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With the exception of mathematics, everything we
know is conjecture.

—George Polya, 1954 (paraphrased)

Examples
Laws of physics
Guilt of a defendant
Historical facts
Economic principles
The sun will rise tomorrow.

None of these can be shown with complete certainty.
But some are more certain than others.
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Deductive reasoning: Used to establish mathematical facts.
Inductive reasoning: Used to establish everything else.

Rules of deductive reasoning
Formalized in mathematical logic
Detailed and precise
Well-understood
Universally accepted
Highly successful
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Rules of inductive reasoning
There are rules. Example:

The Fundamental Inductive Pattern (Polya, 1954):

A implies B
B is true

A becomes more plausible

This is the foundation of empirical science.
There is no successful, agreed-upon formalization
Obvious tool to use: probability
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Mathematicians, philosophers, and physicists have made
efforts toward formalizing inductive reasoning with probability.

Incomplete list:

Leibniz (1670)
Jacob Bernoulli (1713)
Bayes (1763)
Laplace (1774)
Bolzano (1837)
De Morgan (1837)
Boole (1854)

Keynes (1921)
Wittgenstein (1922)
Reichenbach (1949)
Carnap (1950)
Scott and Krauss (1966)
Nilsson (1986)
Jaynes (2003)
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L = Lω1,ω: a predicate language that allows countable
conjunctions and disjunctions

Lfin ⊆ L: usual first-order language

L0 ⊆ L: the set of sentences in L

An inductive statement is a triple, (X , φ,p), where X ⊆ L0,
φ ∈ L0, and p ∈ [0,1].

LIS: the set of inductive statements
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X ⊢ φ: natural deduction with obvious generalizations to
countable conjunctions

X ⊢fin φ: (X ⊆ Lfin, φ ∈ Lfin) usual first-order derivability

Theorem (Prop 5.3.15)

If X ⊆ Lfin and φ ∈ Lfin, then X ⊢ φ⇔ X ⊢fin φ.

⊢′ φ: (Karp 1959, 1964; Keisler, 1971) Hilbert-type calculus

X |∼ φ: Hilbert-type calculus, extension of ⊢′

Theorem (Thm 5.2.24)

X ⊢ φ⇔ X |∼ φ

Q ⊢ (X , φ,p): (Q ⊆ LIS) natural deduction based on 9 rules;
defined indirectly in terms of inductive theories
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ω |≡ φ: (ω an L-structure, φ ∈ L0) φ is true in ω, we say
ω strictly satisfies φ

σ-compactness fails for |≡. There exists X ⊆ L0 such that every
countable subset of X is strictly satisfiable, but X is not strictly
satisfiable.

Karp’s Completeness Theorem (Karp 1959, 1964)

⊢′ φ iff ω |≡ φ for all ω

An (inductive) model is a probability space P = (Ω,Σ,P) where
Ω is a set of L-structures.

φΩ = {ω ∈ Ω | ω |≡ φ}

P ⊨ φ⇔ PφΩ = 1: we say P satisfies φ
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Theorem (σ-compactness, Thm 5.3.19)
X is satisfiable iff every countable subset of X is satisfiable.

P ⊨ (X , φ,p) ⇔ X ≡ Y ∪ {ψ}, where P ⊨ Y &
PφΩ ∩ ψΩ

PψΩ

= p.

Can use this to define Q ⊨ (X , φ,p) for Q ⊆ LIS.

Theorem (Soundness and completeness)

X ⊢ φ⇔ X ⊨ φ :⇔ (P ⊨ X ⇒ P ⊨ φ)

Q ⊢ (X , φ,p) ⇔ Q ⊨ (X , φ,p)

Note: ω |≡ φ iff P = ({ω}, {∅, {ω}}, δω) ⊨ φ.
Therefore, X ⊨ φ⇒ (ω |≡ X ⇒ ω |≡ φ).
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Proof sketch of σ-compactness:
Show ⊢ is σ-compact (Thm 5.2.11). Use Karp to show
X ⊢ φ⇒ X ⊨ φ (Thm 5.3.16) and
X ctble & consistent ⇒ X strictly satisfiable (Cor 5.3.17).
Assume every ctble subset of X is satisfiable.
The above shows X is consistent.
S := {X0 ⊆ L0 | X0 ctble & consistent}. For X0 ∈ S, choose
ωX0 |≡ X0. Ω := {ωX0 | X0 ∈ S}. Then φΩ = ψΩ ⇒ φ ≡ ψ.
Then Σ = {φΩ | X ⊢ φ or X ⊢ ¬φ} is a σ-algebra on Ω. Define

PφΩ =

{
1 if X ⊢ φ,
0 if X ⊬ φ.

