B are independent.
Suppose P(A) = 1. Then P(A° n B) < P(A°) =0, so

P(A)P(B) = P(B) = P(AnB)+ P(A°n B) = P(An B),
and A and B are independent. ]

Example 6.5. Let Q = {1,...,6}, F = 29 and let P be given by P(A) = |A|/6.
Let A = {2,3,5} and B = {1,2,3,4}. If we interpret this probability space as
modeling a single roll of a fair 6-sided die, then A is the event that we roll a
prime number, and B is the event that we roll a number less than 5.

Note that P(A n B) = P({2,3}) = 1/3, whereas P(A)P(B) = (1/2)(2/3) =
1/3. Thus, P(An B) = P(A)P(B), and so A and B are independent.

Let (92, F, P) be a probability space. Let (S1,S1) and (S2,S2) be measurable
spaces. Let X; be an Sj-valued random variable. We say that X; and X, are
independent if

P(Xl € Bl,XQ € BQ) = P(X1 € Bl)P(XQ € BQ),

for all B; € S;. Note that P(X; € By, X2 € Bs) is shorthand for P({X; €
B} n {X5 € Bs}). The use of the comma to mean intersection is common
practice in probability.

Proposition 6.6. Let A, B € F. The events A and B are independent if and
only if the random variables 14 and 1p are independent.

Proof. Exercise 6.2. O

Let G € F and ‘H < F be o-algebras. We say that G and H are indepen-
dent if, for all A€ G and B € H, the events A and B are independent.

Proposition 6.7. Let X and Y be random variables, and G and ‘H o-algebras.
If X and Y are independent, then so are o(X) and o(Y'). Conversely, if G and
H are independent, and X € G and Y € H, then X and Y are independent.

Proof. Exercise 6.1. O
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6.1.1 Independence of a set

Let (2, F, P) be a probability space and Aj,..., A, € F. Then Ay,..., A, are
independent if, for all T < {1,...,n},

P(ﬂAj) = Py. (6.1)

jel jel

We say that Ai,..., A, are pairwise independent if A; and A; are indepen-
dent whenever i # j. By taking I = {i,j}, we see that independence implies
pairwise independence, but the converse is not true. See [2, Example 2.1.1] for
an example of three events that are pairwise independent, but not independent.

For each j e {1,...,n}, let (S;,S;) be a measurable space, and let X; be an
Sj-valued random variable. Then Xi,...,X,, are independent if

(e ml) =[P e 5. (62)
Jj=1 Jj=1
for all Bj € Sj.

On the surface, it looks like the structure of (6.2) is less general than (6.1),
because it does not explicitly mention subsets of {1,...,n}. However, with
a small trick, we can see that it does, in fact, cover such subsets. Suppose
Ic{l,...,n}. For jeI, let B; € S; be arbitrary. For j ¢ I, let B; = S;. Since
{X;e€8;} =Qand P(X; € S) =1, the above equality becomes

P(ﬂ{Xj € Bj}> =[P, e By,
jel jel
for all Bj € Sj.

Proposition 6.8. Let Aq,..., A, € F. The events Aq,...,A, are independent
if and only if the random variables 14,,...,14, are independent.

Proof. Exercise 6.3. O
For j € {1,...,n}, let G; € F be a o-algebra. Then Gi,...,G, are inde-

pendent if
n
j=1

whenever A; € G;. As above, suppose I < {1,...,n}. For j e I, let A; € G,
be arbitrary, and for j ¢ I, let A; = Q € G;. Then the above equality becomes
P(ﬂje] Aj) = Hje] P(Aj)'

Proposition 6.9. Let X4,...,X,, be random variables, and let Gy,...,G, be
o-algebras. If X4,..., X, are independent, then so are 0(X1),...,0(X,). Con-
versely, if Gi,...,Gy are independent, and X; € G;, then X1,..., X, are inde-
pendent.

P(4;)),
1

Jj=



6.1. CONDITIONAL PROBABILITY AND INDEPENDENCE 93

Proof. Exercise 6.4. O

More generally, if {A,}aea © F is any collection of events, then {A,}qen is
independent if, for all F' < A such that F is finite, { A4 }aecr is independent. The
analogous definitions for infinite collections of random variables or o-algebras
also holds.

6.1.2 Sufficient conditions for independence

Our first order of business is to show that when checking independence of o-
algebras, it is sufficient to check the product formula for collections of events
that generate the o-algebras, provided those collections are closed under inter-
sections. (See Theorem 6.11 below.) The proof of this theorem is an excellent
example of the use of the 7-A theorem (Theorem 2.3.) To state and prove the
theorem, however, we first need a definition and a lemma.

For each j € {1,...,n}, suppose £ < F. Note that we are not assuming that
&, is a o-algebra. Then &, ..., &, are independent if, for all 7 < {1,...,n},

() =TTr@),
jel jel
whenever A; € &;.

Lemma 6.10. For eachje {1,...,n}, letE < F, and let E; = ;U {Q}. Then

&1, ..., &, are independent if and only if £, ... ,E, are independent, which holds
if and only if

whenever Aj € E;.
Proof. The second equivalence holds by taking A; = () whenever j ¢ I. In
the first equivalence, the “if” part is trivial. For the “only if” part, suppose

&1,...,E, are independent. For each j € {1,...,n}, let A; € &;. Let I = {j :
A; #Q}. Then A; € & whenever j € I, and so we have

n n
P( N Aj) = P(ﬂAj) =[1P@) =]]PrA,),
j=1 jel jel j=1
which shows that £1,...,&, are independent. Ol
Recall the -\ theorem (Theorem 2.3) from Section 2.1.

Theorem 6.11. Suppose &1, ...,E, are independent and each E; is a w-system.
Then (&), ...,0(En) are independent.
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Proof. Let £ < F and suppose each &; is a m-system. It suffices to prove
that if &,...,&, are independent, then o(&1),&s,...,E, are independent. In-
deed, suppose for the moment that this implication holds. Then applying it to
Esy ..y En,0(E1) shows that o(&1),0(E2),E3,. .., &, are independent. Iterating
this argument yields the result of the theorem.

So assume &, ...,&, are independent. By Lemma 6.10, £;,...,&,, are in-
dependent. We want to prove o(&1),&a, ..., &, are independent. Since o(&;) =
(&) = o(&€1), it suffices by Lemma 6.10 to prove that o(€;),&s,...,&, are
independent.

For j e {2,...,n},let A; € &;, and let F = ﬂ?:g A;. Let

L={Aco(E): P(AnF) = P(A)P(F)}.

We will now prove, using the 7-A theorem (Theorem 2.3), that £ = o(&1).
Since P(Q n F) = P(F) = P(Q)P(F), we have Q € L. Suppose A,B € L
with A € B. Then
P((B\A)nF)=P
BnF)—PAnF)
(B)P(F) — P(A)P(F)
— (P(B) — P(A))P(F) = P(B\A)P(F).
Thus, B\A € L. Lastly, suppose {Bp}nen < £ with B, < Bj;1, and let
B = U, ,en Bn- Then

P(BAF)= (gl3mF)

= lim P(B, nF)

= lim P(B,)P(F)
= P(F) lim P(B,) = P(B)P(F).

Thus, B € £, and this shows that £ is a A-system.

Since &1,...,&, are independent, it follows that £ < L. Therefore, by
the m-A theorem (Theorem 2.3), we have o(€1) = L. Since £ = o(&;) by the
definition of £, we have £ = o(&1).

We have thus proven that for all A € o(&;),

PAnAsn---nA,) =PA)P(Ayn---nA,) = P(A)P(Ay)--- P(A,).

Since Aj, ..., A,, were arbitrary, this shows that o(€;),&s,...,&, are indepen-
dent. O]

Theorem 6.12. Let X1,..., X, be real-valued random variables. Suppose that
for any x1,...,x, € (—00,00], we have

P(Xy<w1,...,Xn <ap) = [ [ P(X; <)), (6.3)

j=1
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Then X1,...,X, are independent.

Proof. Let & = {{X; < z} : v € (—00,0]}. Then Q € &; for each j. Thus,
(6.3) implies &1, ...,&, are independent. Since each &; is a m-system, we have
that o(&1),...,0(&). It follows from Exercise 2.5 and Proposition 1.3(e) that
o(&;) = 0(Xj), so that X;,...,X,, are independent. O

Proposition 6.13. Let X = (X4,...,X,) be an R"-valued random variable
with a density function f : R™ — [0,00). Suppose there exist nonnegative,
measurable functions g; : R — R such that f(x) = H?zl gj(x;) for all z € R™.
Then X1,...,X, are independent, and, for each j, the function

(x
S 5; Ey)) dy
is a density for X;.
Proof. Exercise 6.5. O
Proposition 6.14. Let Xq,..., X, be random variables and assume that, for

each j, there exists a countable set S; such that P(X; € S;) = 1. If
P(Xy=a1,..., Xy = @) = [ [ P(X; = 1)),
j=1

whenever x; € Sj, then X1,...,X,, are independent.

Proof. Exercise 6.6. ]

Theorem 6.15. Suppose Fij, 1 < i < mn, 1 < j < m(i), are independent
o-algebras. Let G; = O'(Uj Fi;j). Then Gi,...,Gy, are independent.

Proof. For each i, let & = {ﬂ] A + Ajj € Fijb. Then Q € & and &; is a
m-system. Also, &,...,&, are independent. Thus, o(&1),...,0(&,) are inde-
pendent. Now, & < G; implies o(&;) < G;. Conversely, Uj Fij < &; implies
Gi; c 0(&;). Hence, o(&;) = G;, and so Gy, ..., G, are independent. O

Corollary 6.16. Suppose X;;, 1 < i < n, 1 < j < m(i), are independent
random variables, with X; ; taking values in o measurable space (S;;,S;;). Let
fi: H;n:(;) Si; = R be @;n:(? Sij-measurable, and let Y; = fi(Xi1, ., Xim())-
Then Y7, ...,Y, are independent.

Proof. Let F;; = 0(X; ;) and G; = O’(Uj Fij), so that Gi,...,G, are indepen-
dent. Since Y; € G;, the result follows from Proposition 6.9. O

Remark 6.17. This corollary is very fundamental and will frequently be used,
typically without citing the corollary.
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6.1.3 Independence, distribution, and expectation

Theorem 6.18. Let X4, ..., X, be independent random variables with X; ~ u;,
and let X = (X1,...,X,). Then X ~ pg X -+ X .

Proof. Let & = {A1 x --- x A, : A; € R}, so that R" = o(£). Let X ~ v,
and define £ = {A e R"™ : v(A) = (u1 X -+ X ppn)(A)}. We wish to show that
R"™ < L. Tt is left to the reader to verify that £ is a A-system. Since £ is clearly
a m-system, it remains only to show that £ < L.

Let A=A; x---x A, €€&. Then

v(A)=P(XeA)=P(X1€Ay,....,X, €A,
=[]Px;eA) = [mi(A) = (1 x - x ) (A),
j=1 j=1
and so A € L. 0

Theorem 6.19. Let Xq,...,X,, be independent random variables. Suppose that
either (a) each X; = 0 a.s., or (b) E|X;| < w0 for each j. Then

E[ ﬁxj] = ﬁ EX;.
j=1 j=1

That is, the expected value on the left exists, and has the value given on the
right.

Proof. First assume n = 2. Let | X1| ~ p and |X3| ~ v. Since |X;| and | X| are
independent, Tonelli’s theorem gives

E|X1 Xs] = f ey (1 x v) (dee dy) = f f ey u(de) v(dy)

= (et utan) ([ lvtan) - B Bl

If each X; > 0 a.s., then we are done. Otherwise, the above expression is finite,
so using Fubini’s theorem as above gives F[X1X3]| = EX; - EX,.

Now assume the theorem is true for some n. To prove the theorem for n+1,
we apply the above to X; and H?;l X;. O

Let {Xo}aca © L*(Q). We say that {X,} are uncorrelated if E[X,Xg] =
(EX.)(EXg) whenever o # 3. As shown above, independent random variables
are uncorrelated. The converse, however, is not true. See [2, Example 2.1.2] for
an elementary counterexample.

Theorem 6.20. If {X;}"_, are uncorrelated, then

e ($0) = $ .
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Proof. Let u; = EX;. Then

j=1 j=1 j=1
n 2
=FK E(Xj 145)
Jj=1
= 3 MBI — ) (X — )]
i=1j=1
n n i—1

= Y BIX; =P +2)) ) BIXG — pa) (X — )],

i i=1j=1

<
Il

Since E|X; — p;|* = var(X;), it suffices to show that E[(X; — u;)(X; —p5)] = 0
whenever ¢ # j. For this, we calculate

El(Xi — pi)(Xj — )] = E[XiX;] — i EX — i EXG + pap;
= E[X:X;5] = papy.

But X; and X; are uncorrelated, so E[X;X;] = (EX;)(EX;) = pip;. O

6.1.4 Sums of independent random variables

Theorem 6.21. Let X andY be independent random variables with distribution
functions F' and G, respectively. Then the distribution function of X +Y is

1) = [ F=9)6)
Proof. Fix zeR. Let A = {(z,y) e R? : z + y < z}. Then
H(z) = PX+Y <2) = B[l xsves]
= B[] = [ [ LaGe0) (o) (),

Note that 14(2,y) = 1(—w,2—y](2). Thus,

H(z) = J e (—0, 7 — y)) i (dy) = f F(z — ) ue(dy),

which is what we wanted to prove. O
For a proof of the following special cases, see [2, Theorem 2.1.11].

Theorem 6.22. Let X andY be independent random variables with distribution
functions F' and G, respectively. If X has density f, then X +Y has density

h(z) = ff<z — ) dG(y).
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If, in addition, Y has density g, then this can be rewritten as

h(z) = ff(z —y)g(y) dy.

The gamma function is the function T' : (0,00) — R defined by I'(a) =
SSC 2% te~% dz. It can be shown that I'(a + 1) = al'(a) for all a > 0, and that
I'(n) = (n—1)! for all n e N.
We say that a real-valued random variable has the gamma distribution
with parameters o and A, written X ~ Gamma(a, \), if X has density
A a—1_—Az
f(z) = T € 1(0,00)(35)-

Note that Gamma(1,\) = Exp(A).
The proofs of the following results use the above theorems, as well as a lot
of tedious calculus. For details, see [2, Theorems 2.1.12 and 2.1.13].

Theorem 6.23. If X1,...,X,, are independent with X; ~ Gamma(c;j, A), then
i1 X ~ Gamma(3_, aj, \).

Theorem 6.24. If X ~ N(u,0%) and Y ~ N(v,7%) are independent, then
X+Y ~N(u+v,02+7%).

6.1.5 Constructing independent random variables

A measurable space (S, S) is a standard Borel space if there exists a bijection
¢S — R such that ¢ is (S, R)-measurable and ¢! is (R, S)-measurable. For
a proof of the following theorem, see [2, Theorem 2.1.15].

Theorem 6.25. Let (M,d) be a complete, separable metric space. Let S € By
and S ={AnS:AeBy}. Then (S,S) is a standard Borel space.

The main result of this subsection is following theorem.

Theorem 6.26. For each j € N, let (S;,S;) be a standard Borel space, and v; a
probability measure on (S;,S;). Then there exists a probability space (Q, F, P)
and a sequence of independent random variables {X;}72, defined on (2, F, P)
such that X; takes values in S;, and X; ~ v;.

Proof. For each j, choose ¢; : S§; — R such that ¢; and 30;1 are both measur-
able. Let v/} be the probability measure on (R, R) defined by v} = v; ocpj_l, and
let pin, = [];_, . Then p, is a probability measure on (R",R™) and the mea-
sures {p,}>_; are consistent. (See Theorem 2.52.) Let Q = R® and F = R®.
Let P be the probability measure on (2, F) described in Theorem 2.52. Let
Xj(w) = 95 (w))-

Since X; = goj_l omj, where m; : R® — R is the projection map, it follows
that X; is measurable. Let A; € S;. Note that

{Xj e Aj} = X1 (A)) = 75 H(p;(4;)) = {mj € ;(4))}.
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Thus, By Theorem 2.52,

P(X1 € Al,...7Xn € An) = P(T(l € gOl(Al),...,ﬂ'n € (pn(An)
P({w:wj € p;(A;) for 1 < j <n})

(P1(A1) x -+ X on(An))

vi(pi(A5))-

|
=
S

I
=

j=1

<
Il

Taking A; = S; for j < n shows that X,, ~ v}, 0 ¢, = v, and this is valid

for every m € N. Therefore, the above shows that X1, ..., X, are independent.
Since n was arbitrary, this implies X7, X, ... are independent. |
Exercises

6.1. [2, Exercise 2.1.1] Prove Proposition 6.7.

6.2. [2, Exercise 2.1.2(i)] Prove Proposition 6.6. (Hint: First show that if A
and B are independent, then so are A° and B, A and B¢, and A¢ and B¢.)

6.3. [2, Exercise 2.1.3(ii)+] Prove Proposition 6.8.
6.4. Prove Proposition 6.9.

6.5. [2, Exercise 2.1.44] Prove Proposition 6.13.
6.6. [2, Exercise 2.1.5] Prove Proposition 6.14.

6.7. [2, Exercise 2.1.8(i)] Let X and Y be real-valued random variables on a
probability space, (2, F, P), with X ~ pand Y ~ v. Prove that if X and Y
are independent, then

P(X+Y =0) =Y u({~yhv({y}).

yeR
[Recall: See Remark 2.36 for the definition of infinite sums of this type.]

6.8. [2, Exercise 2.1.13] Let X and Y be integer-valued random variables on a
probability space, (Q, F, P). Prove that if X and Y are independent, then

P(X+Y =n)= > P(X =m)P(Y =n—m),

MmEeZ
for all n € Z.

6.9. [2, Exercise 2.1.14] Let X and Y be real-valued random variables on a
probability space, (2, F, P), with X ~ Poisson(r) and ¥ ~ Poisson(s), where
r,s > 0. Use Exercise 6.8 to prove that if X and Y are independent, then
X +Y ~ Poisson(r + s).



100CHAPTER 6. INDEPENDENCE AND CONDITIONAL EXPECTATION

6.2 Conditional expectation

This section corresponds to [2, Subsections 5.1.1 and 5.1.2].

6.2.1 The general definition

Let (92, F, P) be a probability space and let A € F with P(A) > 0. Recall that
P4 := P(- | A) is a probability measure on (2, F). If X is a random variable,
we define the conditional expectation of X given A as

E[X | A] = J X dp4,
Q

whenever this integral is well-defined. Note that E[lg | A] = P(B | A).

Theorem 6.27. We have that X is P*-integrable if and only if E[|X|14] < 0.
If X 20 or E[|X|14] < o0, then

_ E[X14]
Remark 6.28. Note that (6.4) may be written as
_ o4

where da = X dP. Also note that (6.4) gives us the formula E[X14] =
P(A)E[X | A]. If X = 1p, then this reduces to the familiar multiplication
rule, P(An B) = P(A)P(B | A).

Proof of Theorem 6.27. Note that if P(B) = 0, then P4(B) = 0. Hence P4 «
P. Also note that

14
PA(B) = dP, for all B e F.
B =], Py

Thus, dP4/dP = 14/P(A). It follows that if X > 0, then

14 ] E[X14]
P(A)] - P(A)

A
E[X|A]=JXdPA=JXd£DdP=E[X

Therefore, X is P“-integrable if and only if E[|X|14] < oo, and in this case,
the same formula holds. O

Lemma 6.29. Let (2, F,P) be a probability space and G < F a o-algebra.
Suppose A€ G and X is a G-measurable random variable. If X > 0 a.s., then

E[X14] = LXdP _ LXd(P|g).

Also, if E|X| < oo, then X € LY(Q,G, P|g) and the above equality holds.
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Proof. Exercise 6.10. U

Theorem 6.30. Let (Q, F, P) be a probability space, X an integrable random
variable, and G < F a o-algebra. Then there exists a random variable Z such
that

(i) Z € G, and
(ii) E[X14] = E[Z14], for all A€ g.

If Z' is any other such random wvariable, then Z = Z' a.s. Moreover, Z is

integrable with E|Z| < E|X|.

Remark 6.31. The random variable Z in the above theorem is called the
conditional expectation of X given G, written E[X | G]. Since it is only
unique up to a P-null set, we may sometimes refer to Z as a version of E[X | G].
The conditional probability of A given G is defined by P(A | G) =
Ella|d].
Subsection 6.2.2 may provide help in developing an intuitive understanding
of this definition.

Proof of Theorem 6.30. Let a be the complex measure on (2, F) given by da =
X dP. Note that alg is a complex measure on (2,G) and P|g is a probability
measure on (§2,G). Suppose A € G and (P|g)(A) = 0. Then P(A) =0 and

(alg)(A) = a(A) = L X dP = 0.

Thus, alg « P|g, so we may define Z = d(«|g)/d(P|g), the Radon-Nikodym
derivative of «|g with repsect to P|g.
By definition, Z € G. Let A€ G. Then

BIX14] = | XdP = a(4) = (alo)(4)

By Lemma 6.29,

ZdP = L Zd(P|g) = L j((;;z)) d(Plg) = (alg)(A).

Thus, E[X14] = E[Z14] for all A€ G.
Suppose Z' is another random variable satisfying (i) and (ii). Then, as above,

Blz1) - |

A

| zaPlo) = BL214) = BIX14) = (@lo) (),
A
for all A € G. By the uniqueness of the Radon-Nikodym derivative, this implies
7'=7 as.
Finally, since ZT = Z14, where A = {Z > 0} € G, we have

JZ+CZP: JZlAdP:E[ZlA] :E[XlA] <E[|X‘1A] < 0.
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Similarly, §{ Z~ dP < E[|X|14c] < 0. Thus,
E|Z| = JZ* dP + JZ* dP < E[|X|14] + E[|X|14c] = E|X| < o,

and so Z is integrable with E|Z| < E|X]|. O
Remark 6.32. From the proof, we see that

where do = X dP. Note the similarity between this and (6.5).

Lemma 6.33. Let (2, F, P) be a probability space, (S,S) a measurable space,
and Y an S-valued random variable. Let (S',S’) be another measurable space
and suppose X is an S’-valued random variable that is o(Y)-measurable. Then
there exists an (S,S’)-measurable function h: S — S’ such that X = h(Y) a.s.
If I/ is another such function, then h = I/ py -a.e.

Proof. Exercise 6.11. |

Let (€2, F, P) be a probability space and X an integrable random variable.
Let Y be an arbitrary random variable. The conditional expectation of X
given Y is defined by E[X | Y] = E[X | 0(Y)]. We also define the conditional
probability of A given Y as P(A|Y) = E[14 | Y]. Note that E[X | Y] is
o(Y)-measurable. By Lemma 6.33, there exists a measurable function h (which
depends on X) such that E[X | Y] = h(Y), and this function is unique py-a.e.

6.2.2 Elementary special cases

Lemma 6.34. Let (Q,G) be a measurable space and assume that G is a finite set.
Then there exists a unique partition & = {A;}]_; of Q such that G = o({A;}}_,).

Proof. For each w € ), let A, be the smallest measurable set containing w. That
is, Ay = ()G, where G, = {A € G :w e A}. Since this is a finite intersection,
A, € G. In particular, £ = {A, : w € Q} is a finite set. We claim that £ is a
partition of  and that G = o(£).

Clearly, Q = (J,_cq Aw, 50 to show that & is a partition, it suffices to show
that this is a disjoint union. More specifically, we wish to show that if w,w’ € €,
then either A, = A, or A, n A, = &. Let w,w’ € Q. Note that for any
Ae g, if we A, then A € G, which implies A, € A. Hence, if w € A,
then A, < A.; and if w € AS,, then A, < A¢,. That is, either A, < A, or
A, < AS,. By symmetry, either A, < A, or A,» < AS. Taken together, this
shows that either A, = A, or A, N Ay = &.

To see that G = o(€), simply note that any A € G can be written as A =
Uwea Aw, and that this is a finite union.

For uniqueness, suppose that G = o({B;}7_;), where Q = &J;;l B;. If
w € By, then A, = Bj. Therefore, & = {B;}"_;. O
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Remark 6.35. The technique in this proof can be used in Exercise 1.6.

Proposition 6.36. Let (2, F, P) be a probability space and X an integrable
random wvariable. Let G < F be a finite o-algebra. Write G = o({A;}7_,),
where {A;}7_, is a partition of 0. Then

E[X|A1:| iwaAl,

E[X | As] ifwe As,
EIX[Glw) =1 . )

E[X | A,] ifweE A,.
Proof. Exercise 6.12. O

Remark 6.37. As a special case of the above, if G = {¢F,Q} is the trivial
o-algebra, then E[X | §] = EX.

Remark 6.38. To illustrate the idea of the preceding proposition, consider the
following heuristic example. Imagine my friend is at the local bar, and is about
to throw a dart at a dartboard. If I model the dart board by a unit circle, which
I call €2, then his dart will land at some point w € €.

Unfortunately, I am not there with him and will not be able to observe the
exact location of w. But after he throws the dart, he is going to call me on the
phone and tell me what his score for that throw was. This information will not
be enough for me to determine w. It will, however, narrow it down. Before I
receive his call, I can partition the dartboard €2 into several pieces, Ay, ..., A4,,
with each piece corresponding to a unique score. Once he calls me, I will know
which piece contains his dart.

Let X be the distance from his dart to the bullseye. Suppose he calls me and
I determine that his dart is somewhere inside A;. I can then compute E[X | A;].
However, before he calls, I can get prepared by computing E[X | A;] for all j,
and then encoding all this information into the single random variable E[X | G].

In probability theory, we model information by o-algebras. In this example,
the o-algebra G generated by the partition {A;} models the information I will
receive from my friend’s phone call. Imagine that while I am waiting for my
friend’s phone call, an interviewer starts asking me questions. For various events
A, the interviewer asks me, “After your friend calls, will you know with certainty
whether or not A has occurred?” Depending on the event A, my answer will be
“yes”, “no”, or “it depends on what he says”. The events A € G are precisely
those events for which my answer is yes.

Proposition 6.39. Let (2, F, P) be a probability space and X an integrable
random variable. Let' Y be a random wvariable, S a countable set, and assume
PYeS)=1and P(Y =k)>0 forallke S. Forke S, define

E[X1y_x]

hk) = EIX | Y = k] = =52

Then E[X | Y] = h(Y).
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Proof. Exercise 6.13. Ul

Example 6.40. Suppose X and Y are random variables with a joint density
function f(x,y). That is, for any A € R?, we have P((X,Y) e A) = §, fd\.
Note that P(X € A|Y = k) is undefined, since P(Y = k) = 0. Nonetheless, it
may be intuitively clear to some that the following equation ought to hold:

flz, k)d
P(XeA|Y =k) J (6.6)

fka

The integral in the denominator is necessary in order to make the function
x +— f(z, k) a probability density function. In this example, we will explore the
sense in which this formula is rigorously valid. (In an undergraduate class, it
may be rigorously valid by definition. But for us, as usual, it is a special case
of something more general.)

Proposition 6.41. Let X and Y have joint density f(x,y). Let g be a mea-
surable function such that E|g(X)| < co. Define

| st il

fka

whenever §; f(x,k)dx > 0, and h(k) = 0 otherwise. Then E[g(X)|Y] = h(Y).

Remark 6.42. If g(z) = 14(x), then h(k) agrees with the right-hand side of
(6.6). Also, as can be seen from the proof below, we could have defined h(k)
arbitrarily when §; f(z, k) dz = 0.

Proof of Theorem 6.41. Since h(Y') is o(Y)-measurable, it will suffice for us to

show that E[h(Y)14] = E[g(X)14] for all A € o(Y). Let A € o(Y). Then
= {Y € B} for some B € R. We now have

h(k) =

E[h(Y)1a] = E[R(Y J J flz,y)dzdy

- (h(y) j remds)ay= [ (n) [ famac)a

where C' = {y : §; f(x,y) dx > 0}. Note that for all y € C, we have

0 [ Sende = | o)) s

Also, for all y € C¢, we have f(z,y) = 0 for Lebesgue almost every z. Thus,
y € C° implies {; g(z) f(x,y) dz = 0. It therefore follows that

V= || g dzdy—f f (2, y) da dy

l9(X)1B(Y)] = E[g(X)14],
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which was what we needed to prove. O]

In general, we interpret E[X | Y = y] to mean g(y), where g is a measurable
function such that E[X | Y] = g(Y). Some caution is needed in these cases,
though, since such a function g is only defined py-a.e.

6.2.3 Basic properties

For the remainder of this section, unless otherwise noted, (2, F, P) is a proba-
bility space, X is an integrable random variable, and G — F is a o-algebra.

Proposition 6.43. F[E[X |G]] = EX.

Proof. By the definition of conditional expectation, we have E[E[X | G]14] =
E[X14] for all A€ G. Take A = Q. O

Proposition 6.44. If X is G-measurable, then E[X | G] = X.

Proof. It follows trivially, since X is G-measurable and E[X14] = E[X14] for
all Aeg. OJ

If X is a random variable and G is a o-algebra, then we say that X and
G are independent if 0(X) and G are independent, which in turn means that
P(A n B) = P(A)P(B) whenever A € 0(X) and B € G. Hence, X and G are
independent if and only if P({X € C} n B) = P(X € C)P(B) for all C € R and
Beg.

Proposition 6.45. If X and G are independent, then E[X | G] = E[X]. In
particular, E[X | {&,Q}] = E[X].

Proof. A constant random variable is measurable with respect to every o-
algebra, so E[X] is trivially G-measurable. Also, for all A € G, we have
E[X14] = E[X]E[14] = E[E[X]14]. The final claim holds since every random
variable is independent of the trivial o-algebra. O

Theorem 6.46. If G; ¢ G, < F, then E[E[X | G1] | G2] = E[E[X | G2] |
Gi] = E[X | G1].

Remark 6.47. In words, this says that in a battle between nested o-algebras,
the smallest o-algebra always wins.

Proof of Theorem 6.46. Since G; < Gy and E[X | Gi] is Gi-measurable, it is
also Go-measurable. Hence, by Proposition 6.44, E[E[X | G1] | G2] = E[X |
G1]. The other equality holds since E[X | G1] is Gi-measurable and, for all
A€ Gy Gy, we have E[E[X | G1]14] = E[X14] = E[E[X | G2]14]. O

Theorem 6.48. If Y and XY are integrable, and X is G-measurable, then

E[XY | G] = XE[Y | 6] a.s.
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Proof. Let da = Y dP, so that E[Y | G] = d(«|g)/d(Plg). Let df; = X da™,
dBs = Xda—, and 8 = 1 — P2, so that df = XY dP and E[XY | G] =
d(B|g)/d(P|g). Since X is G-measurable, we have

d(Bilg)/d(e"|g) = d(B2lg)/d(a”|g) = X.

Hence,
_d(Blg)  d(Bilg) d(Blg)
BIXY191= Gp10) = 4(Plg) ~ d(Plo)
_ d(Bilg) d(a*lg)  d(Balg) d(a”lg)
d(atlg) d(Plg) d(a~|g) d(Plg)
_ v (dlatlg) dleTlg)\ _ dlalg) _ s
* ( a(Plg) d<P|g>) Xaplg) ~ XEW 1G] Pras
and we are done. ]

Theorem 6.49 (linearity). E[aX +Y | G] = aE[X | G] + E[Y | G].

Proof. The right-hand side is clearly G-measurable. Let A € G. Then

E[(aE[X | G] + E[Y | G])1a] = aE[E[X | G]14] + E[E[Y | G]14]
— E[X14] + E[Y14] = E[(aX + Y)14],

and we are done. O

Lemma 6.50. Let U and V be G-measurable random variables. If E[Ul4] <
E[V1y4] for all A€ G, then U <V a.s. If E[Ul4] = E[V14] for all A€ g,
then U =V a.s.

Proof. By reversing the roles of U and V, the second claim follows from the
first. To prove the first, suppose E[Ul4] < E[V14] for all A€ G. Let A =
{U >V} e G and define Z = (U — V)14, so that Z > 0. Note that EZ =
E[U14] — E[V14] <0. Hence, EZ =0, so Z = 0 a.s., which implies P(A) = 0.
O

Theorem 6.51 (monotonicity). If X <Y a.s., then E[X | G] < E[Y | G] a.s.

]g]lA] E[X14] < E[Y14] = E[E[Y |

Proof. For all A € G, we have E[E[X =
< E[Y | G] as. O

|
G]14]. Hence, by Lemma 6.50, E[X | G

Theorem 6.52. Suppose X and Y are independent and ¢ is a measurable
function such that E|o(X,Y)| < o0, then E[p(X,Y) | X] = g(X), where g(x) =
Elp(z,Y)].

Remark 6.53. It is important here that X and Y are independent. This result
is not true when X and Y are dependent.
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Proof of Theorem 6.52. Clearly, g(X) is o(X)-measurable. Let A € R. Then

Blo(X, V)1 xen] = f f (@, ) La(@)py (dy)px (de)
- | 1A<x><ij,y)uy(dy))w(dm)
- f La(2)g(@)nx (dz) = Elg(X) L xeny).

and we are done. O

Example 6.54. Let XY, Z be i.i.d. (independent and identically distributed),
uniformly distributed on (0,1). We shall compute the distribution of (XY)Z.
We begin by computing the distribution of W = XY. Let w € (0,1). Then

P(W < w) = P(XY <w) = Ellxy<u] = E[E[Lixy<u | X]]

By Theorem 6.52, E[l{xy<w} | X] = f(X), where

w w

Thus,
1

PW<w)=E[f(X)]=FE [1{X<w} + %1{)(210}] = w—l—f %dx = w—wlogw.

w

Differentiating, we find that W has density fy (w) = (—logw)l (g 1)(w).
Similarly, for 2 € (0,1), we now compute

P(XY)? <) = B[P(W?Z <z |W)] = E[g(W)],

where
log log x
=Pw? <z)=P|(Z =(1-
sw) = Plu” <o) = P (22 E0) = (1- B2,
Thus,
PXYYE <a)— E|(1- 19824 r _ 18T (g ) duw
S logW ) ~{Wsa} log w &

In other words, (XY)Z is uniformly distributed on (0, 1).
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6.2.4 Limit theorems and inequalities

Theorem 6.55 (monotone convergence). If 0 < X,, 1 X a.s. and X is inte-
grable, then E[X, | G] 1 E[X | G] a.s.

Proof. By monotonicity, there exists a G-measurable random variable Z such
that E[X,, | G] 1 Z a.s. Let A € G. Using monotone convergence,

E[Z14] = lim E[E[X, | G]14] = lim E[Xa14] = E[X14],

n—00 n—o0
which shows Z = E[X | G]. O

Theorem 6.56. (Fatou’s lemma) If X,, > 0 a.s., each X,, is integrable, and
liminf, .o X,, is integrable, then

E[liminf X,, | G] < liminf E[X,, | G] a.s.
n—0o0 n—o0

Proof. Let yniz inf;>, X; and X = liminf, o X,,. Note that 0 < X, 1 X.
In particular, X, is integrable. For each j > n, we have X,, < X; a.s. Hence,

by monotonicity, E[X,, | G] < E[X; | G] a.s. It follows that

E[X, | g] < inf E[X; | §] as.
jzn

Monotone convergence implies

E[X |G]= HHC}OE[Xn | G] < limi(ng[Xn | G] a.s.,

and we are done. O

Theorem 6.57 (dominated convergence). Let X, be random variables with
X, — X a.s. Suppose there exists an integrable random variable Y such that
| X <Y a.s. for alln. Then

lim E[X, |G]=E[X |J] as.

n—0o0
Proof. Exercise 6.14. O

Lemma 6.58. Show that if ¢ : R — R is convez, then the left-hand derivative,
/

ple) —ple—h)
P (0) = lim T

exists for all c. Moreover,
p(x) —¢lc) = (x — )¢’ (c) 2 0, (6.7)
for all x and c.

Proof. Exercise 6.15. ]
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Theorem 6.59. (Jensen’s inequality) If ¢ is convex and X and p(X) are
integrable, then o(E[X | G]) < E[p(X) | G].

Proof. Let Z = (X —E[X | G])¢"_(E[X | G]), so that by (6.7), ¢(X) — p(E[X |
G)) — Z = 0, which implies
0 < Elp(X) —(E[X [G]) = Z | 9] = E[p(X) | 9] — (E[X [ G]) - E[Z | G].
It therefore suffices to show that E[Z | G] = 0. To see this, we calculate
E[Z]G] = E[(X - E[X | GD¢"(E[X | G]) | 4]

=" (E[X | G])E[X - E[X | G] | 4]

= ¢ (B[X | G])(E[X | G] - E[E[X [ G] | G])

= ¢ (E[X | G)(E[X | G] - E[X | G]) =
and we are done. O

Theorem 6.60 (Holder’s inequality). Let p,q € (1,00) be conjugate exponents,
so that 1/p+ 1/q = 1. Suppose that | X|P and |Y|? are integrable. Then

E[IXY||G] < (BIIX[" [ GYYP(E[Y|* | G)Y a.s.

Proof. Note that by the ordinary Holder’s inequality, XY is integrable, so that
E[|XY] | G] is well-defined. Let U = (E[|X|? | G])'/? and V = (E[[Y]9 | G])"/".
Note that both U and V' are G-measurable. Observe that

El|X[Plw-oy] = EIE[| X" 1y—oy | G]]
= B[l E[|X[" [ 9]] = E[Ly-yU"] = 0
Hence, | X|1{y—¢; = 0 a.s., which implies
BIIXY| | 61—y = BIXY |11y | 6] = 0.

Similarly, E[|XY]| | G]1{y—o; = 0. It therefore suffices to show that E[|XY] |
Gllg < UV, where H = {U > 0,V > 0}. For this, we will use Lemma 6.50 to
prove that
E[IXY]|d]
uv
Note that the left-hand side is defined to be zero on H°.
Let A € G be arbitrary and define G = H n A. Then

o5 ] 7

uv
[|X| | Y|1G]

1y <1 as..

i }V>/ (e[ vte])”
[ (o[ 1)

])1/”( [1c])"7 = E[le] < E[La].

“(r
B}y
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Applying Lemma 6.50 finishes the proof. O

6.2.5 Minimizing the mean square error

We say that a random variable X is square integrable if F|X|? < . Let
X be square integrable and consider the function f(a) = E|X — a|? = a? —
2(EX)a + E|X|?%. This function has a minimum at a = EX. In other words,
if we wish to approximate X by a constant, then the constant EX is the one
which minimizes our mean square error.

The conditional expectation has a similar property. If we wish to approxi-
mate X by a square integrable, G-measurable random variable, then E[X | G]
is the random variable which minimizes our mean square error. This is made
precise in the following theorem.

Theorem 6.61. Let (2, F, P) be a probability space and let X be square inte-
grable. Let G — F and define Z = E[X | G]. If Y is any square integrable,
G-measurable random variable, then E|X — Z|?> < E|X — Y|?.

Proof. First note that by Jensen’s inequality,
2] = |E[X | G]]* < E[|IX* | G] as.

Hence, E|Z|?> < E[E[|X|? | G]] = E|X|? < w0 and Z is square integrable. Let
W = Z —Y. Since W is G-measurable,

EWZ] = E[WE|[X | G]] = E[E[WX | G]] = E[WX].
Hence, E[W(X — Z)] = 0, which implies
EI X -YP?=EX-Z+W}?*=E|X-ZP?+2E[W(X - 2)] + E|W|?
=E|X - ZP?+E|W|* = E|X - Z)?,
and we are done. O

Remark 6.62. In the language of Hilbert spaces and LP spaces, this theorem
says the following: X is an element of the Hilbert space L?(€), F, P), and E[X |
G] is the orthogonal projection of X onto the subspace L%(, G, P).

Exercises

6.10. Prove Lemma 6.29.

6.11. Prove Lemma 6.33. [Hint: First prove it when X is an indicator function,
then a simple function, then a nonnegative function, then a general random
variable.]

6.12. Prove Proposition 6.36. [Hint: It may be notationally convenient to write
E[X | G] = X1 E[X [ Aj]1a, ]
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6.13. Prove Proposition 6.39.
6.14. Prove Theorem 6.57.
6.15. Prove Lemma 6.58.

6.16. [2, Exercise 5.1.1] Let X,Y be integrable random variables on a proba-
bility space, (2, F, P). Let G ¢ F be a o-algebra, and let A € G. Assume that
XlA = YlA a.S.

