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With the exception of mathematics, everything we
know is conjecture.

—George Polya, 1954 (paraphrased)

Examples
Laws of physics
Guilt of a defendant
Historical facts
Economic principles
The sun will rise tomorrow.

None of these can be shown with complete certainty.
But some are more certain than others.
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Deductive reasoning: Used to establish mathematical facts.
Inductive reasoning: Used to establish everything else.

Rules of deductive reasoning
Formalized in mathematical logic
Detailed and precise
Well-understood
Universally accepted
Highly successful
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Rules of inductive reasoning
There are rules. Example:

The Fundamental Inductive Pattern (Polya, 1954):

A implies B
B is true

A becomes more plausible

This is the foundation of empirical science.
There is no successful, agreed-upon formalization
Obvious tool to use: probability
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Mathematicians, philosophers, and physicists have made
efforts toward formalizing inductive reasoning with probability.

Incomplete list:

Leibniz (1670)
Jacob Bernoulli (1713)
Bayes (1763)
Laplace (1774)
Bolzano (1837)
De Morgan (1837)
Boole (1854)

Keynes (1921)
Wittgenstein (1922)
Reichenbach (1949)
Carnap (1950)
Scott and Krauss (1966)
Nilsson (1986)
Jaynes (2003)
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Inductive Calculus
Semantics and Completeness
Embedding Modern Probability

L = Lω1,ω: a predicate language that allows countable
conjunctions and disjunctions

L0 ⊆ L: the set of sentences in L

An inductive statement is a triple, (X , φ,p), where X ⊆ L0,
φ ∈ L0, and p ∈ [0,1].

LIS: the set of inductive statements

(R1) The rule of logical equivalence
Let P ⊆ LIS. If (X , φ,p) ∈ P, X ′ ≡ X , and φ′ ≡X φ,
then (X ′, φ′,p) ∈ P and there is no other p′ with (X ′, φ′,p′) ∈ P.

If P satisfies (R1), then P is a function from a subset of
PL0 × L0 to [0,1]. Write P(φ | X ) = p for (X , φ,p) ∈ P.

anteP: set of all X such that P(φ | X ) = p for some φ and p
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(R2) The rule of logical implication
X ∈ anteP,X ⊢ φ⇒ P(φ | X ) = 1

(R3) The rule of material implication
X ∈ anteP,P(φ | X , ψ) = 1 ⇒ P(ψ → φ | X ) = 1

(R4) The rule of deductive transitivity
(a) P(φ | X ) = 1, φ ⊢ ψ ⇒ P(ψ | X ) = 1
(b) X ′ ∈ anteP,X ′ ⊢ X ,P(φ | X ) = 1 ⇒ P(φ | X ′) = 1

(R5) The addition rule
X ⊢ ¬(φ ∧ ψ) ⇒ P(φ ∨ ψ | X ) = P(φ | X ) + P(ψ | X )

(R6) The multiplication rule
P(φ ∧ ψ | X ) = P(φ | X )P(ψ | X , φ)

(R7) The continuity rule
X , φn ⊢ φn+1 ⇒ P(

∨
n φn | X ) = limn P(φn | X )
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A set P ⊆ LIS is complete if it satisfies (R1)–(R7) and
(i) P(φ | X ),P(ψ | X ) exist ⇒ P(φ ∧ ψ | X ) exists
(ii) X ,X ∪ {ψ} ∈ anteP ⇒ P(ψ | X ) exists

(R8) The rule of inductive extension
If P(φ | X ) = p for all complete P ⊇ P, then P(φ | X ) = p.

(R9) The rule of deductive extension
If S ⊆ L0 is nonempty and P(θ | X ) = 1 for all θ ∈ S,
then X ∪ S ∈ anteP and P( · | X ,S) = P( · | X ).

An inductive theory is a set P ⊆ LIS that satisfies (R1)–(R9).

Can use this to define Q ⊢ (X , φ,p) for Q ⊆ LIS.

Jason Swanson The Principles of Probability



9/26

Introduction
Inductive Logic

Applications

Inductive Calculus
Semantics and Completeness
Embedding Modern Probability

An (inductive) model is a probability space P = (Ω,Σ,P) where
Ω is a set of L-structures.

φΩ = {ω ∈ Ω | φ is true in ω} P ⊨ φ⇔ PφΩ = 1

P ⊨ (X , φ,p) ⇔ X ≡ Y ∪ {ψ}, where P ⊨ Y &
PφΩ ∩ ψΩ

PψΩ

= p.

Can use this to define Q ⊨ (X , φ,p) for Q ⊆ LIS.

Theorem (σ-compactness, Thm 5.3.19)
X is satisfiable (i.e. P ⊨ X for some P) iff every countable
subset of X is satisfiable.