Then P is well-defined, is a probability measure on (Ω,Σ), and
P = (Ω,Σ,P) ⊨ X .
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Th P = {φ ∈ L0 | P ⊨ φ} (a deductive theory)
[T0,Th P]: set of deductive theories T with T0 ⊆ T ⊆ Th P

X ↪→ Y : X ≡ Y ∪ Φ for some countable Φ ⊆ L0

X ↪→ [T0,Th P]: X ↪→ T for some T ∈ [T0,Th P]

Th P = {(X , φ,p) ∈ LIS | P ⊨ (X , φ,p)}
Th P ⇃[T0,Th P] = {(X , φ,p) ∈ Th P | X ↪→ [T0,Th P]}

Models Determine Theories (Thm 4.2.4 + Prop 3.5.10)
If P is a model with P ⊨ T0, then P = Th P ⇃[T0,Th P] is a
complete inductive theory with root T0.

Theories Determine Models (Thm 4.2.6)
If P is a complete inductive theory with root T0, then there
exists a model P such that P = Th P ⇃[T0,Th P].
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(S, Γ, ν): probability space

⟨Xi | i ∈ I⟩: family of r.v.s

Xi takes values in (Ri , Γi); Γ is generated by the Xi ’s

We call (S, Γ, ν, ⟨Xi | i ∈ I⟩) a modern probability model

LR: predicate language with constant symbols {r | r ∈
⋃

i Ri}
and unary relation symbols {Vi | i ∈ I,Vi ∈ Γi}

x ∈ Vi is shorthand for Vi x

R: LR-structure with domain R =
⋃

i Ri and rR = r , VR = V

TR = {φ ∈ L0
R | R |≡ φ}

L: language obtained from LR by adding a constant symbol X i
for each i ∈ I
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Embedding Theorem I (Thm 5.4.2)

There exists an L-model P = (Ω,Σ,P) with P ⊨ TR and a
function h : S → Ω mapping x ∈ S to ω ∈ Ω such that

x ∈ {Xi ∈ V} ⇔ ω |≡ X i ∈ Vi ,

U ∈ Γ ⇒ U = h−1φΩ for some φ ∈ L0, and
h is a measure space isomorphism,

and P = Th P ⇃[TR ,Th P] satisfies

P(
∧n

k=1 X i(k) ∈ Vk | TR) = ν
⋂n

k=1{Xi(k) ∈ Vk}.

Measure Theory Inductive Logic
outcome structure
event sentence
set membership strict satisfiability
random variable constant symbol
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set

structure

interprets finitary

deductive logic

set of
structures

inductive
model

interprets infinitary

deductive logic and inductive logic

probability
space

modern prob
model

+ rels

+ prob meas

+ prob meas

+ RVs

proper embedding
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Example 1

L: a language with constants {X n | n ∈ N} ∪ {h, t}

For s = ⟨sn⟩ ∈ {h, t}N, let ψs = ¬
∧

n∈N X n = sn.

X = {
∧

n∈N(X n = h ∨ X n = t)} ∪ {ψs | s ∈ {h, t}N}

Every countable subset of X is satisfiable.

By σ-compactness, X is satisfiable. Therefore, there exists P
such that P ⊨ X .

(S, Γ, ν): prob. sp.; ⟨Xn | n ∈ N⟩: i.i.d. coin flips

Build P as in Embedding Theorem I. Then P ⊨ X .
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Example 2

I: an uncountable set

L: a language with constants {X t | t ∈ I} ∪ {n | n ∈ N}

X = {m ̸= n | m,n ∈ N,m ̸= n}
∪ {

∨
n∈N X t = n | t ∈ I} ∪ {X s ̸= X t | s, t ∈ I, s ̸= t}

Every countable subset of X is satisfiable.

By σ-compactness, X is satisfiable. Choose an inductive model
P such that P ⊨ T0 = T (X ). Let P = Th P ⇃[T0,Th P].

Then P(X s ̸= X t | T0) = 1 for all s ̸= t .
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A “real inductive theory” is an inductive theory capable of
talking about the real numbers.

Can construct one with Embedding Theorem I.

A less ad hoc, more flexible way is to talk to about real numbers
in set theory.

ΛZFC
− ⊆ Lfin: usual (finitary) axioms of ZFC

Notation for axiom schema of separation:

AS(φ) : ∃y ∀z(z ∈ y ↔ φ ∧ z ∈ x)
AS = {AS(φ) | φ(x , z, u⃗) ∈ L and y /∈ freeφ}
ASfin = AS ∩ Lfin ⊆ ΛZFC

−

ΛZFC: includes all of AS, not just ASfin

Jason Swanson The Principles of Probability



19/26

Introduction
Inductive Logic

Real Inductive Theories

Embedding with ZFC−
Properties of ZFC
Embedding with ZFC

ZFC− = T (ΛZFC
− ) , ZFCfin = ZFC− ∩ Lfin , ZFC = T (ΛZFC)

Since ΛZFC
− ⊆ Lfin, Prop 5.3.15 implies that for φ ∈ Lfin, we have

ΛZFC
− ⊢ φ iff ΛZFC

− ⊢fin φ.

Therefore, ZFCfin = {φ ∈ Lfin | ΛZFC
− ⊢fin φ} is the usual

(finitary) version, and ZFC is its minimal infinitary extension.

A real inductive theory in ZFC− is an inductive theory P with
root T0 ⊇ ZFC−.