(a) Fixe > 0 and let B = {E[X | G] — E[Y | G] = ¢}. Use the definition of
conditional expectation to prove that

E|E[X | Gllans — E[Y | Gllang] = 0.
(b) Use the definition of B to prove that
E[E[X | Gllang — E[Y | Gllang] = eP(A N B),
and conclude that P(An B) = 0.
(c) Use Parts (a) and (b) to prove that E[X | G]la < E[Y | G]14 as.
(d) Prove that E[X | G]1a = E[Y | G]14 a.s.

6.17. [2, Exercise 5.1.2] Let (Q,F, P) be a probability space and § < F a
o-algebra. Let A€ G and B e F.

(a) Prove that
E[P(B|G)14]

PAIB) = pE o)

(b) (Bayes’ theorem) Suppose G is generated by a partition, {4;}7_;. Use
Part (a) to show that

P(A)P(B | Ai)

Y1 P(A4j)P(B | A;)

P(A; | B) =

forall i e {1,...,n}.

6.18. [2, Exercise 5.1.3] Let (Q, F,P) be a probability space and G < F a
o-algebra. Let X € L?(Q2) and a > 0. Prove that
E[X?
P(|X|>al|g) < % a.s.
6.19. [2, Exercise 5.1.6] Let Q = {a,b,c} and F = 2. Show by example that
there exists a probability measure P on (€2, F), a random variable X on 2, and
o-algebras F; < F for which it is not the case that

E[E[X | Fa] | F2] = E[E[X | F2] | F1] as.
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6.20. [2, Exercise 5.1.7] Let X and Y be random variables such that E|X]|,
E|Y|, and E|XY| are finite. Consider the following statements: (i) X and Y
are independent. (ii) E[Y | X] = EY a.s. (ili) E[XY] = (EX)(EY).

(a) Prove that (i) implies (ii), and (ii) implies (iii).

(b) Find {-1,0,1}-valued random variables X and Y such that (ii) holds and
(i) fails.

(¢) Find {—1,0, 1}-valued random variables X and Y such that (iii) holds and
(ii) fails.

6.21. [2, Exercise 5.1.8] Let (Q, F, P) be a probability space and G, H < F o-
algebras. Let X be a square-integrable random variable. Prove that if G ¢ H,
then

E|X —E[X |H]?+ E|E[X | H] - E[X |G]]> = E|X — E[X | G]]? as.
[Remark: This implies E|X — E[X | H]|*> < E|X — E[X | G]|?. In other words,
G < H implies E[X | H] is closer to X in L? than E[X | G]. If G = {,Q},
then we obtain E|X — E[X | H]|? < var(X).]

6.22. [2, Exercise 5.1.9] Let (2, F, P) be a probability space and G < F a
o-algebra. Let X be a square-integrable random variable. Define

var(X | G) = E[|X — E[X | G]]* | G].
(a) Prove that var(X | G) = E[X? | G] — (E[X | G])? a.s.
(b) Prove that var(X) = E[var(X | G)] + var(F[X | G]).

6.23. [2, Exercise 5.1.11] Let (2, F, P) be a probability space and G c F a o-
algebra. Let X be a square-integrable random variable, and let Z = E[X | G].
Suppose that EX? = EZ2. Prove that X = Z a.s.

6.3 Regular conditional distributions

This section corresponds to [2, Subsection 5.1.3].

6.3.1 Introduction

If X is a real-valued random variable, then px (A) = P(X € A) defines a measure
pex on the real line which we call the distribution (or law) of X. One feature of
the distribution is that it provides us with a way to calculate expectations:

E[f(X)] = j J(@) pux (de).
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Likewise, if B is an event, then pux p(A) = P(X € A | B) defines a measure
tx,g on R which is the conditional distribution of X given B, and we have

ELf(X) | B] = fRﬂx) x5 (da).

If G is a finite o-algebra, so that G = o({A;}}_,), where {4;}]_; is a partition
of 2, then
P(XEA‘Al) iwaAl,

P(XGA‘AQ) ifOJEA27
P(XeA|G)(w) = ,

P(XeAlA,) ifweA,.

In other words, P(X € - | G) is just a conditional probability distribution that
happens to depend on w. Another way of saying it is that P(X € - | G) is a
random probability measure on the real line.

Conditional expectations can be computed by integrating against this ran-
dom measure. That is, if we define px,g(w, A) = px,a,(A) for w e A;, then

E[f(X) | 6](w) = ijm 6w, dz).

With a structure such as this, expectations conditioned on c-algebras behave
very much like ordinary expectations. When this happens, we are able to make
valuable intuitive connections to mathematical ideas that we are already familiar
with. It would be nice if P(X € - | G) was always a random measure, even when
G is infinite. The following theorem is a step in this direction.

Theorem 6.63. Let (Q, F, P) be a probability space and (S,S) a measurable
space. Let X be an S-valued random variable and G < F a o-algebra. Then

(1) P(
(1)) P(Xe |G) =0 as.
(iii) P(XeS|G)=1 as.

(i) P(X e W, An | G) =20 P(X € A, | G) a.s., for all disjoint collec-
tions {A,} < S.

XeA|G)e[0,1] a.s., forall A€ S.

Proof. Exercise 6.24. O

Unfortunately, Theorem 6.63 does not show that A — P(X € A | G)(w) is
a measure for P-a.e. w € Q. This is because the null set in (iv) can depend on
the collection {A,}. So there may not exist a single event of probability one on
which (iv) holds simultaneously for all disjoint collections.

However, when X takes values in a standard Borel space, such as the real
line, it is possible to express P(X € - | G) as a genuine random measure. The
remainder of this section elaborates on this topic.
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6.3.2 Random measures

Let (S, S) be a measurable space and let M (S) be the set of all o-finite measures
on (S,8). Let M(S) be the o-algebra on M (S) generated by sets of the form
{v : v(A) € B}, where A € S and B € R. Note that M(S) is the smallest o-
algebra such that the projection functions w4 : M(S) — R, defined by 74 (v) =
v(A), are M(S)-measurable for all A € S. Taking A = S and B = {1} shows
that M;(S), the set of all probability measures on (S,S) is measurable. Let
M (S) denote M(S) restricted to My (S).

Let (T,7) be another measurable space. If p: T — M(S), we will write
w(t, A) = (1(t))(A). Note that p is (7, M(S))-measurable if and only if 740 =
p(-, A) is (T, R)-measurable for all A € S. Any such measurable function is
called a kernel from T to S. If u takes values in M;(S), then p is a probability
kernel.

Let (2, F, P) be a probability space. A random measure on S is an M (S)-
valued random variable. In other words, it is a kernel from 2 to S. If a random
measure takes values in M7 (5), then it is a random probability measure on
S. Note that if y is a kernel from T to S and Y is a T-valued random variables,
then p(Y") is a random measure.

6.3.3 Regular conditional distributions

Let (€2, F, P) be a probability space and (S,S) and (7, 7T) measurable spaces.
Let X and Y be S- and T-valued random variables, respectively. Let G < F
be a o-algebra. If there exists a random measure @ = px,g on S such that
P(XeA|G)=up(,A) as. for every A€ S, then p is a regular conditional
distribution for X given G, and we write X | G ~ p. Similarly, if there exists
a probability kernel p = pxy from T to S such that P(X € A|Y) = p(Y, A)
a.s. for every A € S, then u(Y') is a regular conditional distribution for X given
(YY), and we write X | Y ~ u(Y).

The following theorem is an expanded version of [2, Theorem 5.1.9]. The
version that appears here, along with its proof, can be found in [7, Theorem
5.3].

Theorem 6.64. Let (Q, F, P) be a probability space and (S,S) and (T, T) mea-
surable spaces. Let X andY be S- and T-valued random variables, respectively.
If S is a standard Borel space, then there exists a probability kernel 1 = pxy
from T to S such that X | Y ~ w(Y). If i is another such probability kernel,
then = [, py-a.e.

Corollary 6.65. Let (2, F, P) be a probability space and (S,S) a measurable
space. Let X be an S-valued random wvariable and G < F a o-algebra. If S
s a standard Borel space, then there exists a G-measurable random probability
measure it = px g such that X | G ~ p. If [i is another such random probability
measure, then p = [i a.s.

Proof. Apply Theorem 6.64 with (T,7) = (Q,G) and Y the identity function.
O
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The first example of what we can do with regular conditional distributions
is the following theorem, which can be regarded as a generalized version of
Theorem 6.52.

Theorem 6.66. Let (Q, F, P) be a probability space and (S,S) a measurable
space. Let X be an S-valued random variable, G < F a o-algebra, and suppose
X |G~ p. Let (T, T) be a measurable space andY a T-valued random variable.
Let f: SxT — R be (S x T,R)-measurable with E|f(X,Y)| <. IfY €G,
then

PUAXY) 10 = [ @) ulde) s
Proof. If f = 1axp, where A€ S and B e T, then
Ellaxp(X,Y) |Gl =1(Y)P(X € A|G)
10 A) = [ i V) uCodo) s

S

By the 7-A theorem, this proves the result for f = 1¢, where C' € S x 7. By lin-
earity (Theorem 6.49), the result holds for all simple functions f. By monotone
convergence (Theorem 6.55), the result holds for all nonnegative functions f sat-
isfying E|f(X,Y)| < o0. And finally, by considering the positive and negative
parts, the result holds for all measurable functions f satisfying F|f(X,Y)| < co.
]

Corollary 6.67. Let (2, F, P) be a probability space and (S,S) a measurable
space. Let X be an S-valued random variable, G < F a o-algebra, and suppose
X|G~up. If f: S —>Ris (S, R)-measurable with E|f(X)| < o, then

BUX)1 61 = | f@)ntode) s
Proof. Apply Theorem 6.66 with Y a constant random variable. O

For our second example, we give a simple proof of Theorem 6.60 (Holder’s
inequality).

Proof of Theorem 6.60. Since (R?,R?) is a standard Borel space, there exists a
random measure p on R? such that (X,Y) | G ~ p. Since |X|P and |Y|? are
integrable, the ordinary Holder’s inequality implies |XY'| is integrable. Thus,
by Corollary 6.67,

BUXYIG) = [ loulntedody) as

For P-a.e. w € {2, we may apply the ordinary Holder’s inequality to the measure
(e, yielding

1/q

B o)< ([ |xpu<-,dxdy>)l/p( [ wintdoan) " as

Applying Theorem 6.66 once again finishes the proof. |
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For our final example, let us first consider a property of unconditioned expec-
tations. If X is a real-valued random variable, and h : R — [0, 00) is absolutely
continuous with A" > 0 a.e. and h(z) | 0 as  — —o0, then

EM@ﬂzLH@HX>ﬂ& (6.8)

This is the content of [2, Exercise 2.2.7], and one way to see it is to use Fubini’s
theorem:

E[h(X)] = JQ MX)dP = L JXOC R (t)dtdP = L JR Lix=nh'(t)dtdP
:JﬂwjlmxﬂPﬁ:fﬂmﬂX>ﬂﬁ
R Q R

It is then natural to ask whether a similar thing is true for conditional expec-
tations, and whether a similar proof can demonstrate it. We will answer both
questions in the affirmative by using regular conditional probabilities.

Theorem 6.68. Let X be a real-valued random variable on a probability space
(Q,F,P) and G < F a o-algebra. Let h : R — [0,00) be absolutely continuous
with b’ = 0 a.e. and h(z) | 0 as x — —o0. Suppose that E|h(X)| < 0. Then
it is possible to choose, for each t € R, a version of P(X >t | G) so that the
function t — h'(t)P(X >t | G) is almost surely Lebesgue integrable on R, and
satisfies

EWXHQ:LM@HX>ﬂ@ﬁ a.s.

Proof. Since (R, R) is a standard Borel space, there exists a random measure p
such that X | G ~ u. For each t € R, let us choose the version of P(X >t | G)
determined by u, that is, P(X > t | G)(w) = p(w, (t,00)). Then for P-a.e.
w € ), we have

| [ tmat @) dt o, de) = | 1) po,do) = EBX) | G1) < .
R JR R
By Fubini’s theorem, the function
t— J}R Lipan B/ (t) pw, dz) = W (t)p(w, (t,0)) = b (t)P(X >t | G)(w)
is Lebesgue integrable on R and
J R)P(X >t]|G)(w)dt :J J Lig=yy B/ (t) plw, dz) dt
R R JR
~ | [ 1t 0) dt e, da) = BIBCX) | 910,

which proves the theorem. O
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Exercises
6.24. Prove Theorem 6.63.

6.25. [2, Exercise 5.1.13] Let X and Y have joint density function f(z,y). For
y € R and A € R, define

f(z,y)da
m(y, A) = &77
S f(@,y) da
if { f(z,y)dz € (0,0), and pu(y, A) = 14(0) otherwise. Prove that y is a
probability kernel from R to R and that X | Y ~ u(Y).

6.3.4 Densities on general measure spaces

Measure-theoretic conditional expectation is defined in an abstract way, so that
it encompasses the most general situations possible. Because of this, it can be
hard to see how it connects to the way we use conditional densities and mass
functions in an undergraduate class. Knowing how it connects is essential, since
the undergraduate approach is so familiar and intuitive, and is used by many
professional practitioners in areas that apply probability.

Propositions 6.39 and 6.41 provide one way to see that connection. Exercise
6.25 expands on that connection using regular conditional distributions. In this
section, we present a general result that encompasses all of this and more. In
effect, Theorem 6.71 gives the full story of how the measure-theoretic approach
connects to the elementary one.

Let (S,S) be a measurable space and let « be a o-finite measure on (5, S).
An S-valued random variable, X, is continuous with respect to o if px < «,
where px is the distribution of X. In such as case, if fx is a version of the
Radon-Nikodym derivation, dux /da, then f is called a density of X with respect
to a. We then have P(X € A) = {, fx da for all A€ S.

If « is Lebesgue measure on R, then fx is what is normally called a prob-
ability density function in an undergraduate setting. On the other hand, if «
is counting measure on a countable subset of R, then fx is what is normally
called a probability mass function.

Now let (T',7) be another measurable space, and 8 a o-finite measure on
(T, T). Let X and Y be random variables taking values in S and T', respec-
tively. Then (X,Y") is an S x T-valued random variable. Assume that (X,Y)
is continuous with respect to a x 3, and let fxy be a density.

Define

(@) = | Frv (o) B, and
fr(y) = L Fxv (@) a(de).
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Since
P(XeA)=P(XeA,YeT)=J fxyd(axp)
AXT

— [ | sxrtem) By atde) = [ fx@)atdo)
AlJdr A
it follows that fx is a density of X with respect to a. Similarly, fy is a density

of Y with respect to 8.

Proposition 6.69. If (X,Y) is continuous with respect to o x 3, then we may
choose a density fxy such that

(i) fx(z) =0 implies fx,y(x,y) =0 for all y, and
(i1) fy(y) =0 implies fx y(x,y) =0 for all x.

Proof. Let k be a density of (X,Y) with respect to a x 8 which is positive
everywhere, and define kx and ky according to (6.9). Note that if kx(z) = 0,
then k(x,y) = 0 for B-a.e. y € T, and similarly for ky. Let

Nx ={(z,y) e S xT : kx(z) =0,k(x,y) > 0}, and
Ny ={(z,y) e S x T : ky(y) =0,k(z,y) > 0}.

Then
(ax B8)(Nx) = fszlNX dy) a(dx)
= [ ]| ts0/@)1000 (ko) Bla) )
S JT

L y L Lo, (k(,)) B(dy) a(de)
0.

Similarly, (a x 8)(Ny) = 0. Let N = Nx u Ny, so that (a x 8)(N) = 0. Hence,
if we define g = 1yck, then g = k a.e. This implies g is also a density of (X,Y).

It follows that gx is a density of X with respect to a. Therefore, gx = kx,
a-a.e. Similarly, gy = ky, p-a.e. Let

Mx ={xze S :gx(z) # kx(x)},
My ={yeT:gy(y) # ky(y)}

and M = (Mx xT) u (S x My). Since a(Mx) = 0 and 8(My) = 0, we have
(a x B)(M) = 0. Hence, if we define f = 1pscg, then f = g a.e., and f is also a
density of (X,Y).

Now suppose fx(z) =0 and f(x,y) > 0. Then (z,y) € M€ and g(z,y) > 0.
The latter implies (z,y) € N and k(z,y) > 0, so by the definition of N, we
have kx(z) > 0 and ky (y) > 0. Note that M° = M% x M. Thus, x € M§, so
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that gx(x) = kx(z) > 0. On the other hand, since f(My) = 0 and = € M§, it
follows that

szﬁaammm:Lummmmwmmmm
:Lhwuwm@wmww:Ljuwmwm:ﬁﬂm:a

a contradiction. This shows that f satisfies (i). The proof that f satisfies (ii) is
similar. ]

This result can be generalized to any finite number of random variables. The
proof is left to the reader.

Proposition 6.70. For 1 < n <d, let (S, Sn,an) be a o-finite measure space,

and let X,, be an Sy-valued random variable. Suppose (X1,...,Xq) is continu-
ous with respect to ay X+ - -xaq. Then we may choose a density f of (X1,...,Xq)
with respect to ay X - -+ X ag such that for alll <ny <--- <n,, <d, if

L L L F(@1, . xq) om, (day, ) - oy (A, ) ot (din, ) = 0,

ny JSny nm
then f(x1,...,2q) =0 for all (Tp,,...,%n,, ) € Spy X -+ X Sy, .

Proof. Exercise 6.26. O

In Theorem 6.71 below, we use the notation f(z | y) to denote a function
f:8xT —[0,0]. There is no difference in meaning between this and f(x,y).
It is simply alternate notation that is historically common in probability theory.
Theorem 6.71 can be generalized to any finite number of random variables, in
which case Proposition 6.70 would be used instead of Proposition 6.69. The
task of formulating and proving such a generalization is left to the reader.

Theorem 6.71. Let fxy be a density of (X,Y) with respect to o x 5. Then
there exists a measurable function fxy : S x T — [0,00] such that

(i) fxy(z,y) = fyy)fx)y(z|y) whenever fy(y) >0, and
(it) X |Y ~ u(Y), where p(y, dz) = fxy (x| y) a(dz).
If fxy satisfies Proposition 6.69, then (i) holds for all z and y.

Proof. Since 8 is o-finite, we may choose a probability measure Sy on (T, T)
such that By « 8. (See Exercise 6.27.) Let h be a version of the Radon-Nikodym
derivative dfy/dS. Define

Ixy(z,y)/fyv(y) if fy(y) >0,
0

“Y“”‘{mm i 4y (0) =0
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Then (i) holds, and if fx y satisfies Proposition 6.69, then it holds for all « and

Y.
Define pu(y,dz) = fxy(z | y) a(dz). If fy(y) >0 and A€ S, then

_ $4 fxy (2, y) a(dr)
s fxv(z,y) a(dr)

umm=Lhmwme

If fy(y) =0, then pu(y) = Bo. Hence, p is a probability kernel from T to S. To
show that X | Y ~ u(Y), we must show that

P(XeA|Y)=ulY,A) as., (6.10)

for all Ae S. Fix Ae S. Note that P(X € A|Y) = E[l{xca | o(Y)]. Hence,
to prove (6.10), we must show that

Ellixeaylc] = E[u(Y, A)lc], (6.11)

forall C € 0(Y). Fix C € 0(Y). Then C = {Y € B} for some B € T. Therefore,
(6.11) becomes E[l{xealiveny] = E[u(Y, A)lyepy], which is equivalent to

P(X € A,Y € B) = E[u(Y, A)15(Y)]. (6.12)
To verify (6.12), we begin with the right-hand side and obtain
BV ANLp] = | lor A)fy o) Bl
~ [ ([ avte 1o atan) ) st
= | fewte L) ate) st
By (i), this gives
BV A)1s()] = [ [ o) ald) sdy) = PX € .Y € B),

which verifies (6.12). O

Exercises
6.26. Prove Proposition 6.70.

6.27. Let (T,7T) be a measurable space, and let 5 be a o-finite measure on
(T, T). Prove that there exists a probability measure Sy on (7, 7) such that

Bo < .
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6.4 A preview of stochastic processes

A stochastic process is a collection of random variable {X(¢) : ¢t € T'} indexed
by some set 7', defined on a common probability space, (2, F, P), and taking
values in a common measurable space, (S,S). We usually think of T" as time. A
discrete time stochastic process is where T' = N, in which case the process
is just a sequence of random variables.

Let {X, : n € N} be a discrete time stochastic process. Define F,, =
o(X1,...,X,). The o-algebra F,, represents all the information at time n that
we would have from observing the values Xi, ..., X,. Note that F,, € F,41 C
F.

More generally, a filtration is a sequence of o-algebras {F,}>_; such that
Fn € Fne1 © F. A stochastic process {X,, : n € N} is said to be adapted
to the filtration {F,}>_; if X,, is F,-measurable for all n. The special case
Fn =0(X1,...,X,) is called the filtration generated by X, and is denoted
by {FX 4y

An important class of discrete time stochastic processes is the martingales.
A real-valued stochastic process {X,, : n € N} is a martingale with respect to
the filtration {F,}y_; if

(i) X, is integrable for all n,
(ii) {X, : n e N} is adapted to {F,}>_;, and

n=1»
(i) E[Xp41 | Fn] = X, for all n.

The critical item is (iii). Imagine that X, models our cumulative wealth as
we play a sequence of gambling games. Condition (iii) says that, given all the
information up to time n, our expected wealth at time n + 1 is the same as our
wealth at time n. In other words, a martingale models a “fair” game.

Another important class of discrete time stochastic processes is the Markov
chains. A stochastic process {X,, : n € N} is a Markov chain with respect to
the filtration {F,}x_, if

(i) {X, : n e N} is adapted to {F,}:>_;, and
(i) P(Xps1€ B | Fp) = P(Xps1€B|X,) forall BeS.

Here, the critical item is (ii). It is called the Markov property. In words,
it says that the conditional distribution of X, given all the information up
to time n is the same as if we were only given X,,. In other words, the future
behavior of a Markov chain depends only on the present location of the chain,
and not on how it got there.

The canonical example of a Markov chain is a random walk. If {¢; ;&1 are
i.i.d., R%valued random variables, and X,, = & + --- + &, then {X,, : n € N}
is a random walk. The random walk is a Markov chain with respect to the
filtration generated by X. Moreover, if each {; is real-valued and integrable
with mean zero, then the random walk is also a martingale.
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A continuous time stochastic process has the form {X(¢) : t € [0,00)}. Ex-
amples include the Poisson process and Brownian motion. Concepts such as
filtrations, adaptedness, martingales, and the Markov property can all be ex-
tended to continuous time. Care is needed however, because (for one thing) the
time domain is uncountable. Brownian motion is the continuous time analog
of a random walk. It is the canonical example in continuous time of both a
martingale and a Markov process. It can be realized as the limit of a sequence
of random walks, where the step sizes are becoming smaller and the steps are
occurring more frequently.

More specifically, let {X,, : n € N} be a mean zero random walk. Let
X (t) = Xy, where || denotes the greatest integer function. Then the sequence

of processes
X (nt)
&
converges (in a certain sense) as n — o0 to a continuous time stochastic process
called Brownian motion. This is the conclusion of Donsker’s theorem, which is
a kind of central limit theorem for stochastic processes.

Differential equations involving Brownian motion are referred to as stochastic
differential equations (SDEs). SDEs are used to model dynamical systems that
involve randomness, and are very common in scientific applications. In order
to understand SDEs, one must first understand the stochastic integral (with
respect to Brownian motion), which behaves quite differently from the ordinary
Lebesgue-Stieltjes integral. In particular, the classical fundamental theorem of
calculus no longer applies when one is working with stochastic integrals. It must
be replaced by a new rule called It6’s rule. Itd’s rule gives rise to a whole new
calculus called stochastic calculus.

ite [O,oo)}



Chapter 7

Modes of Convergence

7.1 Convergence in probability

This section corresponds to [2, pp. 53-54, 65-66].

Let {X,,}2_; and X be random variables on a probability space (2, F, P).
Then X,, — X in probability if X,, — X in measure. In other words, X,, — X
in probability if and only if, for all € > 0, we have

P(|X,—X|=z¢e)—0,
as n — oo.

Lemma 7.1. If p > 0 and E|X,, — X|? - 0 as n —> o, then X,, —> X in
probability.

Proof. By Chebyshev’s inequality,

o BIXn - PP

P(Xo - X| > ) < =

)

which tends to 0. O

Also recall the following from Section 2.4. If X,, — X a.s., then X,, —
X in probability. Conversely, if X,, — X in probability, then there exists a
subsequence such that X,, — X a.s.

Also recall Exercise 2.13, which shows that convergence in probability is
metrizable. That is, there exists a metric p on L(, F, P) such that X,, — X
in probability if and only if p(X,,X) — 0. In fact, in can be shown that this
metric space is complete. (See [2, Exercise 2.3.9].)

Recall the following fact about metric spaces ([2, Theorem 2.3.3]).

Theorem 7.2. Let {x,} be a sequence in a metric space (M, p) and let x € M.
Then x, — x as n — o if and only if every subsequence {T, )} has a further
subsequence {Tp(;m,)} such that p(y,) — © as k — .

123
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We can use this to prove the following result about convergence in probabil-
ity.

Theorem 7.3. Let {X,,}**_, and X be random variables on a probability space,
(Q,F,P). Then X, — X in probability as n — o if and only if every subse-
quence { Xy, (m)} has a further subsequence {X,,(m, )} such that Xy, () — X a.s.
as k — o0.

Proof. The “only if” part follows from the results in Section 2.4. For the “if”
part, fix ¢ > 0 and define z,, := P(|X,, — X| = ¢). Then {z,} is a sequence in
the metric space R with the Euclidean metric. Let {xn(m)} be a subsequence.
By hypothesis, the subsequence {X,,(,,)} has a further subsequence {X,, )}
such that X,,(,,,) — X a.s. This implies that X,,,,,) — X in probability. By
the definition of convergence in probability, this gives z,,(,,, ) — 0. By Theorem
7.2, therefore, we have x,, — 0, and so X,, — X in probability. O

Remark 7.4. Since convergence in probability does not imply almost sure
convergence, this theorem shows that almost sure convergence is not metrizable.

Theorem 7.5. Let X,, — X in probability and let f : R — R. If f is contin-
uous, then f(X,) — f(X) in probability. If f is continuous and bounded, then

E[f(Xn)] = E[f(X)].

Proof. First suppose f is continuous. Let {n(m)} be a strictly increasing se-
quence of natural numbers. Choose a subsequence { X, ()} such that X, ) —
X a.s. Since f is continuous, we have f(X,,m,)) — f(X) a.s. By Theorem 7.3,
this implies f(X,) — f(X) in probability.

Now assume f is continuous and bounded. Define z,, = E[f(X,)]. Let
{n(m)} be a strictly increasing sequence of natural numbers. Choose a subse-
quence {X,(mn,)} such that X, ,,) — X a.s. Since f is continuous, we have
Jf(Xn(my)) = f(X) ass. Since f is bounded, by dominated convergence, we have
Tp(my) — ELf(X)]. Therefore, by Theorem 7.2, we have z,, — E[f(X)]. O

Theorem 7.6. Let X,,, X be nonnegative random wvariables with X, — X in
probability. Then liminf, ., EX, > EX.

Proof. Exercise 7.1. O

Theorem 7.7. Let X,,, X be real-valued random wvariables with X, — X in
probability. If there exists an integrable random variable Y such that | X,| <Y
a.s. for alln, then EX, — EX.

Proof. Exercise 7.2. O

Theorem 7.8. Let X,,, X be real-valued random variables with X, — X in
probability. Let g : R — [0,00) and h: R — R be continuous. Assume that

(i) g(x) — 0 as x| — o,

(ii) |h(z)|/g(x) — 0 as |x| > oo, and
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(iii) sup,, Eg(X,) < oo.
Then Eh(X,) —» Eh(X) as n — .
Proof. Exercise 7.3. O

Exercises

7.1. [2, Exercise 2.3.6] Prove Theorem 7.6.
7.2. [2, Exercise 2.3.7(a)] Prove Theorem 7.7.

7.3. [2, Exercise 2.3.7(b)] Prove Theorem 7.8.

7.2 The Borel-Cantelli lemmas

This section corresponds to [2, Section 2.3].
Let © be a set and for each n € N, let A,, = Q. Define B,, = | J;_,, Ax. Note
that B, D B,+1 for all n. We then define
o0 s} o0
limsup A4,, = ﬂ B, = ﬂ Ay
n=1

n—om = n=1k=n

We may similarly define

[e¢] 0
liminf A, = | J [ Ak
nme n=1k=n
It can be shown that if A = limsup,,_,., 4,, then

limsuplya, (w) = 14(w),
n—o0

for all w € 2, and similarly for lim inf.
Also note that

I
~ )8
s

limsup A, A ={weQ:VneN, Ik = n,w € Ay}

n—:0o0 1k

= {w e Q: we Ay for infinitely many k € N}.

We therefore adopt the notation {4,, i.0.} :=limsup,,_,,, A, where i.o. stands
for “infinitely often”.

Theorem 7.9. Let {X,} be a sequence of random variables on a probability
space (Q, F,P). Then X,, — 0 a.s. if and only if, for every e > 0 we have

P(|X,| = € i.0.) = 0.
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Proof. First assume X,, — 0 a.s. and fix ¢ > 0. Let A,, = {|X,,| = ¢}. Then

0 0
{Anio}® = [ 45 ={weQ:IeN,Vj>n,|X;w) <e}

n=1j=n

It follows that {X,, — 0} < {4,, i.0.}¢, and so P(A,, i.0.) = 0.
For the converse, let
= () (X =eio}e
ee{1/k:keN}

By hypothesis, we have P(Q*) = 1. As above, X, (w) — 0 for each w € Q*.
Thus, X,, — 0 a.s. O

Theorem 7.10 (Borel-Cantelli lemma). Let (2, F, P) be a probability space
and {A, Y, < F. If 327 P(A,) < o, then P(A,, i.0.) = 0.
Proof. Let N =Y 14, . Then E[N]=Y"_, P(A,) < o0. Thus, N < o a.s.

But {N = o} = {4, i.0.}. Thus, P(A, i.0.) =0. O

Theorem 7.11 (the second Borel-Cantelli lemma). Let (2, F, P) be a probabil-
ity space and {A,}*_; = F. Suppose {A,} are independent. If 37 | P(A,) =
o, then P(A,, i.0.) = 1.

Proof. Let B, = |, A so that B, | {A, i.0.}. Thus, P(B,) — P(A, i.0.).
Fix n e N. Fix e > 0. Since Y ;. P(A,) = o, we may choose N > n such that
ZLV:” P(A,) > log(1/¢). Using independence and the inequality, 1 — 2 < e~ 7,
we have

P(B,) = P(kQAk) =1- P(ﬁl%) =1- kli(l — P(A))

N
>1- H e PUAR) = 1 — em Zhon P(An) 5 1 g losl/e) — 1 ¢,
k=n
Since € > 0 was arbitrary, this shows P(B,) = 1. Thus, P(A, i.0.) = 1. O

Exercises

7.4. [2, Exercise 2.3.2 (modified)] Recall that a,, ~ b, means that a,/b, — 1
as n — o0. Let X,, be random variables and assume FX,, ~ an®, where a > 0
and a > 0. Also assume var(X,) < Bn® for some 3 < 2a — 1. Prove that
n~*X, — a a.s.

7.5. [2, Exercise 2.3.10] Let {X,,}°_; be a sequence of real-valued random vari-

ables on a probability space, (2, F, P). Prove that there exist real constants ¢,
such that X, /c, — 0 a.s.

7.6. [2, Exercise 2.3.12] Let (Q2, F, P) be a probability space and {A4,}>_, < F
a sequence of independent events. Assume that P(A,) < 1 for all n, and that
P(l,, An) = 1. Prove that P(A, i.0.) = 1.
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7.3 Weak convergence

This section corresponds to [2, Section 3.2].

Let (M, p) be a metric space. For each n € N u {0}, let u, be a proba-
bility measure on (M, By), where By is the Borel o-algebra. We say that pu,
converges weakly to p, written p, = i, if

fM fdpn — fM 1 dpio,

as n — oo, for every bounded, continuous f : M — R.

For each n € N u {00}, let (Q,,, Fn, Ps) be a probability space and let X, :
Q, — M be an M-valued random variable. We say that X, converges in
distribution (or converges in law) to X, written X,, = Xo, if g, = fioo,
where X, ~ . In other words, X,, = X, if and only if

as n — oo, for every bounded, continuous f : M — R.

Remark 7.12. Let C(M) denote the set of all bounded, continuous f : M — R
and let u be a probability measure on (M, By). Then C(M) is a vector space
over the reals and the map f — §, f du is a linear functional on C(M). For this
reason, one often sees alternative notation such as u(f) or {u, f) for the integral
SM fdu. Thought of in this way, weak convergence of probability measures is

just pointwise convergence as functions on C'(M).

Remark 7.13. For the remainder of this section, unless otherwise indicated,
we will focus on the case M = R with the Euclidean metric.

Lemma 7.14. For each n € N u {0}, let X,, be a real-valued random variable
on some probability space (U, Fn, Py). Let F,, be the distribution function of
Xn. If X, = X, then F,(x) = Fy(x) for all x such that Fy, is continuous at
x.

Proof. Suppose X,, = X, and fix = € R such that F,, is continuous at x. Fix
€ > 0. Define f; . : R — R by

t—zx

Fre® =1 ® = (5) dra @)

Then f; . is bounded and continuous, so Ey,[fz.:(Xn)] = Eolfe.e(Xw)]. Note
that 1(,00’95] < fa:,e < 1(7oo,z+5]- Thus,

3

limsup F, () = limsup E,[1(—w 1(Xn)] < limsup B[ fo,c(Xn)]

n—0o0 n—o0 n—0o0

= B[ fee(Xeo)] < Eoo[l(foo,ere] (Xo)] = Fo(z +¢).

Letting £ — 0 gives limsup,, ., Fr(z) < Fy(x).
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Similarly, 1(_e z—e] < fr—ee < 1(—c0,0)- Thus,

liminf F,(z) = liminf B, [1(x 5)(Xy)] = lminf B, [ fo—c o (Xn)]
n—0o0 n—0o0

| = Blfooee(X)] = Bl o (Xoe)] = Frole — ).

Since Fy, is continuous at x, letting € — 0 gives liminf,,_,o F,,(x) = Fy(z). O

Theorem 7.15 (Skorohod representation theorem). For each n € N u {0}, let
X, be a real-valued random variable on some probability space (U, Fn, Pn). If
X, = X, then there exists a probability space (Q, F, P) and a sequence {Y,}
of random variables on (Q, F, P) such that X,, =4 Y, for all n, and Y,, > Y,
a.s.

Proof sketch. Suppose X,, = Xy. Let F), be the distribution function of X,.
By Lemma 7.14, we have F,(z) — Fy () for all z such that F,, is continuous
at z. For a proof that this implies the conclusion of the theorem, see the proof
of [2, Theorem 3.2.2]. O

Remark 7.16. The Skorohod representation theorem does not require the X,,’s
to be real-valued. In fact, it is still true when all we assume is that the X,,’s
take values in a separable metric space (see [3, Theorem 3.1.8]). Moreover, by
Exercise 7.9, the converse of the Skorohod representation theorem is also true.

Theorem 7.17. For each n € Nu {0}, let X,, be a real-valued random variable
on some probability space (U, Fn, P,). Let F,, be the distribution function of
Xn. Then X,, = X if and only if F,,(x) — Fy(x) for all © such that Fy, is
continuous at x.

Proof. By Lemma 7.14, we need only prove the “if” part. Assume F,(z) —
Fo(x) for all z such that Fy, is continuous at 2. As mentioned in the proof sketch
for Theorem 7.15, this is sufficient for us to infer the conclusion of the Skorohod
representation theorem. Thus, there exists a probability space (2, F, P) and a
sequence {Y,} of random variables on (2, F, P) such that X,, =4 Y, for all n,
and Y,, » Y, a.s.

Let f: R — R be bounded and continuous. Then f(Y,,) — f(Yy) a.s. and,
by dominated convergence, E[f(Y,)] — E[f(Yy)]. But X, =4 Y, for all n.
Thus, E,[f(X,)] = E[f(Y,)] for all n. Therefore, E,[f(X,)] = Folf(Xw)]
and X,, = X. O

It is an exercise to prove the following version of Fatou’s lemma. This exercise
provides practice using the technique in the previous proof.

Theorem 7.18. Let X,,, X be real-valued random variables with X,, = X, and
g: R — [0,00) continuous. Then liminf, o, Eg(X,) = Eg(X).

Proof. Exercise 7.7. ]
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Theorem 7.19 (Continuous mapping theorem). Let g : R — R be measurable
and Dy < R the set of its discontinuities. Suppose X, = Xo and Xo € Dy a.s.
Then g(X,) = g(Xs). Moreover, if g is bounded, then Eg(X,) — E[g(Xx)].

Proof. By the Skorohod representation theorem, choose Y, such that X,, =, Y,
for all n and Y;, — Y a.s. Let f : R — R be bounded and continuous. Since
Yy € Dy as. and f is continuous, it follows that f(g(Y.)) — f(9(Y)) as.
Since f is bounded, dominated convergence implies

E[f(g(Xa)] = E[f(9(Ya))] = E[f(9(Yo))] = E[f(9(Xw))]-

Since f was arbitrary, this implies g(X,,) = g(Xo).
Now suppose g is bounded. Then, as above, g(Y,) — g(Ys) a.s. and domi-
nated convergence give E[f(9(X,))] = E[f(9(Xx))]- O

Remark 7.20. By Remark 7.16, we see that the proof of the continuous map-
ping theorem is still valid when we only assume the X,,’s take values in a sepa-
rable metric space.

For a general metric space, (M, p), a function f : M — R is Lipschitz
continuous if there exists C' > 0 such that |f(x) — f(y)| < Cp(z,y) for all
xz,y € M. The following theorem is valid in a general metric space.

Theorem 7.21 (Portmanteau theorem). The following are equivalent:
(1) Xn = Xoo,
(1) E[f(X,)] = E[f(Xx)] for all bounded, Lipschitz continuous f : M — R.
(i) liminf,, o P(X, € G) = P(Xy € G) for all open G,
(iv) limsup,, ,,, P(X, € K) < P(Xy € K) for all closed K, and
(v) P(X, € A) > P(Xy € A) whenever P(Xy € 0A) = 0.

Proof. Uses Skorohod representation theorem. See [2, Theorems 3.2.5 and 3.9.1]
for the full proof. ]

Remark 7.22. To remember the order of the inequalities, keep in mind the
following example. Let X,, = 1/n and X, = 0. With G = (0,90), we have
P(X,eG)=1foralln <o and P(Xy, € G) =0.

The following lemma is sometimes useful.

Lemma 7.23. Let X,, = X and x,, — z. Let F,, and F be the distribution
functions of X,, and X, respectively. If F is continuous at x, then Fy(z,) —
F(x) as n — .
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Proof. Fix ¢ > 0. Choose N € N such that |z, —z| < e for all n = N. Thus,
for any n > N, we have

F,(z,) = P(X,, <z,) < P(X, <z +5¢).
By Theorem 7.21(iii),

limsup P (z,) <K P(X <2 +¢)=F(x +¢).

n—aoo0

Similarly, for any such n, we have
Fo(z,) = P(X,, <z —¢).
By Theorem 7.21(ii),
liminf F,(z,) = P(X <2 —¢) = F(z — 2¢).

n—o0

Since F' is continuous at z, letting € — 0 finishes the proof. |

Theorem 7.24. Let My(R) be the set of probability measures on (R, R). For
w,v € Mq(R), let

p(p,v)=inf{e : F(x —e) —e < F,(z) < F(z +¢) + ¢ for all x},

where F, (z) = p((—o0,x]). Then p is a metric on Mi(R) and p, = po if and
only if p(pn, fron) — 0.

Proof. Exercise 7.8. O
Remark 7.25. The metric p is called the Lévy metric.

Remark 7.26. Weak convergence of probability measures on (M, Bys), where
M is an arbitrary metric space, is also metrizable. See [3, Section 3.1] for details.