Theorem (Soundness and completeness)

X ⊢ φ⇔ X ⊨ φ :⇔ (P ⊨ X ⇒ P ⊨ φ)

Q ⊢ (X , φ,p) ⇔ Q ⊨ (X , φ,p)
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Th P = {φ ∈ L0 | P ⊨ φ} (a deductive theory)
[T0,Th P]: set of deductive theories T with T0 ⊆ T ⊆ Th P

X ↪→ Y : X ≡ Y ∪ Φ for some countable Φ ⊆ L0

X ↪→ [T0,Th P]: X ↪→ T for some T ∈ [T0,Th P]

Th P = {(X , φ,p) ∈ LIS | P ⊨ (X , φ,p)}
Th P ⇃[T0,Th P] = {(X , φ,p) ∈ Th P | X ↪→ [T0,Th P]}

Models Determine Theories (Thm 4.2.4 + Prop 3.5.10)
If P is a model with P ⊨ T0, then P = Th P ⇃[T0,Th P] is a
complete inductive theory with root T0.

Theories Determine Models (Thm 4.2.6)
If P is a complete inductive theory with root T0, then there
exists a model P such that P = Th P ⇃[T0,Th P].
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(S, Γ, ν): probability space

⟨Xi | i ∈ I⟩: family of r.v.s

Xi takes values in (Ri , Γi); Γ is generated by the Xi ’s

We call (S, Γ, ν, ⟨Xi | i ∈ I⟩) a modern probability model

LR: predicate language with constant symbols {r | r ∈
⋃

i Ri}
and unary relation symbols {Vi | i ∈ I,Vi ∈ Γi}

x ∈ Vi is shorthand for Vi x

R: LR-structure with domain R =
⋃

i Ri and rR = r , VR = V

TR = {φ ∈ L0
R | φ is true in R}

L: language obtained from LR by adding a constant symbol X i
for each i ∈ I
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Embedding Theorem I (Thm 5.4.2)

There exists an L-model P = (Ω,Σ,P) with P ⊨ TR and a
function h : S → Ω mapping x ∈ S to ω ∈ Ω such that

x ∈ {Xi ∈ V} ⇔ X i ∈ Vi is true in ω,

U ∈ Γ ⇒ U = h−1φΩ for some φ ∈ L0, and
h is a measure space isomorphism,

and P = Th P ⇃[TR ,Th P] satisfies

P(
∧n

k=1 X i(k) ∈ Vk | TR) = ν
⋂n

k=1{Xi(k) ∈ Vk}.

Measure Theory Inductive Logic
outcome structure
event sentence
set membership satisfiability in a structure
random variable constant symbol

Jason Swanson The Principles of Probability



13/26

Introduction
Inductive Logic

Applications

Inductive Calculus
Semantics and Completeness
Embedding Modern Probability

Jason Swanson The Principles of Probability



14/26

Introduction
Inductive Logic

Applications

Inductive Calculus
Semantics and Completeness
Embedding Modern Probability

set

structure

interprets finitary

deductive logic

set of
structures

inductive
model

interprets infinitary

deductive logic and inductive logic

probability
space

modern prob
model

+ rels

+ prob meas

+ prob meas

+ RVs

proper embedding
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Example 1

L: a language with constants {X n | n ∈ N} ∪ {h, t}

For s = ⟨sn⟩ ∈ {h, t}N, let ψs = ¬
∧

n∈N X n = sn.

X = {
∧

n∈N(X n = h ∨ X n = t)} ∪ {ψs | s ∈ {h, t}N}

Every countable subset of X is satisfiable.

By σ-compactness, X is satisfiable. Therefore, there exists P
such that P ⊨ X .

(S, Γ, ν): prob. sp.; ⟨Xn | n ∈ N⟩: i.i.d. coin flips

Build P as in Embedding Theorem I. Then P ⊨ X .
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Example 2

I: an uncountable set

L: a language with constants {X t | t ∈ I} ∪ {n | n ∈ N}

X = {m ̸= n | m,n ∈ N,m ̸= n}
∪ {

∨
n∈N X t = n | t ∈ I} ∪ {X s ̸= X t | s, t ∈ I, s ̸= t}

Every countable subset of X is satisfiable.

By σ-compactness, X is satisfiable. Choose an inductive model
P such that P ⊨ T0 = T (X ). Let P = Th P ⇃[T0,Th P].

Then P(X s ̸= X t | T0) = 1 for all s ̸= t .
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Connections to other areas

Computer science
Quantum computing
Artificial intelligence and machine learning

Philosophy
Philosophy of science
Interpretations of probability (principle of indifference)
Epistemology
Probabilistic arguments
(doomsday argument, simulation hypothesis,
self-sampling hypotheses, superintelligence/singularity)
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Connections to other areas

Mathematics
Foundations and set theory
Probabilistic methods

Statistics
Bayesian methods

Physics
Quantum physics
(interpretations, many-worlds, Bohmian mechanics)
Statistical mechanics (based on principle of indifference)
Dynamical systems with noise
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The Principle of Indifference

The Principle of Indifference originates with Laplace. It is the
core of the classical interpretation of probability.

The theory of chance consists in reducing all the events
of the same kind to a certain number of cases equally
possible, that is to say, to such as we may be equally
undecided about in regard to their existence, and in
determining the number of cases favorable to the event
whose probability is sought. The ratio of this number
to that of all the cases possible is the measure of this
probability.