If such a P exists, then ZFC− is consistent.
(P ⊨ P ⇒ P ⊨ T0 ⊇ ZFC−)

Theorem (Prop 6.2.1)

P = (Ω,Σ,P) ⊨ ZFC− iff ω |≡ ZFCfin for P-a.e. ω ∈ Ω.
∴ ZFC− is consistent iff ZFCfin is consistent in first-order logic.
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Notation in ZFC−:

0 = ∅, n = S · · ·S∅
q : an explicitly defined constant symbol for q ∈ Q

Embedding Theorem II (Thm 6.3.4)

Assume ZFC− is consistent. Then there exists a complete
inductive theory P with root ZFC− such that

P(
∧n

k=1 X i(k) ≤ qk | ZFC−) = ν
⋂n

k=1{Xi(k) ≤ qk}.

Cannot talk about individual real numbers (or Borel sets or
measurable functions).
Loses the connection between outcomes and structures.
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A real inductive theory in ZFC is an inductive theory P with root
T0 ⊇ ZFC.

If such a P exists, then ZFC is consistent. In fact, we will
frequently assume ZFC is strictly satisfiable.

κ: cardinal number
Vκ: set in von Neumann hierarchy
νκ = (Vκ,∈νκ), where ∈νκ = ∈

Theorem (Thm 6.2.4)
The following are equivalent:

(i) κ is strongly inaccessible
(ii) νκ |≡ ΛZFC

−

(iii) νκ |≡ ZFC

Jason Swanson The Principles of Probability
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N0: A constant symbol with an explicit, finitary definition. It is
the usual set of natural numbers. That is, it is the smallest set
that contains 0 and is closed under the successor operation.

Theorem (Prop 6.3.2)
If ZFC− is consistent, then

ZFC− ⊬ ∃y ∀x(x ∈ y ↔
∨

n∈N0
x = n).

On the other hand,

ZFC ⊢ ∀x(x ∈ N0 ↔
∨

n∈N0
x = n).
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Theorem (Prop. 5.3.22)

Suppose φ ∈ L0 is strictly satisfied by the standard structure of
arithmetic, (N0,0,S,+, ·). Then ZFC ⊢ φ. Equivalently,
P ⊨ ZFC implies P ⊨ φ for all models P.

If B ⊆ N0, then

ZFC ⊢ ∃!y ∀x(x ∈ y ↔
∨

n∈B x = n)

Can explicitly define each subset of N0.

Similarly for each subset of Q, and hence, each Dedekind cut.

Can explicitly define each real number, each Borel set, and
each measurable function.
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ω: a structure with domain A; ωt = {a ∈ A | a ∈ω tω}

The Real Frame of Reference (Thms 6.4.1, 6.4.3, 6.4.5)

If Q ⊨ ZFC, then there exists a model P = (Ω,Σ,P) such that
Q ≃ P and

ω |≡ ZFC− for all ω ∈ Ω

qω = q for all ω ∈ Ω
ωR ⊆ R for all ω ∈ Ω

if r ∈ R, then rω = r for a.e. ω ∈ Ω

if V ∈ B(R), then Vω = ωV = V ∩ ωR for a.e. ω ∈ Ω

if h : R → R is measurable, then for a.e. ω ∈ Ω,
ω |≡ (y = h(x))[a,b] iff a ∈ ωR, b ∈ ωR, and h(a) = b.
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Embedding Theorem III (Thm 6.4.6)

Assume ZFC is strictly satisfiable. Let (S, Γ, ν, ⟨Xi | i ∈ I⟩) be a
real-valued modern probability model. Then there exists a
model P = (Ω,Σ,P) with P ⊨ ZFC and a function h : S → Ω
mapping x ∈ S to ω ∈ Ω such that

(i) x ∈ {Xi ∈ V} ⇔ ω |≡ X i ∈ V ,
(ii) U ∈ Γ ⇒ U = h−1φΩ for some sentence φ, and
(iii) h is a measure space isomorphism,
and P = Th P ⇃[ZFC∞,Th P] satisfies

P(
∧n

k=1 X i(k) ∈ Vk | ZFC) = ν
⋂n

k=1{Xi(k) ∈ Vk}.
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Proof sketch:

Choose ω0 such that ω0 |≡ ZFC. Add constant symbols X i .
For each x ∈ S, let ω = ωx be the ext. of ω0 with Xω

i = Xi(x)
ω0 .

Let Ω = {ωx | x ∈ S} and define h : S → Ω by hx = ωx .
Let Σ = {A ⊆ Ω | h−1A ∈ Γ}, P = ν ◦ h−1, and P = (Ω,Σ,P).
Then ω |≡ ZFC for all ω ∈ Ω. Therefore, P ⊨ ZFC.
Fix x , i ,V . Let r = Xi(x) ∈ R. Then ωx |≡ X i ∈ V iff ω0 |≡ r ∈ V .
Using the real frame of reference, we can show

r ∈ V ⇒ ZFC ⊢ r ∈ V , and
r /∈ V ⇒ ZFC ⊢ r ̸∈ V .

Therefore, ω0 |≡ r ∈ V iff r ∈ V . This proves (i).
Soft arguments gives (ii) and (iii), and (1) follows from the
construction of P.
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