Let {un}>_; be a sequence of probability measures on (R,R). We say that
{un}®_, is tight if, for all £ > 0, there exists M > 0 such that

lim sup p, ((—M, M]°) < e.

n—0o0

A sequence of random variables, {X,,}%_,, is tight if {u,}>_; is tight, where

X, ~ pn. That is, if, for all € > 0, there exists M > 0 such that

limsup P(|X,,| > M) <e.
n—0o0
In a tight sequence, mass cannot “escape” to +oo.
The following theorem is a combination of [2, Theorems 3.2.6 and 3.2.7]. See
the book for the proofs.

Theorem 7.27. A sequence of random variables, {X,}>_,, is tight if and only

if it is relatively compact, that is, every subsequence has a further subsequence
that converges in distribution.
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Remark 7.28. Suppose we wish to prove that X,, = X. Since convergence
in distribution is metrizable, we could take an arbitrary subsequence, {X,, ()},
and try to prove that there exists a further subsequence {X,,,,)} such that
Xn(my) = X as k — oo. Typically, one first proves that {X,} is tight. Then,
when trying to prove that X,,(,,,) = X, we may assume that X, ) =Y for
some Y, and reduce our task to showing that ¥ = X.

The proof method described above is a two-step procedure: first prove tight-
ness, and then prove that every subsequential limit has the same distribution.
Soon, we will learn to use characteristic functions to prove convergence in dis-
tribution. This amounts to a kind of “shortcut” that subsumes both steps of
this procedure. As such, you will not have much opportunity to use it. But
later, when studying stochastic processes, this two-step proof method will be
very important.

Theorem 7.29. Suppose sup,, E[p(X,)] < o, where ¢ = 0 and ¢ — © as
|x| — co. Then {X,} is tight.

Proof. Let € > 0. Since p — o0 as |z| — o0, we may choose M > 0 such that

inf (z) > = sup Elp(X,)].

|z| =M E n
Thus,
Elo(Xn)1{x,>Mm}] Elp(X,
P(|Xy| > M) = E[1(x,>my] < — {Xnl>M}] o . Lo(Xo)] <e,
lnf\ac\ZM o(x) lnf\x\zM o()
which shows {X,,} is tight. O

Exercises
7.7. [2, Exercise 3.2.4] Prove Theorem 7.18.
7.8. [2, Exercise 3.2.6] Prove Theorem 7.24.

7.9. [2, Exercise 3.2.12] Let X,,, X be real-valued random variables defined on
a common probability space, (Q, F, P).

(a) Prove that if X,, — X in probability, then X, = X.
(b) Prove that if X,, = ¢, where ¢ is a constant, then X,, — ¢ in probability.

7.10. [2, Exercise 3.2.13] Let X,,,Y,,, X be real-valued random variables defined
on a common probability space, (2, F, P). Prove that if X,, = X and Y,, = ¢,
where ¢ is a constant, then X,, +Y,, = X + c.
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7.4 Characteristic functions

This section corresponds to [2, Sections 3.3.1-3.3.3].
The characteristic function (ch.f.) of a random variable X is the function
px : R — C given by

ox(t) = B[e""*] = E[cos(tX)] + iE[sin(tX)].
(Note that this is well-defined for all ¢ € R.)
Theorem 7.30. If ¢ is the ch.f. of X, then
(a) ¢(0) =1,
(b) (~t) = o(t).
(c) lo(t)] = |E[e"*]] < Ele™X| =1,

(d) |p(t+ h) — p(t)] < Elet™™ — 1], so that ¢ is uniformly continuous on R,

and
(¢) pax+b(t) = e"Pox (at).
Proof. Straightforward. See book for details. O

Theorem 7.31. If X and Y are independent, then px .y (t) = ox(t)py (1).
Proof. For all t € R, we have
E[eit(X+Y)] _ E[eitXeitY] _ E[eitX]E[eitY]7

since X and e*Y are independent. |

Example 7.32. If P(X =1) = P(X = —1) = 1/2, then

it —it
ox(t) = B[e"X] = % = cost.

Example 7.33. If X ~ Poisson(\), then

© Ak L (\elit)k )
_ 2 eztkefz\il — 2 ( e ) _ exp()\(e” _ 1))

Theorem 7.34. If X ~ N(u,0?), then px(t) = exp(iut — o?t%/2). In partic-

ular, the ch.f. of a standard normal is e~t/2,
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Proof. First assume X is a standard normal and let ¢ = ¢x. Since z — sin(x)
is an odd function,

Jsin(tac)e_:’ﬂ/2 dx = 0.
Thus,
(t) = . JOO cos(tglc)e*ﬁ/2 dx
P ) .
By Theorem 2.31,

1 o0
o(t) = o zsin(tz)e /2 dx
—0a0
1 2
——— | —sin(tz)e > /2
V2T <

—tp(t).

o0 o0 5
+ J tcos(tz)e ™ /2 d:c)
—00

—00

Thus,
%W(t)e*’/g) = (¢ (1) + te(1))e? = 0,

which implies ¢(t)et’/2 = ©(0) = 1.
Now assume X ~ N(u,0%). Then X = pu + 0Z, where Z ~ N(0,1), so
px(t) = ez (ot) = explipt — at?/2). O

Theorem 7.35. If X ~ u, then

T e—ita _ e—itb
i oo [ S ex(®dt = pl(a,b) + gutlab),

T—ow 2 J_p 1t
for all a < b.
Proof. See [2, Theorem 3.3.4]. O
Proposition 7.36. If X ~ u, then

1 T —ita
Jim o | e = utta),
for all a € R.
Proof. See [2, Exercise 3.3.2]. 0

Corollary 7.37. If px = @y, then X LY.

Proof. Let X ~ pand Y ~ v. By the two preceding results, u((a,b]) = v((a, b])
for all @ < b, which implies p = v. O

Theorem 7.38. If ox € L*(R), then X has a density function f which is
bounded and continuous, and satisfies
1

= — | e "oy (t)dt.
2 R

f(z)
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Proof. See [2, Theorem 3.3.5]. O

Example 7.39. Let X = (X1,...,X,,) be an R"valued random variable and
N a{l,...,n} valued random variable. Assume X and N are independent. Let
X, ~ p; and p; = P(N = j). We claim that

XN ~pipn + -+ Pofin.
To see this, we calculate
P(XyeA)=E[P(XyeA|N)] = E[nN)],
where h(j) = P(X; € A) = p;(A). Thus,
E[R(N)] = p1h(1) + -+ + pnh(n) = p1pa(A) + -+ + pupin(A),

which proves the claim.
Similarly,

Pxx (t) = E[e™N] = BB | NT| = Y piBLe™] = 3 piox, ()

Example 7.40. Let X ~ Exp(1). Then

00 it ,—x

t)=E itX:f itm—md:e €
wx(t) [e"] Oe e x P

@ 1

. 1—it

Example 7.41. Let X;, X5, N be independent with X; ~ Exp(1), —Xs ~
Exp(1l), and P(N =1) = P(N =2) =1/2. Let X = Xy. Then X has density
%e*m (check). By Example 7.39, we have

px(t) = 5ox,(0) + 5ox, (1)

1 1
§SDX1 (t) + 5@){1 (_t)

1 1 N 1 1
2 \1—dit 144t/ 14+

Example 7.42. Let X have the Cauchy distribution, that is, suppose X has
density

1 1
Flo) = 71+ 22
This density is “bell”’-shaped and symmetric about the origin, but is not inte-
grable, so X does not have a mean. The Cauchy distribution is a source of many
counterexamples to things that might otherwise seem intuitively true. Here, we

present it simply to illustrate the use of the inversion theorem.
Note that

' 1 (® eite 1 [® e ity
t)=F iX = — J PEE—— d = - J 1 L2 d :
ex(t) [ ] ) i 2T ) 12
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Using the previous example, we then have
1 (* .
px(t) = *J e oy (y) dy,
—o0
where Y has density g(y) = %e“m. But by Theorem 7.38,

1 0

g(t) e~ Wy (y) dy,

:5_00

from which we obtain @x (t) = e~ I*l.

Lemma 7.43. Let X be a random variable. Then
plix|>2 <1Ju (1 ox(t))dt
u) " u X ’

for all u > 0.
Proof. Fix u > 0. Note that
E U 1y (£) (1 = e”X)|dt] <E U th] = 4u < 0.
R —u

Hence, by Fubini’s theorem,

E|| Lcun®Q =™ )dt| = | E[L_yum )1 —e™)]dt
Il |-].
— fu (1— E[e"™])dt = ju (1—px(t))dt.

—u —u

On the other hand,

E UR Ly () (1 — e“X)dt] = F Uu (1 —e'X) dt]

—Uu

eluX — gmiuX 2sin(uX)
Thus,
1 sin(uX)
-l a- —92E|1- 22
[ - pxnar=2p|1- =02

U J_y

Since (siny)/y < 1 for all y, we have

%r (1—px(t)dt > 2E [(1 - Sin&”) 1{ux|>2}]

—Uu

1 1
>2F [(1 - uX) 1{|ux>2}] > 2F [21{|ux>2}] = P(luX]>2),

which is equivalent to what we wanted to prove. ]
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Theorem 7.44 (Continuity theorem). Let {X,,} be a sequence of random vari-
ables. Let o, be the ch.f. of X,,.

(i) If X,, = X, then @, — @ pointwise.

(i) Suppose there exists ¢ : R — R such that @, — ¢ pointwise. If ¢ is
continuous at 0, then there exists a random variable X such that X, = X
and px = @.

Remark 7.45. The condition of continuity at 0 cannot be omitted. If X,, ~
N(0,n), then ¢, — 1o pointwise, but {X,} is not even tight (check).

Proof of Theorem 7.44. Suppose X,, = X. Fix t € R. Let f(z) = ¢**. Then
f is bounded and continuous, so

en(t) = E[f(Xn)] = E[f(X0)] = ¢ (1),

and this proves (i).
Now suppose ¢, — @ pointwise and ¢ is continuous at 0. Since ¢, (0) = 1
for all n, we have ¢(0) = 1. Since ¢ is continuous at 0, it follows that

ﬂ (1— () dt -0

—Uu

as u — 0. Let ¢ > 0. Choose u so that u=! Sqiu(l —(t))dt < g, and let
M = 2/u. By Lemma 7.43,

1 u
limsup P(| X, | > M) < limsup fj (1 — @n(t))dt.

n—o0 n—oo U —u

Since 1—,, = 1—¢ pointwise and |1—,,| < 2 for all n, it follows by dominated
convergence that

1 u
limsup P(|X,,| > M) < EJ (1—p(t))dt <e.

n—ow —u

Since e was arbitrary, {X,} is tight.

Since {X,} is tight, there exists a subsequence, {Xj,)}, and a random
variable X such that X3,y = X as m — o0. By (i), this implies 5 (,) — ©x
pointwise. But by hypothesis, @z ,) — ¢ pointwise. Thus, px = ¢. It remains
only to show that X,, = X as n — 0.

Let {X,,(m)} be an arbitrary subsequence. Since { X} is tight, there exists a
further subsequence, {X,, ()}, and a random variable Y such that X,y = Y
as k — o0. By (i), this implies ¢,,(m,) — @y pointwise. But by hypothesis,
©n(my) — ¢ pointwise. Thus, ¢y = . Combined with the above, this gives
Yy = ¢x, which implies Y =4 X. Hence, X,,(,,,) = X. Since the subsequence
{X(m)} Was arbitrary, this shows X, = X. O
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Remark 7.46. When dealing with real-valued random variables, this theorem
will be our main tool for proving convergence in distribution. As you can see
from the proof, when we use this theorem, we are implicitly using the proof
method described in the comments following Theorem 7.27. We will not explic-
itly use that proof method again until we must deal with the convergence of
function-valued random variables (that is, stochastic processes).

Theorem 7.47. If E|X|"* < o0, then ¢x has a continuous derivative of order
n given by @E?) (t) = E[(iX)"eX].

Proof. Exercise 7.16. O

Lemma 7.48. Let n be a nonnegative integer. Then

eia; _ Z (ZTxTL)'

m=0

|m|n+1 2|$|n

n+1)! A

<
(

for all x € R.
Proof. See [2, Lemma 3.3.7]. O

Theorem 7.49. If E|X|?> < o, then

2

ox(t) = 1+ it E[X] - %E[XZ] +o(t?).

Proof. Let

r(t) = ox(t) — 1 — it E[X] + gE[X2] - E[e“x _ 22_:0 (itn);)m]'

By the lemma,
_92 —2 |tX|3 2 2
= |r(t)| <t7°FE TA|tX| < E[[tX| ~ X7

We have [tX| A |X|? — 0 a.s. as t — 0. Also, [tX]| A | X|? < |X|? for all ¢, and
| X|? is integrable. Thus, by dominated convergence, t~2|r(t)| — 0 as t — 0. []

Exercises

7.11. [2, Exercise 3.3.1] Let X be a real-valued random variable. Prove that
there exist real-valued random variables, Y and Z, such that ¢y = Repx and

vz = lex|?.

7.12. [2, Exercise 3.3.3] Let X be a random variable such that ¢x is real-valued.
Prove that — X =4 X.
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7.13. [2, Exercise 3.3.8] Let X,...,X, be independent real-valued random
variables. Assume that each X; has a Cauchy distribution with density

1

Prove that X X

P A d
n

7.14. [2, Exercise 3.3.9] Let X,,, X be real-valued random variables. Assume

X, ~ N(0,02) and X,, = X. Prove that there exists o € [0,00) such that

o —o.

7.15. [2, Exercise 3.3.10] For each n € N U {00}, let (X,,,Y,,) be an R2-valued

random variable defined on a probability space, (Q,, Fn, P,). Suppose that X,

and Y, are independent, for each n. Prove that if X,, = X, and Y,, = Y,

then X,, + Y, = X, + Y.
7.16. [2, Exercise 3.3.14] Prove Theorem 7.47.
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Chapter 8

Introduction

As discussed in Section 6.4, a discrete-time stochastic process is a sequence of
random variables, {X,, : n € N}, all defined on the same common probability
space, (Q, F, P), and all taking values in the same common measurable space,
(S,S8).

Recall that a random walk is an R%-valued, discrete-time stochastic process
such that X,, = & + --- + &,, where {{;} is an i.i.d. sequence. In Chapters 9
and 10, we will only be concerned with the asymptotic behavior of the random
walk as n — o0, primarily when d = 1.

We will first show that, under suitable conditions, X,, ~ nu, where p is the
common mean of the &;’s. This result is known as the law of large numbers
(LLN), and we will look at multiple incarnations of this theorem. The LLN
gives us a crude, first-order approximation of X, when n is large, and it so
happens that this approximation is deterministic. (There is nothing random
about the quantity nu.)

For a finer approximation, we turn to the central limit theorem (CLT), which
shows that X,, ~ nu+n'/?0Z, where o2 is the common variance of the &;’s and
Z is a standard normal. Here, the approximation is not deterministic, so we
must be careful about the meaning of “~”. In fact, it is only the distributions
that are close when n is large. As with the LLN, we will look at multiple
incarnations of the CLT. Some of the versions of the LLN and CLT that we
consider will be quite general and even apply to certain discrete-time stochastic
processes that are not random walks.

In the final chapter of this part of the notes, we will address the issue of
recurrence. That is, does the random walk return infinitely often to (or close
to) the origin?

141
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Chapter 9

Laws of Large Numbers

9.1 Weak laws of large numbers

This section corresponds to [2, Section 2.2].

Theorem 9.1 (L? weak law). Let {£;}72, be uncorrelated, with p = E¢; and
sup; var(§;) < oo. Let Xy, = &1 + -+ + &, Then Xy /n — p in probability and
in L2.

Proof. Since EX,, = nu, we have

= var (n) = ﬁvar(Xn) = g var <]lefj> = EJZ“ var(&;),

=1

Xn

M
n

E

where the last equality follows from the fact that {{;} are uncorrelated. Let
C = sup;var(§;) < 0. Then E|X,/n —pu|*> < C/n — 0 as n — . Hence
X,/n — pin L?. Finally, L? convergence implies convergence in probability. []

Theorem 9.2. Let {X,,}*_, = L?(Q). Let u, = EX,, 02 = var(X,,), and let
{bn}_, < R. If 02 /b2 — 0 as n — o, then

Xn — HUn
by,

in probability and in L? as n — 0.
Proof. The result follows immediately since E|b,,*(X,, — u,)|? = 02 /b2. O

Example 9.3 (Coupon collector’s problem). Suppose we have a sequence of
independent trials, and on the m-th trial we collect a random object from among
n different possible objects. Let {&,, : m € N} be i.i.d. and uniform on {1,...,n},
so that &, represents our collected object on the m-th trial. Let

T =14 =1inf{m: [{&,..., &} =k}

143
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Then 7, represents the first time at which we have collected k distinct objects.
Note that 73 = 1 and let us adopt the convention that 7 = 0. Let X,, = 7},
which represents the time it takes us to obtain a complete collection of all n
objects. We wish to understand the asymptotic behavior of X,, as n — co. In
fact, we will show that

Xn

nlogn

-1 (9.1)

in probability as n — o0, so that X,, ~ nlogn for large n.
For 1 <k <mn,let & = 7 — 7 ;. In words, after we have collected
k — 1 objects, &, 1 represents the number of additional trials we need in order
to collect a new object, distinct from the ones we already have. We should
therefore have &, , ~ Geom(py, ), where
k—1

pn,kzl_ 5
n

and &,.1,...,&n,n are independent. Note that X, =&, 1 + -+ & n-
Let pn, = EX,,, 02 = var(X,,), and let b,, = nlogn. Then

n

o2 1 1 S 1 —pog 1 LA
L= var(&n.k) = — < —-
by (nlogn)? = (En.) (nlogn)? kz::l " (nlogn)? 1;1 j
Thus,
2 1 n 1 —2 1 n 2
%g(nlo n)QZ(l_kn > :(nlo n)22<nz+1>
n g k=1 &) k=1
1 51 IR |
= — < 0,
(logn)? & m? = (logn)? <~ m?
as n — 00. By Theorem 9.2,
Xn - Mn
LN
nlogn

in probability as n — 0.
Note that, as above,

o= B =Y - =n )
=

Since
S !
log(n+1) = fdsc<2—<1+ —dx =1+logn,
- m T

it follows that p,/(nlogn) — 1. Thus, using Exercise 2.14, we have

= —)]_
nlogn nlogn nlogn

in probability as n — oo, proving (9.1).
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Theorem 9.4 (Weak law for triangular arrays). For each n € N, let the random
variables €n1, . . ., &nn be independent. Let {b,}5_; < (0,00) with b, — o0, and
let

n

an = Y El&nrle, . <b.y]-
k=1

Let Xy, = &p1 + - + &n . Suppose that
(i) Sp_y P(l&n k] > bn) — 0 as n — 0, and
(i) b, 2oy BLE xlqje, v1<bnay] — 0 as n — oo
Then (X, — an)/by, — 0 in probability as n — .

Proof. Let Enk = &n.kl{je, 1|<b,) and X, = En,l +- +EM, so that a,, = EX,,.
Fix € > 0. We begin by observing that

(e R (L AR P ),

X, —an
P
({5
—a,

crx, o % r ({[

Yn — Qn
bn

> 5} n{X, = Xn})

> 5} Nn{X, = Xn}>

~<).

PG # %) < P s # €00 € 2 Pllns] > b2) =0
k=1 k=1

SP(Xn?éXn)‘FP(‘

We then have

by (i). For the second term, Chebyshev gives

2

Xn - Un — Yn - Un —27— ~
P <' b a > €> <€ 2E ‘ba = £ an2 Var(Xn)
= 5_2b7_12 Z Var(gn,k) < ‘E_Qb'r_L2 E|gn,k|2 —0
k=1 k=1
by (ii). 0

Theorem 9.5. Let {&}7° be i.i.d. and let X,, = & + -+ + &,. There exist
constant p, such that X, /n — u, — 0 in probability if and only if

2P(|&)] > z) — 0 (9.2)

as x — 0. Moreover, we can take these constants to be i, = E[§114¢,1<n}]-



146 CHAPTER 9. LAWS OF LARGE NUMBERS

Proof. For the “only if” part see [4, pp. 234-236]. Assume (9.2). We wish to
apply Theorem 9.4. Let &, = & for all n > k, and let b, = n. Since {&;} are
i.i.d., we have

n n

1 P&kl > bn) Z (|€x| > n) = nP(|&]| >n) — 0

by (9.2), and so Theorem 9.4(i) holds.
For (ii), we consider

by > EE) klqje, ni<vy] =172 Y Bl 1 e, 1<n] = 0 B[ 1, j<ny]-
k=1 k=1

By (6.8),

n

"
E[§ 1 e, 1<ny] = L 2tP (61111, |<ny > t) dt < L 2tP(|&1] > t) dt

Let € > 0. By (9.2), we may choose to > 0 such that 2¢tP(|&] > t) < ¢ for all
t > tg. Thus,

lim sup n’lE[ffl{lfllsn}]

n—oo

to n
< limsup 1<J 2tP(|&] > t)dt + f 2tP(|&1] > 1) dt)
n

n—00 0 to

1/ (%
< limsup — (J 2tP(|&] > t) dt + ns) =e.

n—oo 0
Letting € — 0 verifies (ii).
Thus, by Theorem 9.4, we have (X,, — a,)/n — 0 in probability, where

an = Y Blénrlqe, <oyl = 2 [§k L 1<ny] = Pfins
k=1 k=1

and it follows that X,,/n — u, — 0 in probability. O

Suppose (9.2) holds. Let 0 < e < 1. By (6.8), we have
Q0 1 0

El&| = J (1 —e)t °P(|&] > t)dt < f tE dt + Cf t=(+9) dt < 0.
0 0 1

The following theorem is the familiar form of the weak LLN. It has a somewhat
stronger hypothesis than (9.2), in that it assumes E|&;| < oo.

Theorem 9.6. Let {§}7, be i.i.d. with E|&| < 0. Let X,, = &4 -+ &,
and p = E& . Then X, /n — p in probability.
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Proof. We have
P ([61] > z) < E[|611q¢,501];

which goes to 0 by dominated convergence. Thus, by Theorem 9.5, we have
Xn/n — pn, — 0 in probability, where 1, = E[|€1]1¢¢, |<n}]-

But p, — p, also by dominated convergence. Hence, X,,/n = (X, /n— pu,) +
ln — W in probability. O

Example 9.7. Let {{; };‘;1 be i.i.d. Cauchy distributed random variables. That
is,

1 1

P dr) = ——
(&1 € dz) Tl+x
Then o
12 ot

1+ ¢2 T a1

)

2 0
oP(&] > 2) = 2z |
™ xT
so by L’Hopital,

. o2 a2 2
S P& > ) = B s =

By Theorem 9.5, if X,, = & +---+ &, then there are no constants p,, such that
X,/n — pn, — 0. In fact, by Exercise 7.13, we have X,,/n =4 &; for all n.

Example 9.8 (St. Petersburg paradox). Consider a game in which you flip a
fair coin until the first time you get a head. If it takes you j flips, then you will
receive a prize of 2 dollars. You may play this game repeatedly, as many times
as you like. How much would you be willing to pay per trial to play this game?

Let {&}3°, be iid. with P(& = 27) = 277 for j € N, so that &; represents
the prize you receive on the j-th time you play the game. Note that

E& = > 27P(6 = 27) = 0.
j=1

There is a general principle among some gamblers that optimizing your expected
value is always what you want to do. If you have a positive expectation, then
the game is profitable for you, and you should make the most of it. According
to this principle, we should be willing to pay any price to play this game.

But the expected value is just one of many parameters associated with a
random variable. It has no intrinsic “meaning” beyond its mathematical def-
inition. Any meaning it has for gamblers is meaning that it inherits from the
familiar form of the LLN. Hence, if the LLN doesn’t apply, then the expected
value is just another mathematical parameter.

In the example we are considering, the traditional LLN, Theorem 9.6, does
not apply. So we must use something else to understand the asymptotic behavior
of X,, =& + -+ &,. As we did with the coupon collector’s problem, we will
use the weak law for triangular arrays, Theorem 9.4, to prove that

Xn
nlogyn

—1
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in probability as n — 0.
Let fn,k = §k Let

K(n) = |logy n + log, log, n| — log, n.
Note that
logy logyn — 1 < K(n) < log, log, 1, (9.3)
and, if we define m(n) = logy n + K(n), then m(n) € N. Define b,, = 27(").
We first check that

n n

> P( Z (|8k] > 2m(M)) = n27m() = 2=K(m g,

which verifies Theorem 9.4(i).
We next check that

m(n)

Bl& k1 (ign rl<bny] = El&1 (1, <omimy] = Z 22979 = 2+ — 2 < 2y,

Thus,
" 2n 2
-2 2
by, Z E[fn,kl{\sn,klsbn}] < b, = 9K (n) -0,

and this verifies Theorem 9.4(ii).
It therefore follows that 2-™(")(X,, — a,) — 0 in probability, where

n

On = Z E[§n7k1{‘§n,k|<bn}] = Z E[fk1{|gk|<2m(n)}]
k=1 k=1

=nE[§1 1, j<omey] =1 Z 27277 = nm(n) = nlogyn + nK(n).
j=1

Note that

an, _1+K(n)

9

nlogyn logyn
by (9.3). Also note that
om(n)

nlogyn g tm-logaloga ¢ [1/2,1],
2

for all n. Hence, using Exercises 9.3 and 2.14, we have

X, om(n) X, —a, an
= —+ — 1

nlogan  nloggn 2m(n) nlogyn

in probability as n — 0.
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So for large n, we have X,, ~ nlog, n, meaning that after playing this game
n times, our average winnings per game will be about log, n. For example, if we
plan to play the game 1024 times, our average winnings per game will be about
$10. In this case, we should pay less than $10 per game if it is to be profitable
for us. If the price of each game were $40, we would need to play the game 240,
or about one trillion, times before we start to break even.

Exercises

9.1. [2, Exercise 2.2.4] Let &1, &a, ... be i.i.d. random variables with

C

P(& = (<)) = i

for k > 2, where C = (3/_,1/(k? logk))_l. Let X, =& + -+ &,.
(a) Prove that E|¢;| = 0.
(b) Prove that there exists u € R such that X,,/n — p in probability.
9.2. [2, Exercise 2.2.8] For j € N, let

1

Pi= oG+ 1y

Note that ngij € (0,1). Define pg =1 — Zjeij. Let &,&5, ... be iid. with
P(& = —1) = pg and '

P(é.l =2 - 1) = Dy,
forj>1,and let X,, =& +--- +&,.

(a) Prove that & is integrable and that E¢ = 0. [In other words, by some
people’s standards, this is a model of a fair game.]

(b) For n € N, let m(n) = min{m € N : n < 2™m??}. Prove that m(n) ~
log, n, i.e. prove that m(n)/logon — 1 as n — oo.

(c) Let b, = 2™ Let a,, = nE[&11y¢,|<p,}]- Prove that a, ~ —n/(log, n).
(d) Prove that b, /(n/(logyn)) — 0 as n — o0.
(e) Use Theorem 9.4 to prove that

Xn
n/(logy n)

in probability as n — oo. [In other words, if n is large, then after n plays,
with high probability, you will have lost n/(log, n) units.]

9.3. Suppose X,, — 0 in probability and {c,} is a bounded sequence of real
numbers. Prove that ¢, X, — 0 in probability. [Hint: Use Theorem 7.3.]
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9.2 Strong law of large numbers
This section corresponds to [2, Section 2.4].
Lemma 9.9. If X,, — X a.s., and N(n) — © a.s., then Xy(,) — Xoo a.5.

Proof. Choose €1 € F such that P(€) = 1 and X, (w) —> Xyu(w) for all
w e Q. Choose Qs € F such that P(23) =1 and N(n,w) — oo for all w € Qs.
Let Q* = Q; n Q. Then P(Q*) = 1. Fix w € Q*. Then Xy () (w) = Xo(w),
and so it follows that XNn) = Xoo as. O

Remark 9.10. If we only assume that X,, — X, in probability, then the
result is false. (See Exercise 9.4.) This demonstrates one (mathematical) reason
why convergence in probability may not be sufficient. Whereas the weak LLNs
provide convergence in probability, the strong LLNs provide convergence a.s.

Lemma 9.11. Ify > 0, then

1
2 > = <4
{k:k>y}

Proof. See [2, Lemma 2.4.4]. O

Theorem 9.12 (Strong law of large numbers). Let {{;}7L, be pairwise inde-
pendent and identically distributed, with E|&;| < o0. Let X,, =& +---+ &, and
w=FE&. Then X, /n — u a.s.

Proof. First assume & > 0 a.s. Let (x = §rlyje,<ky and Yy, = (1 + -+ + (. Fix
a > 1 and let k(n) = |a™|. We begin by showing that

Yin) = EYi(n)

K(n) —0 as. (9.4)

as n — o0. We will use Theorem 7.9.
Fix € > 0. Then, by Chebyshev,

O 1 > var(Yk(n))
S )L
n=1

Yitn) — EYi(n)
k(n)

n=1 k(n)2
g var(Gn) 1
2, k)2 e

)
m=1

1 &
:;22:11

Since |a™] = a™/2, we have

2
{n:k(n)=m} k(n) {n:k(n)=m} {n:k(n)=m}
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Note that if k(n) > m, then m < |a"| < o™, which implies 2" < m~2. Thus,

the above is a geometric series whose first term is bounded by above by m™2,

so that
Z 1 < 4m_2
2 1 _ -2
{n:k(n)=m} k(n) l1-a
Substituting this into (9.5), we have

2 ( >) = 822“’“(’”. (9.6)

We now turn our attention to the sum on the right.
By (6.8), we have

0
Z var
m=1

— EYi(n)

k()

:%

2tp(ICmI > t)dt

ﬁMé&
3 |
SIERN
I

_
[

2tP(|&1| > ) Ljp<my dt

A

3 iMS M8
- 3-
hs

{t<m}>P(|§1| > t) dt

3
)

[
T
18
S\H

(=)

By [2, Lemma 2.4.4], we have 2t ZZCT:I #1{t<m} < 4 for all ¢t = 0. Thus,

m2

Z var(Cm) < 4J. P(|§1| > t) dt = 4E‘§1|.
— 0

m=1

Substituting this into (9.6), we have

& — FY; 16F
Z | ) < A6EIGl
= (n) (1 —a?)e?
Thus, by Borel-Cantelli,
Y — EY;
p|2m Tk c6.) = 0.
k(n)

Applying Theorem 7.9 proves (9.4).
Next, note that E(,, — u as m — o0, by dominated convergence. Therefore,
using the fact that a,, — L implies 2 " _ a,, — L, we have

(n)
EYyn) 1 "
o DI
k(n) — k(n) =

Combining this with (9.4), we now have

Yin)
k(n)

— [ as.
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as n — oo,

Since we assumed £; = 0 a.s., we can now use monotonicity to extend this
convergence from the subsequence {Y}(,)} to the entire sequence. Note that
Y < Yoi1 ass., for all m. Also note that, for each m, there exists n,, such
that k(n.,) < m < k(n,, + 1). Hence,

Vi) _ Ym _ Ye(un+1)

Em +1) ~ m — k(ng)
which implies

k(nm)  Yium) Y _ Yitnm+1) k(nm +1)

k(M +1) E(nm) — m k(g +1) k(nm)

Since k(n + 1)/k(n) - a > 1, we can let m — oo and obtain

1 Y, Y,

—E¢ < liminf 2 < limsup —= < aFé,
(074 m—00 m m—o0

for P-a.e. w. Since o > 1 was arbitrary, this shows that Y,,/m — u a.s.

Finally, we need to remove the truncation and show that X, /n — p a.s.
Note that

o0

o8] k
S P& £ G) < 3 P&| > ) < ZL P(l] > ) di
k=1Yk—1

k=1 k=1

a0
= L P(|&] > t)dt = E|&]| < .
By Borel-Cantelli, P({x # (j 1.0.) = 0. Thus, there exists Q* € F with P(Q2*) =
1 such that, for all w € Q*, there exists N(w) such that & (w) = (x(w) whenever
k > N(w). Since Y,,/n — p a.s., we may also assume that Y, (w)/n — p for all
w e Q*.

Let w € Q* be arbitrary. Then

n

" N(w)
SRR OEEEREE)
k=1 k=1

k=N(w)+1
1 N(w)
(L ew e -nae) s

as n — . Hence, X, /n — p a.s. and we have proved the theorem under the
assumption that & > 0 a.s.

We now drop the assumption of nonnegativity on & . Since {&;}72, satisfy
the assumptions of the theorem and are nonnegative, we have

1 n
— Z f,j — B¢ as.
[y
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as n — 00. The analogous statement for £, also holds. Thus,

n

Xn $ 1 B -
- = 25;_*25k—’E§f—E§1:E£1 a.s.
K k=1 L

=1
as n — 0. O

Theorem 9.13. Let {§}7, be i.i.d. and X, = & + -+ + &,. Suppose E&;
exists. Then X,,/n — E&; a.s.

Proof. Theorem 9.12 covers the case where £ is integrable. We may therefore
assume E¢; € {—oo,00}. First suppose E¢; = o0, so that B¢ = o0 and B¢ <
0. Let M € N and define éM = &, A M. Let XM = ¢M ...+ ¢M . By Theorem
9.12, we have XM /n — E¢M as., as n — oo. Thus, there exists Q* € F such
that P(Q*) = 1 and, for all w € Q% we have lim,,_,o, XM (w)/n = E&M for all
M € N. Note that X,, > XM. Thus, for all w € Q* and all M € N, we have

M
liminfm > lim X @) _ EeM,
n—00 n n—00 n
Let M — oo. The monotone convergence theorem implies that E[(¢M)*] —
E[¢f] = w0 and E[(¢M)7] — E[¢] < o, as M — . Thus, EEM — o as
M — oo, and it follows that X, (w)/n — oo for all w € Q*. In other words,
Xn/n — E&; as.
For the case E{; = —o0, simply apply the previous result to {—&x}7,. O

Example 9.14. Imagine a janitor whose only job is to watch a single light bulb.
The moment it burns out, he replaces it. Let {{x}72, be i.i.d., (0, 00)-valued
random variables, so that & represents the lifetime of the k-th light bulb. Let
X, =& +---+&,, so that X, represents the time at which the janitor replaces
the n-th light bulb. Let

N(t) =sup{n: X, <t},

so that N (t) represents the number of light bulbs that have burned out by time
t. Note that N(t) < oo a.s. This is because {N(t) = o} < {{, — 0} and
P(&, — 0) = 0 (check; use Theorem 7.11).
We will show that
N(t) 1
— > —  a.s.,
t E¢&
as t — o0, where we interpret 1/00 as 0.
To see this, first observe that from the definition of N(t), we have

XNy SE< XN+t
which gives

v _ 1 - Xnw+1 N(t)+1
N(t) ~ N({) N@#)+1  N()
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Next observe that X, (w) < t implies n < N(t,w). Thus, n > N(t,w) implies
Xp(w) > t. Hence, if there exists w €  and n € N such that N(¢,w) < n for all
t > 0, then it would follow that X, (w) = co. But this is impossible since each
&k is a (0,00)-valued random variable. Therefore, N(t) — o a.s., as t — 0.
The result now follows from Theorem 9.13 and Lemma 9.9.

Exercises

9.4. [2, Exercise 2.4.1] Give an example of a sequence, {X,,}>_;, of {0, 1}-valued

random variables, and a sequence {N(n)}>_; of N-valued random variables, such
that X,, — 0 in probability, N(n) 1 c© a.s., and Xy () — 1 a.s.

9.5. [2, Exercise 2.4.3] Let Uy, Ua, . .. be i.i.d., R?*-valued random variables such
that U; is uniformly distributed on the unit disk. Let Xy = (1,0) € R? as.,
and for n € N, let X,, = |X,,_1|U,. Find an explicit constant ¢ such that
n~tlog|X,| — ca.s.



Chapter 10

Central Limit Theorems

10.1 Limit theorems in R

This section corresponds to [2, Sections 3.4.1-3.4.2].
Lemma 10.1. Ifc¢, — ce C, then (1 + ¢,/n)" — e°.
Proof. Basic analysis; see book. Ol

Theorem 10.2 (classical central limit theorem). Let &1,&a,... be i.i.d. with
E¢& = poand var(é1) = 02 € (0,0). Let X, =& + -+ &,. Then

X, —nu
i = 7,
where Z ~ N(0,1).

Proof. Let & =§; —pand X;, =& + -+, Let

Xp—np X,

Y, = _ _
n 0n1/2 Jn1/2

Let ¢, = ¢y, and ¢ = ¢ . By Theorem 7.49,

QO(t) =1- T + ’I"(t),

where t~27(t) — 0 as t — 0. Thus,

t n t2 t n
o)~ () = (15 (o))

Fix t € R and let

155
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so that ¢, (t) = (1 4 ¢,/n)". Note that

t N o2 ( t \? t 0
"\oni2) T e \oniz) "\on2)

as n — 0. Thus, by Lemma 10.1, ¢, (t) — e_t2/2, which implies Y,, = Z. [

Example 10.3. Let &1,&,... be ii.d. with P(§; = 1) = 18/28 and P(& =
—1) =20/28, and X,, = & + - -+ + &,. Then X, represents your total winnings
after playing n games of roulette, if in each game you bet $1 on black. We are
interested in the probability that your winnings are positive after n = 361 = 192
plays.

First note that u = E&; = —1/19 and

o? =var(¢)) = BE? — p® =1 (1/19)* = 360,
361
By the central limit theorem,
X, —np
o2 = 7,
where Z ~ N(0,1). Thus, for any fixed z € R,
Xn —
P <1”“ > x) —1-®(z) (10.1)
onl/?

as n — o0. Let us take x = 19/(6+4/10). Then, for large n,

X, —nu 19 19
P > ~1-® —— ).
( onl/? 6\/10> (6\/10)

Taking n = 361 and noting that x = ¢!, this gives

X 1
P( 361 + 19

19
64/10

Thus, the probability that your winnings are positive after 361 plays is about
16%.

One thing to be careful of is the following. In the book, they begin their
analysis with

19 >1>—P(X361>0)%1—‘I)<

> ~ 0.1583196.

(10.2)

P(Xn>0)_P<X"_"“ ”“).

> p—
onl/2 onl/2

However, the central limit theorem only tells us (10.1) for a fixed x. It does not
say anything about the asymptotic relationship between (10.2) and

1= ()
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On the other hand, if you are in the mood to not be careful, there is another
approach. Heuristically, the central limit theorem tells us that

Xn 2 ny + n*?0Z.
Thus,
P(X, > 0) ~ P(np+n"?0Z > 0) = P(Z > —n*?pu/o),
and the computations proceed as before.
Example 10.4. Let &,&, ... be i.i.d. with P(§; =1) = P(§4 = 0) = 1/2, and
Xn =& + - +&,. Then X, represents the number of heads in n tosses of a
fair coin.

We have p = E¢; = 1/2 and 02 = var(§;) = BE? —1/4 = 1/2 — 1/4 = 1/4.
Thus, the central limit theorem gives

g

|3
|5,
N

Xn
Taking n = 10000, we have
X := X10000 ~ 5000 + 5v/50 Z.
Let a € (0,5000). Then

P(X € [5000 — a, 5000 + a]) ~ P(5000 + 5v/50 Z € [5000 — a, 5000 + a])
a
—P(|7| < ——
(' | 5«/50)
a
=20 —1
(5\/50)

Suppose we want this probability to be 95%. Then we need

a 1.95
o ——)=""=00975
(5«/50) 2

which gives
a
—— = 1.959964,
5v50
or a ~ 69.29519. In other words, in 10000 flips of a fair coin, the chance of
getting between 4931 and 5069 heads is about 95%.

Example 10.5. Let {X,,} be as in the previous example, and let us try to

approximate P(X16 = 8). If we proceed as before, we have Xig i 8+ 27, so
that
P(X1=8)~P8+ 2Z=8)=P(Z=0)=0.

Of course, this is a terrible approximation, and it results from using a continuous
random variable to approximate a discrete random variable. To deal with this
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situation, we use something called the histogram correction. Note that since
X16 € Z, we have
P(Xlﬁ = 8) = P(X16 € [75785])

Thus, we have

P(Xi5 =8) ~ P(8+2Z € [7.5,8.5)])
= P(|Z] < 1/4) = 2®(1/4) — 1 ~ 0.1974127.

The exact probability is

16
( 3 >2_16 ~ (0.1963806.