—Laplace, 1814
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The most famous description of it is by Keynes:

The Principle of Indifference asserts that if there is no
known reason for predicating of our subject one rather
than another of several alternatives, then relatively to
such knowledge the assertions of each of these alter-
natives have an equal probability. Thus equal probabil-
ities must be assigned to each of several arguments,
if there is an absence of positive ground for assigning
unequal ones.

This rule, as it stands, may lead to paradoxical and
even contradictory conclusions.

—Keynes, 1921

Jason Swanson The Principles of Probability



21/26

Introduction
Inductive Logic

Applications

Potential Areas
The Principle of Indifference

L: extralogical signature (set of symbols for constants, n-ary
relations, and n-ary functions)

A bijection π : L → L is a signature permutation if sπ has the
same type and arity as s.

φπ: the formula obtained by replacing s with sπ

Xπ = {φπ | φ ∈ X} ; X is π-invariant if Xπ ≡ X

Deductive Indifference (Thm 7.1.3)

X ⊢ φ iff Xπ ⊢ φπ

Without Loss of Generality (Cor 7.1.4)

Suppose Φ ⊆ L is countable and X ⊢
∨
Φ. Fix θ0 ∈ Φ. Assume

for all θ ∈ Φ, there is a signature permutation π such that θπ0 = θ
and X and φ are π-invariant. Then X , θ0 ⊢ φ implies X ⊢ φ.
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(R10) The principle of indifference
If P(φ | X ) = p and Xπ ∈ anteP, then P(φπ | Xπ) = p.

If P is an inductive theory that satisfies the principle of
indifference and X is π-invariant, then P(φπ | X ) = P(φ | X ), by
the rule of logical equivalence.

Example

b1,b2: constant symbols; C0,C1: unary relation symbols
L = {b1,b2,C0,C1}
ζ1 : b1 ̸= b2
ζ2 : ∀x((C0x ∨ C1x) ∧ ¬(C0x ∧ C1x))
T0 = T (ζ1 ∧ ζ2)
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φ0 = C0b1 ∧ C0b2 φ2 = C0b1 ∧ C1b2

φ1 = C1b1 ∧ C0b2 φ3 = C1b1 ∧ C1b2

C: set of all inductive theories with root T0 such that
P(φn | T0) exists for all n ∈ {0,1,2,3}, and
P satisfies the principle of indifference

Theorem (Prop 7.3.2)

(a) If P ∈ C, then P(φ0 | T0) = P(φ3 | T0) and
P(φ1 | T0) = P(φ2 | T0).

(b) For any p ∈ (0,1), there exists P ∈ C such that
P(φ0 | T0) = P(φ3 | T0) = p/2 and
P(φ1 | T0) = P(φ2 | T0) = (1 − p)/2.
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Proof sketch

(a) T0 is invariant under π = (b1 b2) and φπ
1 = φ2.

Therefore, P(φ1 | T0) = P(φ2 | T0).

T0 is invariant under π = (C0 C1) and φπ
0 = φ3.

Therefore, P(φ0 | T0) = P(φ3 | T0).

(b) ωn = ({1,2},Lωn), n ∈ {0,1,2,3}

bωn
1 = 1 bωn

2 = 2
Cω0

0 = {1,2} Cω1
0 = {2} Cω2

0 = {1} Cω3
0 = ∅

Cω0
1 = ∅ Cω1

1 = {1} Cω2
1 = {2} Cω3

1 = {1,2}

Then φm is true in ωn iff m = n.
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Ω = {ω0, ω1, ω2, ω3}, Σ = PΩ,
P{ω0} = P{ω3} = p/2, P{ω1} = P{ω2} = (1 − p)/2
P = (Ω,Σ,P) ⊨ T0

Let P = Th P ⇃[T0,Th P]. Then P(φn | T0) = P(φn)Ω = P{ωn}.
Only remains to show that P satisfies the principle of
indifference.

π: signature permutation, not the identity
Assume P(φ | X ) = p and Xπ ∈ anteP
Want to show that P(φπ | Xπ) = p

Suppose Cπ
0 = C0. Then π = (b1 b2)
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ωπ
n : in ωn, everywhere swap 1 and 2

Ωπ = {ωπ
0 , ω

π
1 , ω

π
2 , ω

π
3}, Σπ = PΩπ,

Pπ{ωπ
0} = Pπ{ωπ

3} = p/2, Pπ{ωπ
1} = Pπ{ωπ

2} = (1 − p)/2
Pπ = (Ωπ,Σπ,Pπ)

Theorem (Thm 7.1.7)

P ⊨ (X , φ,p) iff Pπ ⊨ (Xπ, φπ,p)

ωn 7→ ωπ
n is a pointwise isomorphism between measure spaces

ωn ≃ ωπ
n as structures; therefore P ≃ Pπ

Inductive Isomorphism Theorem (Thm 5.3.24)

If P ≃ Q, then P ⊨ (X , φ,p) iff Q ⊨ (X , φ,p).

We therefore have P ⊨ (Xπ, φπ,p), so that P(φπ | Xπ) = p
A similar proof covers the case Cπ

0 = C1
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