More generally, if A < Z, then the histogram correction asks us to use the
identity
P(X, e A) = P(Xn e | Jlk—1/2,k+ 1/2]).
keA
For example, P(X, < 11) = P(X,, < 11.5) and P(X,, < 11) = P(X,, < 10.5).

In the preceding examples we approximated the exact probabilities with
probabilities from a normal distribution, and used the central limit theorem to
justify this approximation. If we need to quantify the error we make when using
such an approximation, the following theorem is helpful.

Theorem 10.6 (Berry-Esseen theorem). Let &1,&s, ... be i.i.d. with B = 0,
E& =02 and E|&P=p< . Let X,, =& + -+ +&,. Then

Xn 3p

= g3pl/2?

for all x € R.
Proof. See [2, Theorem 3.4.9]. O

The following theorem is our final example of using the classical central limit
theorem.

Theorem 10.7. For each A > 0, let Ny ~ Poisson(\). Then

Ny — A
e = 7,

as A — oo, where Z ~ N(0,1).
Proof. Let &1,&a, ... beiid. with & ~ Poisson(1). Let X,, = & +---+&,. Then

X, ~ Poisson(n). Since X, £ N,,, it follows from the central limit theorem that
N, —n
iz
Now let {\,}°_; < (0,0) satisfy A\, — o0 as n — o0. Let {U,} and {V,,} be
i.i.d. sequences such that

= 7. (10.3)
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(i) {X.}, {U,}, and {V,,} are independent,
(ii) U, ~ Poisson(A, — [An]), and
(iii) Vi, ~ Poisson(|A,] +1 = Ay).

Then
Xian] < X +Un < X, +Un + Vi
Also,
Xixal +Un 4 Ny,
and

X[/\nJ + U, +V, 4 X[)\nj-b-l'

Xl)\n — A
1/2 < ;v)
X
1/2 ST

1/2 - l)‘nJ l>\nJ - An
1/2 ( L JJ1/2 + [/\nJl/2 ) <x>

(X = Dal N Dl -
P( Al S Dl )

Fix € R. Then

N _
PP ) P

"U
A/—\/—\

y (10.3) and Lemma 7.23, we have

Ny, — A
lim sup P <>\"1/2n < a:) < P(Z < x).
Anl

n—0o0

Conversely,

P (NknlpAn < l‘) - p (Xl)\nj +15J27L - An < £E>
A Al
X Up+Vy,—
A2

X[)\anrl - An
n

and a similar argument gives

n—0o0

Ny, —
lim inf P (W < x) > P(Z < x),
M2

which finishes the proof. O
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The following generalization of the classical central limit theorem is much
more versatile and allows us to analyze sequences whose rate of convergence
differs from /n.

Theorem 10.8 (Lindeberg-Feller theorem). Forn e N, let §, 1,802+, &nn be
independent with E&, ,, =0, and let X, = &1+ -+ + &pn. Suppose

(i) 277;:1 Efiym — 02 >0, and
(ii) for alle >0, we have Y _, E[Ei,ml{lfn,mlx}] 0.
Then X,, = oZ.

Proof. Uses characteristic functions. See the book for details. |

Example 10.9. Let &1,&,,... be i.i.d. with & 4 —¢ and P(|&] > x) = 272

forall z > 1. Let X,, =& + -+ &,. Notice that

o0 o0 1
EKHZL-HKﬂ>xMx=1+L Lir<o,

and F¢; = 0. However,

Q0

w 1
2
E\§1|2=L 2xP(|§1\>m)dx=J02xdx+£ 5dx=oo.

Thus, the classical central limit theorem does not apply. We will use the
Lindeberg-Feller theorem to show that

X
— =7 10.4
vnlogn - (10-4)
as n — oo, where Z ~ N(0, 1).

Let Cnm = Emlyje,n|<c,}» Where ¢, = n'2loglogn, and Y,, = Cnit+Can-
Define

_ Gam
Snm = vnlogn'

To verify Theorem 10.8(i), observe that
a0
EG = | 20PGun| > ) do
0
= f 22P(|Com| > x) dx
0

< J ’ 2eP(|&n| > x) dx
0

1 Cn2
:J 2xdw+f —dx
0 1z

=1+ 2logec,
=1+ logn + 2logloglogn.
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On the other hand,

N
B2 >J 20 P(|Cnm| > ) dz
1

n,m

N
- Jl 22(P(|ém| > ) — P(|&m| > ¢n)) da.

For x < 4/n, we have

2 1
Pllen| = ea) = 5 P(ml > 2) < g Pl > 2)

Thus,

B¢, = I R fﬁQQ:P(f | > z)dx = 1= —L1 Viogn
i = (loglogn)? ) J; " - (loglogn)? s
It follows that

n

2logloglogn
Z Eénm\i 1+7’

(1og log n)2 logn

and Theorem 10.8(i) follows immediately with o = 1.
Now fix e > 0. Since |(n,m| < ¢, a.s. and ¢,/+/nlogn — 0, we may choose
N € N such that for all n > N, we have |, | < ¢ a.s. For any such n, we have
€2 (¢ mi>e} = 0 a.s., which verifies Theorem 10.8(ii).
By Theorem 10.8,
Y, = i :gn,1+"'+£n,n=>Zv

Y,
v/nlogn
where Z ~ N(0,1). Fix € R. Then

X, Yo
Pl——< SPX,#Y,)+P| ——— <=
(\/nlogn a:) (X # Ya) (\/nlogn a:)

Since

. 2n 2
P(X, #Y,) P(l&n| > cn) = 5 = —— — 0,
mZ=:1 2 (loglogn)?

it follows that

Xn
li Pl ———< < O(z).
maw P <x) <o)
Similarly,
X Y,
Pl —2=< >P|————< - P(X, #Y5),
(«/nlogn x) («/nlogn x) (X # Ya)
and so

Xn
Iminf P| ———— < > d(x).
mint P (s <7) > 90

Putting them together proves (10.4).
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Exercises

10.1. [2, Exercise 3.4.4] Let &1,&s, ... be ii.d., [0,00)-valued random variables
with B¢ = 1 and var(&;) = 0% € (0,00). Let X, = & + -+ + &,. Prove that
2(v X, —/n) = oZ, where Z ~ N(0,1).

10.2. [2, Exercise 3.4.13(ii)] Let 8 € (0,1). Let &1,&2, ... be independent with

P(& =0) = 1- k7,
P& = k) = 5.

Let X,, =& + -+ &,. Find an explicit constant ¢ (in terms of ) such that

Xn

Gz

where Z ~ N(0,1).

10.2 Poisson convergence

This section corresponds to [2, Section 3.6].

10.2.1 Convergence to a Poisson distribution

The following is the basic Poisson limit theorem, which includes a bound on the
rate of convergence.

Theorem 10.10. For eachne N, let &,.1...,&n.n be independent {0, 1}-valued
random variables with P(&pm = 1) = ppm. Let A\, = Z;lenym. Define
Xn=&p1+ - +&n and let N,, ~ Poisson(\,). Then

sup |P(X, € A) — P(N, € A)| < Z P2
AcNU{0} me1
Suppose that

(i) A\, = A€ (0,00) and

(%) maxi<ms<n Pnm — 0.
Then X, = N, where N ~ Poisson(}\).

Proof. In the textbook, see the second proof of [2, Theorem 3.6.1], which be-
gins on p. 150. The proof uses [2, Lemmas 3.6.2-3.6.4] and involves only basic
calculations with discrete measures. O
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The following is a slight generalization, but without the rate of convergence.

Theorem 10.11. For eachneN, let &, 1...,&n n be independent, nonnegative
integer valued random variables with P(&nm = 1) = ppm and P(&nm = 2) =
En,m- Suppose that

(i) Y1 Prm — A€ (0,0),
(i) maxi<ms<n Pnm — 0, and
(i) ZZL=1 €n,m — 0.
Let X, =&p1+ -+ +&un. Then X,, = N, where N ~ Poisson()\).

Proof. Let &, ,,, = ¢, =1y and X], =& 1 +---+ &, . By Theorem 10.10, we
have X| = N. Fix € > 0. Then

P(|X, — X),| > &) < P(Xn # X,) < Y. P(léum| =2) =0,

m=1

by (iii). Thus, X,, — X] — 0 in probability, and it follows from Exercise 7.10
that X,, = X] + (X, — X)) = N. O

Example 10.12. Let n = 400. For 1 < m < 400, let &,1,...,&un be in-
dependent with P(&,m = 1) = 1/365 and P(§,m = 0) = 364/365. Then
Xn = &1 + -+ + &y n represents the number of students in a class of 400
that have their birthday on the day of the final. By Theorem 10.10, we have
X, ~q N, where N ~ Poisson(400/365). Thus, the probability that no one has
their birthday on the day of the final is

P(X, =0) ~ P(N = 0) = e 400/365  (.3342419.

In general, when there are many chances for something rare to happen, the
number of occurrences is approximately Poisson distributed.
Theorem 10.10 also gives us a bound on the error:

| 400
P(X,=0)—P(N=0)| < — = —— =& (0.003002439.
PO =0) = PV =0)1 < 3, 5655 = g
Example 10.13. Let (1, -.,Cn.n be independent U(—n/2,n/2). That is, we
place n points randomly on the interval of length n centered at the origin. Fix
a <bandlet &, m = 1, , e(ap)- Then Xy, = &1+ -+ + & n represents the
number of points which land in (a, b).
Then, in Theorem 10.10, we have p;, ,, = (b —a)/n and A, = b — a. Thus,
X, ~q N, where N ~ Poisson(b — a).

Example 10.14 (occupancy problem). Let Y7,...,Y, be independent and uni-
form on {1,...,n}. We are modeling here the random placement of r balls into
n boxes. For 1 <17 < n, let (; = ZZ=1 1{y,=i}, which represents the number of
balls in the ith box.
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Let &uri = 1y¢,=0y, s0 that X, . = & 1+ - -+ &n rn TepPresents the number
of empty boxes. We will show in Proposition 10.20 that if ne "("/" — X e
(0,00), then X,, ;.,,y = N, where N ~ Poisson(X).

Lemma 10.15. Let p,(r,n) = P(X,, = m). Then

B

mir) = S04 (1) (1- 1)

k=0

Proof. Note that

P(C, =0,¢, =0,...,G, =0) = <1_k>r.

Then, using inclusion-exclusion,

and we are done. O]

Lemma 10.16. We also have

m
Proof. Let

A=1{1>0,(0>0,...,Com >0},

B = {Ci—m+1 =0,Cn—ms2=0,...,(, = 0}.
Conditioned on B, the random variables Y7, ...,Y, are independent and uniform

on {1,...,n —m}. Thus, P(A | B) = po(r,n —m) and it follows that
P(AnB) = P(B)P(A| B) = (1- T)Tpo(r, n —m).
n

Therefore,

and we are done. |
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Now suppose {r(n)}%_; is a sequence satisfying ne="(")/* — X € (0, 0). For
notational simplicity, we will suppress the dependence of r(n) on n and simply
write 7.

Lemma 10.17. There exists C > 0 such that

for all m and n. Moreover,

) (n> my\" _A™
lim sup (1 — —) <
n—owo \M n ml
Proof. Choose C' > 0 such that ne~"/" < C for all n. Using 1 —z < e~ and
n!/(n —m)! < n™, we have

n m\" n™m _ / cm
(1) < 0 i L O
m n m! m)!

Moreover,
. n m\" .oon™ A
lim sup (1 - —) < lim —e ™/ =2
n—0o0 m n n—oo m! m!
and we are done. O]

Lemma 10.18. For each fired m,

tim (1) (1= )= 20

Proof. First note that n!/(n —m)! = (n —m)™. Also, for t € [0,1/2],

L4 . 4
log(1—t) = = ) —t—§ZtJ=—t—§ £

= j=2 j=0

It follows that

(1) () s o (ymy

_ L (1 - T>mnm (1 - @)T, (10.5)

n n
and
log (nm (1,E) ) =mlogn + rlog (17T)
n n
rm  rm?
=mlogn — — — —
n

r m r m?logn
=m <logn— 7) +— (logn— 7) -
n n n
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Note that logn — r/n = log(ne~"/™) — log A. Thus,

lim inf log (nm (1 — Ey) = mlog A,
n

n—0o0

which implies
lim inf (nm (1 — T) ) > A"
n—0o0

Applying this to (10.5) gives

Tim inf <”> (1 . @)T > A
n—w0 \m n m)!

Combining this with Lemma 10.17 finishes the proof. O

Lemma 10.19. For each fized m, we have po(r,n —m) — e,

Proof. First assume m = 0. By Lemma 10.15, we can write

where

£ =04 (1) (1-5) 100

By Lemma 10.18, for each fixed k, we have f,(k) — (=1)*\¥/k! as n — co.
By Lemma 10.17 and the fact that }.,. , C*/k! < o0, we may apply dominated
convergence to conclude that

k
k>‘ A

O
Jlim po(r,n) = 3 (-1)* 5 =,
k=0 ’

proving the case m = 0.
Now suppose m is arbitrary. In the previous case, we proved that ne="/" — X
implies po(r,n) — e~*. Thus, it will suffice to prove that (n—m)e="/("=m) — X,

First, note that
1 1
A (A L L
n n n n

since logn — r/n — log \. Therefore,

(n —m)e~"/(n=m) — (1 - @) (ne™"/™) exp (_rm) — A\,
n

and we are done. O

Proposition 10.20. For each fixed m, we have P(X,, ;) = m) — e~ /m)
asn — . That is, X, y(ny = N, where N ~ Poisson(\).
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Proof. By Lemmas 10.16, 10.18, and 10.19,

m m:

PG = m) = o) = (1) (1= %)l = m) = e

Thus, for any = > 0,

and we are done. ]

Example 10.21 (coupon collector’s problem). Let {Y;, : m € N} be i.i.d. and
uniform on {1,...,n} and T,, = inf{m : |{Y1,...,Yn}| = n}. Recall from Ex-
ample 9.3 that T;,/(nlogn) — 1 in probability. In this example, we will show

that T )
n —nlogn o x

3

n

where P(X < z) = exp(—e™®) for all z € R.
With the notation of Example 10.14, we have {T}, < r} = {X,,, = 0}. Fix
x € R. Then

T, —nl
P (""g” < :c) = P(T <r(n)) = P(Xn,r(n) = 0),
n

where r(n) = |nlogn + nz|. Note that

1
log(ne~"("/) — logp — L1187 + 12l
n
1 —|nl
I [ ogn + nx n[n ogn + nx| I

as n — o0. Thus, ne”"(M/" — X\ := e~% 50 by Proposition 10.20, we have

P <Tn —nlogn

< x) — e = exp(—e?),
n

which is what we wanted to show.

10.2.2 The Poisson process

Let N = {N(t) : t = 0} be a nonnegative integer valued stochastic process with
N(0) = 0 a.s. Suppose that N is increasing, that is, for P-a.e. w € , the
function ¢ — N (t,w) is increasing. As an application, N(¢) could represent the
number of occurrences of a certain type of event during the time interval (0, ¢].
In this case, N(t) — N(s) is the number occurrences in (s, t].

Theorem 10.22. Let A > 0. Suppose that
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(1) forall0 =ty <ty <--- <ty, the random variables {N(t;) — N (tx—1)}}_,
are independent,
(i) N(t1) — N(s1) =q N(t2) — N(s2) whenever t; — s1 = ta — Sa,
(111) P(N(h) =1) = A+ o(h), and
(iv) P(N(h) = 2) = o(h).
Then N (t) ~ Poisson(At) for all t > 0.
Proof. Fixt > 0. For ne N and m € {1,...,n}, define

e (E22) (=)

Then X, :=&u1 + -+ + & = N(¢) for all n.
Note that
Prym 1= P(§nm = 1) = P(N(t/n) = 1) = At/n + r1(t/n),

where 71(h)/h — 0 as h — 0. Thus,
Z DPnym = AL+ nry(t/n) — At
m=1

as n — o0, and

max = -0
lgmgnpn’m Pn

as n — o0. Similarly,
€nm = P(nm = 2) = P(N(t/n) = 2) = r2(t/n),
where r2(h)/h — 0. Thus,

Z En,m = nra(t/n) — 0

m=1
as n — o0. Therefore, by Theorem 10.11, we have X, = N, where N ~
Poisson(At). But X,, = N(¢) for all n. So N(t) ~ Poisson(At). O

If N satisfies the hypotheses of Theorem 10.22 and ¢t — N(t,w) is right-
continuous for P-a.e. w € {2, then N is a Poisson process with rate .

A constructive characterization of the Poisson process is given by the follow-
ing theorem.

Theorem 10.23. Let A > 0. Let &1,&a,... be d.i.d. with & ~ Exp()\). Let
To =0 and, forneN, letT, =& +---+&,. Fort>=0, define

N(t) =sup{n: T, <t}

Then N = {N(t) : t = 0} is a Poisson process with rate A.
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Proof. See [2, Section 3.6.3]. O

In the preceding theorem, the &;’s are often called the interarrival times, 7T},
is the time of the nth arrival, and N(¢) is the number of arrivals by time ¢.

Lemma 10.24. Let A > 0 and N ~ Poisson(\). Let (1,(a,... be i.i.d.,
{0,1,...,k}-valued random variables, with N,(1,Ca, ... independent. For 0 <
j<k,let

N
Ny =[{{m < N:Gn=3j}= D] Licys
m=1
so that Ng + Ny + ---+ N = N. Then Ny, Ny,..., N are independent and
N; ~ Poisson(Ap;), where p; = P(¢1 = j).
Proof. Exercise 10.3. ]

Example 10.25 (compound Poisson process). Let A > 0 and let N be a Poisson
process with rate A. Let ¢ = {(;}72; be an i.i.d. sequence of random variables.
Assume N and ( are independent. Let

N(t)

X(t) = Z Cm-

m=1

Then X = {X(t) : t > 0} is called a compound Poisson process.
Suppose (1 € {0,1,...,k} as. and p; = P((1 = j). For 0 < j <k, define

N(t)
NI () = 3} L=}
m=1
Then N°, N', ... N* are independent Poisson processes and

k
X(t) = >N (1),
j=1

for all ¢ = 0 (check, use Lemma 10.24).

Example 10.26 (a Poisson process on a measure space). Let (5,S) be a mea-
surable space. Recall that M (S) is the set of all o-finite measures on (5, S), and
that M(S) is the smallest o-algebra on M (S) such that v — v(A) is measur-
able for all A e S. Also recall that a random measure on S is an M (S)-valued
random variable.

Let o € M(S). A Poisson process on S with mean measure o is a
random measure p such that, for all disjoint A;,..., A, € § with a(4;) < oo,
we have that

(A1), ..., p(An)
are independent with p(A;) ~ Poisson(a(A4;)).
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Suppose a(S) < 0. Let N ~ Poisson(«(S5)). Let (1, (a,... be iid. S-valued
random variables with ¢; ~ a/a(S). Suppose N,(1,(s,... are independent.

Define
N
m=1

Then p is a Poisson process on S with mean measure « (check, use Lemma
10.24).

Suppose a(S) = 0. Let {S;}, be a disjoint sequence in S with  J;~, S; = S
and a(S;) < 0. Let §;, ={AeS: Ac S;}and o; = als,. Let pq,pa,... be
independent, where pu; is a Poisson process on S; with mean measure «;. For
Ae S and w e Q, define

ISk

wA w) = > wi(AnS;,w).

=1

Then p is a Poisson process on S with mean measure o (check).
Finally, let A > 0 and let N T and N~ be independent Poisson processes
with rate A\. Let N~ (t) = N~ (t—). For ¢t € R, define

N(t) = NT()L0,00)(t) = N7 (=t)L(—e0,0) (1)-

The process N = {N(¢) : t € R} is sometimes called a two-sided Poisson process.
Fix w € Q. Note that t — N(t,w) is an increasing, right-continuous function
from R to R. Let p(w) be the Lebesgue-Stieltjes measure on R associated with
N(,w). That is, u((a,b]) = N(b) — N(a). Then u is a Poisson process on R
with mean measure Am, where m is Lebesgue measure (check).

Exercises

10.3. [2, Exercise 3.6.12] Prove Lemma 10.24.

10.4. [2, Exercise 3.6.3] Let {Y,, : m € N} be i.i.d. and uniform on {1,...,n}.
For k < n, let
= 1inf{m : |{Y1,...,Y,}| = k}.

Recall that 7{* = 1 and, for 2 < k < n, the random variables
T — 151 ~ Geom(py)

are independent. Here, py = 1 — (k — 1)/n. Suppose k(n)/n'/? — X € (0, 0).
Prove that 7}, — k(n) = N, where N ~ Poisson()\?/2).

10.5. [2, Exercise 3.6.5] Let T be a (0, 00)-valued random variable. Suppose
that
PT>t+s|T>t)=P(T>s),

for all s,t > 0. Prove that there exists A > 0 such that T ~ Exp(\).
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10.3 Limit theorems in R

This section corresponds to [2, Section 3.9].

Let X = (X1,...,Xq)T be a random vector. In this section, we shall be
careful about indicating whether or vectors are row vectors or column vectors,
since we will be making use of matrix multiplication. In general, all vectors will
be column vectors unless stated otherwise. The distribution function of X
is the function Fx : R* — R given by

Fx(x) = P(X <z)=P(X; <x1,...,Xq < zq).

It is a consequence of [2, Theorem 3.9.1] that X,, = X if and only if Fx (z) —
Fx (z) whenever F is continuous at x.

A sequence, {u,}, of Borel probability measures on R? is tight if, for any
€ > 0, there exists an M > 0 such that

liminf g, ([—M, M]%) =1 —¢.
n—oo

A sequence, {X,,}, of random vectors is tight if their corresponding distributions
are tight. Theorem 7.27 is still valid in R?, so that {X,,} is tight if an only if
every subsequence has a further subsequence that converges in distribution. (See
[2, Theorem 3.9.2] for the proof.)

The characteristic function (ch.f.) of a random (row) vector X in R?
is the function pyx : R? — C given by ¢x(t) = E[eXt*], where (-,-) is the
Euclidean inner product on R?, or dot product. Theorem 7.44 is still valid in
R?, so that convergence in distribution is equivalent to pointwise convergence
of characteristic functions. (See [2, Theorem 3.9.4] for the proof.)

Theorem 10.27 (Cramér-Wold device). If (8, X,) = (0, Xy) for all fived
0 e RY, then X, = Xo.

Proof. Let ¢, = ¢x,. Fix t € R% Since (¢, X,,) = (¢, Xy) and x — €' is
bounded and continuous, it follows that E[e’*X»] — E[eXtX=’]. That is,
on(t) = @u (). O

Given (row) vectors z,y € R? note that 27y = (z,y) and xy” is the d x d
matrix whose ijth entry is x;y;. The mean of a random (row) vector X in R?
is E[X] = u, where u; = EX,;. The covariance of X is

I =T%=E[(X —p)(X - = Ty),

where I';; = cov(X;, X;). The matrix I' is symmetric. It is also nonnegative
definite, that is, (x,T'z) > 0 for all x € R?. To see this, note that

(w,Tz) = 2"Te = 2" B(X — p)(X — )" ] = B[z (X - p)(X — p)"a]
= E[{(X = w2, (X = )T a)] = BII(X — )" ]*] = 0,

and this shows that I' is nonnegative definite.
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A random vector X is said to have a multivariate (or joint) normal (or
Gaussian) distribution if there exists y € R? and T' € R**¢ such that

ox(t) = exp (z > — ;<t,l‘t>.>

In this case, it necessarily follows that p and I' are the mean and covariance of
X, respectively, and we write X ~ N(u,I"). In other words, the distribution of
a jointly normal random variable is determined by its mean and covariance.

Let us adopt the convention that the real-valued random variable which is
identically zero has a normal distribution, so that in d = 1, the multivariate
normal distribution and the (previously defined) normal distribution are the
same. In general, if X ~ N(u,I') and I' is invertible, then we say the distribution
of X is nondegenerate, and otherwise it is degenerate.

Theorem 10.28. The random vector X is jointly Gaussian if and only if every
linear combination of Xq,..., Xy is Gaussian.

Proof. Exercise 10.6. Ul

Let Zi,...,Zq be ii.d. standard normals, and let Z = (Zy,...,Z4). By
Theorems 6.24 and 10.28, it follows that Z is jointly normal. Since £ = 0 and
' = I, we have Z ~ N(0,I). This distribution is called the standard normal
distribution in R<.

Let 1 € R? and let I' € R¥? be symmetric and nonnegative definite. Then
there exists an orthogonal matrix U (that is, UTU = I) and a diagonal matrix
V with V;; = 0 for all 4, j such that I' = UTVU. Choose diagonal W such that
W2 =V and let A=WU. Then ATA=T.

Suppose Z ~ N(0,1), and let X =+ ATZ. For any 6 € R?, the random
variable 07 X = 0T + (A40)T Z is normal, since (A0)T Z is a linear combination
of Z1,...,Z4. Thus, X is jointly normal. Moreover, EX = p and the covariance
of X is

I =E[(X-pnX - =E[ATZZTA] = ATA=T.

Thus, X ~ N(u,I).
The preceding idea is used to prove the following.

Theorem 10.29. Let X ~ N(u,I"). Then X has a density if and only if its
distribution is nondegenerate, and in this case, its density is

1 1 _
fX(x) = (27r)d/2(det F)1/2 exp <_2 <$ - M?F 1(3" - /.L)> )
Proof. See [6, Corollary 16.2]. O

Theorem 10.30 (central limit theorem in RY). Let &, &, ... be i.i.d. random
vectors in RY with mean p and covariance T'. Let X, = & + -+ &,. Then

n_1/2(Xn —nu) = Zr,
where Z ~ N(0,T").
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Proof. Let Y, = n~Y2(X,, — nu) and § € R% By the central limit theorem,
07Y, = Zy ~ N(0,03), where
op = var(07&) = E[07 (& — p)(& — )" 0] = 07T6.
Note that 67 Zp is normal with mean zero and variance
E[0T Zr ZL0] = 0770 = 0.

Thus, 87Y,, = 67 Zr. It follows that Y,, = Zp. O

Exercises

10.6. [2, Exercise 3.9.8] Prove Theorem 10.28.

10.7. [2, Exercise 3.9.4] For n € N u {0}, let X,, = (X,,(1),...,X,(d)) be a
random vector in R%. Assume that X,, = X. Prove that X,,(j) = X (j) as
n — oo for all j.

10.8. [2, Exercise 3.9.7] Let (X7, ..., X4) have a multivariate Gaussian distribu-
tion. Prove that X1, ..., X  are independent if and only if they are uncorrelated.
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Chapter 11

Further Properties of
Random Walks

11.1 Stopping times

This section corresponds to [2, Section 4.1].

Let us recall some of the definitions from 6.4. Let (€2, F, P) be a probability
space, (S,S) a measurable space, and for each n € N, let X,, : © — S be
(F,S)-measurable. In other words, X = {X,} is an indexed collection of S-
valued random variables defined on a common probability space. That is, X is
a stochastic process. Since X is indexed by N, it is a discrete-time stochastic
process.

A filtration is a sequence {F,} of o-algebras such that F, < F,+1 < F for
all n. We say that X is adapted to the filtration if X,, € F,, for all n. The
filtration generated by X is {F.X}, where F.X = o(X1,..., X,,). The process X
is adapted to {F.X}. Moreover, if X is adapted to {F,}, then FX < F, for all
n.

A random time, N, is an N U {oo}-valued random variable. If X = {X, :
n € N u {oo}} is a stochastic process indexed by N u {0} and N is a random
time, then X is a well-defined random variable given by (Xn)(w) = Xy (w)(w)-
On the other hand, if X = {X,, : n > 1} is indexed by N, then the most we can
say is that

Xy:{N<w}—>S
is (Fl{n<w},S)-measurable. If N < o0 a.s., then after modification on a null
set, X is again a well-defined random variable.

In the case that X is indexed by N and P(N = o) > 0, the notation o(Xy)
technically refers to a o-algebra on {N < co}. But we will abuse notation and,
in this case, define

o(Xn)={{XneB}:BeS}u{{XyeB}u{N =w}:BeS}
The reader should verify that, in this case, o(Xy) is a sub-c-algebra of F.

175
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If X is indexed by N and N represents the time at which something happens
with the process X, then the event {N = oo} typically indicates that the event
never occurs.

A stopping time with respect to the filtration {F,} is a random time
such that {N = n} € F, for all n. Note that constant random variables are
stopping time. A stopping time for a stochastic process X is a stopping
time with respect to F.X. If N is a stopping time for X and X is adapted to
{F,}, then N is a stopping time with respect to {F,}.

The hitting time of Ae Sis N =inf{n e N: X, € A}. Since

n=1

v =n = (06#4) 0 (X, e ) e 7Y,

Jj=1

it follows that N is a stopping time for X.

Intuitively, the defining condition of a stopping time, {N = n} € F,,, means
that the occurrence or nonoccurrence of the event {N = n} can be determined
from the information at time n. That is, you can always tell whether or not the
random time N has occurred (giving you the option to act in that moment or
to stop some ongoing procedure).

Proposition 11.1. Let S and T be stopping times with respect to a filtration
{Fn}, and let neN. Then S AT, Sv T, S An, and S v n are stopping times.

Proof. Exercise 11.4. O
Given a stopping time N with respect to a filtration {F,}, we define
Fn={AeF:An{N =n}e F, for all n}.

The set Fy is a o-algebra (check). The o-algebra Fy is interpreted as the
information known at time N.

Proposition 11.2. If M and N are stopping times with M(w) < N(w) for all
w e Q, then Fpy € Fn.

Proof. Exercise 11.7. ]

Proposition 11.3. Let M and N be stopping times with M (w) < N(w) for all
weQ. IfAe Fpy and T = M1 4+ Nlge, then T is a stopping time.

Proof. Exercise 11.8. ]

In the remainder of this section, we assume (.59, S) is a standard Borel space,
let &1,&, ... be i.i.d. S-valued random variables, and consider the process £ =
{6}

We will frequently consider the special case of a random walk X on R?,
which is the case where S = R, & = R4, X =0, X, = & + ... +&,, and
X ={X,}.
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If S =R%and X,, =& + -+ + &,, then {X,} is a random walk. Note that
in this case F.X = F§.

We also assume that the sequence {{;} has been constructed in the canonical
way, using Kolmogorov’s extension theorem. That is, if & ~ u, then

Q=5"=T]]s. J—':é& P:ﬁ%
4 : it

and §;(w) = w; is the projection onto the jth component.

A finite permutation of N is a surjection 7 : N — N such that 7(j) # j
for only finitely many j. A finite permutation is necessarily bijective. A finite
permutation 7 induces a map 7o : Q@ — €2, where (mqw); = wr(;). Note that
8o ma = &n(j)-

An event A € F is permutable if 7r51A = A for all finite permutations .
Let

& ={Ae F: Ais permutable}.
Then £ is a g-algebra (check), which is called the exchangeable o-algebra.
Lemma 11.4. Let X be a random walk on R. Then

(i) {X,eBio}lel,

Xn
(i) {limsup > 1} €&, and

n—0o0 Cn

(iii) T < &, where T = ﬂ 0(&nyEntty---)-

n=1

Proof. Exercise 11.1. O

Theorem 11.5 (Hewitt-Savage 0-1 law). If A € &, then P(A) € {0, 1}.

Proof. See [2, Theorem 4.1.1]. The idea of the proof is to show that A is
independent of itself, so that P(4) = P(An A) = P(A)?. O

Theorem 11.6. Let X be a random walk on R. Then exactly one of the fol-
lowing is true.

(i) X,, =0 a.s. for all n.
(i) X, > © a.s.
(iii) X, —» —0 a.s.

(iv) liminf X, = —0 a.s. and limsup X,, = © a.s.
n—00 n—oo
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Proof. Let X = limsup,,_,,, X,. Then {X < z} € £ for all x € R. By the 0-1
law, P(X < ) € {0,1} for all z € R. Let ¢ = inf{z e R: P(X < z) = 1}. Then
X = c a.s. (check).

Let X = X,41 — & Since {X,,} and {X/} have the same distribution, it
follows that

. d ;.
¢ =limsup X,, = limsup X/, = ¢ — &,
n—oo n—0o0

from which it follows that ¢ = ¢ — & a.s.
Suppose (i) is false. Then it is not the case that £&; = 0 a.s. Thus, ¢ = c—¢&;
a.s. implies that ¢ € {—o0,00}. In other words, one of the following is true:

(a) limsup X,, = —o0 a.s.
n—o0

(b) limsup X,, = o a.s.

n—o0

A similar argument shows that one of the following is true:
(a') liminf X,, = —o0 a.s.
n—o0
(b") lim iorolf X, = 0 a.s.
Since (a) and (b’) is impossible, there are three possibilities: (a) and (a’), which
is (iii); (b) and (a’), which is (iv); and (b) and (b’), which is (ii). O

A symmetric random walk on R is a random walk on R in which & =4
—¢& and P(&§ = 0) < 1. A simple random walk on R is a symmetric random
walk on R with & € {—1,1} a.s. An asymmetric simple random walk is a
random walk with P(§; = 1) = p and P(§ = —1) = 1 — p, where p # 1/2. In
this context, ¢ is typically defined as g := 1 — p, so that p # 1/2 is equivalent to

D #q.
The following proposition implies that a simple random walk visits every
integer infinitely many times.

Proposition 11.7. If X is a symmetric random walk on R, then Theorem
11.6(iv) holds.

Proof. Exercise 11.2. O

Theorem 11.8. Let N be a stopping time for the stochastic process {§; : j € N}
with P(N < o0) > 0. Conditional on {N < oo}, the process {{n+j : j € N} is
independent of Fn and has the same distribution as {§; : j € N}.

More specifically, if ne N, A; €S, and A e Fy, then

P({éns1eAi}n...0n{lnin€ A} n A| N < )
=P({&vs1€Ai}n..n{énineAn} | N <0)P(A| N < w),

and

P{éns1€e A1t n..n{énsn € An} | N < 0)
=P{&eA}n...n{& e AL}
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Proof. Since 2 € Fn and &, &, are i.i.d. with distribution pu, it suffices to
prove
P({fNJrl € Al} N,

{€nin €A} N A| N < )

P(A|N <o n
Jj=1
Multiplying both sides by P(N < o), this is equivalent to proving
P({f]\url € Al} N..

{Entne A nAn {N < ©})

= P(An{N < w}) ﬁ,u(A
j=1
Fix k£ € N. Then
P({£N+1 € Al} N,

{Entn € A} N An{N =k})
=P({&r1€ A1} 0 {lkin€ A} n An{N =k})
Since A € Fp, it follows that

An{N =k}e FS=o(t,..., &)
Thus7 §k+17

,€ken and A N {N = k} are independent, and we have
P({£N+1 € Al} N..

{Enine At n A {N = k})
= P({E1 € A1} o (€ € ADP(A A (N = K])

= P(An (N = k) [ n(Ay)

j=1
Finally, summing over k, we obtain

P({fNJrlEAl}ﬁ {£N+n€A }ﬁAﬁ{N<OO})

Z ({Envr1 €A}

N{€nin € A} N AN {N =k})

Il
MS i

B
Il
—

P(AA N = k) [ ] (4y)
— P(An (N <o) [ [ u(4))

j=1
and we are done.

O
Recall that Q = SN. We define the shift operator 6 : Q — Q by (fw),, =
wWnei. Let 60 be the identity, 8° = 0, and 0*T' = 9 o0 6% for k € N. That is
(ekw)n = Wn+k
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Let A be any element such that A ¢ €. (Such a A is sometimes referred to
as a “cemetery point”.) Given a stopping time N, we define % : Q — Q U {A}
by
0
0Nw = < Z (H"w)l{N=n}(w)) + Al{N:oo}(W)-
n=1

(Although addition and multiplication are not necessarily defined for the objects
x € Qu {A}, we shall assume that 21 = 2 and £ + 0 = 0 + = = z, so that the
above definition makes sense.)

Example 11.9. Let S = R and X,, = & + -+ +&,, so that X = {X,, : ne N}
is a random walk. Let 7 = inf{n € N : X, = 0} be the hitting time of {0}. If
we let Xg = 0, then 7 is the first time that X returns to the origin. As noted
earlier, 7 is a stopping time for the process X.

Note that 7: Q@ - N u {o0}. We will extend the domain of 7 to Q U {A} by
setting 7(A) = oo.

Let 75 = 7 + 70 67. Suppose 7(w) = c0. Then

To(w) = 7(w) + 7("w) = 7(w) + 7(A) = 0.
Suppose 7(w) = m € N. Then

To(w) =m+ 7(0Mw)
=m+inf{n e N: X,,(§™w) = 0}
=m+inf{neN: (0"w); + -+ + ("w), = 0}
=m+inf{neN:w,t1 + + wmnin = 0}
=m+inf{neN: X1, — X, =0}
=m+inf{neN: X,,,, =0}
= inf{k > m : X}, = 0}.

In other words, 75 is the time of the second return to the origin. In general, if
Tnel = Tn + 7 0 07 then 7, is the time of the nth return to the origin.

Proposition 11.10. Let T be a stopping time for the process {£;}. Let Ty =0
and Ty, = Ty,_1 + T 0§71 for n e N. Then P(T, < o) = P(T < w)".

Proof. Since Ty = 0 and 6° is the identity, the result follows for n = 1. Sup-
pose it is true for some n. By Theorem 11.8, conditional on {7, < oo}, the
process {1, +1,&1, +2, .- .} 1s independent of Fr, and has the same distribution
as {£1,&,...}. Note that on {T}, < o0}, we have

T 0 0™ (w) = T(Wr, (w)+1, WT, () 425 - - -)

= T(gTﬂ(w)-‘rl(w)v fT,,(w)+2(w)v . )

Suppressing the w’s, we have

T (@) 9T = T(an+1a§Tn+27 .. )
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Thus,

< 0,T o™ < )

<®)P(Tob™ <0 |T, <)

< 0)P(T (T, +1,8T,+2,--.) <0 | T, < 0)
< 0)

P(T'(&,&,...) <o)
T, < 0)P(T < )

where the last equality comes from the inductive hypothesis. |

Theorem 11.11 (Wald’s equation). Let X = {X,} be a random walk on R
with E|&| < 0o0. Let N be a stopping time for X with EN < . Then EXy =
(EN)(E&).

Proof. First note that EN < oo implies N < o0 a.s. In particular, this implies
that X is well-defined.
Next, we observe that

Ell&mln=my]-
1

{N <m—1}°€ Fp_1. Also,

Ellémln=ni1n=m} =

T s
18

ﬁMs

1n=1

Since N is a stopping time, we have {N > m}
& is independent of F,,,—1. Thus,

18

[00)
3 E[&m vy nzm) =

1n=1 m=1
a0

S E&|P(N > m)
(EI&)(EN) < .

By Tonelli’s theorem, £, 1{n—rn}1{n>m} is integrable on N2 x Q with respect to
i x P, where 1 is counting measure on N2. Therefore, by Fubini’s theorem,

El&m|P(N = m)

D8

0 ©w n
EXN =F Z Xn]-{N:n} =F Z 2 £m1{N:n}

n=1 n=1m=1
[ee] [ee] [ee] [ee]
=F Z Z f’ml{N:n}l{n>m = Z Z fml{N n} 1{n>m}
n=1m=1 m=1n=1
= (Efl)(EN>7
where the last equality is calculated as above. O

Example 11.12. Let X = {X,,} be a simple random walk on R. Let a,b € Z
with a < 0 < b. Let N = inf{n : X,, ¢ (a,b)}. Since N is the hitting time of
{a, b}, it follows that N is a stopping time. We will first show that EN < .
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First note that for any x € (a,b), we have
Pla+Xyo¢ (a,b) =P =1,6=1,....6_,=1) =279 (11.1)
We will prove by induction that, for any n € N, we have
P(Xya € (@,0), Xap-a) € (@,B), . Xopa) € (@,)) < (1= 27079, (11.2)

For n = 1, taking « = 0 in (11.1) gives (11.2). Now assume (11.2) is true for
some n. Then

P(Xp—a € (a,0),. .., X(ns1)(b—a) € (a,0))
= E[P(Xb,a € (CL, b)7 . vX(n+1)(b—a) € (a, b) ‘ fn(b—a))]
= E[l{x, .e@@b) LXnpwe@b)} P (Xminp-a) € (@:0) | Fup—a))]-

In general, if m > n, then using Theorem 6.52 (or more precisely, its more
general form, Theorem 6.66), we have

E[f(Xm)‘fn]:E[f(Xn+fn+l++§m) |—7:n]
= E[f(z+ &1+ +&n)lle=x, = E[f(z + Xn—n)][z=x,

Thus, by (11.1) and the inductive hypothesis,
P(Xp—q € (a,0), ..., X(ns1)(b—a) € (a,0))
= E[lix,_se(ab)) LXppmeab) 2@ + Xo—a € (a,0))|lo=x, (]
< P(Xp—q € (a,b),..., Xppa) € (a,b))(1 —27(7)

< (1 _ 2—(1)—(1))77,4»17

and this proves (11.2).
It now follows that

P(N >n(b—a)) < P(Xp—a € (a,b), ..., Xn@p—a) € (a,b)) < (1 —27C7h)n,
From this we have

P(N =) = lim P(N >n(b—a))=0.

n—0o0
Thus, since N < o a.s., we have
o (n+1)(b—a)—1

EN=§:P(N>m)=Z Z P(N > m)
n=0 m=n(b—a)

é(b—a)goP(N>n(b—a)) ( i 2<ba>> ©,

and we can therefore apply Wald’s equation.
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By Wald’s equation, we have EXy = (EN)(E&;) = 0. On the other hand,
X € {a,b}, so
0=FEXpN =aP(XN =a)+bP(XN :b)
=a(l—P(Xn=10))+bP(Xn=0)
=a+ (b—a)P(Xy =b),
from which we obtain
a la]

P(XN:b):_b—a: b—a

and b
a
PXy=a)=1 = .
Ky =a) * b—a b—a
For z € Z, let T, = inf{n € N : X,, = z} be the hitting time of {z}, so that
N =T, ATy. Then {Xy = a} = {T, < Tp}. Also, {T, < Tp} 1 {T, < o} as

b 1 co. Thus,

~1

P(T, <o) = bli—>Halo PT,<Ty) = bli_)rglo . ,

so that T, < o0 a.s. In particular, this implies that Xz, is well-defined, and of
course X7, = a a.s.
Finally, we claim that ET, = co. To see this, suppose that ET, < co. Then
by Wald’s equation,
a = EXTa = (ETQ)(Efl) = 07

a contradiction.

Theorem 11.13 (Wald’s second equation). Let X = {X,} be a random walk
on R with E&; = 0 and E€2 = 02 < o0. Let N be a stopping time for X with
EN < w. Then EX% = (EN)o?.

Proof. Fix m € Nu {0}. Define Y = {¥,,}*_ by Y, = Xy.n — Xnam. Let
nzm+1. If N<n,then NAn=NAaA(n—1)=N,sothat Y, =Y,_1. On
the other hand, if N > n > m, then Y, = X,, — X,, and Y,,_1 = X,,_1 — X,».
Thus,
Yn2 = Yn2—l + ((Xn - Xm)2 - (Xn—l - Xm)Q)l{N>n}

= Yn2—1 + (Xn—1 — Xm + gn)Q = (Xn-1— Xm)Q)l{Nzn}

=Y+ (260 (Xno1 — Xm) + E2) 1 (n5n)-
Since &, and X,,_1 — X, are both square-integrable, it follows that (2, (X,-1—
Xm) +€ﬁ)1{N2n} e L'(Q), and so we may take its conditional expectation. Since
{(Nzn}={N<n—-1}¢e F,_1 and X,,_1 — X, € F,,_1 and &, is independent
of F,_1, we have

E[(2§n(Xn71 - Xm) + gg)l{NZn} | ]:nfl]
= 1{N2n}(2(Xn—l - Xm)E[gn] + E[@Qz]) = 0'21{N2n}7
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which gives
EY? = EY? | + 0®>P(N = n).
Since Y,, = 0, it follows by induction on n that for every n > m + 1, we have
EY? =0 Y P(N=k).
k=m+1

In other words,

[XNAn — XNAmniz(Q) =0’ Z P(N = k) < o*P(N >m) — 0,
k=m+1
as n,m — o0. Hence, { Xy n}%_, is a Cauchy sequence in L?(2), and so there
exists Z € L%(Q) such that Xy, — Z in L? as n — oo. It follows that there
is a subsequence with XNAn(j) — Z a.s. as j — 0. But Xy.n — Xy as.
Therefore, Z = Xy, and s0 Xy, — Xu in L?. Consequently,

n 0]
EXf = lim EXY,, = lim o ;IP(N > k) = o2 ’;113(1\] > k) = o?EN.

n—0o0

O

Example 11.14. Let X = {X,,} be a simple random walk on R, let a,b € Z
with @ < 0 < b, and let N = inf{n : X,, ¢ (a,b0)}. In Example 11.12, we
showed that EN < oo. Thus, by Theorem 11.13, we have EX% = 0?EN,
where 02 = F¢2 = 1. Thus,

EN = EXY = d*P(Xy = a) + b*P(Xx =)

b |a
2 b2
b—a+ b—a

In particular, if a = —L and b = L, then EN = L?.

=a

= |a|b.

Exercises

11.1. Prove Lemma 11.4.
11.2. [2, Exercise 4.1.1] Prove Proposition 11.7.

11.3. [2, Exercise 4.1.2] Let {X,,} be a random walk on R with E¢; = 0 and
var(&1) € (0,00). Prove that Theorem 11.6(iv) holds.

11.4. [2, Exercise 4.1.3] Prove Proposition 11.1.

11.5. [2, Exercise 4.1.4] Let S and T be stopping times with respect to a filtra-
tion {F,}. Prove or disprove: S + T is a stopping time.

11.6. [2, Exercise 4.1.5] Suppose Y = {Y,,} is adapted to a filtration {F,} and
N is an {F,} stopping time. Prove that Yy1(y<op} € Fi-

11.7. [2, Exercise 4.1.6] Prove Proposition 11.2.
11.8. [2, Exercise 4.1.7] Prove Proposition 11.3.
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11.2 Recurrence

This section corresponds to [2, Section 4.2].
Throughout this section, X = {X,} is a random walk in R?. The point
x € R? is a recurrent value for X if, for all ¢ > 0, we have

P(| X, —z| <eio.) =1,

where |z| = max{|z1],...,|zq|}. Note that by the Hewitt-Savage 0-1 law, for
any x € R%, we have P(|X,, — z| < ¢ i.0.) € {0,1}.

A point z € R? is a possible value of X if, for all £ > 0, there exists n € N
such that P(| X, —z| <e) > 0.

Let V be the set of recurrent values and U the set of possible values.

Theorem 11.15. The set V is either empty or a closed subgroup of (R%,+)
(that is, closed under addition and additive inverses). In the latter case, V = U.

Proof. See [2, Theorem 4.2.1]. O

If V = &, then X is transient. Otherwise, X is recurrent. As in Example
11.9, let 7,, be the nth return to 0.

Theorem 11.16. The following are equivalent:
(i) 11 < © a.s.,

(ii) P(X, =04.0.) =1, and

(iii) 3y P(Xm = 0) = 0.

Proof. By Proposition 11.10, we have that (i) implies 7, < o a.s. for all n,
which is equivalent to (ii). Let

0 o0
= Z lix,, =0y = Z L, <o}
m=0 n=0

so that
o0 o0
EN=ZP(X,,L=O Z (Tn < 0),
m=0 n=0

which shows that (ii) implies (iii). Moreover, if P(m; < o0) < 1, then

e}
P(X Z (11 < 00)" < o0,
0 n=0

ANat

so by contraposition, (iii) implies (i). O

Lemma 11.17. For alln € N, we have

(G- ()
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Proof. Heuristically, consider an urn containing n black marbles and n white
marbles. There are (27:‘) ways to select n marbles from the urn. One way to
make this selection is to first select an integer 0 < m < n, and then select m
black balls and n — m white balls.

For an analytic proof, consider that (z + 1)?" = (z + 1)"(z + 1)" implies

Z (QD” ) ( Z (J>) - Z Z () (])

Equating the coefficient of z", we have

()-.2, (0 - 200

1+j=n
which proves the identity. O

Theorem 11.18. A simple random walk in R is recurrent if d < 2 and tran-
sient if d = 3.

Proof. In this proof, let {e1,...,eq} be the standard basis in R<.
First assume d = 1. For n € N, we have P(Xs,-1 = 0) = 0 and

Qn) g—2n _ (2n)1272n

P(Xon =0) = <n (n)2

By Stirling’s formula,
nl ~n"e "V2mn,

as n — oo0. Thus,

2n)*e= 2\ /4rn 270 1
P(X2n=0)~( >2 — - ,
n?ne=2n(27mn) NEZD

giving

DR

0 [e¢]
1
P(Xp=0)=1+ Y P(X0,=0)>1+C ) —— =
n=1 n=1 ™m

By Theorem 11.16, we have that 0 is a recurrent value for X, and so X is
recurrent.

Now suppose d = 2. Again, for all n € N, we have P(Xg,_1 = 0) = 0. Fix
n e N. Let

0

M=|{l<j<2n:€&=all,
and note that

{Xon =0} = [ {Xon = 0} 0 {M = m}.

m=0
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Thus,
P(Xgn:()): i P(XgnfO,M:m)
m=0
_ S (271)' —2n
- m2=0 m'm'(n—m)!(n—m)'4
B 2 (2n)! n! 2 Com
- 2 (=)

By Lemma 11.17,
o\ 2
P(Xay = 0) = 42”< ”) .

Again, by Stirling’s formula, this gives

1
P(X9, =0) ~ —
(Xan ) mn’
which implies
[e@] 0 0 1
D P(Xp =0) =1+ > P(Xy, =0) > Z?
m=0 n=1 n=1

And again, by Theorem 11.16, we have that 0 is a recurrent value for X, and
so X is recurrent.

Next, suppose d = 3. Again, for all n € N, we have P(X2,-1 = 0) = 0. As
in the case d = 2, if

J=[{1<j<2n:§ =el}l
K=[{1<k<2n:& = el
then
P(Xy, =0) = P(X9, =0,J =3, K =k)
0<j,k<n
j+k<n
_ Z (2TL) 67277,
o< Tien JIRE = G = k)l(n — j — F)!
j+k<n
2n n! 2
(), 2 Gt )
nJ) o< hen JlkNn —j5 —k)!
Jtk<n
< (9 (2n) 2 n! g-n
N o Ten j\kl(n—j —k)!

jt+k<n
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where
o n! 3-n
= max —————— .
" o<jken Ik (n —j — k)!
jtk<n
Let
J=H{0<j<n:&=te}],
K=1{0<k<n:& = tel,
and note that
n! ~ ~
Z _— 37" = Z PJ=jK=k =1
il P | ’ ’
OS]}kgn‘]'k'(n J k) 0<j,k<n
j+k<n j+k<n

so that

P(Xa, = 0) < 0, 2720 (2:>
Lastly, it can be shown that C,, = O(n™1) (see the proof of [2, Theorem 4.2.3]
for details), so that P(Xs, = 0) = O(n~%2), and this implies > P(X,, =
0) < . By Theorem 11.16, we have P(X,, = 01i.0.) < 1, so that 0 is not
a recurrent value for X. By Theorem 11.15, we have V = ¢J, and so X is
transient.

Finally, assume d > 3. As described in the proof of [2, Theorem 4.2.3], a
3-dimensional simple random walk can be created from the first 3 coordinates
of X, and the transience of this embedded random walk implies the transience
of X. O

The remainder of [2, Section 4.2] is devoted to showing that Theorem 11.18
is still true, in some sense, for random walks that are not necessarily simple.
We state the relevant theorems here and refer the reader to the text for more
details.

Theorem 11.19 (Chung-Fuchs theorem). Let X be a random walk on R. If
n~'X, — 0 in probability as n — oo, then X is recurrent.

Theorem 11.20. Let X be a random walk in R2. If n='2X,, converges in
distribution to a nonconstant, normally distributed R?-valued random variable
as n — oo, then X is recurrent.

Theorem 11.21. Let X be a random walk in R3. Suppose that for all § € R3,
we have P({&,0) # 0) > 0. Then X is transient.
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Chapter 12

Martingales

12.1 Definitions and basic properties

This section corresponds to [2, Section 5.2].

Recall from Section 6.4 that a real-valued stochastic process X = {X,,} is a
martingale with respect a filtration {F,} if X is adapted to {F,}, each X,, is
integrable, and X satisfies the martingale property:

E[Xn+1 | fn] = Xna

for all n. More generally, X is a supermartingale if X is adapted, integrable,
and E[X,41 | Fn] < X,. And X is a submartingale if X is adapted, inte-
grable, and E[X,11 | Fn] = X..

If X represents your changing wealth as you play a game, then X is a
martingale if the game is fair, X is a supermartingale if the game is weighted
against you, and X is a submartingale if the game is weighted in your favor.

If we say that X is a martingale, supermartingale, or submartingale with-
out reference to a filtration, then the implied filtration is {F.X}, the filtration
generated by X.

Suppose X is a martingale with respect to {F,} and F.X = G,, = F,. Then

E[X’ﬂ+1 | gn] = E[E[Xn+1 | ]:n] | gn] = E[Xn | gn] = Xn,

and it follows that X is a martingale with respect to G,. The same is true for
supermartingales and submartingales.

Example 12.1. Let X be a simple random walk on R. Since X,, is integrable
and

E[Xn+1 | ]:n] = E[Xn + £n+1 | ]:n] = Xn + E[5n+1] = Xnv
it follows that X is martingale.

Theorem 12.2. Let X be adapted to {F,}. Then

191
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(i) If X is a supermartingale with respect to {F,}, then for all m > m, we
have E[X,, | Fin] < X,

(ii) If X is a submartingale with respect to {Fy,}, then for all n > m, we have
E[X, | Fn]=Xn

(i5i) If X is a martingale with respect to {F,}, then for all n > m, we have
E[X, | Fn] = Xm.

Proof. To prove (i), we will show that E[X, 4 | Fm] < X, for all k € N. By

definition, it is true for k = 1. Suppose it is true for some k. Then

EXpmiks1 | Fml = E[E[Xmgit1 | Far] | Fml < E[Xosn | Fn] < X,

and induction completes the proof.

Note that if {X,,} is a submartingale, then {—X,} is a supermartingale. Also
note that a martingale is both a supermartingale and a submartingale. Thus,
applying (i) to {—X,,} proves (ii), and (i) and (ii) together imply (iii). O

Remark 12.3. Many of the upcoming results will be stated only for super-
martingales, leaving it to the reader to prove them (when applicable) for sub-
martingales and martingales.

Proposition 12.4. If X is a supermartingale and n > m, then EX,, < EX,,.
Proof. This follows since EX,, = E[E[X, | Fm]] < E[Xm]. 0

Theorem 12.5. Let X be a martingale with respect to {F,} and ¢ a convex
function. Suppose that E|lp(X,,)| < oo for alln. Then {o(X,)} is a submartin-
gale with respect to {Fy}.

Proof. Adaptedness is immediate and integrability is by hypothesis. By Jensen’s
inequality and the martingale property for X, we have

E[@(Xn-‘rl) | -Fn] = (p(E[X’rH-l ‘ ‘Fn]) = @(XTL)7
and {p(X,,)} is a submartingale. O

Corollary 12.6. If X is a martingale, p > 1, and E|X,|P < o for all n, then
{| X, P} is a submartingale.

Proof. This follows since x — |z|P is a convex function. O

Theorem 12.7. Let X be a submartingale with respect to {F,} and ¢ an in-
creasing convex function. Suppose that E|p(X,,)| < o for alln. Then {o(X,)}
is a submartingale with respect to {F,}.

Proof. Adaptedness is immediate and integrability is by hypothesis. By Jensen’s
inequality, the submartingale property for X, and the fact that ¢ is increasing,
we have

Elp(Xn1) [ Fu] Z @(E[Xn i1 [ Fu]) = 0(Xn),
and {¢(X,,)} is a submartingale. O
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Corollary 12.8. Let X be adapted to {F,} and a € R. Then

(i) If X is a submartingale with respect to {F,}, then {(X,, — a)*} is a sub-
martingale with respect to {F,}.

(i) If X is a supermartingale with respect to {F,}, then {X,, A a} is a super-
martingale with respect to {Fy}.

Proof. In both cases, measurability is immediate. Integrability follows, since
both |[(X,, —a)™| and | X,, A a|] are bounded above by |X,| + |a].

The submartingale property in (i) follows from the fact that z — (z — a)
is an increasing, convex function. For (ii), since {—X,,} is a submartingale, and
z+— —((—x) A a) =z v (—a) is an increasing, convex function, it follows that
{—(X, A a)} is a submartingale, and so {X,, A a} is a supermartingale. O

+

Let H = {H,, : n € N} be a stochastic process and {F,}>_, a filtration.
Then H is predictable with respect to {F,} if H, € F,,_; for all n. Let
X ={X,, : n = 0} be adapted to {F,} and define the process H-X = {(H-X),}
by

(H-X)p = > Hp(Xm — Xm1).
m=1
Note that H - X is adapted to {F,}. Also note that (H - X), is a discrete
analogue of Sé H(s)dX(s).

Suppose we are playing a sequence of gambling games. Let &, = 1 if we win
the nth game and &, = —1 if we lose. Let Xo =0and X,, =& +---+&,. If H,
denotes the amount we plan to wager on the nth game, then (H - X),, denotes
our wealth after the nth game. Note that since H is predictable, the amount we
plan to wager on the nth game depends only on the information we have after
the (n — 1)th game, as it should.

For example, suppose H; = 1 and, for n € N, we have

Hn+1 = 2Hn1{§n=71} + 1{§n=1}.

Then H is predictable and represents the strategy wherein we double our wa-
ger every time we lose. This strategy is a famous gambling system called the
“martingale”.

Theorem 12.9. Let X = {X, : n = 0} be a supermartingale with respect to a
filtration {F,}. Let H be predictable with respect to {F,}. Suppose each H, is
nonnegative and bounded, that is, for all n € N, there exists C), > 0 such that
0< H, <C, a.s. Then H - X is a supermartingale with respect to {F,}.

Proof. As noted earlier, H - X is adapted to {F,,}. Since each H,, is bounded
and each X, is integrable, it follows that each (H - X),, is integrable. Finally,

E[(H . X)n+1 | ]:n] = E[(H . X)n + Hn+1(Xn+1 - Xn) ‘ ]:YL]
=H -X)p+Hy1 E[ X1 — Xy | Frl.
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Since H, 1 = 0 and
E[Xn+1 - X, | ]:n] = E[Xn-H | ]:n] - X, <0,

it follows that E[(H - X)n41 | Fn] < (H - X)n, and H - X is a supermartingale.
O

Remark 12.10. Theorem 12.9 is also true for submartingales. For martin-
gales, Theorem 12.9 is true without the restriction that each H is nonnegative.
Moreover, the assumption that H is bounded is needed only to ensure the inte-
grability of (H - X),. Assuming the boundedness of X would also suffice.

Theorem 12.11. Let X be a supermartingale and N a stopping time, both with
respect to {Fn}. Then {Xnan} is a supermartingale with respect to {Fy}.

Proof. Let Hy, = 1{yspy. Since {N = n} = {N <n—1}°€ F,_4, it follows that
H = {H,} is nonnegative and predictable, and so H - X is a supermartingale.
Note that

(H-X), = Hpy (X — Xone1)
1

= (Xm *Xm,—l)l{NZm}

m=1
NAn

= Z (Xm - Xm—l)
m=1

= XN/\n - XO-

Thus, Xy an = (H - X),, + Xo. Since the random variable X is integrable and
Fo-measurable, it follows that the constant process Y = {V,,}, where Y,, = X,
for all n, is a martingale (and therefore a supermartingale). Therefore, since
the sum of supermartingales is a supermartingale, it follows that {Xy.,} is a
supermartingale. O

Theorem 12.12 (martingale convergence theorem). Let X be a submartingale
with sup,, E[XF] < . Then there erists an integrable random variable X
such that X, —> Xy a.s.

Proof. Uses “upcrossings”. See [2, Theorem 5.2.8]. O

Remark 12.13. The above martingale convergence theorem is analogous to
the law of large numbers, at least insofar as the mode of convergence is almost
sure. There is also a martingale central limit. See, for example, [3, Section 7.1].

Theorem 12.14. Let X be a nonnegative supermartingale (that is, X, = 0
a.s. for all n). Then there exists an integrable, nonnegative random variable
X such that X,, > X a.s. Moreover, EX < EXj.
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Proof. Applying the martingale convergence theorem to {—X,} implies there
exists an integrable random variable X, such that X,, — X, a.s. Since each
X, is nonnegative, it follows that X, is nonnegative. Moreover, EX, < EXj
for all n, so

EXy <liminf FX,, < EXy,

n—0o0

by Fatou’s lemma. ]

Example 12.15. Let X be a simple random walk on R. Let Y,, = 1 + X,,.
Let N = inf{n > 0 : Y, = 0}, so that {Yy.n} is a nonnegative martingale
(and hence, a nonnegative supermartingale). Therefore, there exists an inte-
grable, nonnegative random variable Y such that Yy .., — Y a.s. But, as shown
previously, N < o0 a.s., which implies Yy .n — Yy = 0 a.s. Therefore, Y = 0.

Since {YnAn} is a martingale, we have EYn ., = EYn .o = EYy = 1 for all
n, whereas EY = 0. It follows that Yy ., does not converge to Y in L'(Q).

Theorem 12.16 (Doob’s decomposition). Let X = {X,, : n = 0} be a sub-
martingale with respect to a filtration {F,}. Then there exist processes M =
{M,} and A = {A,,} such that

(i) X,, = M, + A,, for alln,

(i) M ={M,} is a martingale with respect to {F,},

(1) A ={A,} is predictable with respect to {Fy},

(iv) A is increasing, that is, A, < Apy1 a.s. for all n, and
(v) Ag =0 a.s.

Moreover, if M’ and A’ are another pair of processes satisfying (i)-(v), then
M =M and A" = A.

Proof. Define
An = Z (E[Xm | fm—l] - Xm—l)
m=1
and M,, = X,,—A,,. Then (i), (iii), and (v) are immediate. By the submartingale
property,
A7L+1 - An = E[Xn+1 | Fn] - Xn = 07

and this gives (iv). Lastly,
E[M’Vl-‘rl | ]:n] = E[Xn-‘rl | fn] - An+1
= E[Xn+1 | ]:n] - (An + E[Xn+1 | ]:n] - Xn)
= Mn7

which gives (ii).
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Now suppose M’ and A’ are another pair of processes satisfying (i)-(v). Then

E[Xn | }—nfl] = E[MT/L | -anl] + E[A;z | }—nfl]
= MTIL—l + A;L
=X, 1-A,_,+A

o

which implies A/, — A | = E[X,, | Fn—1] — Xn—1. Since A} = 0, it follows by
induction that A’ = A, and therefore M' = X —A'=X - A= M. [

Exercises

12.1. [2, Exercise 5.2.3] Give an example of a submartingale X = {X,} such
that {X?2} is a supermartingale.

12.2. [2, Exercise 5.2.4] Give an example of a martingale X = {X,,} such that
X, — —0 a.s.

12.3. [2, Exercise 5.2.5] Let {F,} be a filtration and let B,, € F,, for each n.
Define X = {X,,} by X,, = > _,1p,,. Prove that X is an {F,}-submartingale
and identify the Doob decomposition for X.

12.4. [2, Exercise 5.2.11] Let {F,,} be a filtration. Let X = {X,,} and Y = {Y,,}
be integrable, positive, and adapted to {F,}. Assume that

E[Xny1 | Ful < (1+Y,)X,

for all n. Also assume that ), Y;, < 00 a.s. Prove that there exists a real-valued
random variable, X, such that X,, — X a.s.

12.5. [2, Exercise 5.2.6] Let &1,&s,. .. be independent with E{; = 0 and sz =
var(§;) < . Define X,, = & +---+§&, and 57, = 3, 07. Prove that {X} —s}
is a martingale.

12.2 Branching processes

This section corresponds to [2, Section 5.3.4].
Let {&,,; : j,n € N} be i.i.d., N U {0}-valued random variables. Define the
stochastic process Z = {Z,, : n = 0} by Zp = 1 and

Zn-1 o0
Zn= 3 bni= D niliza 2y
j=1 j=1

The process Z is called the Galton-Watson process, or Galton-Watson
branching process.

The Galton-Watson process can be used to model the size of a population
evolving in discrete-time. In this case, Z, represent the size of the population
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(in number of individuals) in the nth generation. The jth individual in the
(n — 1)th generation has &, ; offspring and then dies (i.e., is not part of the nth

generation). Thus, the number of individuals in the nth generation is &, 1 +
<+ +&n.7,_,, unless Z,_1 = 0, in which case Z,, = 0 also.

The random variable &, ; represents the number of offspring that the jth
member of the (n — 1)th generation contributes to the nth generation. Its dis-
tribution, which does not depend on j or n, is called the offspring distribution
of the branching process Z, and is denoted by py = P(§1,1 = k) for k € NuU {0}.

Let us assume that &;; is integrable and not identically zero. Let p =
E¢i 1 € (0,0) be the mean number of offspring per individual per generation.
Let Fo = {F,Q} and, for ne N, let F,, = 0({&m; 1 j € N,1 < m < n}). Define
M={M,:n>0}by M, =p"Z,.

Lemma 12.17. The process M is an {F,}-martingale.

Proof. Since Zy = 1 is constant, we have Z € Fy.
Suppose Z,_1 € Fn_1 for some n € N. Then Lz, _1>j € Fn_1 < F, and
&n,j € Fn, for all j € N. Thus, &, 117, ,>j € Fn, and 1t follows that Z, € F,.
By induction, Z is adapted to {F,}, and consequently, M is adapted to F,.
Since

<&njgliz, =i <&njs

it follows that &, j1(z,_,>;} is integrable, and so we have

B[z, .>5] = ElE[6n,j1{z,_ 55} | Fn-1l]
= B[z, 25 Elén ]l = wP(Zn-1 = j).

Thus,
EZ, = Z PP(Zn1 > 5) = pEZy 1.

Since EZy = 1, we have EZ, = p" for all n. In particular, each Z,, is integrable,
and hence, each M,, in integrable.
Finally, as above, we have

E[Mn|fn71]: [n|-Fn 1]
[e¢]
[Z niliz,_ 1/3}‘7: ]
0

Z fnjl{Z,L 125} |]:n 1]

,n+1 Z 1{Z,L .y

— 'uf’rLJrl Zn—

n—1,
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where we have used the monotone convergence theorem for conditional expec-
tations to reverse the sum and expectation. This shows that M is an {F,}-
martingale. ]

Since M is a nonnegative martingale, it follows from Theorem 12.14 that
there exists an integrable, nonnegative random variable Y with FY < EMy =1
and M,, —» Y a.s.

Theorem 12.18. If u < 1, then Y = 0 a.s., so that Z, = o(u™). In fact,
P(Zy > 0i.0.) = 0.

Proof. Since Z, > 1 on {Z, > 0}, we have
P(Zn > 0) = E[liz,>0] < E[Zn1(z,>0)] = EZn = 1
Thus,

iP(Zn>0 i
)=

By the Borel-Cantelli 1emma P(Z,>01io0 O

Theorem 12.19. Ifpy=1andp1 = P(§11 =1) <1, thenY =0 a.s., so that
Zy = o(u™). In fact, P(Z, >0 i.0.) = 0.

Proof. Since p; < 1, we may choose ¢ € N u {0} such that £ # 1 and p, =
P(&1,1 = £) > 0. Using Theorem 6.66, for any k € N, we have P(Z,, # k |
]:nfl) = hn(anl)a where

:P(ifn,j #k).
j=1

Note that

—P<§1€m 7'574) >P(é{€n,j =5}> =

We will now prove that for N < n and k € N,
P(Zn=Zny1==2Z,=k)<P(Zy=Fk)(1-p})" . (12.1)
The result is trivial if n = N. Suppose it is true for some n > N. Then
P(Zny =ZNy1 = =Zyn="Zpy1 = k)
=FE[P(ZN=2Ny1="=Zpn=k Zny1 =k | Fn)]
= E[l{ZN:ZN+1:"':Zn:k}P(Zn+1 =k | ]:n)]
= El{zy=zn1==Zn=k}(1 = iy 1(Zn))]
= (1= hsr(R)P(Zy = Zns1 = -+ = Zn = k)
—P{)P(ZN = Zns1 = =Zn =k)

<(
< P(Zy = k)1 —pf)" =Y,
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and (12.1) follows by induction.

Now, since p = 1, it follows that Z,, — Y a.s. But Z, is N u {0}-valued,
so Z, — Y a.s. implies that for P-a.c. w, there exists N(w) such that for all
n = N(w), we have Z,(w) = Y (w). Therefore, Y is N u {0}-valued,

P(G ﬁ anY}>=1,

N=1n=N

and it will suffice to show that Y = 0 a.s.
Let k € N. Then

P(Y=l-c)=P<{Y=k:}mG ﬁ{Zn=Y}>

N=1n=N

I
)
PR

(Y =k, 2, = Y})

[

= 2 = =
i i i i
(DL D LD LR REDL

X
e T8 TCs

—
~
~
I
&
N
I
=
—~
N——

< (2~ 1)
1
0
< Z P (Z, = k}).
N=1
Using (12.1), we obtain
0
P( DN{Zn = k}> = lim P(Zy = Zn1 == Za = k)
< lim P(Zy = k)(1 )N =o.
Thus, P(Y = k) =0forall ke N, and so Y =0 a.s. O

For s € [0,1], let ¢(s) = E[s*1] = >, pes®. The function ¢ is called
the generating function of & ; (or the generating function of the offspring
distribution).

Theorem 12.20. Let > 1. Then ¢ has a unique fized point p € [0,1) which
satisfies P(Z, = 0 for some n) = p.

Proof. Note that
0
¢'(s) = > kprs™t,
k=1

and

o"(s) = Z E(k — 1)pps™2.

k=2
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Also,

s—1—

¢'(1) = lim ¢'( Z E[&11]

Let ¥(z) = ¢(x) — x, so that ¥(0) = cp(()) = pp = 0 and ¥(1) = 0. Since
Y'(1) = p—1 > 0, it follows that for € > 0 sufficiently small, we have 1)(1—¢) < 0.
Thus, by the intermediate value theorem, there exists p € [0,1 — ¢) such that

¥(p) = 0.
Suppose there exists 0 < p; < pa < 1 such that ¥(p1) = ¥(p2) = 0. Since

(1) = 0 also, the mean value theorem implies that there exists z1 € (p1, p2)
and x5 € (p2, 1) such that ¢'(z1) = ¢/ (x2) = 0. But " = ¢” is strictly positive,
so 1)’ is strictly increasing, which is a contradiction. Hence, there exists a unique
p € [0,1) such that ¥(p) = 0, that is ¢ has a unique fixed point p € [0,1).

Note that ¢’ > 0, so  is strictly increasing. In particular, if x < p, then
o(z) < e(p) = p.

Now let A,, = {Z,, = 0}. Note that A,, ¢ 4,41 and

UA” = {Z, = 0 for some n}.

For each £ € N, let Z() be a branching process with the same offspring distribu-
tion as Z, constructed so that ZW 7?2 are independent, and independent
of Z1 = &,1. Define Zy = 1 and

Z—Z%D

for n € N. It can be shown that Z = {Z,} and Z have the same distribution.
Note that Z; = Z;. Thus, for n,k € N, we have

P(Zy=0|21=k) =PZY, =0,....2%, =0) = P(Z,_1 = 0)".
Note that this also holds for k£ = 0. Hence, for n € N,
P(An) = P(Zn = O)

Since ¢ is strictly increasing, it follows that {P(A,)}>_; is a strictly increasing
sequence. Also, since x < p implies p(x) < p, and P(Ap) = 0 < p, it follows
that P(A,) < p for all n. Thus, there exists p < p such that P(4,) 1 p as

n — 0. Finally,

n—o0

P(Z, =0 for some n) = P (UA) lim P(A,) =p.
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On the other hand, since ¢ is continuous,

P(Z, =0 for some n) = lim P(A4,) = lim p(P(An—1)) = ¢(p).

n—oo n—oo

Therefore p = ¢(p). Since p < p < 1, it follows that p = p. O

Exercises

12.6. [2, Exercise 5.3.12] Let Z = {Z,,} be a branching process whose offspring
distribution has mean p > 1. Let p be the unique fixed point in [0,1) of the
generating function, ¢(s) = E[s?1]. Prove that

P ( lim "2, = o) e {p1}.

n—o0

Show that if the probability is p, then
P ({ lim p "2, > O} AN {Z, > 0 for all n}) =0.
n—aoo

In other words, modulo a set of measure zero, =~ "7, — 0 if and only if the
population goes extinct in finite time.

12.3 Doob’s inequality, convergence in L?

This section corresponds to [2, Section 5.4].

Let X = {X,,} be a submartingale. Recall that EXy < EX,, for all n. The
same is not true, in general, when n is replaced by a stopping time. For example,
as we saw previously, if Y, = 1 + X,,, where X is a simple random walk, and
N = inf{n :Y,, = 0}, then Y is a martingale (and therefore a submartingale, but
EYy =1and EYy = 0. In order to retain the inequality under a stopping time,
we must add hypotheses. We will discuss this more when we cover optional
stopping theorems. For now, here is a simple variant of such a result.

Theorem 12.21. Let X = {X,,} be an {F,}-submartingale and N an {F,}-
stopping time. Suppose there exists k € N such that N < k a.s. Then

EX, < EXy < EX}.
Proof. Since {Xn .} is a submartingale, it follows that
EXo=FEXNnro < EXnar=EXp.

Let H, = l{n<pny. Then H = {H,} is {F,}-predictable. By Remark 12.10,
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(H - X),, is a submartingale. Note that

Z 1{N<m} _Xm,—l)
m=1
= 2 (Xm _mel)
m=(Nan)+1
= Xn - XN/\n-
Thus
0=E(H X)o<BE(H X)), = EX) — EXynp = EX) — EXn,
so that EXy < EX}. Ol

Theorem 12.22 (Doob’s inequality). Let X = {X,} be a submartingale. De-
fine

X, = max X+
os<m<n

Then
AP(X, 2 \) < B[Xnlx, on] < EXy,

for all A >0 and all n € N.

Proof. Let N = inf{m : X,,, = A\}. If X, (w) = A\ > 0, then there exists
m € {0,...,n} such that X;} (w) = X,,(w) = A, which implies N(w) < n, so
that

XN(w)An(w) = XN(w)(w) A

In other words, Xy, = A on {X,, > A}. Therefore,

\%

AP(X, 2 \) = EM iz, 201 < E[Xnanlix,on)- (12.2)

Next, if X,,(w) < A, then for all m < n, we

Xm(w) < X$(w) < Xn(w) < A,

which implies N(w) > n. Thus, Xy.n = X, on {X,, < A}. Since X is a
submartingale and N A n is a stopping time with N An < n a.s., Theorem 12.21
implies EXy A n < FX,,. Together, this gives

E[XNAW,I{Y,’Lg)\}] =EXNan — E[XN/\nl{y”<,\}]
S EXy — E[Xolix, o] = ElXnlix, 2 0]
Combined with (12.2), this gives the first inequality of the theorem. The second

inequality follows from the fact that Y14 < Y14 < YT a.s., for any random
variable Y and any event A. O
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Example 12.23. Let &1, &, ... be independent with E¢,,, = 0 and E¢2, = 02, €
(0,00). Let Xg = 0 and X,, = & + --- + &,. Then {X?2} is a submartingale.
(Why?)

Let > 0. By Doob’s inequality,

:v2P< max X2 2) < EX2,
os<m<n

from which we obtain Kolmogorov’s maximal inequality:

P( max |X,,| = ) < M.

os<m<n xz

Theorem 12.24 (LP maximal inequality). Let X = {X,,} be a submartingale.
Define
X, = max X.
os<m<n
Let pe (1,00). Then
p
EX? < <p> B(X)P.
p—1
Proof. Fix M > 0. If 0 < A < M, then {X, A M > \} = {X,, > A}, so by
Doob’s inequality, we have

P(Xo A Mz=X <A 'E[X g ysay)

If A > M, then P(X,, A M > \) =0, and the above is still true. Thus

Q0

E(X, A M)? pNPTIP(X, A M = \)dA

%

80

PN TPE[X Lix, aarzay] dA

(=)

EU PN TEX k) AM>A}d>\]

X, AM
=F |pX, f P2 dA}

0

= qB[X; (X5 A M)P71],

where ¢ = p/(p—1). Since p and ¢ are conjugate exponents, Holder’s inequality
gives o -
E(X, A M) < q(B(X))P(E(X, A M)V,

Since X, A M < M a.s., it follows that E(X, A M)P < MP < o0, so we may
divide both sides by (E(X,, A M)P)Y4, obtaining

(B(Xn A M)P)P < q(B(X,T)P)VP.
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Note that this is still true even if F(X,, A M)P = 0. Raising both sides to the
p, it follows that

P
B, My < (S27) B,

p—
Letting M — oo and applying the monotone convergence theorem finishes the
proof. Ol

Corollary 12.25. Let X = {X,,} be a martingale. Define

XF = max Xl

n
osm<n

Then
D P
E(XP < () E|X,P.
p—1

Proof. By Theorem 12.5, {|X,|} is a submartingale and the result follows im-
mediately by Theorem 12.24. O

Theorem 12.26 (LP convergence theorem). Let X = {X,} be a martingale.
Suppose there exists p > 1 such that sup,, E|X,|P < . Then there exists
Xo € LP(Q) such that X,, —> Xo a.s. and in LP.

Proof. Since EX;" < E|X,,| < (E|X,|P)"/?, it follows that sup,, EX;" < c0. By
the martingale convergence theorem (Theorem 12.12), there exists X, € L' (£2)
such that X, — X4 a.s. Let C' = sup,, E|X,|P < co. By Corollary 12.25,

» \?
E(X)P < () C
p—1
Letting n — o0 and applying the monotone convergence theorem, we have that
sup,, | Xn| € LP (). Since | X4 | < sup,, |X,|, it follows that Xo, € LP(£2). More-

over, using | X, — X |P < (2sup|X,|)?, it follows by the dominated convergence
theorem that X,, — X in LP. O

Theorem 12.27 (orthogonality of martingale increments). Let X be an L?
martingale. That is, X = {X,} is a martingale and X,, € L*(Q, F, P) for all n.
Let m < n. Then X, — X, is orthogonal to the subspace L?(Q, F,,, P). That
is, if Y € L? is Fp,-measurable, then E[Y (X, — X,;,)] = 0.

Proof. Since
E[Y(Xn - Xm)] = E[E[Y(Xn - Xm) | ]:m]] = E[YE[Xn —Xm ‘ ]:m]]7

and
ElX,—Xm | Fn] =FE[Xn | Fn]l — Xm =X — X =0,
it follows that E[Y (X, — X,,)] = 0. ]

The following result is the conditional analogue of the formula used to cal-
culate variance: F|X — EX|?> = EX? — (EX)%
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Theorem 12.28. Let X be an L? martingale. Then
E[(Xn - Xm)2 ‘ fm] = E[X’?L | fm] - szm
for allm < n.

Proof. By the orthogonality of martingale increments, we have

[(
= E[(Xy — X0n)? + 2X00 (X — Xon) + X2 | Finl
= E[(Xp — Xn)? | Fin] + 2XmE[ X, — Xon | Fu] + X2
= E[(Xn - Xm)2 | -FM] + Xfm
and we are done. O

Exercises

12.7. [2, Exercise 5.4.4] Let &, s, . . . be independent with E¢; = 0 and || < K
a.s. for all j. Define X,, = & + -+ + &,. Prove that

(v + K)?

P Xl < < —,
(max | X ;1:> var(X,)

1<m<n
for all x > 0.

12.8. [2, Exercise 5.4.5] Let X be an L? martingale with X, = 0 a.s. Prove
that

EX?
P (mmme > A) SEXZ 4N

for all A > 0.

12.9. [2, Exercise 5.4.7] Let X and Y be L? martingales with respect to a
common filtration {F,}. Prove that

n
EX,Y, — EXoYy = ), E[(X; — X;_1)(Y; = Yj_1)].

Jj=1

12.4 Uniform integrability, convergence in L!

This section corresponds to [2, Section 5.5].

Lemma 12.29. Let X be a real-valued random variable. Then X 1is integrable
if and only if
A}IlglooEUX|1{\X\>M}] =0.
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Proof. First, suppose X is integrable. Since | X[l x>y < [X]| for all M and
|X|1{‘X|>M} — 0 a.s. as M — oo, it follows from the dominated convergence
theorem that E[|X|1{x|>n] — 0 as M — .

Now suppose E[|X|l{x|=am] — 0 as M — oo. Choose M such that
E[‘X|1{\X\>M}] < 1. Then

EIX| = E[|X[1yxj<ay] + E[| X1 x)san] < M +1 < 0,
and so X is integrable. O

A family of random variables, {X,}aca is uniformly integrable if

lim sup E[|Xa|lqx,>a] = 0.

M- qea

Note that if {X,} is uniformly integrable, then any subset of {X,} is also uni-
formly integrable.

Lemma 12.30. If {X,}aca is uniformly integrable, then sup,c 4 E|Xo| < 0.

Proof. Choose M such that E[|Xq|1qx, >m3] < 1 for all a € A. Thus, as
before, F|X,| < M + 1 for all a € A. O

Lemma 12.31. Let {X,} be a family of real-valued random variables. Suppose
there exists an integrable random variable Y such that | X,| <Y a.s. for all a.
Then { X} is uniformly integrable.

Proof. The result follows from the facts that |Xo|lyx,>m; < [YIly|>an
a.s. and E[|Y|lgy|>my] — 0as M — co. O

Theorem 12.32. Let X € LY(Q, F, P). Let
F={GcF:G isao-algebra}.
For each G e, let Xg = E[X | G]. Then {Xg}ger is uniformly integrable.

Proof. Let ¢ > 0 be arbitrary. By Exercise 2.15, we may choose 6 > 0 such
that E[|X|14] < & whenever P(A) < §. Define My = 6 'E|X|. Let M > M
be arbitrary. Fix G € F. Let Zg = E[|X| | G]. By Jensen’s inequality for
conditional expectations, | Xg| < Zg a.s. Thus,

E[|Xg|1{|Xg|>M}] < E[Zgl{Z9>M}].

Since {Zg > M} € G, it follows from the definition of conditional expectation
that

E[Zg1(zo>my] = E[|X|1izg>an3]-
By Chebyshev’s inequality,

EZg  E|X] - EIX|

P(Zg > M) <

0,
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and it follows that
Bl X[lizg>nmy] <e.
Putting it all together, we have E[|X¢|l{x >3] < €. Since G was arbitrary,
it follows that
sup E[|Xg|1xg>my] <,
GelF

for all M > My. Since € was arbitrary, limas_,o supger E[| Xg|1¢xg|>nm3] = 0.

O

Example 12.33. Let Y be an integrable random variable and {F,} a filtration.
Define X = {X,,} by X,, = E[Y | F,,]. Then X is an {F,}-martingale (check).
Moreover, by the previous theorem, X is a uniformly integrable martingale. As
we will see in this section, all uniformly integrable martingales can be written
this way.

Proposition 12.34. Let ¢ : [0,00) — [0,00) satisfy = p(x) — 0 as x — 0.
If supye 4 Eo(|Xo|) < 00, then {Xo}aca is uniformly integrable.

Proof. Exercise 12.10. O

Remark 12.35. A common choice for ¢ in Proposition 12.34 is ¢(z) = 2P,
where p > 1. Another possible choice is ¢(z) = z(logz)™.

Theorem 12.36. Suppose X,, — X in probability. Then the following are
equivalent:

(i) {Xn,} is uniformly integrable,
(ii) X, — X in L',
(iii) E|X,| — E|X]|
Proof. Uses truncation. See [2, Theorem 5.5.2] for details. O

Theorem 12.37. Let X = {X,,} be a submartingale. Then the following are
equivalent:

(i) X is uniformly integrable,
(ii) There exists Xo such that X,, — Xo a.s. and in L.
(iii) There exists Xo, such that X,, — Xo in L.

Proof. Suppose X is uniformly integrable. Then sup,, F|X,| < o. Thus, by
the martingale convergence theorem (Theorem 12.12), there exists X, € L!
such that X,, — X a.s. This implies X,, — X, in probability. Therefore, by
Theorem 12.36, we have X,, — X, in L' and we have proven that (i) implies
(ii).

Trivially, (i) implies (iii).

Now suppose (iii) holds. Since convergence in L! implies convergence in
probability, we may apply Theorem 12.36, which gives us that X is uniformly
integrable. Hence, (iii) implies (i). O



208 CHAPTER 12. MARTINGALES

Lemma 12.38. If X,, —» X in L' and A€ F, then E[X,14] — E[X14].
Proof. This follows since

[E[Xnla] = E[X14] = [E[(Xn — X)14]| < E[Xn — X[ =0
as n — . ]

Lemma 12.39. Let X = {X,,} be an {F,}-martingale. Suppose there exists
X such that X, — Xo in L'. Then X,, = E[Xo | Fnl-

Proof. Fix n € N. Note that X,, € F,. Let A € F,,. By the definition of
conditional expectation, we need only show that E[X14] = E[X,,14].

By the martingale property, if k € N, then E[X,+r | Fn] = X,. Thus,
by the definition of conditional expectation, E[X, 1x1a] = F[X,14]. Letting
k — oo and using the previous lemma, we get E[Xy14] = E[X,,14]. O

Theorem 12.40. Let X = {X,,} be an {F,}-martingale. Then the following
are equivalent:

(i) X is uniformly integrable,

(ii) There exists Xo such that X, — Xo a.s. and in L.
(iii) There exists Xo, such that X, — X in L.
(iv) There exists Y € L' such that X, = E[Y | F,] for all n.

Proof. Theorem 12.37 gives (i) implies (ii) implies (iii). Lemma 12.39 gives (iii)
implies (iv). And Theorem 12.32 gives (iv) implies (i). O

Given a filtration {F,}, we will define F, := o(lJ,, Fn)-

Theorem 12.41. Let {F,} be a filtration and 'Y an integrable random variable.
Then E[Y | F.] = E[Y | F] a.s. and in L* as n — oo.

Proof. Let X,, = E[Y | F,] so that X = {X,,} is a uniformly integrable mar-
tingale and there exists X, such that X,, — X a.s. and in L'. It therefore
suffices to show that X, = E[Y | Fe.

For each n, we have X,, € F,. Thus, limsup,, X,, € F,. But limsup,, X,, =
X a.8. So after changing X, (if necessary) on a set of measure zero, we have
Xy € Foo-

Let

L={AeFy:E[Y14] =FE[Xslal}
It remains only to show that F,, — £. By Lemma 12.39, we have X,, = E[X |
Frn]. Thus, E[Y | F.] = E[Xs | Fu] for all n. It follows from the definition

of conditional expectation that F,, < £ for all n, and hence, | J,, F,, < L. Since
U,, Fn is a m-system and L is a A-system, it follows that F,, < L. O

Theorem 12.42 (Lévy’s 0-1 law). Let {F,} be a filtration and A € Fy,. Then
P(A| F,) — 14 as.
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Proof. Take Y = 14 in Theorem 12.41. O

Theorem 12.43. Let X,, — X a.s. Suppose there exists integrable Y such
that | X,,| <Y a.s. for alln e N. If {F,} is a filtration, then

E[X, | Fu]l = E[Xs | Fp) a.s.
as n — 0.

Proof. Uses Theorem 12.41. See [2, Theorem 5.5.9] for details. O

Exercises

12.10. [2, Exercise 5.5.1] Prove Proposition 12.34.

12.11. [2, Exercise 5.5.2] Let 6 be an integrable random variable. Let Z = {Z,,}
be an integrable stochastic process, independent of . Assume Z1, Z, ... are i.i.d.
Define Y,, = 6 + Z,,. (For example, if Z; ~ N(0, 1), then, given 6, the sequence
Y1,Ys, ... is an i.i.d. sequence of N(6,1)-distributed random variables.) Prove
that E[0 | Yy,...,Y,] — 0 as. as n — oo.

12.12. [2, Exercise 5.5.7) Let X = {X,} be an {F,}-adapted, [0,1] valued
process. Let 6 € [0,1] and assume Xy =0 a.s. Let a, f > 0 with a+ 8 = 1 and
suppose

P(Xn1 = a+BX, | Fn) = Xu,

P(Xpsr = BXn | Fu) =1 — X
Prove that there exists A € F such that X,, — 14 a.s. and P(A) = 6.

12.13. [2, Exercise 5.5.8] Prove that if {F,} is a filtration and X,, — X in
L', then E[X,, | F.] = E[Xx | Fo] in L.

12.5 Optional Stopping Theorems

This section corresponds to [2, Section 5.7].

Our main theorems in this section will use the hypothesis that {Xy.n}
is uniformly integrable. Our first two results provide tools for checking this
hypothesis.

Theorem 12.44. Let X = {X,} be a stochastic process and N an N U {o0}-
valued random variable. If Xn1lin<oy is integrable and {X,l{n=pny} is uni-
formly integrable, then {Xn.n} is uniformly integrable.

Proof. Fix ne N and M > 0. Then

ElIXNanll{Xx pn|>n3]
= BlIXN v <o) L1xat v oy =203 Liveny] + BUXalLgx, >0y 1 vsn)]
< BlI[XNL N <oy L {xn1weoy 03] + B X N} 11X 1 0oy > 003]
The result follows by taking the supremum and letting M — o0. |
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Theorem 12.45. Let X be a uniformly integrable {F,}-submartingale, and N
an {Fn}-stopping time. Then {Xnrn} is uniformly integrable.

Proof. See [2, Theorem 5.7.1]. O

Theorem 12.46. Let {X,,} be a uniformly integrable {F,}-submartingale and
N an {F,} stopping time. By Theorem 12.37, there exists Xo, such that X,, —
X a.s. and in L'. Hence, Xy is well-defined. We then have

EXy, < EXy < EX,.
Proof. By Theorem 12.21,
EXo < EXnan < EX,.

We have already established that X,, — X, in L'. By Theorem 12.45, we
have {XnAn} is uniformly integrable. Thus, by Theorem 12.37 and the fact
that Xy an — X a.s., it follows that Xy ., — Xy in L'. Hence, the proof is
completed by letting n — 0. O

Remark 12.47. It is instructive to compare this theorem with Theorem 12.21.

Theorem 12.48 (optional stopping theorem). Let {F,} be a filtration. Let
L and M be {F,}-stopping times with L(w) < M(w) for all w € Q. Let
{Y,} be a stochastic process such that {Yaran} is a uniformly integrable {F,}-
submartingale. Then Y,1{p—qy converges a.s. Define Yo, to be this limit, so

that Yy, and Yas are well-defined. Then EY, < EYy and Yy, < E[Yy | FL] a.s.

Proof. Let X,, = Yaran, so that X = {X,,} is a uniformly integrable submartin-
gale. By Theorem 12.37, there exists X, such that X,, — X a.s. and in L.
In particular, this implies Y, 11—y = Xnlipr—co} = Xooljpr—coy =: Yoo as.
By Theorem 12.46, F Xy < EX,. But Xp = Y, and Xy = YY)y, so this
proves the first inequality.
Now fix Ae Fr,. Let N = L14 + M1 4.. By Proposition 11.3, N is stopping
time. Since N < M pointwise, we have

EYp1a]l 4+ E[Ymlac]l = EYn < EYy = E[Yyla] + E[Yulac).
Since Yy = X is integrable, we have E[Ya;14¢] < o0, so that

ElYp1a] < E[Ymla]l = E[E[Ymla | FL]] = E[E[YM | Fr]la].
This holds for all A € Fr. By Exercise 11.6, Y1, = Y1 1{p<o0) + Xool{r—o) is
Fr-measurable. Also, E[Y)ys | Fr] is Fr-measurable. Thus, by Lemma 6.50, we

obtain the second inequality. O

For the proofs of the next two results, see [2, Theorems 5.7.5 and 5.7.6],
respectively. The first is a generalization of Wald’s equation.
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Theorem 12.49. Let X be an {F,}-submartingale. Suppose there exists B > 0
such that E[| X1 — Xu| | Fn] < B a.s. for all n. Let N be an {F,}-stopping
time with EN < 0. Then {Xnan} is uniformly integrable and EXy > EXj.
If X is a martingale, then EXny = EXj.

Theorem 12.50. Let X be a nonnegative {F,}-supermartingale and N an
{Fn}-stopping time. By Theorem 12.1/, there exists X, € L' such that X, —
X a.s. and EXy < EXy. Hence, Xy is well-defined. It then follows that
EXy < EXp.

Theorem 12.51. Let X be an asymmetric simple random walk with p = P(§ =
1) > 1/2. Let o(z) = (¢/p)* and T, = inf{n: X,, =x}. Fixa <0 <b. Then

(a) {p(Xn)} is a martingale,

(b) we have
P(T,<Ty) =%
¥

(¢) P(inf, X, <a) = P(T, < ©) = ¢(—a), and
(d) P(Ty <) =1 and ET, =b/(2p —1).
Proof. Note that

Blp(Xnt1) | FX1 = Blo(Xn + &ns1) | Fi'] = h(Xa),

h(z) = Ele(z + &ni1)] = pla/p)" " +qlg/p)*
= (¢ +p)(a/p)* = (g/p)" = »(x).

Thus, E[p(X,+1) | FX] = ¢(X,,), which proves (a).

Let 8 = P(T, < Tp). Let N = T, A Tp. By the same methods as in
Example 11.12, it can be shown that EN < oo, and therefore N < o0 a.s. Since
| (XN an)| < |a] v b for all n, it follows that {¢o(Xn n)} in uniformly integrable.
By the optional stopping theorem,

©(0) = Ep(Xo) = Bo(Xn) = 0p(a) + (1 —0)p(b).

Solving for 6 gives (b).

Since {7, < o} = s {Tw < Tp}, and this is an increasing union, (c)
follows by letting b — oo in (b).

Similarly, letting a — —oo gives T, < o0 a.s. Note that {X,, — (p —¢)n} is a
mean zero random walk, and therefore a martingale. Since T, A n is a bounded
stopping time, we may apply Theorem 12.21 to obtain

0= E[XO - (p - q)O] = E[XTb/\n - (p - Q)(Tb A n)]
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Thus,
E[Ty An] = (p—q) "E[X1, An)- (12.3)

Now,
| X7, an| < b+ [inf,, Xl
By (c),

Blinfy, Xp| = ) kP(infy, X, = —k)
keN

D k(p(k) — ok +1))

keN

> k(a/p)" (1 = q/p) < o0,

keN

since ¢/p < 1. Thus, we may apply dominated convergence to the right-hand
side of (12.3). If we also apply monotone convergence to the left-hand side, we
obtain

ET, = (p—q) 'E[Xg,].

Since X7, = b a.s., this proves (d). O

Exercises

12.14. Let X be a mean 0 random walk with 02 = E¢2. Prove that the process
{X2 — 0?n} is a martingale.

12.15. [2, Exercise 5.7.2] Let X be an asymmetric random walk with p > 1/2.
Prove that var(Ty) = 4bpgq/(p — q)*.

12.16. [2, Exercise 5.7.8] Let X,, be the total bankroll of a poker players after
his nth session, so that &, := X,, — X,,—1 is his winnings (or losses, if negative)
from the nth session. Assume that £, &, ... are i.i.d. with & ~ N(u, 0?), where
> 0. Let Xg =be (0,00) and consider

R = {X,, <0 for some n € N}.
Then R represents the event that the player eventually goes broke. Prove that

P(R) < e 2mblo”



Chapter 13

Markov Chains

13.1 Definitions

This section corresponds to [2, Section 6.1].

Let (S,S) be a measurable space. Recall from Section 6.4 that an S-valued
stochastic process X = {X,,} is a Markov chain with respect to a filtration {F,}
is X is adapted to {F,} and satisfies the Markov property,

P(X,41€ B|F,) = P(X,41€ Bl X,), (13.1)

for all n € N and all B e S. The space S is called the state space of the Markov
chain X.

If we say simply that X is a Markov chain, we mean that X is a Markov
chain with respect to {F:X}.

A transition probability on S is a probability kernel from S to S. Recall
from Section 6.3.2 that a probability kernel from S to S is a function p : S —
M;(S) which is (S, M(S))-measurable. (Here, M7(S) is the set of probability
measures on S.) Recall also that we write p(z, A) = (p(x))(A), so that we may
think of p as a mapping from S x S to R.

In Section 6.3.2, it was shows that p : S xS — R is a transition probability if
and only if p(z, -) is a probability measure for all € S and p(-, A) is measurable
for all Ae S.

Lemma 13.1. Let (S,S) be a measurable space. Let X be an S-valued stochastic
process, adapted to a filtration {F,}. If, for each n € N, there exists a transition
probability p, such that

P(Xn,+1 €B | Fn) = pn(XnaB)v
for all Be S, then X is an Markov chain with respect to {F,}.

Proof. Suppose there exists such a transition probability for each n. Fix B € S.
Then P(X, 11 € B| F,) is 0(X,,)-measurable. Thus,

P(X,11€B|X,) =E[P(Xnt1€B|F,) | Xn] = P(Xnt1€ Bl Fn),

213
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and X is a Markov chain. O]

Lemma 13.2. Let (S,S) be a measurable space. Let X be an S-valued Markov
chain with respect to {F,}. If S is a standard Borel space, then, for eachn € N,
there exists a unique transition probability p, such that

P(X,41 € B| Fn) = pn(Xn, B),

for all B € S. (Uniqueness is in the sense that if, for fized n, the transition
probabilities p, and p, both satisfy the theorem, then for P-a.e. w € Q, the
measures pp(Xn(w),-) and pn(X,(w), ) are identical.)

Proof. This is just a special case of Theorem 6.64. O

For the remainder of this chapter, we shall assume S is a standard Borel
space. In this case, we say that an {F, }-Markov chain is time-homogeneous
if the transition probabilities p,, do not depend on n. That is, a Markov chain
is time-homogeneous if there exists a single transition probability p such that

P(X,11 € B | Fn) =p(Xn, B),

forallne Nand all B S.

For the remainder of this chapter, we shall also assume all Markov chains
are time-homogeneous. As such, we will typically refer to time-homogeneous
Markov chains simply as Markov chains.

If X is a Markov chain on S and Xy ~ p, then we say p is the initial
distribution of X.

Theorem 13.3. Let p be a transition probability on S and p a probability mea-
sure on S. Then there exists a Markov chain X on S with transition probability
p and initial distribution p.

Proof. Let Q = SN0} and F = SN0} g0 that a typical w € Q has the form

w = (wo,w1,-..). For n >0, define X,, : @ —> S by X,,(w) = wy.
Let v,, be the measure on (S{O"“’"},S{O"“’”}) determined by

Vp(Bo % -+

x Bp)
=f J D@1y Ba)p(@n_s, dn_1) - - (o, da1 )u(das)
By By _1

As in the proof of Theorem 6.26, we can use Kolmogorov’s extension theorem
(Theorem 2.52) to show that there exists a unique probability measure P, on
(Q, F) such that

P#(Xo € Bo,...,Xn S Bn) = I/n(BO X oo X Bn)

for all By, ..., B, € S. The details are left to the reader in Exercise 13.1.
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We first note that
PM(X() € B()) = I/O(BO) = J’ M(dxo) = ,U,(Bo).
By

It therefore suffices to show that X is a Markov chain with transition probability
p.
Fix ne N and B € §. We want to show that
P,(Xn+1€ B|FY) =p(X,,B).

Let
L={AeF) E,[lix, epyla] = E.[p(Xn, B)14]}.

Since p(X,,, B) is FX-measurable, it suffices to show that FX < L. Let
P = {{XoeBo,...,XnEBn}ZBj ES}

Since P is a 7-system and o(P) = F.X,
that P < L.
Let A= {Xo € By,...,X, € B,} € P. We will first show that

it suffices by the m-A theorem to show

JB f f@n)p(@n—1,dzy) - - p(wo, d1)p(dwo) = Eu[f(Xn)lal,  (13.2)

for all bounded, measurable f : S — R. To show this, first assume f = 1g for
some E € §. Then the left-hand side of (13.2) becomes

f . J P(@n—1,E N Bp)p(@n—2,dxn_1) - - p(xo, dz1)pu(dzo)
BO n—1

=vp(Bg X -+ X Bp_1 X (En By))

= P/_L(XO € B(), .. ';Xn—l € Bn—laXn e EFn Bn)

= EH[IE(X”)IAL
and (13.2) is true for indicator functions. By linearity, it is true for simple
functions, so by dominated convergence, it is true for all bounded, measurable

functions.
We now show that A € L. For this, we note that

Eu[l{Xn_HEB}lA] = VUn+1 BO X ... X B X B)

J J P(xp, B)p(@pn_1,dzy) - p(xo, dxy ) pu(dxo)
Bo

(Xm B)lA]

where in the last line we have applied (13.2) to the bounded, measurable function

p(~,B). O



216 CHAPTER 13. MARKOV CHAINS

Remark 13.4. Although the probability measure in the proof of Theorem 13.3
is denoted by P, it actually depends on p as well. If we change p or p, we will
get a different probability measure.

Often, when we want to construct a variety of different stochastic processes
(or even just a variety of different random variables), we fix one measurable space
(Q, F), one probability measure P, and then consider many different measurable
functions.

Here we are taking a different approach. We fix one measurable space
(Q,F) = (SN0} SNU{0}) " one measurable function X (w) = w, and then con-
sider many different probability measures. We don’t construct our Markov pro-
cess by constructing X on top of a given probability space. Rather, we construct
P, on top of the identity process on the canonical sequence space.

If z € S, we will use P, to denote Ps,. It can be show that

Py(4) = L Py (A)u(dr),

so that for many purposes it suffices only to consider the measures P,.

The Markov chain in Theorem 13.3 is unique in the following sense. If X and
Y are Markov chains, both with transition probability p and initial distribution
i, then X and Y have the same finite-dimensional distributions. That is, for

every n € N, we have (Xo, ..., X,) =4 Yo,...,Yn).

Theorem 13.5. If X is a Markov chain on S with transition probability p and
initial distribution u, then

P(XQEBo,...,XnEBn

)
_ f - f D@y Bu)p(n—2, dan1) - plao, dey)u(dao),
Bg B,

for all By,...,B, €S.

Proof. Note that X,,+1 | Fn ~ p(X,), that is, p(X,,) is a regular conditional
distribution for X,,+1 given F,,. By Corollary 6.67, we have

Elf(Xns1) | Fol = fs f(@)p(X,,dr) as.

for all measurable f : .S — R satisfying E|f(Xp41)| < 0. We will prove that

Bl T] suxm)| = [T fmom) )plnors dza) - o, dax)ildizo),
[Tt = [ (] toe)

for all bounded, measurable f,,,. Taking f,, = 1p,, will finish the proof.
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The claim is true for n = 0, since Xy ~ pu. Suppose the claim is true for
some n. Then

sl v
—E_(Tl__[()fm ) [frs1( n+1)|]:]]
—E:<ﬁfm ) an+1 dex)]
[T s,

where

Fuan) = £ulan) | br(@p(on. do)
= fn(xn) JS fn+1(xn+1)p(wna d$n+1)7

which is a bounded, measurable function. Thus, by the inductive hypothesis,

E[ﬂo fm(Xm)]
- (g fm<zm>)fn<zn>p<xn_1, Qi) - plo, dry)u(do)

= LHQ < ﬁ fm(xm))P(xm AT 1)p(Tn—1,dxy) - - p(0, dz1) p(dx0),

m=0

and this completes the proof. O

Exercises

13.1. Fill in the details in the proof of Theorem 13.3.

13.2 Examples

This section corresponds to [2, Section 6.2].

Example 13.6. Let Y = {Y,,} be a random walk on R?, let X, = 2 € R?, and
define X,, = X + Y,,. Note that since X is not random, we have F} = FX =
.7-"5, where &, = Y, —Y,,_1. Define p : R x R4 — R by

oo A) = | Tale+ () = (A=),
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where £; ~ p and
A—r={y—zeR’:ye A}

Note that p is a transition probability (check). Also note that
P(Xn-H cA | ]:n) = E[IA(Xn + fn.»,_l) | J—"n] = h(Xn),

where
h(z) = E[1a(z + &n+1)] = p(x, A).

Thus, X = {X,} is a Markov chain with transition probability p and initial
distribution d,,.

Henceforth, we will extend our definition of a random walk to include any
Markov chain with the above transition probability.

Let us now consider the special case where S is countable and S = 25.

For each i,j € S, let p(i,7) = 0 and assume Zjesp(i,j) =1 for all i € S.
The indexed collection (p(4,7))i jes can be thought of as a (possibly infinite)
stochastic matrix. (A so-called “stochastic” matrix is just a matrix whose rows
sum to 1.)

With an abuse of notation, define p: S x § — R by

p(i, A) = > p(i, ).

JEA

It can be verified that p is a transition probability on S, and that all transition
probabilities on S can be written this way.

Note that a stochastic process X = {X,,} is a Markov chain with transition
probability p is and only if

P(Xn+1 :,] ‘ Xn = Z.7)(71—1 = Z.n—lw-- ;XO = ’LO) :p(ivj)a
for all n,, 7,40, .,0n_1-

Theorem 13.7. Let Z = {Z,} be the branching process defined in Section 12.2.
Then Z is a Markov chain with transition probability

p@ﬁ—P(merJ)
m=1
Proof. Exercise 13.2. |

Example 13.8. Consider a queue with one server. At time 0, the Oth customer
is just beginning to receive service, and there are z customers in the queue. Each
customer’s service time is independent of other customers, and has a distribution
v, supported on (0,00) and with finite moments of all orders. New customers
arrive in the queue according to a Poisson process with rate A > 0.

We wish to construct a stochastic process X = {X,,} so that X,, represents
the number of customers in the queue at the moment the nth customer begins
receiving service. (In particular, we must have Xy = z.)
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We begin with a heuristic discussion. When the nth customer begins receiv-
ing service, there are X,, customers in the queue. The duration of the service
will be T ~ v. During that time, N new customers will arrive. Since new
customers arrive according to a Poisson process with rate A > 0, we have

A (A

PN =k|T=1)=e 0

P(N=k) = E[P(N =k |T)] = E [e/\ (AT)k]

o k
1 = J e (A1) v(dt) =: ag,

0 !

for all k e Nu {0}. Note that each ar > 0. If X,, + N > 0, then we would have
Xn+1 = X + N — 1, since the customer at the front of the queue would step
out and into service. On the other hand, if X,, + N = 0, this means the queue
was empty when the nth customer began service, and no one arrived during
that customer’s service time. Thus, the size of the queue at the beginning of
the (n + 1)th customer’s service would be 0, that is, X,,+1 = 0.

We turn this reasoning into a formal stochastic process as follows. Let X, =
x. Let &,&, ... be iid. {—1,0,1,2,...}-valued random variables with P(£; =
k) = agy1- For n € N, define X,, = (X,,_1 + &)™

It can be shown (with details left to the reader) that X is a Markov chain
with respect to {F$} with transition probability

ap + ax ift=0,5=0,
p(Z7.7): a‘jJrl 1fl:07]>17
aj_(i_l)l{jzi_l} ifi > 1.

In fact, the above is a transition probability for any sequence {ar}{_, with
ap > 0 for all k and >, a = 1.

This process is called an M/G/1 queue. The “M” refers to the fact that it is
a Markov process, which comes from the assumption that the arrivals follow a
Poisson process. The “G” (for “General”) refers to the fact that the distribution
of the service time, v, is allowed to be any probability distribution. And the
“1” refers to the fact that there is only one server.

Let X be a Markov chain on a countable state space S with transition
probability p(i, j) and initial distribution u. We claim that

PH(XTL = in, I 7AXP() = Zo) = /J(Z()) H p(melalm)

m=1

To see this, note that the equation holds for n = 0 since Xy ~ p. Assume it
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holds for some n. Then

Py (Xpi1 =lng1,--., Xo = i0) = Eu[Pu(Xng1 = ing1,. .., Xo =10 | Fn)]
= Eu[l{Xn—zn, L Xo= zo}P (Xn+1 = int1 | ]:n)]
= Eu[lix, —in,... Xo=io} Pu(Xnt1 = ing1 | Xn)]
= Eu[l n=in,..., Xo= zo}p(Xnvln+1)]
= Eu[lix, —in,... Xo=io}P(in, int1)]

p(znyanrl)Pﬂ(Xn = ina cee »XO = i(])a

and the result then follows from the inductive hypothesis.

Recall that p : S — R can be informally regarded as a (possibly infinite)
matrix. Along these lines, let us define p® = I, where I : $2 — R is defined by
I(i,j) = 1gi=;;. We then define p" : S? - R by

p" (i, 3) = D 0" 6 k)p(k, 5).
keS

The fact that this kind of “matrix” multiplication works more generally follows
from Remark 13.12.

Similarly, u € M;(S) can be considered a function from S to R where p(j) =
w({j}). Informally regarding p as a (possibly infinite) row vector, we define

up™ S — R by
pp"(5) = . p(k)p" (k, 5).
keS

Note that up® = u. Also note that §,p"(j) = p"(z, j).
With this notation, we claim that

P.(Xy =j) = up"(j)-

To see this, note that the equation holds for n = 0 since Xg ~ p. Assume it
holds for some n. Then

PM( n+1_.7 ZP X _k ( n+1:j|Xn=k)

keS
= > " (k)p(k
keS
- Z Z w(O)p™ (L, k)p(k, j)
keS teS
- Z () Z p" (¢, k)p(k, j)
les kesS
= S a0 (8 5) = w (),
leS

and the claim is proven by induction.
As a special case of this formula, we have

P (X, =j)=p"(x,)) (13.3)
for all x,j € S and all n € N u {0}.
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Exercises

13.2. Prove Theorem 13.7.

13.3. [2, Exercise 6.2.8] Let X,, be a simple random walk on R and define
Y, = maxo<m<n Xm. Prove that {Y,,} is not a Markov chain.

13.3 Extensions of the Markov property

This section corresponds to [2, Section 6.3].

Recall that the general Markov property is given by (13.1). However, as
stated previously, we are assuming that all our Markov chains are time homoge-
neous with a state space that is a standard Borel space. We further assume, as
in the proof of Theorem 13.3, that our Markov process is built by constructing
a probability measure P, on the canonical space (Q,F) = (SNVi0} SNU{0}) 50
that the identity process X = {X,}, where X, (w) = w,, is a Markov process
with transition probability p and initial distribution p. Because of this, we are
free to use the shift operator 6, defined just prior to Example 11.9.

In this setting, the following theorem gives a useful reformulation of the
Markov property.

Theorem 13.9 (Markov property). If Y is a bounded random variable, then
for alln e N U {0},
Eu[Y 06" | Fu] = Ex, Y.

where Ex, Y = ¢(X,,), with p(z) = E,Y.
Proof. See [2, Theorem 6.3.1] 0
Remark 13.10. Since Y is a random variable, we may write
Y =Y (w) = Y(wp,wr,wa,...).
But X, (w) = wy, so
Y(w) =Y (Xo(w), X1(w), Xa(w),...),

which is the same as
Y =Y (Xo, X1,X5...).

In other words, Y is just a function of the path of our Markov process. Also,
Yob"=Y(X,, Xpnt1, Xnt2,--.)

is that same function applied to the part of the path that starts at time n.
Hence, in words, the expected value of Y (X,,, Xpi1, Xni2,...) given F, is
equal to the expected value of Y (Xg, X1, Xo,...) starting at X,.
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Theorem 13.11 (Chapman-Kolmogorov equation). If S is countable, then

Po(Xpyn =2) = Z Po(Xm = y)Py(Xn = 2),

yes
for all z,z € S and all m,n € Nu {0}.
Proof. We begin with
Po(Ximn = 2) = Ex[Po(Xonin = 2 | Fn)]

According to the Markov property,

Po(Xmin =2 | Fn) = Exlix,, =2} | Finl

= E.[1ix, .3 00™ | Fin] = Ex,, [1{x,—=2] = Px,,(Xn = 2).

This last quantity is to be understood as ¢(X,,), where ¢(x) = P.(X, = 2).
Thus,

Po(Ximn = 2) = Eo[p(Xm)]

= Z Po(Xm = y)e(y) = 2 Po(Xim = y)Py(Xn = 2),
yes yeS

which is what we wanted to prove. ]

Remark 13.12. By (13.3), the Chapman-Kolmogorov equation can be rewrit-
ten as
P (@, 2) = Y P (@ )" (v, 2).
yeS

Theorem 13.13 (strong Markov property). Let {Y,} be a sequence of random
variables. Suppose there exists M > 0 such that |Y,| < M a.s. for alln. Let N
be an {F,}-stopping time, where F,, = FX. Then

E YNy o0 | Fnll{neo) = (ExyYN) Lin<o),
where Ex YN = on(Xn), with o, (z) = E,Y,.
Proof. Let A e Fy. Then

18

E (YN 0 0M)invcoylal = ) Eul(Yn 0 0™)1{n_ny14]

3
Il
<}

I
18

Eu[Eu[(Yn 0 0")L(v=nyLa | Fall:

3
Il
o

By the definition of Fy, we have A n {N = n} € F,. Thus, by the Markov
property,

Eu[(Yn 0 0")lnenyla | Ful = Eu[Yn 00" | Fullin=njla
= on(Xn)l{n=n}la,
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where ¢, (z) = E,[Y,]. Putting these together gives

18

Eu[(YN o eN)l{N<so}1A] =

n

Eu [<pn (Xn)l{N:n} 1A]

0
u[@N(XN)l{N<oc}1A]'

Since A € Fy was arbitrary and ¢n (X ) € Fy, this shows that

(E,U.[YN o N | }—N]) 1{N<ao} = Eu[(YN © GN)l{N<oo} | }-N]
= <)0N(AXN)1{N<00}
= (ExyYN) Lin<o}

and we are done. ]

Theorem 13.14 (reflection principle). Let X be a symmetric random walk on
R. Then
P <sup Xm > a> < 2P(X, > a) (13.4)

msn

for all a > 0 and all n € N.

Remark 13.15. Equation (13.4) is equivalent to

P <sup X = a) <2P(X,, = a). (13.5)

m<n

To see this, let ar 1 a in (13.4) and ay | a in (13.5).

Remark 13.16. The idea of the proof, and the origin of the name of the
theorem is the following. Let N = inf{n : X,, = a}. Then the left-hand side of
(13.5) is simply P(N < n). Let us suppose, for the purposes of this heuristic
discussion, that Xy = a a.s. and P(X,, =a) = 0.

Let us decompose the event {N < n} into the two events,

U={N<nX,>a} and L={N<n,X, <a}.

Note that U = {X,, > a}. Consider a particular sample path in U with steps
(&1, €N ENT1, - - -, En). From this we can create a corresponding “reflected”
sample paths, with steps (&1,...,&n, —En+1, —EN+2,- -+, —&n). The reflected
sample path is in L and, in fact, this process of reflection creates a one-to-
one correspondence between U and L. Moreover, because the random walk is
symmetric, the original path and the reflected path have the same probability.
Thus,
P(L) = P(U) = P(X, > a) = P(X,, > a),

which gives

p (Sup X, = a> = P(N <n) = P(U) + P(L) = 2P(U) = 2P(X, > a).

m<n
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Of course, this is not exactly correct, not only because the argument was purely
heuristic, but also because of our simplifying assumption. In particular, we do
not have Xy = a a.s. Rather, the most we can say is that Xy > a a.s.

Proof of Theorem 13.14. Fix n € N. Let N = inf{m : X,,, > a}. For m < n,
define Y,, = 1(x, ,.>q}- For m > n, let ¥, = 0. Note that Y, o §™ =
1{Xn>a}1{mSn}v so that
(Yn 0 0™ neowy = Lix,sanen) = Lix,>a}-
By the strong Markov property,
P(Xn >a | ]:N) = E[(YN o0]\{)1{N<oo} | ]:N]
= E[Yn A | ]:N]l{N<oo}
= QDN(XN)I{N<oo}a

where ¢, () = E.Y,,. Thus, ¢, (z) = 0 for m > n. For m < n and z > a, we
have,
Om(x) = B, Yy = Po(Xp—m > a) = Po(Xpem = ) 2 1/2,

where the last inequality comes from the fact that X is a symmetric random
walk. Since Xy > a a.s. on the event {N < o0}, we have
P(X, > a) = E[P(X, > a| Fx)]

= Elon(XN)1{n<o}]

= E[on(Xn)1{n<n]

1

2

Since {N < n} = {sup,,<,, Xm > a}, this completes the proof. O

V

P(N <n)

Exercises

13.4. Prove the following version of the strong Markov property: Let X = {X,,}
be a Markov chain with respect to {F,} taking values in (S5,S). Let N be an
{Fn}-stopping time. Then, for all m € N and all B € S,

P(XNerEB|]:N)=P(XN+m€B|XN> a.s. on {N<OO}
Note: When conditioning on X above, we are conditioning on the g-algebra
consisting of sets of the form {N < oo} n {Xy € A} and ({N < o} n {Xn €
A}) U{N = o}, where A€ S.
13.5. [2, Exercise 6.3.1] Let X be a (time-homogeneous) Markov chain on a
(standard Borel) space S. Prove that the past and the future are conditionally

independent given the present. More specifically, let A € o(Xy,...,X,) and
Beo(X,,Xni1,-..). Prove that for any initial distribution u, we have

Pu(An B | Xn) = Py(A| Xn)Pu(B | Xp).
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13.4 Recurrence and transience

This section corresponds to [2, Section 6.4].
For the remainder of this chapter, we shall assume S is countable.
Let X be a Markov chain on S. For y € S and k € N, let Tz? =0 and

T: = inf{n > Tgf_l : X =y}

For k € N, the stopping time Tyf is the time of the kth return to y. (If it happens
to be the case that Xy = y, this does not count as a return to y.)

Let T, = T, and, for z,y € S, let p,y = P.(T, < ) be the probability,
starting at = that X eventually visits/returns to y.

Theorem 13.17. If 2,y € S and k € N, then P,(T) < @) = payp}, .

Proof. The result is trivially true for k£ = 1. Suppose it is true for some k € N.
Note that

(Lir, <o} © 0T5)1{T5<00} = Lot oy
By the strong Markov property,
Py(Ty+ < o0 | Fry) = B[z, <o) © o7y | Frslirk <oy
= PXT;c (T, < oo)l{T&@o}
= Py(Ty < 0)lyrr<ooy
= Pyyl(mr<oo}-
Thus,
Py(Ty*t < 00) = B[ Po(Ty ™ < o0 | Fri)] = pyy Po(Ty) < 00) = paypyy,
by the induction hypothesis. O
A state y € S is recurrent if p,, = 1 and transient if p,, < 1. If y is
recurrent, then P, (ngC < ) = p};y = 1, which implies P,(X,, =y i.0.) = 1.

Theorem 13.18. Let y € S. Then y is recurrent if and only if E,N(y) = o,
where

0
N@y) =) Lix,—y
n=1
s the number of returns to y.
Proof. Note that

0 a0 0
E;N(y) = >, Po(N(y) = k) = > Pu(TF < 0) = > payply "
k=1 k=1 k=1
If x = y and y is recurrent, so that p,, = 1, then this sum is infinite. If y is
transient, then

Pxy
E,N(y) = —"—<w
’ L= pyy
for any z € S. ]
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Theorem 13.19. Let x,y € S. Suppose x is recurrent and pyy > 0. Then y is
recurrent and pgy = pyz = 1.

Proof. Let z,y € S. Suppose x is recurrent and pg,, > 0. Assume p,, < 1. Note
that

pk(xay) = Px(Xk: = y)

2 Px(Xl:yla'u;kal:ykflek:y)
Y1, Yk—1€S

I
]

(@, y1)p(Y1,y2) - P(Ye—1,Y)-

Let K = inf{k : p*(x,y) > 0}. Since p,, > 0, it follows that K < co. By the
above, there exists y1,...,yx—1 € S such that

p(z,y1)p(y1,y2) - p(yx—1,y) > 0.

Suppose y; = « for some j € {1,..., K —1}. Then

(2, yj+1)P(Yj+2,Yj43) - P(Yx-1,9) > 0,

which implies pX =7 (z,y) > 0. But this contradicts the minimality of K. There-
fore y; # x for all j € {1,..., K — 1}. Since x is recurrent,

0=Pp(Ty =0) =2 Pe(X1=y1,.. ., Xk-1 = Yx—1, X =y, T = 0)
(Xl = ylw"aXKfl = nylaXK = yaTz oeK = OO)
T 1{X1=y1,~~,XK71=yK71,XK=y}P£C(Tﬂﬁ © GK =@ ‘ ]:K)]

[
T[1{X1=y1,‘~~,XK71=yK71,XK=y}PXK (Tﬂf = OC)]
[

[ T T |
ISECS ;w

g 1{X1—y1, ~’XK—1=yK—1,XK=y}Py(T$ = OO)]
(1 yT) [1{X1=y1;-~~’XK—1=yK71;XK=y}]
= (1 = pya)p(@,y1)p(y1,92) - - P(yx—1,9) > 0,
a contradiction. Thus, py, = 1.
Now, since x is recurrent, we have

0

0 = E,N(x EZl{X_I ZPw(Xn=x)=ip”(wx
n=1

Since py; = 1, we may choose L € N such that pZ(y,z) > 0. For any n € N, we
have

L+"+K(y»y) Py(XL+n+K = y)

/P(XL—x XL+n—£L' XL+n+K—y)
=P (yax)p (l‘,l’)p (l‘7y)

p
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Thus,

0

0
2 +n+Kyy>p Z:J

Since pL(y, ) and pX (x, y) are strictly postive, this implies E, N (y) = co. Thus,
y is recurrent.
Finally, applying what we have proven so far to y and p,, proves that p, =

1. [

Let C = S. Suppose that whenever « € C and p,, > 0, we have y € C. Then
C is closed. Note that if € C, then P, (X, € C) = 1 for all n (check). Let
D c S. Suppose that, for all z,y € D, we have p,,, > 0. Then D is irreducible.

Theorem 13.20. If C is finite and closed, then there exists x € C such that x
is recurrent. If C' is also irreducible, then every x € C is recurrent.

Proof. Let C be finite and closed. Suppose that for all y € C, we have that y is
transient. Fix z € C. Then

ZEN 2 f””" < .

yeC yeC Pyy

On the other hand,

> E:N(y) ZZP i% i (X, €C).

yeC yeC n=

But z € C and C'is closed, so P;(X,, € C) = 1 for all n, which is a contradiction.
Hence, there exists x € C' such that z is recurrent.

Suppose C' is also irreducible. Let y € C. Then p,y, > 0, so by Theorem
13.19, y is recurrent. O

Example 13.21. Let X be a Markov chain with state space S = {1,...,7} and
transition probability

03 0 0 0 07 0 0
01 02 03 04 0 0 O
0 0 0505 0 0 0
wG,iN=(0 0o 0 05 0 05 0
06 0 0 0 04 0 0
0 0 0 0 0 02 08
0O 0 0 1 0 0 0

It can help to visualize the dynamics of X by considering a directed graph with
an edge from ¢ to j if p(4,j) > 0 (ignoring the cases where i = j). (See [2, Figure
6.4].)
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Note that py; > 0. If 2 were recurrent, this would imply that 1 is also
recurrent and that p1o = 1. But p;2 = 0, so it follows that 2 is transient.
Similarly, ps4 > 0, but ps3 = 0, and we have that 3 is transient.

Since {1, 5} is an irreducible closed set, both these states are recurrent. Sim-
ilarly for {4, 6, 7}.

Theorem 13.22. Let X be a Markov chain and let R < S be the recurrent
states. Then R has a unique decomposition as R = LJ_ri R;, where each R; is
closed and irreducible.

Proof. See [2, Theorem 6.4.5] Ol

Exercises

13.6. [2, Exercise 6.4.4] Prove that p,, = pyypy. for all z,y,z€ S.

13.5 Stationary and limiting measures

This section corresponds to [2, Sections 6.5 and 6.6].
Let X be a Markov chain on S with transition probability p(4, j). A measure
pon S is a stationary measure for X if

(i, ) = p(i),
€S

for all j € S. A measure p on S is a stationary distribution for X if it is a
stationary measure and a probability distribution.
If p is a stationary distribution for X, then

Pu(Xy = j) = p(j),
for all j € S and all n € N (check).

Example 13.23. Let f : Z? — [0,1] satisfy Y, _,. f(z) = 1. Then p(i,j) =
f(j — 1) is a transition probability on Z? (check). Let u be the measure on Z¢
such that p(j) = 1 for all j € Z%. Then

2 u@fi—4) = Y fi—5) =1=u().

€24 i€zd
Thus, u is a stationary measure for the Markov chain with transition probability
D.

Example 13.24. Let X be a random walk on R? with & € Z% a.s. Hence, X
is actually a random walk on Z¢. Let f(2) = P(¢; = 2). Then X has transition
probability p(i,j) = f(j — ©), so that =1 is a stationary measure for X.
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Example 13.25. Let X be an asymmetric simple random walk on Z. By the
above, u =1 is a stationary measure for X. In this example, we will construct
another.

Let u be the measure on Z satisfying u(j) = (p/q)? for all j € Z. Then

2 1(@pis ) = p(j = 1)p(j = 1,5) + p( + 1p( + 1)
(p/a)’"'p+ (p/9)’*'q
(p/a)’ (g + p)

(p/
w(j

)j

&

~—

Thus, p is a stationary measure for X.

Example 13.26. Let S be countable. Let a : S x S — {0,1} satisfy a;; = a;;
for alli,j € S, and a;; = 0 for all ¢ € S. Such a choice gives rise to an undirected
graph G = (S, E), where {i,j} € F if and only if a;; = 1. The graph G has no
loops.

Assume that each vertex belongs to only finitely many edges. That is, assume

that
ILL(Z) = Z ;5 < O,
JeS
for all i € S. Note that p() is the number of edges to which i belongs. Let us
define s
p(i,j) = —=,
p(i)

for all ¢, 7 € S. Then p is a transition probability on S (check). A Markov chain
X with transition probability p is a random walk on G which, at each time n,
selects uniformly from among the edges to which X,, belongs, and then moves
along that edge to the next vertex.

Note that
D u(i)pliy §) = > aig = Y aji = pld),
i€S €S i€S
so p is a stationary measure for X.

Theorem 13.27. Let X be a Markov chain on S. Suppose x € S is recurrent.
Let T =inf{n>1: X, =x}. Forye S, let

ta(y) = Ew[TZl 1{Xn—y}]

n=0

be the expected number of visits to y before the first return to x. Then p, is a
stationary measure for X.

Proof. See [2, Theorem 6.5.2]. O
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Remark 13.28. Note that
[o0] [o0]
Mm(y) = Ea:|: Z 1{Xny}1{T>n}:| = 2 Pz(Xn =y, T > TL),
n=0 n=0
for all x,y € S.

Theorem 13.29. Let X be a Markov chain on S. Suppose that S is irreducible
and every x € S is recurrent. Then the stationary measure is unique up to
constant multiples.

Proof. See [2, Theorem 6.5.3]. O

Theorem 13.30. Let X be a Markov chain on S. Suppose there exists a sta-
tionary distribution 7. Then, for ally € S, if n(y) > 0, then y is recurrent.

Proof. Suppose 7(y) > 0 and y is transient, so that p,, < 1. Then

S r(@) BNy = 3 T ch @) 1

zeS zeS l_pyy meSl_pyy 1_pyy

On the other hand,

3 (@) EN(y) =

zeS

g

3
&

D8

P
e

3

Il
S

8
m
19))

I
08
A
=
hS]
3
&
NS

3
I
—

8
m
19}

I
s
=

3
S

i
I

By the definition of a stationary distribution, 7p = w. By induction, then,
wp™ = 7 for all n € N. Thus,

D w@) BN (y) = ), w(y) = 0,
zeS n=1

a contradiction. O]

Theorem 13.31. Let X be a Markov chain on S. Suppose that S is irreducible
and that X has a stationary distribution w. Then

m(x) =

for all x € S, where T,, = inf{n > 1: X,, = z}.
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Proof. Fix x € S. Since 7 is a probability measure, there exists y € S such that
m(y) > 0. Since S is irreducible, py, > 0. Thus, there exists n € N such that
p"(y,x) > 0. We therefore have

n(z) = mp"(z) = Y. w(2)p"(2,7) = 7(y)p"(y,x) > 0.

z€S

We have thus proved that 7(z) > 0 for all z € S. It follows that every x € S is
recurrent.
Fix x € S. By Theorem 13.27 and Remark 13.28,

Ty—1 o0
uac(y) = Eac[ Z 1{X,L=y}] = Z Px(Xn =y, T, > n)
n=0 n=0

is a stationary measure for X with p,(z) = 1 and

n=0

yeS

Thus, p./E.T, is a stationary distribution. By Theorem 13.29, the stationary
measure is unique up to constant multiples. Thus, 7 = u,/FE,T,, and it follows
that

and we are done. ]

Let X be a Markov chain on S. Let z € S be recurrent and define I, =
{n=1:p"(x,z) > 0}. Let d, be the greatest common divisor of I,. Then d,
is called the period of .

For example, let X be a simple random walk on Z and x = 0. Then Iy =
{2,4,6,...} and the period of 0 is dy = 2.

By [2, Lemma 6.6.2], if p,, > 0, then d, = d,. Thus, if S is irreducible,
then d, = d, for all z,y € S. If this common value is 1, then X is said to be
aperiodic.

Theorem 13.32. Let X be a Markov chain on S. Assume S is irreducible, X
is aperiodic, and there exists a stationary distribution w. Then p™(z,y) — 7(y)
asn — oo for all x,y € S. More specifically,

D", y) = w(y) =0,
yesS
asn — o forallze S.

Proof. See [2, Theorem 6.6.4] and its proof. O

Corollary 13.33. Let X be a Markov chain on S. Assume S is irreducible, X
is aperiodic, and there ezists a stationary distribution w. Let Y be an S-valued
random variable with distribution w. Then X, = Y as n — o under P,, for
any initial distribution p.
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Proof. Let f: S — R be bounded with |f| < M. Then

[E[f(Xa)] = B[SOl = | D] F@) Pu(Xn = y) = Y. fy)7(y)

yes yes

=D Fw) D) @) () = Y. ) D, pa)w(y)
yeS zeS yeS zeS

=127 FW) X w@) " (@, y) —7(y))
yesS zeS

<M Y () Y, " () — 7 (y)l.

zeS yeS
Note that
w@) Y ™ (@) = 7 ()| < pl@) D (™ (2, y) + 7(y) = 2u(=),
yeS yeSs

and )] o p(x) = 1. Also, by Theorem 13.32,

(@) Y p"(x,y) = w(y)| = 0

yesS

as n — oo for each x € S. Thus, by dominated convergence,
|ELf(Xn)] = E[f(Y)]] =0,

showing that X,, = Y. O

Exercises

13.7. [2, Exercise 6.5.8] Compute the expected number of moves it takes a
knight to return to its initial position if it starts in a corner of the chessboard,
assuming there are no other pieces on the board, and each time it chooses a
move uniformly from among its legal moves.



Part V

Continuous-time Stochastic
Processes

233






Chapter 14

Continuous-time
Martingales

14.1 Continuous-time stochastic processes

This section corresponds to [8, Section 1.1].

Recall the following from Section 6.4. A stochastic process is a collection of
random variables {X(t) : ¢t € T} indexed by some set T, defined on a common
probability space, (2, F, P), and taking values in a common measurable space,
(S,S). We may occasionally use the notation X; instead of X (¢). Recall also
that we adopt the notation X (t,w) = (X (¢))(w).

For fixed w € §, the function X (-,w) is called a sample path and is an an
element of ST. The set ST coincides with the product space [L;er S- As such,
we can endow it with product o-algebra,

ST=XS=oc({r; (E): E€S,teT}),

teT

where 7, : ST — S is the projection defined by m(f) = f(t). Recall that ST
is the smallest o-algebra on ST under which all the projections are measurable.
Recall also that, for any o-algebra G on (2, a function X : Q — ST is (G, S7)-
measurable if and only if m; o X is (G, S)-measurable for all t € T'.

Lemma 14.1. With notation as above, we have the following.

(i) If {X(t) : t € T} is an S-valued stochastic process, and X : Q — ST is
defined by X (w) = X(-,w), then X is an ST -valued random variable.

(i) If X : Q — ST is an ST -valued random variable, and X(t) : Q@ — S is
defined by X (t) = m 0 X, then {X(¢) : t € T} is an S-valued stochastic
process.

(iii) In either case, o(X) = o({X(t) :teT}).

235



236 CHAPTER 14. CONTINUOUS-TIME MARTINGALES

Proof. By the definition of ST, for any o-algebra G on Q, we have that X is
(G, ST)-measurable if and only if 7; o X is (G, S)-measurable for ¢ € T.. Taking
G = F gives us (i) and (ii). Taking G = o(X) givesus o(X) 2 o({X(t) : t € T'}).
And taking G = o({X(t) : t e T}) gives us 0(X) c o({X(t) : t € T}). O

From now on, we identify an S-valued stochastic process {X(t) : t € T}
with the corresponding ST -valued random variable X, writing X = {X(¢) : t €
T}. By Lemma 6.33, if Y is an extended real-valued random variable that is
measurable with respect to o(X) = o({X(t) : t € T}), then there exists an
ST-measurable function h : ST — R* such that Y = h(X). The following
proposition gives us a practical way to make use of this fact.

Proposition 14.2. Let Y : Q@ — R*. Then Y is o(X)-measurable if and only
if there exists a sequence {tp}>_y in T and a function h : S — R* which is
(8%, R*)-measurable such that

Y = h(X(t1), X(t2),...).
Proof. See [1, Proposition 11.4.6]. O

If X and Y are S-valued stochastic processes, then X and Y are indistin-
guishable if
P(X(t)=Y(t) forallteT)=1.

We say that Y is a modification of X if
PX(t)=Y(@#) =1forallteT.

If T is countable, then these concepts coincide.
Let ne€ N and t = (t1,...,t,) € T™, where the t;’s are distinct. Define the
measure Q¢ on (S™,S8™) by

Qt(Bl X oo XBn) =P(X(tl)EBl,...,X(tn)GBn).

The family of measures {Q4} are called the finite-dimensional distributions
of X. Two processes X and Y have the same finite-dimensional distributions if

(X(t1), ..., X(ta)) £ (Y(t1), ..., Y (ta)),

whenever n € N and t¢4,...,t,€T.

Note that X and Y must be defined on the same probability space in or-
der to be indistinguishable or to be modifications of one another. They may,
however, be defined on different probability spaces and still have the same finite-
dimensional distributions.

A continuous-time stochastic process is one in which 7' = I, where I c
R is an interval. Typically, we will have I = [0, ), although we may sometimes
have I = [0,1] or I = [0,T] for some T" > 0. We may even occasionally take
I = R, utilizing the notion of “negative time”.
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It has already been remarked that a continuous-time stochastic process,
which is a family of random variables,

X(t): Q2 — S, for all t € [0, 00),
can be regarded as a single function mapping w to the sample path,

X :Q— 5o

)

and that X is (F, S[%%®))-measurable if and only if each X (¢) is measurable. In
addition to this, though, we could also regard X as a function of two variables,

X :[0,00) x Q > S,

where X (t,w) = (X (¢))(w). We say that the stochastic process X is measur-
able if X (regarded in this way) is (Bjg,«) ® F,S)-measurable.

By Fubini’s theorem, if X is a measurable stochastic process taking values
in a standard Borel space S, then the sample paths, ¢t — X (¢,w) are measurable
functions from [0, o0) to S. As a consequence, it follows that not every stochastic
process is measurable. For example, let f : [0,00) — R be any non-measurable
functions. For each t = 0, define X (¢t,w) = f(¢) for all w. Then X(¢,-) is a
constant, so it is (F, R)-measurable. Thus, X = {X(¢) : t = 0} is a stochastic
process. But the sample paths (each of which is f) are non-measurable.

From this point forward, unless otherwise specified, we will take S = R? and
S =R%

A (continuous-time) filtration is a collection, {F;}:>0, of o-algebras on
Q) such that Fy, < F; < F whenever 0 < s < t. Given a filtration, we define
Fo = 0(U;=o Ft)- The filtration generated by a stochastic process X is {F;¥},
where

FX =o({X(s):0< s <t}).

We define 7o = o(Jy, Fs) and Fry = (o, Fs. We adopt the convention
that Fo_ = Fp. A filtration is right-continuous if 7, = F; for all ¢t > 0. It
is left-continuous if F;_ = F; for all ¢ = 0. And it is continuous if it is both

right- and left-continuous.

Lemma 14.3. Let {F:} be a filtration. Then {Fii} is a right-continuous filtra-
tion and {Fi_} is a left-continuous filtration.

Proof. Exercise 14.1. O]

A stochastic process X is adapted to a filtration {F;} if X(¢) € F; for all
t > 0. The process X is progressively measurable with respect to {F;} if,
for all T' > 0,
X :[0,T] x Q - R?

is (Bpo,r ® Fr, R?)-measurable.

Proposition 14.4. If X is progressively measurable, then X is measurable and
adapted. Conversely, if X is measurable and adapted, then X has a progressively
measurable modification.
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Proof. See [8, Proposition 1.1.12] and the references therein. O

Proposition 14.5. Let X be a right-continuous stochastic process. That is,
each sample path is right-continuous. If X is adapted to {F:}, then X is pro-
gressively measurable with respect to {Fi}.

Proof. Fix T > 0. For n € N, define
on
Xn(t) = X(O)l{o}(t) + Z X(kz_nT)1((k—1)2—71T,k2—"T] (t)

k=1

Since every sample-path is right-continuous, it follows that X, (t,w) — X (¢,w)
(

as n — o0, for all ¢ and w. Since X,, : [0,T] x Q — RY is [0,T] ® Fr, RY)-
measurable for each n, it follows that X : [0,7] x Q — R9 is Bio,r1 ® Fr, RY)-
measurable. O]

A similar proof establishes the following proposition.

Proposition 14.6. Let X be a right-continuous stochastic process. That is,
each sample path is right-continuous. Then X is measurable.

Both of these propositions also hold if right-continuity is replaced by left-
continuity.

A random time is a [0, 0]-valued random variable. If X = {X(¢) : ¢ €
[0,00)} is a stochastic process and T is a random time, then X (7T") denotes the
function

X(T) : {T < 0} - R?

given by (X (7)) (w) = X(T(w),w).

Lemma 14.7. If X is a measurable stochastic process and T is a random time,
then the function X (T) is (F|(r<c0}, R?)-measurable.

Proof. Exercise 14.2. O

Strictly speaking, o(X(T)) should be a c-algebra on {T' < «}. However,
with an abuse of notation, when X is a measurable process, we will define

o(X(T)) = {{X(T)e B} : Be R"} U {{X(T) e B} u{T = w0} : Be R}.
It can be shown (see Exercise 14.6) that, with this definition, o(X (7)) is a
o-algebra on , and in fact, o(X(T)) < F.
Exercises

14.1. Prove Lemma 14.3.

14.2. Prove Lemma 14.7.
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14.3. [8, Problem 1.1.5] Let X and Y be stochastic processes. Suppose that
almost every sample path of X is right-continuous, and almost every sample
path of Y is right-continuous. Prove that if X and Y are modifications of one
another, then they are indistinguishable.

14.4. [8, Exercise 1.1.7] Let X be a cadlag process. That is, every sample path
is cadlag. Let

A={we: X(-,w) is continuous on [0,%y)}. (14.1)
Prove that A € 7).

14.5. [8, Exercise 1.1.8] Give an example of a process X such that almost every
sample path is cadlag, but the event A in (14.1) is not in ‘Ft)o('

14.6. [8, Problem 1.1.17] Let X be a measurable process and T a random time.
Prove that o(X(T)) is a sub-c-algebra of F.

14.2 Stopping times

This section corresponds to [8, Section 1.2].

Let T be a random time and {F;} a filtration. If {T" < t} € F; for all ¢ > 0,
then T is a stopping time with respect to {F;}. If {T' < t} € F; for all ¢t > 0,
then T' is an optional time with respect to {F%}.

Note that if T is a constant, then T is both a stopping time and an optional
time.

If X is a stochastic process and T is a stopping time with respect to {F;X},
then the value of T depends only on the values of X(¢t) for ¢ € [0,7]. The
following proposition makes this notion rigorous.

Proposition 14.8. Let X be a stochastic process and T a stopping time with
respect to {F{X}. Suppose wy,w; €  satisfy

X(t,wo) = X(t,wy) for all t € [0,T(wo)] N [0, 0).
Then T'(wo) = T'(w1).
Proof. Exercise 14.7. O

Proposition 14.9. FEvery stopping time is an optional time.

Proof. Let T be an {F;}-stopping time. Fix ¢t > 0. Choose ng such that ¢t —

1/no > 0. Then
* 1
= <t—=b.
(T <t} U{T t n}

n=no

Since T is a stopping time, we have, for each fixed n,
1
Tgt—g E]:tfl/ant.

Thus, {T <t} € F;, and T is an optional time. O
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Proposition 14.10. If {F;} is right-continuous, then every {F;}-optional time
is an {F;}-stopping time.

Proof. Let T be an {F,}-optional time. Fix m € N and note that
A 1
T<t}= T<t+—;.
0= {rec)

Since T is an optional time, for every n = m, we have

1
{T <t+ n} € .FtJrl/n (e ft+1/m-

It follows that {T < t} € F; 11/, for every m € N. Thus,

0
{I<t}e ﬂftJrl/m:ft-&-:}—t»

m=1
and so T is an {JF;}-stopping time. O

Proposition 14.11. Let {F;} be a filtration and T a random time. Then T is
an {F:}-optional time if and only if T is an {Fiy}-stopping time.

Proof. Let T be an {F;}-optional time. Since F; © Fyy, it follows that T is an
{Fi+ }-optional time. But {F;} is right-continuous, so T is an {F; }-stopping
time.

Conversely, suppose T is an {F;y }-stopping time. Then

{T <t} = D {Tst—i}.

n=no
Since
{T <t- 1} €Fuyms = [ FecF
" s>t—1/n
it follows that {T" < t} € F3, and so T is an {F;}-optional time. O

Let X be a right-continuous process and B € R?. The hitting time of B
is defined as
Hp =inf{t > 0: X(t) € B}.

Proposition 14.12. If B is open, then Hp is an optional time. If B is closed
and X is a continuous process, then Hp s a stopping time.

Proof. Exercise 14.8. O

Lemma 14.13. Let S and T be stopping times. Then SAT, Sv T, and S+T
are also stopping times.
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Proof. Since
{(SAT<t}={S<t}u{T <t}

and
{SvT <t} ={S <t} n{T <t}

it follows that S A T and S v T are stopping time.
For S + T, first note that {S + T < 0} = {S <0} n {T < 0} € Fy. Now fix
t>0. Then {S+T <t} ={S+T >t}°and

{S+T >t} ={S=0,T>t}u{0 < S <t,S+T > t}u{S =1tT >0} u{S > t}.

We have
{S=0,T>t}={S<0}n{T<t}°eF

and
{(S=t,T>0}={S <t} n{S<t}*n{T <0}°e F.

Here, we have used the fact that a stopping time is an optional time, and that
Fo © Ft. We also have {S > t} = {S < t}° € F;. For the final set, observe that
if S(w) 4+ T(w) > t, then there exists a positive rational r such that

Sw)+T(w)>r+T(w)>t.

Thus,
{0<S<t,S+T >t} = U {r<S<t,T>t—r}.
reQn[0,t)

Since this is a countable union, and
fr<S<t,T>t—r}={S<r}n{S<t}n{T <t—r}°eF,
we are done. ]

Lemma 14.14. If {T,,}*_, is a sequence of optional times, then sup, T,
inf,, T, limsup,, ,, T, and liminf, 4 T, are all optional times. If {T,}*_,
is a sequence of stopping times, then sup,, T, is a stopping times.

Proof. Exercise 14.9. O
If T is an {F;}-stopping time, we define
Fr={Ae F:An{T <t}e F forallt > 0}.

Lemma 14.15. If T is a {Fi}-stopping time, then Fr is a o-algebra and T €
Fr. Moreover, if T =t for somet > 0, then Fpr = F;.

Proof. Exercise 14.10. O

Lemma 14.16. Let S and T be {F;}-stopping times. If A € Fg, then An{S <
T} e Fr. If S < T pointwise, then Fg < Fr.
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Proof. See [8, Lemma 1.2.15]. O

Lemma 14.17. Let S and T be {F;}-stopping times. Then Fsr = Fs n Fr
and
(S < T}{T < S}.{S < TH{T < S},{S = T

are all elements of Fs n Fr.
Proof. See [8, Lemma 1.2.16]. 0
Proposition 14.18. Let S and T be {F;}-stopping times and Z € L*(Q). Then
(i) E[Z | Fs]lys<ry = E[Z | Fsar]lis<ry a-s., and
(i) E[E[Z | Fs] | Fr] = E[Z | Fsar] a.s.
Proof. Exercise 14.11. O

Proposition 14.19. Let X be {F;}-progressively measurable and T an {F;}-
stopping time. Then X(T) is Fr|ir<xy-measurable and the stopped process
{X(T At)} is {Fi}-progressively measurable.

Proof. See [8, Proposition 1.2.18]. O
If T is an {F;}-optional time, we define
Fri={AeF: An{T <t} e Fy forallt =0}

Lemma 14.20. If T is an {F;}-optional time, then Fri is a o-algebra, T €
Fr+, and
Fri={Ae F: An{T <t} e F forallt = 0}.

Moreover, if T is an {Fi}-stopping time, then Fr < Fr .
Proof. Exercise 14.12. O

Given a probability space (2, F, P), recall that a null set (or a P-null set) is
an event N € F such that P(N) = 0. Recall also that A  Q is called negligible
if A< N for some null set N.

Lemma 14.21. Let Y be an R*-valued random variable and G — F a o-algebra
containing all null sets. If N is a null set, then Y1y € G.

Proof. First assume Y = 14 for some some A € F. Then Y1y = 14~n. Since
AN N is a null set, we have A n N € G, and so Y1y € G. By linearity, the
claim is true for simple Y. Since any nonnegative Y is the pointwise limit of
simple functions, Proposition 2.11 implies the claim is true for nonnegative Y.
For general Y, we obtain the result by considering the positive and negative
parts of Y. O

Lemma 14.22. Let X be a G-measurable random variable, where G ¢ F is a
o-algebra containing oll null sets. If Y is a random variable with Y = X a.s.,
thenY € G.
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Proof. Since Y = X a.s., there exists N € F with P(IN) = 0 such that

Since N is a null set, we have NV € G. Since X € G, we also have X1y. € G. The
preceding lemma shows that Y1y € G. O]

A filtration {F;} satisfies the usual conditions if it is right-continuous and
Fo contains all negligible sets. Note that this implies F; contains all negligible
sets, for all ¢t = 0.

Exercises

14.7. [8, Problem 1.2.2] Prove Proposition 14.8.

14.8. [8, Problems 1.2.6] Prove Proposition 14.12 in the case that B is open.
14.9. Prove Lemma 14.14.

14.10. [8, Problem 1.2.13] Prove Lemma 14.15.

14.11. [8, Problem 1.2.17] Prove Proposition 14.18.

14.12. [8, Problem 1.2.21] Prove Lemma 14.20.

14.3 Martingales: definition and properties

This section corresponds to [8, Section 1.3].

Fix a filtration {F;}. In this section, we consider only processes X which are
real-valued, {F;}-adapted, and integrable (that is, E|X (¢)| < oo for all ¢ > 0).

The process X is a submartingale with respect to {F;} if E[X(t) | Fs] =
X(s) a.s. whenever s < ¢. It is a supermartingale with respect to {F;} if
E[X(t) | Fs] < X(s) a.s. whenever s < ¢. It is a martingale with respect to
{F:} if it is both a submartingale and a supermartingale. If the filtration is not
mentioned, then it is taken to be {F;¥}.

A process N is a Poisson process with respect to {F;} is N is a Poisson
process and N(t) — N(s) is independent of F for all s < t. Note that an
{F:}-Poisson process is an {F;}-submartingale (check).

Let N be an {F;}-Poisson process with rate A > 0. The compensated
Poisson process is the process

Lemma 14.23. The compensated Poisson process is an {Fi}-martingale.

Proof. Exercise 14.13. |
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If X is an {F;}-submartingale and X (o0) € L*(Q), then {X(¢) : ¢ € [0, 0]}
is an {F;}-submartingale (with last element X (o)) if X (c0) € Fy and

E[X () | Fs] = X(s) as.,

for all s = 0. We make a similar definition for supermartingales and martingales.
Theorems 12.5 and 12.7 and their respective corollaries are still true in the
continuous-time case, and their proofs are similar.
Doob’s inequality also holds in continuous time and its proof also uses “up-
crossings”. The continuous-time formulation of Doob’s inequality is contained
in the following theorem.

Theorem 14.24. Let X be a right-continuous submartingale. If a < b and
A > 0, then we have the following:

(i) )\P(tes[upb]X(t) > )\) < E[X(b)T].

(ii) )\P( i[nfb]X(t) < —)\) < E[X(b)"] - E[X(a)].
tela,
(ii) If X(t) = 0 a.s. for allt =0 and p > 1, then

" (;2 )pE|X<b>P-

E v
p—1

sup X (t)
tela,b]

(iv) Almost every sample path of X is cadlag.
Proof. See [8, Theorem 1.3.8]. O
Remark 14.25. For the definition of “cadlag”, refer back to Section 3.5.2.

Theorem 14.26. Let X be an {Fi}-submartingale, where {F;} satisfies the
usual conditions. Then X has a right-continuous modification if and only if
t — EX(t) is right-continuous. Moreover, in this case, the modification can
be chosen so that it is cadlag and {F;}-adapted, and therefore also an {F}-
submartingale.

Proof. See [8, Theorem 1.3.13]. O

Theorem 14.27 (martingale convergence theorem). Let X = {X(t) : t > 0}
be a right-continuous submartingale with sup, E[X (t)7] < 0. Then there exists
an integrable random variable X (00) such that X (t) — X (o0) a.s. as t — 0.

Proof. Uses “upcrossings”. See [8, Theorem 1.3.15]. O

Theorem 14.28. Let X = {X(t) : t = 0} be a right-continuous, nonnegative
{Fi}-supermartingale (that is, X(t) = 0 a.s. for all t = 0). Then there exists
an integrable, nonnegative random variable X (00) such that X (t) — X () a.s.
Moreover, {X(t) : t € [0,00]} is an {F:}-supermartingale.
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Proof. Exercise 14.14. O

Theorem 14.29. Let X = {X(¢) : t = 0} be a non-negative, right-continuous
{Fi}-submartingale. Then the following are equivalent:

(i) X is uniformly integrable,

(ii) There exists X (o0) € LY () such that X (t) — X(©0) a.s., and {X(t) : t €
[0, 0]} is an {F;}-submartingale.

(iii) There exists X (o0) such that X (t) — X (o0) in L}(£).
Moreover, (i) implies (iii) implies (ii) without the assumption of nonnegativity.
Proof. Exercise 14.15. O

Theorem 14.30. Let X be a right-continuous {F;}-martingale. Then the fol-
lowing are equivalent:

(i) X is uniformly integrable,

(ii) There exists X (o0) € LY(Q) such that X (t) — X (0) a.s., and {X(t) : t e
[0,00]} is an {F;}-martingale.

(iii) There exists X (o0) such that X (t) — X (o0) in L*(£).
(iv) There exists Y € L' (Q) such that X (t) = E[Y | F] a.s., for all t > 0.

Moreover, if (iv) holds and X (o) is the random variable appearing in (i), then
E[Y | Fo] = X(0) a.s.

Proof. Exercise 14.16. O

Theorem 14.31 (optional sampling theorem). Let X = {X(¢) : t € [0,00)} be a
right-continuous {JFi}-submartingale. Let S and T be {F;}-optional times with
S < T pointwise. Assume at least one of the following conditions hold:

(i) T is bounded. That is, there exists a > 0 such that T < a pointwise.
(ii) There exists Y € L*(Q) such that X (t) < E[Y | F] a.s. for all t > 0.

Then
E[X(T) | Fs+] = X(S) as.
If S is a stopping time, then
E[X(T)| Fs] = X(S) a.s.
Consequently, EX(T) = EX(0) and, if X is a martingale with last element,
then EX(T) = EX(0).

Proof. 1If (ii) holds and Y € Fq,, then, defining X (0) =Y, we have that {X (¢) :
t € [0,00]} is an {F;}-submartingale with last element X (c0). In this case, the
proof uses “backward” martingales (see [8, Theorem 1.3.22]). The proofs of the
other cases are Exercises 14.17 and 14.18. OJ
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Exercises

14.13. [8, Problem 1.3.4] Prove Lemma 14.23.
14.14. [8, Problem 1.3.16] Prove Theorem 14.28.
14.15. [8, Problem 1.3.19] Prove Theorem 14.29.
14.16. [8, Problem 1.3.20] Prove Theorem 14.30.

14.17. [8, Problem 3.23(i)] Prove Theorem 14.31 under condition (i). You may
use the fact that it is true under condition (ii) when Y € Fy,.

14.18. [8, Problem 3.23(ii)] Prove Theorem 14.31 under condition (ii). You
may use the fact that it is true under condition (ii) when Y € F,.

14.4 The Doob-Meyer decomposition

This section corresponds to [8, Section 1.4].

In this section, we extend Doob’s decomposition (Theorem 12.16) to the
cases of continuous-time submartingales. We must first establish an additional
fact in the discrete setting. Let {F,}°_, be a discrete-time filtration, and let
A = {A,} be an {F, }-adapted, increasing process with Ay = 0 a.s. and F|4,| <
oo a.s. for all n. Then A is natural if

E[AMy) = E Y My 1(Am — A1), (14.2)
m=1

for all n > 1, whenever M = {M,} is an {F,}-martingale which is bounded.
(Here, “bounded” has the same meaning as in Theorem 12.9. That is, for all
n € N, there exists C), > 0 such that |M,| < C,, a.s.)

Remark 14.32. Note that

(A M)y = > Ay (M, — M)
m=0
= 2 AmMm - Z AmMmfl
et S
= Am—le—l - Z AmMm—l
m=1 m=0

Thus, (14.2) is equivalent to E(A - M), = 0.
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Proposition 14.33. Let {F,}X_, be a filtration. Assume that Fy contains all
null sets. Let A = {A,} be an {F,}-adapted, increasing process with Ay = 0
a.s. and E|A,| < © a.s. for all n. Then A is natural if and only if A is
predictable.

Proof. Assume A is predictable. Let M be a bounded {F,}-martingale. By
Theorem 12.9 and Remark 12.10, we have that A- M is an {F,}-martingale, so
that E(A- M), = E(A- M)y, = 0. Thus, by Remark 14.32, A is natural.

Now assume A is natural. We will first show that if M is any bounded
{F,}-martingale, then

E[Mn(An - E[An | ]'-n—l])] =0,
for all n € N. To see this, note that

E[Mn(An - E[An | ]:n—l])] = E[(Mn - Mn—l)An]
+ E[M,—1(A, — E[A, | Fa-1])]
— E[(M,, — M,,_1)E[A, | Frn-1]].

For the first term, Remark 14.32 implies

E[(M, — Mp,_1)A,) =E[(A- M), —(A-M),_1] =0.
The second and third terms are both zero, which can be seen by conditioning
on the inside by F,,_1.

Now fix k € N. We wish to show that Ay € Fi_1. Define the random variable
Y =sgn(Ay — E[A) | Fr—1]) and then define

Then M, is integrable and M = {M,} is {F,}-adapted. If n < k, then
E[M, | Fu_1] = E[E[Y | Fo] | Faz1] = E[Y | Faz1] = Mp_1.

If n =k, then
E[Mn ‘ ]:nfl] = E[Y | ]:nfl] = Mnfl-

And if n > k, then n — 1 > k, which implies F;, < F,,_1. Hence,
E[M, | Fuo1] = E[Y | Foo1] =Y = M, ;.

We have therefore shown that M is a bounded {F, }-martingale. From what we
proved initially, it now follows that

E[M,(A, — E[A, | Fu1])] =0,
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for all n. In particular,

0 = E[My(Ay — E[Ay | Fii)]
= E[Y (A, — E[A}, | Fiei])]
= E|A;, — E[Ag | Fi-1]|s

from which it follows that Ay = E[Ay | Fr—1] a.s. Or, more specifically, if Z is
a version of E[Ay | Fr—1], then Ay = Z a.s. Since Z € Fj,_1 and Fj_1 contains
all null sets, it follows from Lemma 14.22 that A € Fr_1. O

We now turn our attention back to the continuous-time setting.

Definition 14.34. An {F;}-adapted process A = {A(t) : t = 0} is natural if

E M(s)dA(s) =F M_(s)dA(s).
(0,t] (0,t]

Remark 14.35. Recall the notation M_ from Section 3.5.2.

Remark 14.36. The term “bounded” in (d) means there exists C' > 0 such
that P(|M(t)| < C for all t = 0) = 1.

Remark 14.37. If M is a right-continuous {¥%}-martingale, then by Theorem
14.24, almost every sample path is cadlag. Therefore, as in Section 3.5.3, the
integrals in (d) are almost surely well-defined Lebesgue-Stieltjes integrals.

Moreover, Lebesgue-Stieltjes integrals involving cadlag function can be writ-
ten as limits of Riemann sums (see Theorem 3.31). This fact can be used to
show that the function

w M(s,w)dA(s,w)
(0,]

is a random variable.
If M is bounded, then

M(s) dA(s)
(0,¢]

< CA(t).

Since A(t) is integrable by (c), it follows that the expectation on the left-hand
side in (d) is well-defined. A similar argument shows the same for the right-hand
side.
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Remark 14.38. If an {F;}-adapted process satisfies (a)-(c) and is continuous,
then it automatically satisfies (d). By Theorem 3.26, a cadlag function has
at most countably many discontinuities. Since the Lebesgue-Stieltjes measure
corresponding to a continuous function assigns 0 mass to singletons, it follows
that
(M(s) — M_(s))dA(s) =0 as.

(0,t]

whenever A is continuous.

Remark 14.39. If {F,} satisfies the usual conditions and A is {F;}-natural,
then A is adapted to {F;_}. See [8, Remark 1.4.6(iii)] and the references therein.

Lemma 14.40. Let A be an {F;}-adapted process with A(0) = 0 a.s. Suppose
that almost every sample path of A is cadlag and of bounded variation on com-
pact intervals. Further suppose that E[Ta(t)] < o for allt = 0. Let M be a
bounded, right-continuous {F:}-martingale. Then

E[M(A®)] = E o M(s) dA(s),

for allt = 0.

Remark 14.41. The notation T4 (¢) refers to the total variation of the sample
path on the interval [0, ¢], which is defined in Section 3.4.

Remark 14.42. Note that Definition 14.34 implies that almost every sample
path is cadlag and of bounded variation on compact intervals. Thus, Lemma
14.40 shows that Definition 14.34(d) is equivalent to

E[M{t)A(t)]=F M_(s)dA(s),
(0,2]
and this is analogous to the definition of natural in the discrete-time setting.

Proof of Lemma 14.40. Choose C' > 0 such that |M(t)] < C for all t > 0 a.s.
Fix ¢ > 0. As in Theorem 3.31, let {P,,} be a sequence of partitions of [0, ]
with ||Pp,| — 0. Let

E|  Mu(s)dA(s) = E zn] M(te)(A(ty) — A(ts_1))

(0,¢] k=1
n n—1
= E Y M(t)A(tr) — E D M(trp1)A(ts)
k=1 k=0



250 CHAPTER 14. CONTINUOUS-TIME MARTINGALES

Note that

B[(M(ths1) — M(t)Alti)] = EIE[(M(tisr) — M(8)A(t) | Fo 1]
— B[A(t)E[M (tis1) — M(ty) | Fo]] = 0.

Thus,

E|  Mpu(s)dA(s) = EM(t)A(%), (14.3)
(0.4]

for all m. On the other hand, since almost every sample path of M and A are
cadlag, Theorem 3.31 implies

M, (s) dA(s) — M(s)dA(s) a.s.
(0,t] (0,¢]
Since

M, (s) dA(s)
(0,t]

< COTi(t)

and T4 (t) is integrable, it follows by dominated convergence that
E M, (s)dA(s) > E M(s)dA(s).
(0,¢] (0,t]
Letting m — oo in (14.3) finishes the proof. O

Lemma 14.43. Let {F;} be a fillration satisfying the usual conditions. Let B be
a right-continuous {F; }-martingale with B(0) = 0 a.s. Suppose that B = A—A’,
where A and A’ are natural. Then

P(B(t) =0 forallt 2 0) = 1.

Proof. Fix t = 0. Let M(s) = E[sgn(B(t)) | Fs], so that M is a bounded
martingale. By Theorem 14.26, M has a cadlag modification which is also an
{F:}-martingale. By Lemma 14.40,

E[M(t)B(t)] = E o M-_(s)dB(s).

As in Theorem 3.31, let {P,,} be a sequence of partitions of [0, t] with ||P,,| — 0.
By Theorem 3.31,

N M(tp—1)(B(tg) — B(tk—1)) — M_(s)dB(s) a.s.
k=1 (0,¢]

Since

S Mt )(B(ty) — B(tk_m' < AW+ A1),
k=1
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dominated convergence gives

E Y M(tx—1)(B(tx) — B(ti1)) > E M_(s)dB(s).
k=1 (0,t]
But M and B are both martingales, E[M (tx—1)(B(tx) — B(tx—1))] = 0. Tt
therefore follows that

0=F M_(s)dB(s) = EM(t)B(t) = E|B(t)|.
(0,t]
Hence, B(t) = 0. Since t was arbitrary, it follows that B is a modification of
the 0 process. By Exercise 14.3, B is indistinguishable from the 0 process. []

Let {F;} be a filtration. Let S be the set of all {F;}-stopping times that are
finite almost surely. For a > 0, let S, be the set of all {F;}-stopping times T’
such that 7' < a a.s.

Let X be a right-continuous {F;}-adapted process. Then X is of class D if
the family of random variables {X(7T') : T € S} is uniformly integrable. We say
X is of class DL if {X(T') : T € S,} is uniformly integrable for all a > 0.

Note that S, = S. Thus, if X is of class D, then X is of class DL.

Proposition 14.44. Let X be a right-continuous {F;}-submartingale. Suppose
that X (t) = 0 a.s. for allt = 0. Then X is of class DL.

Proof. Exercise 14.19. O

Proposition 14.45. Let X be a right-continuous {F;}-submartingale. Suppose
X = M+ A, where M is an {F;}-martingale and A is an {F;}-adapted process
satisfying (a)-(c) of Definition 14.84. Then X is of class DL.

Proof. Exercise 14.19. O

Proposition 14.46. If X is a uniformly integrable, right-continuous {F:}-
martingale, then X is of class D.

Proof. Exercise 14.19. O

Theorem 14.47 (Doob-Meyer decomposition). Let X be a right-continuous
{Fi}-submartingale, where {F;} satisfies the usual conditions. Suppose X is of
class DL. Then X = M + A, where M is a right-continuous {F;}-martingale
and A is {Fi}-natural. If X = M' + A’ is another such decomposition, then M
and M’ are indistinguishable, as are A and A’. Moreover, if X is of class D,
then M is uniformly integrable.

Proof. We prove only uniqueness here. For the rest of the proof, see [8, Theorem
1.4.10].

Suppose X = M + A = M’ + A’ are two Doob-Meyer decompositions of
X. Let B=A—-A" = M — M. Then B is the difference of two natural
processes, and is also a martingale. By Lemma 14.43, B is indistinguishable
from the 0 process. Thus, A and A’ are indistinguishable, and M and M’ are
indistinguishable. ]
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Suppose we wish to apply Theorem 14.47 to a submartingale X which is
continuous. The theorem does not guarantee that the resulting processes M
and A are continuous. To ensure this, we need the next result.

Let X be an {F;}-submartingale. Then X is regular if for all @ > 0 and all
sequences {T),}*_; in S, with T, < T},41 pointwise, we have EX (T,,) - EX(T),
where T = lim,, T;,.

Theorem 14.48. Let X be a right-continuous {F;}-submartingale, where {F;}
satisfies the usual conditions. Suppose X is of class DL. Let A be the natural
process in the Doob-Meyer decomposition. Then A is continuous if and only if
X is regqular.

Proof. See [8, Theorem 1.4.14]. O

Exercises

14.19. [8, Problem 1.4.9] Prove Propositions 14.44, 14.45, and 14.46.

14.20. [8, Problem 4.13] Prove that a continuous, nonnegative submartingale
is regular.

14.5 Continuous L? martingales

This section corresponds to [8, Section 1.5].

Throughout this section, we fix a probability space (€2, F, P) and a filtration
{F:} that satisfies the usual conditions.

Let X be a right-continuous {F;}-martingale. If EX (t)? < oo for all t > 0,
then X is square-integrable (or an L? martingale). Let My denote the set
of square-integrable {F;}-martingales with X (0) = 0 a.s. Let M$ denote the
set of all X € My that have continuous sample paths. Note that My and M§
are both vectors spaces over the reals.

Suppose X € Ms. By the continuous version of Theorem 12.5, we have
that X2 = {X(¢)? : t > 0} is a submartingale, and so, by Theorem 14.44, is
of class DL. Thus, by the Doob-Meyer decomposition, there exist unique (up
to indistinguishability) processes M and A, such that M is a martingale, A is
natural, and X2 = M + A. We define the angle bracket (process) of X to
be (X) := A. For the value of the process at a specific time, we will typically
adopt the notation (X),, but sometimes also (X) ().

Suppose X € MS. By Exercise 14.20, we have that X? is regular. Thus, by
Theorem 14.48, (X is continuous.

Note that (X is the unique (up to indistinguishability) {F;}-natural process
such that X? — (X) is an {F;}-martingale. In particular, this implies that, for
all X € My, we have E[X (t)?] = E(X),.

Let X,Y € My. The angle bracket (process) of X and Y is

KXY = JX V) —(X = V)).



14.5. CONTINUOUS L? MARTINGALES 253

Theorem 14.49. Let XY € My. There is a unique (up to indistinguishability)
process B which is the difference of two {F;}-natural processes, satisfies B(0) =
0 a.s., and makes XY — B an {F;}-martingale. This process is given by the
angle bracket (X, Y).

Proof. By the definition of the angle bracket, (X,Y") is the difference of two
natural processes, and

My =(X+Y)?2—(X+Y)

and
My = (X —Y)?—(X-Y)

are both martingales. Thus,
1
Z(Ml - M) = XY - (X)Y)

is also a martingale.
Suppose B is the difference of two natural processes and XY — B is a mar-
tingale. Then

(XY —(X,Y)) = (XY — B) = B—{X,Y)

is a martingale that is the difference of two natural processes. By Lemma 14.43,
B and (X,Y) are indistinguishable. O

Two martingales X,Y € My are orthogonal if (X,Y), = 0 a.s. for all¢ > 0.

Note that (X, X) = (X).
Recall the total variation function T from Section 3.4.

Proposition 14.50. For any X,Y,Z € My and any o, B € R, we have the
following.

(i) {aX + BY, Z) = a{X,Z) + LY, Z).
(ii) (X,Y) =Y, X).
(iii) |(X,Y), > <{(X), ), for allt =0 a.s.

(iv) We have

Toewy(0) = Toxo(5) € 5 (X0, = (X, + V), = (V)
for all s <t a.s.

Proof. Exercise 14.21 O
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In the same way that we defined the total variation of a (deterministic) func-
tion in Section 3.4, we could define the quadratic variation of a (deterministic)
function by using the squares of the increments instead of the absolute values
of the increments.

Defining the quadratic variation of a stochastic process is a little more in-
volved. We will not present such a definition here, but the usual notation for
the quadratic variation of X € My is [X]. The angle bracket process (X) is
sometimes called the predictable quadratic variation of X. It turns out that
if X is continuous, then [X] = (X). Since we will focus primarily on continuous
processes, we will follow the convention in [8] and refer to (X) as the quadratic
variation of X. We will also refer to (X,Y") as the cross-variation (or co-
variation) of X and Y. When reading other sources, however, one should
recognize that this is an abuse of standard terminology and notation.

The following theorem illustrates the connection between the angle bracket
process and the usual notion of quadratic variation. Before stating the theorem,
we need some notation. If X is a stochastic process, P is a partition of [0, ¢]
and p > 0, we define

VE(P) = 0 1X(t) — X (te—) P
k=1

If L is a random variable, we say that V;”(P) — L in probability (as |[P| — 0)
if for all € > 0 and all 5 > 0, there exists § > 0 such that whenever |P|| < 9,
we have P(|L — VP(P)| = ) < n. We say that VF(P) — oo in probability (as
|P| — 0) if for all K > 0 and all n > 0, there exists § > 0 such that whenever
|P| < 6, we have P(|VF(P)| < K) <.

Theorem 14.51. Let X € MS. Fizt > 0. Then V*(P) — (X), in probability.

Proof. See [8, Theorem 1.5.8] Ol

Proposition 14.52. Let X be a stochastic process with continuous sample
paths. Let L be a (0,00)-valued stochastic process. Let p > 0. Suppose that
for allt > 0, VF(P) — Ly in probability. Then V,A(P) — 0 in probability when-
ever t > 0 and ¢ > p, and VX(P) — o in probability whenever t > 0 and
q<p.

Proof. Exercise 14.22. ]

Proposition 14.53. Let X € M$ and let T be an {F;}-stopping time. If
(X)p =0 a.s., then X(T At) =0 forallt >0 a.s.

Proof. Exercise 14.23. O

Corollary 14.54. Let X be a continuous {Fi}-martingale with X (0) = 0 a.s.
Suppose the sample paths of X have bounded variation on compact intervals.
Then X (t) =0 for allt =0 a.s.
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Proof. Define
T, =inf{t > 0:|X(t)| = n}.

Let X, (t) = X(t A T,,). Then X,, € M$. By Theorem 14.51 and Proposition
14.52, {(X,), = 0 a.s. for all ¢ > 0. By Proposition 14.53, it follows that
X (t) =0 for all ¢ > 0 a.s., which implies that X (¢) =0 for all ¢t > 0 a.s. O

Theorem 14.55. Let X, Y € M$. There is a unique (up to indistinguishability)
continuous, {F;}-adapted process B whose sample paths have bounded variation
on compact intervals, satisfies B(0) =0 a.s., and makes XY — B a continuous
{F:}-martingale. This process is given by the cross-variation (X,Y ).

Proof. The existence of B is given by Theorem 14.49. Suppose B’ is another
such process. Then

(XY -B)— (XY —-B)=B -B

is a continuous {F; }-martingale with sample paths that are of bounded variation
on compact intervals. By Corollary 14.54, B and B’ are indistinguishable. [

Proposition 14.56. If X, Y € MS$, then for allt > 0,
DX (tk) = X (b)) (Y (1) = Y (1)) = (X, V),
k=1

in probability as |P| — 0.
Proof. Exercise 14.24. O

Let X be an {F;}-adapted stochastic process. Suppose there exists a se-
quence {T},} of {F;}-stopping times such that

(i) T, < Tp41 pointwise,
(ii) T5, 1 o a.s., and
(iii) each X, is an {F;}-martingale, where X,,(t) = X (t A T,).

Then X is local martingale with respect to {F;}.
The set of {F;}-local martingales X satisfying X (0) = 0 a.s. is denoted by
M. The set of X € M!°¢ that are continuous is denoted by M1°¢,

Remark 14.57. Every martingale is a local martingale, but not every local
martingale is a martingale. In [8, Chapter 3], there are examples of uniformly
integrable local martingales that are not martingales.

Theorem 14.58. Let X,Y € M. There is a unique (up to indistinguisha-
bility) continuous, {F;}-adapted process B whose sample paths have bounded
variation on compact intervals, satisfies B(0) = 0 a.s., and makes XY — B a
continuous {Fi}-local martingale.
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Proof. This result is [8, Problem 1.5.17]. The text includes a worked solution.
O

The process B in Theorem 14.58 is denoted by (X,Y") and, in keeping with
our established abuse of terminology, is called the cross-variation (or co-
variation) of X and Y. If X € M%!°¢ then (X) = (X, X) is the quadratic
variation of X.

Remark 14.59. The proof of Theorem 14.58 shows that a single sequence
of stopping times, {T},}, can be used for both X and Y in the definition of
a local martingale, and in this case, (X, Y>MTW = (Xy,Y,),. In particular,
(XDy .1, = (Xn);, and this shows that (X) is an increasing process.

Proposition 14.60. A local martingale of class DL is a martingale.

Proof. Exercise 14.25. O
Proposition 14.61. A nonnegative local martingale is a supermartingale.
Proof. Exercise 14.25. 0

Proposition 14.62. Let M € M®!°¢ and define M (c0) = liminf, o, M(t). Let
S be an {F;}-stopping time. Then E[M(S)*] < E{(M)gq.

Proof. Exercise 14.25. O
For X € M, define

O
IX ()| L2@) A 1
X0 =3

n=1

If we identify processes that are indistinguishable, then | - | is a norm on Mo.
Under the induced metric (X,Y) — | X —Y|, the space Ms is a complete metric
space. (That is, Ms is a Banach space.) Moreover, M$ is a closed subspace of
Ms. See [8, Proposition 1.5.23] for details.

Exercises

14.21. [8, Problem 1.5.7] Prove Proposition 14.50.

14.22. [8, Problem 1.5.11] Prove Proposition 14.52.

14.23. [8, Problem 1.5.12] Prove Proposition 14.53.

14.24. [8, Problem 1.5.14] Prove Proposition 14.56.

14.25. [8, Problem 1.5.19] Prove Propositions 14.60, 14.61, and 14.62.



Chapter 15

Brownian Motion

15.1 Introduction

This section is inspired by the beginning of [11, Section 3.1].

Consider the following simple example. Let Y (t) denote the amount of
money you have invested in a savings account at time ¢ (measured in years).
Let r denote the annual interest rate your receive. Without any further deposits
or withdrawals, the function (or process) Y satisfies

dy

— =1rY(t).

o (t)
Now suppose that the interest rate changes with time. At any given moment,
the interest rate is random, but with mean r, and the randomness is independent
from moment to moment. Then we might be led to write

dy

e (r+ W)Y (1), (15.1)

where W is a stochastic process that represents this ongoing random perturba-
tion of the interest rate. Such a model is often used as an elementary model for
your wealth if you have invested in a risky asset such as a stock.

The process W is referred to as “white noise”, and ideally, we would like it
to have the following properties:

(i) If s # t, then W (s) and W (t) are independent.

(ii) The process W is stationary. That is,

1B

(W(ts), ..., W(tr) £ (W(ty +1),...,W(ty +1)).

(iii) For all t >0, EW(t) = 0.

257



258 CHAPTER 15. BROWNIAN MOTION

Unfortunately, no such process exists, at least not in any reasonable sense. For
instance, there is no continuous process with these properties. And there is no
measurable process with these properties which also satisfies E[W (¢)?] = 1 for
all ¢ = 0. (See [11, Section 3.1] and the references therein.)

Nevertheless, let us proceed heuristically as if a nice white noise process
exists, and let us consider what type of properties its integral would have. That
is, let us “define”

B(t) = Jt W (s) ds.
Then B ought to satisfy the following:o
(i) B(0) =0.
(i) 0 <t <+ <tg, then
B(t1), B(t2) — B(t1),...,B(ty) — B(tk—1)
are independent.

(ii) B(t)—B(s) is normally distributed with mean 0 and variance proportional
tot —s.

(iv) B is continuous.

Condition (iii) follows from a heuristic application of the central limit theorem.

It turns out that there is a stochastic process which satisfies all of these
conditions, and it is Brownian motion, which we will formally define shortly.
White noise, then, ought to be the derivative of Brownian motion. Unfortu-
nately, Brownian motion is almost surely nowhere differentiable. (This fact will
also be established later.)

Returning to our heuristically derived differential equation (15.1), we find
that it now becomes

dy dB
—_— = — 1 Y(¢t).
dt (r * dt) ®)
If we write this an integral equation, it becomes
t t dB
Y(t)=Y(0)+ Tf Y(s)ds + J Y (s)— ds,
0 0 dS

Y(t) = Y(0) + rfo Y(s)ds + fo Y (s)dB(s).

The nonexistence of white noise manifests itself in this integral equation through
the nonexistence of the final integral. It will later be established that Brownian
motion is of unbounded variation on all intervals. Hence, the final integral above
cannot be understood as an ordinary Lebesgue-Stieltjes integral. A new theory
must be developed in order to make sense of and work with integrals of this
type. This new theory is theory of It6 integration, which is the starting point
in the study of stochastic differential equations.
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Remark 15.1. Although white noise cannot be defined as an ordinary stochas-
tic process, it can be made rigorous as an S’-valued random variables, where
&' is the space of what are called “generalized functions” on [0,00). In this
sense, white noise is analogous to the delta function. The delta function is not a
function in the ordinary sense, but it can be rigorously defined as a generalized
function. Likewise, white noise is not a stochastic process in the ordinary sense,
but it can be rigorously defined as a random generalized function. All of this,
however, is beyond the scope of these notes. We will not work formally with
white noise in these notes, only with Brownian motion.

15.2 Definition

This section corresponds to [8, Sections 2.1 and 2.2].
Let (92, F,P) be a probability space and {F;} a filtration. Let B be a
continuous, {F;}-adapted stochastic process such that

(i) B(0) =0 a.s.,
(if) If 0 < s < t, then B(t) — B(s) ~ N(0,t — s), and
(iii) If 0 < s < ¢, then B(t) — B(s) and F; are independent.

Then B is a (standard, one-dimensional) Brownian motion with respect
to {F:}. The word “standard” refers to the fact that B(0) = 0 a.s.

Proposition 15.2. Let B be a continuous stochastic process such that
(i) B(0) =0 a.s., and
(i) If 0 < s <t, then B(t) — B(s) ~ N(0,t — s).
Then B is an {FFP}-Brownian motion if and only if
(iii) B(t1), B(t2) — B(t1),...,B(ty) — B(tk—1) are independent,
forallO <ty < -+ <tg.
Proof. Exercise 15.1. O

In general, if we say that B is a Brownian motion, without reference to a
filtration, then we mean that B is an {F}}-Brownian motion.

The first issue that must be resolved is whether or not Brownian motion
exists. That is, does there exist a stochastic process that satisfies the definition
of Brownian motion? The answer, of course, is yes. To prove this, we begin
with the following continuous-time version of Kolmogorov’s extension theorem.

Theorem 15.3. For each n € N and t = (t1,...,t,) € [0,00)" where the t;’s
are distinct, let Q¢ be a probability measure on (R™,R™). Assume that {Q¢} is
consistent. That is, assume:
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(i) Ift = (t1,...,tn), s = (t1,...,tn_1), and A€ R""1, then
Qi(A x R) = Qs(4).
(i) If s = (tiy,...,t;,) is a permutation of t = (t1,...,t,) and A; € R, then

Qe(Ar x -+ x Ap) = Qs(A4, x -+ x Aj).

Then there exists a probability measure P on (R[Om), R[O"D)) such that
Qu(A) = P({w e R - (w(ty), ..., w(tn)) € A}).
Proof. See [8, Theorem 2.2.2]. O

Remark 15.4. The o-algebra RI[%®) is just ®te[0,00) R, the same o-algebra we
reviewed at the beginning of Section 14.1.

For t > 0 and z,y € R, let p be the Gaussian kernel given by

o~ (E—1)?/2t

t,r,y) =
p(t,z,y) 5

That is, p(t,z,-) is the density of the N(z,t) distribution.

Let t = (t1,...,t,). First assume ¢; # 0 for all j. Let s = (¢;,,...,t;,) be
a permutation of t such that 0 < ;7 < -+ < s,. Let U = (Uy,...,U,) be an
R"-valued random variable with density

(1,...,xn) = p(s1,0,21)p(s2 — 51,21, 22) -+ P(Sn — Sn—1, Tn—1,Tn),

and define Q¢ via Q¢(A1 X --- x A,) =P({U € A4;, x---x A;).
Now assume t; = 0 for some j. Let s = (¢;,,...,t;,) be a permutation of t
such that 0 = s; < s9 < -++ < s,,. Define Q¢ via

Qe(Ar x -+ x Ay) = 60(Ai,)Qsy,... 5) (Aiy X --- X Ay ).

By showing that {Q} is consistent and using Theorem 15.3, we can obtain the
following.

Corollary 15.5. Let Q = RI%®) gnd F = RIO®) . For each t > 0, define
B(t) : Q@ > R by B(t,w) = w(t). Let B = {B(t) :t = 0}. Then there exists a
probability measure P on (2, F) such that B is a stochastic process that satisfies
(1), (i), and (iii) of Proposition 15.2.

Proof. Exercise 15.2. |

According to Proposition 15.2, the process B in Corollary 15.5 would be
a Brownian motion if it were continuous. Even if it were continuous almost
surely, that would be enough, since we could change it to the zero process on
the corresponding null set. Unfortunately, the set

C ={weN: B(,w) is continuous}
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is not in F. So it is not an event, and P(C) is undefined. In fact, it can be
shown that if A < C and A € F, then A = . It follows from this fact that
B is not continuous almost surely. To see this, suppose B is continuous almost
surely. Then there exists N € F such that P(N) = 0 and B is continuous on
Ne¢. That is N¢ < C. But this implies N¢ = ¢, and so N = Q. But P(Q) = 1,
and we have a contradiction.

So the process B in Corollary 15.5 is not a Brownian motion. Our goal is to
create a modification of it which is.

Theorem 15.6 (Kolmogorov-Centsov theorem). Let X = {X(t) : t € [0,T]} be
a stochastic process. Suppose there exists a, 5,C > 0 such that for all ¢ > 0,

P(|X(t) — X(s)| =€) < Ce [t — s|' TP, (15.2)

whenever s,t € [0,T]. Then X has a continuous modification X which does not
depend on «, 8, or C, and which satisfies the following: for all v € (0,8/a),
there exists a random variable § with 6 > 0 a.s. and

BW-Rel 2
p < a.s.
0<t—s<§ |t - $|'y 1-2=7
s,t€[0,T]
Proof. See [8, Theorem 2.2.8] O
Remark 15.7. Suppose
E|X(t) — X(s)|* < Ot — 5|+, (15.3)

Then, by Chebyshev,
_ BIX() - X(s)|°

Ell

PX(t) - X(s)| =€) < Ce [t — |2,

Thus, (15.2) can be replaced by (15.3). In fact, the version of the Kolmogorov-
Centsov theorem in [8] uses (15.3), but the first step in the proof is to apply
Chebyshev in order to obtain (15.2).

A continuous function f : [0,7] — R is said to be Hélder-continuous
with exponent v > 0 (or y-Hélder) if
[f(t) = f(5)]

sup “—t—"1 < o0,
stefor]  |[t— s
s#t

Lemma 15.8. Let f : [0,T] — R be continuous and v > 0. If there exists § > 0

such that ;
wy HO=FGL
stefor) [t —s|
0<t—s<d

then f is y-Hélder.
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Proof. Note that
1016 _ s

up ( sup [7(t) — f(s)] <2677 sup |f(t)] < oo
siefo,r] |t — 8| 5,6€[0,T] t€[0,T]
t—s>0 t—s>4
Thus,
t) — t) — t) —
N PN V70 0 IRV e 1€
sgefor] |t — s stefor] |[t—s[7 spefor] |t — s
s#L 0<t—s<d t—s>9
so f is v-Holder. O

Lemma 15.9. If f: [0,T] - R is y-Hélder and \ < =, then f is \-Hélder.

Proof. This follows from

t) — t) — t) —
wp UOZIGL_FO=I0) 0= 1)
stefor] |t — 8] stefor] [t — S| stefo,r] |t — S|
s#t O<t—s<l1 t—s=1
f(t)— f(s
< sup TOZIONL o 40— o)
s,t€[0,T] |t - 3| s,t€[0,T]
0xt—s<1 t—s>1
t —
< sp TOZION o o 110,
siefo,r] 1t —s[7 t€[0,T]
Ss#t
which is finite. O]

A continuous function f : [0,00) — R is said to be locally Holder-
continuous with exponent v > 0 (or locally v-Hélder) if f|o p if y-Holder
for all T' > 0.

Theorem 15.10. Let Q = RO and F = RO There exists a probability
measure P on (Q, F) and a stochastic process W = {W(t) : t = 0} defined on
(Q,F, P) such that W is a Brownian motion. Moreover, almost every sample
path of W is locally Holder-continuous with exponent v, for every v € (0,1/2).

Proof. Let B be the process in Corollary 15.5. Since B(t) — B(s) ~ N(0,t —s),
we have
E|B(t) — B(s)|*" = (2n — D)!I|t — s|™.

Taking n = 2, we may apply Theorem 15.6 with o = 4 and 8 = 1. Doing this
for each T' € N, we obtain continuous processes W1 = {WT(t) : t € [0,T]},
which are modifications of B on [0, T].

Let

Q=) () W'e=Be}

T=1teQn[0,T]
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so that P(Q1) = 1. Fix w e Q; and T € N. Then for any ¢t € Q n [0, T], we have
WT(t,w) = B(t,w) = Wt w).

Since W1 and W1+ are continuous, we have that W7 (t,w) = WTTL(¢,w) for
all ¢ € [0, 7.
For t > 0, choose T > t and define W(t) = WT(t)lg,. Then W is a
continuous modification of B, and so W is a Brownian motion.
Now fix T'e N. Fix j € N. Choose n € N such that
1 1 n-1
<

2 2n

By Theorem 15.6 with o = 2n, § =n—1, and v; = 1/2 —1/j, we may choose a
positive random variable ¢; and an event A;r with P(A;r) = 1 such that for
all we Aj,T;
|WT(t7w> B WT(Sa w)|
sup ‘ < 0.
O<t—s<6(w) |t — 5[
s,t€[0,T7]

By Lemma 15.8, WT'(-,w) is ~;-Hélder on [0, T7.

Now let
e} a0
QQ = ﬂ m Aj,Tv

T=1j=1
so that P(€) = 1. Let w € Qy, T € (0,0), and 7 € (0,1/2). Choose T € N with
T <T and j € N with v < ;. Then w € A 5 implies W (-,w) is ,;-Hélder on
[O,f], and therefore on [0,7]. By Lemma 15.9, W(-,w) is v-Hélder on [0,T].
Since this is true for all T > 0, the sample path W (-,w) is locally v-Hélder.
Since v was arbitrary, this completes the proof. O

Exercises

15.1. [8, Problem 2.1.4] Prove Proposition 15.2.
15.2. [8, Problem 2.2.5] Prove Corollary 15.5.

15.3 Donsker’s invariance principle

Roughly speaking, Donsker’s invariance principle states that a sequence of ran-
dom walks, in which the sizes of the temporal and spatial steps go to zero at
appropriate rates, will converge in distribution to a Brownian motion. This
theorem provides an alternative proof of the existence of Brownian motion. But
it also provides an intuitive understanding of Brownian motion itself. Brownian
motion is the continuous-time analog of a random walk.

Donsker’s invariance principle is a theorem which asserts the convergence
in distribution of a sequence of random variables taking values in the space of
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continuous functions. To properly understand the theorem, we must generalize
some of the notions from Section 7.3. In particular, we will need to generalize
the notion of tightness and use the proof method described in Remark 7.28.

Let C[0,00) denote the set of continuous functions from [0,0) to R. Note
that C[0, o) is a vector space over R.

Proposition 15.11. For f, g€ C[0,0), define

= X2 s (0 = g0l A V.

te[0,n]

Then p is a metric on C[0,00) which makes C[0,00) a complete and separable
metric space. Moreover, f, — f in this metric if and only if f, — f uniformly
on compact intervals.

Proof. Exercise 15.3. Ul

A cylinder set is a set C' < C[0,0) of the form

C={feC0,0): (f(tr),-.., f(tn)) € A}, (15.4)
for some n e N, ¢; € [0,0), and A e R".

Proposition 15.12. Let C denote the collection of all cylinder sets in C[0,00).
Then Beipo,e) = 0(C).

Proof. Exercise 15.4. |

Lemma 15.13. Let X : Q — C[0,0) and let G be a o-algebra on Q. Then
X is (G, Bcpo,o0))-measurable if and only if m o X is (G, R)-measurable for all
t>0.

Proof. Suppose X is (G, Bcjo,w). Since m; : C[0,00) — R is continuous, it
follows that m; is (Bcjo,q), R)-measurable. Thus, 7; 0 X is (G, R)-measurable.

Now suppose 7 0 X is (G, R)-measurable for all ¢t > 0. Let C € C be given
by (15.4). Then

X HO)={(rs, 0o X,...,m, 0 X) e A}.

By Corollary 2.7, (m, o X,...,m, o X) is (F,R")-measurable. It therefore
follows that X~ !(C) € F. Since Bco,) = 0(C), Proposition 2.2 implies that
X is (G, Bepo,00))-measurable. O

We can now prove the following variation on Lemma 14.1.
Lemma 15.14. With notation as above, we have the following.

(i) If {X(¢t) : t = 0} is a real-valued stochastic process with continuous sample
paths, and X : Q — C[0,0) is defined by X(w) = X(-,w), then X is a
C[0, o0)-valued random variable.
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(i) If X : Q — C[0,0) is a C[0,0)-valued random variable, and X(t) :
Q — R is defined by X(t) = m 0 X, then {X(t) : t = 0} is a real-valued
stochastic process with continuous sample paths.

(i3) In either case, o(X) = o({X(t) : t = 0}).

Proof. By Lemma 15.13, for any o-algebra G on €2, we have that the function X
is (G, Bcpo,00))-measurable if and only if m;0 X is (G, R)-measurable for all ¢ > 0.
Taking G = F gives us (i) and (ii). Taking G = o(X) gives us o(X) 2 o({X (¢) :
t > 0}). And taking G = o({X(t) : t > 0}) gives us o(X) < o({X(¢) : t = 0}).
O

We can now identify continuous stochastic processes with C[0, c0)-valued
random variables. If X and Y are continuous stochastic processes, then they
can both be regarded as C[0, oc0)-valued random variables. To say that X =4 Y
in C[0,0) is to say that P(X € A) = P(Y € A) for all A € Bejo,x0)-

Lemma 15.15. Let X andY be continuous stochastic processes. Then X =4Y
in C[0,0) if and only if X andY have the same finite-dimensional distributions.

Proof. Suppose X =4 Y in C[0,0). Fix d e Nand ty,...,tq € [0,00). Define
Tty,.tq - C[O, Q)) — Rd

by 7.1, (f) = (f(t1),..., f(ta)). Note that m, ., is continuous and there-
fore measurable. Thus, for any A € R¢,

Xem,! 1,(4)
Y

Thus, X and Y have the same finite-dimensional distributions.
Now assume X and Y have the same finite-dimensional distributions. Let

L={A€Bcw:P(XeA)=PYeA)}

Since X and Y have the same finite-dimensional distributions, it follows that
C c L, where C is the collection of cylinder sets. Since C is a 7w-system and L is
a A-system, it follows that X =4 Y in C[0, c0). O

According to the definition in Section 7.3, to say that X,, = X in C[0, o)
is to say that F[G(X,)] — E[G(Xy)] for all bounded, continuous functions
G : C[0,00) — R. The function G is continuous if G(f,) — G(fx) whenever
fn — foo locally uniformly.

Another way to think about X,, = X in C[0,0) is given by Remark 7.16.
By the Skorohod representation theorem, X,, = X in C[0,0) if and only if
there are continuous stochastic processes Y,, such that X,, and Y,, have the same
finite-dimensional distributions for each n, and Y;, — Y, locally uniformly, a.s.
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We will say that X,, = X4, in the fdd sense if the finite-dimensional
distributions of X,, converge in distribution to those of X,,. That is

(Xn(t1), . s Xn(ta)) = (Xoo(t1), .-, Xoo(ta))
as n — oo, for any d € N and any ¢; € [0, c0).
Lemma 15.16. If X,, = X, in C[0,0), then X, = X4 in the fdd sense.

Proof. Suppose X,, = X in C[0, ). By Remark 7.20 and the fact that my, _ ,
is continuous, we have

(Xn(t1), s Xan(ta) = 7, ea(Xn)
= T ta (X)) = (Xnlteo), o Xn(teo)).

Thus, X,, = X in the fdd sense. ]

The converse of Lemma 15.16 is not true. Convergence in the fdd sense is
not sufficient to give convergence in C[0, ). To obtain convergence in C[0, c0),
we need both convergence in the fdd sense and the additional property of “tight-
ness”.

In Section 7.3, we defined what it means for a sequence of real-valued random
variables to be tight. Here, we extend that definition to C[0, 0)-valued random
variables. In fact, we will extend it to M-valued random variables, where M is
any metric space.

Let (M, p) be a metric space. Let {{i4}aca be a family of Borel probability
measures on M. We say that {u,} is tight if, for all ¢ > 0, there exists a
compact K < M such that

ta(K)=1—¢,

for all & € A. A sequence of M-valued random variables, {X,}_;, is tight
if {un}_, is tight, where X,, ~ p,. That is, if, for all € > 0, there exists a
compact K < M such that

P(X,eK)=1—¢,

for all n.
The following is a generalization of Theorem 7.27.

Theorem 15.17. Let M be a complete and separable metric space. Let {jia}aca
be a family of Borel probability measures on M. Then {ua} is tight if and only
if it is relatively compact, that is, every sequence {ila(n)}s—1 has a subsequence
that converges weakly.

In particular, a sequence of random variables taking values in a complete
and separable metric space is tight if and only if every subsequence has a further
subsequence that converges in distribution.

Proof. See [8, Theorem 2.4.7] and the references therein. O
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To apply this theorem to M = C[0,0), we must first characterize the com-
pact subsets of C[0,00). If f € C[0,00), T > 0, and § > 0, define

mT(fa(;) = Sup<6 |f($) 7f(t)|7
0Zoisr

which we call the modulus of continuity of f on [0,T].

Proposition 15.18. The function m” (-,d) is continuous, the function m™ (f,)
is increasing, and m* (f,8) | 0 asd | 0.

Proof. Exercise 15.5. ]

Theorem 15.19 (Arzela-Ascoli theorem). Let A < C[0,0). Then the closure
of A is compact if and only if the following conditions hold:

(i) sup{|f(0)|: f € A} < o0, and
(ii) for all T > 0, we have sup{m™(f,8): fe A} -0 asé | 0.
Proof. See [8, Theorem 2.4.9]. O

Combining Theorems 15.19 and 15.17, we obtain the following necessary and
sufficient conditions for tightness in C[0, c0).

Theorem 15.20. Let {X,} be a sequence of C[0,00)-valued random variables.
Then {X,,} is tight if and only if the following conditions hold:

(i) sup,, P(|X,(0)] > M) - 0 as M — o0, and
(ii) sup,, P(m*(X,,,0) >€) -0 as 6 | 0 for all T > 0 and all € > 0.
Proof. See [8, Theorem 2.4.10]. O

Remark 15.21. Condition (i) in Theorem 15.20 is equivalent to the assertion
that the sequence of real-valued random variables {X,,(0)}*_; is tight.

Remark 15.22. For simplicity, Theorem 15.20 is stated under the assumption
that the X,,’s are defined on the same probability space, and so P does not
depend on n. The theorem is still true if each X, is defined on its own probability
space.

Although Theorem 15.20 provides necessary and sufficient conditions for
tightness, it is often not a very practical tool for verifying tightness in specific
applications. Using methods similar to the proof of the Kolmogorov-Centsov
theorem (Theorem 15.6), we obtain the following sufficient conditions for tight-
ness.

Proposition 15.23. Let {X,} be a sequence of C[0,0)-valued random vari-
ables. Suppose that there exists o, B,v > 0 and a family of positive constants
{Cr}r=0 such that
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(i) sup,, E|X,(0)|” < w0, and
(ii) sup, E| X, (t) — X, (8)|* < Oplt — s|'*P for all 0 < s,t < T.
Then {X,} is tight.
Proof. See [8, Problem 2.4.11]. O

Finally, the proof method described in Remark 7.28, as it applies to the
current situation, is encoded in the following theorem.

Theorem 15.24. Let {X,,} be a sequence of continuous stochastic processes.
Suppose {X,,} is tight and that the finite-dimensional distributions converge in
distribution. Then there exists a continuous process X such that X,, = X in
C[0,0) as n — 0.

Remark 15.25. In Theorem 15.24, each X,, might be defined on its own prob-
ability space. In particular, even if {X,, : n € N} are all defined on a common
probability space, the theorem does not guarantee that X, can be defined on
that space.

Remark 15.26. To say that the finite-dimensional distributions of the sequence
of processes {X,,} converge in distribution is to say that for all d € N and all
t1,...,tq € [0,00), there exists an R%-valued random vector U such that

(Xn(tl)a oo aXn(td)) = U,
as n — 0.

Proof of Theorem 15.24. By Remark 7.26, we may employ a subsequential ar-
gument (using Theorem 7.2).

By Theorem 15.17, there exists a subsequence {X, )} and a continuous
process X, such that X,y = X in C[0,00) as m — .

Let {Xj(m)} be an arbitrary subsequence. By Theorem 15.17, there ex-
ists a further subsequence {Xj )} and a continuous process X, such that
Xii(my) = X, in C[0,0) as k — co. Since the finite-dimensional distributions
of {X,} converge, it follows that X, and )N(OO have the same finite-dimensional
distributions. By Lemma 15.15, Xo, =4 X in C[0,0). Thus, Xj(m,) = Xo
in C[0,0) as k — c0. Since {X5(,,,)} was arbitrary, it follows from Theorem 7.2
that X,, = X in C[0,0) as n — o0. O

Corollary 15.27. Let {X,} and X be continuous stochastic processes. Suppose
{X,} is tight and X,, = X in the fdd sense. Then X,, = X in C[0,00).

Proof. By Theorem 15.24, there exists a continuous process X such that X, =
X in C[0,00). But then X and X have the same finite-dimensional distributions.

By Lemma 15.15, X =4 X in C[0,0). Thus, X,, = X in C[0,0). O

The following result is a generalization of Exercise 7.10, which is often useful
when working with convergence in distribution in C[0, c0).
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Proposition 15.28. Let (M, p) be a separable metric space. Let X,,,Y,, X be
M -valued random variables. Suppose X, = X and p(X,,Y,) — 0 in probabil-
ity. Then Y, = X.

Proof. Exercise 15.6. ]

Let {¢;} be i.i.d. real-valued random variables with mean 0 and variance 1.
Let Sy =0and S, =& + -+ &,. Fort > 0, define

Y(t) = Sy + (t = [t)E1 41

Then Y = {Y(¢) : t = 0} is a continuous stochastic process which is a linear
interpolation of a mean 0 random walk. For n e N and ¢ > 0, let

X, (t) = nY2Y (nt).

Then X,, = {X,(t) : t = 0} is the same continuous process, but with time and
space scaled by a factor of n=! and n~'/2, respectively.

Theorem 15.29 (Donsker’s invariance principle). There exists a Brownian mo-
tion W such that X,, = W.

Proof idea. The substantial portion of the proof, which requires multiple lem-
mas in the text, is to prove that {X,,} is tight. In addition to this, one must use
the central limit theorem to prove that the finite-dimensional distributions of
X, converge. Theorem 15.24 then implies there exists a continuous process W
such that X,, = W. One can then use the earlier calculations from the central
limit theorem to verify that W has the necessary finite-dimensional distributions
to be a Brownian motion. For details, see [8, Theorem 2.4.20]. O

Remark 15.30. Donsker’s invariance principle can be regarded as a construc-
tive proof of the existence of Brownian motion. It constructs Brownian motion
W as a C[0,0)-valued random variable. As stated here in these notes, the
underlying probability space on which W is built is left unspecified. However,
it can always be built in the following canonical fashion.

Suppose W is a C[0, o0)-valued random variable defined on the probability
space (92, F, P). Let Q= C[0, ), F = Beo,0), and W(t,w) = w(t). Define
P on (Q, F) by P(A) = (W € A). Then W =4 W. In particular, if W is a
Brownian_motion, then W is a Brownian motion. In this case, the canonical
measure P is called Wiener measure and the probability space (Q .7-' P) is
the canonical probability space for Brownian motion.

Exercises

15.3. [8, Problem 2.4.1] Prove Proposition 15.11.
15.4. [8, Problem 2.4.2] Prove Proposition 15.12.
15.5. [8, Problem 2.4.8] Prove Proposition 15.18.
15.6. [8, Problem 2.4.16] Prove Proposition 15.28.
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