$$
\frac{25}{21-2.3} : Axioms of probabilities
$$

i

From Expl 3.3d: \sim ϵ \times ϵ ℓ 3.3d:
Blood Test for disease α : gives true pos. to 95% of sick people gives false pos. to 1% of healthy people 0.5% of pop. has disease α . Random person B takes the test, gets pos. result E beta What's the probability β has disease α ? We assign probabities to propositions (declarative sentences with a truth value). E.g.

^E Person B is ^a randommember of the population camp ^F Person B takes the test omfg pens ^p gets ^a pos result H PersonB has disease ^a and We are asked to compute P HIE ^F ⁶ probability of ^H given ^E ^F ^G We are given

$$
P(G|F2H)=0.95
$$
\n
$$
P(G|F2\pi H)=0.01
$$
\n
$$
P(H|E) = 0.005
$$
\nTo go from the gives to the desired quantity, we use
\naxioms.
\n
$$
A x i \text{om } \pm 1
$$
\n
$$
dH
$$
\n
$$
A x i \text{om } \pm 1
$$
\n
$$
dH
$$
\n
$$
A x i \text{om } \pm 1
$$
\n
$$
dH
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|B) = 1.
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|B) = 1.
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|B) = 1.
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|B) = 1.
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|C) = 0, \quad \text{then}
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|C) = 0, \quad \text{then}
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|C) = 1 - P(A|C).
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx \quad P(A|C) = 1 - P(A|C).
$$

Pf:	$A\&-A$ is always false, so $C \Rightarrow \neg(A\&-A)$.
by all value $(Axiom\mathbb{II})$,	
$P(Aor\neg A C) = P(A C) + P(\neg A C)$.	
But $A \propto \neg A$ is always true, so $C \Rightarrow A \circ \neg A$. By Axiom\mathbb{II}, P(A \circ \neg A C) = 1.	
$1 = P(A C) + P(\neg A C)$	
$\Rightarrow P(\neg A C) = 1 - P(A C) \cdot \Box$	

In all the computations we will consider, E&F will always betrue. background
information

Remove
$$
bg
$$
 into : $Ω = EbF$.

\nRewrite $prob$ leur:

\n
$$
\frac{Gi
$$
veur}

\n
$$
\frac{Gi}{P(G | \Omega B H)} = 0.95 = \frac{19}{20}
$$

\n
$$
P(H | \Omega B G) = ?
$$

\n
$$
P(H | \Omega B G) = 0.005 = \frac{1}{200}
$$

\n
$$
\frac{Soln}{200}
$$

\n
$$
P(H | \Omega B G) = P(GB H | \Omega B G)
$$

\n
$$
\frac{19}{200}
$$

\n
$$
P(H | \Omega B G) = \frac{19}{200}
$$

\n
$$
P(H | \Omega B G) = \frac{19}{4000}
$$

\n
$$
\frac{1}{1000}
$$

Hence count
\nPoint he true
\nboth be true
\nboth the true
\nlightly the same
\nodd. rule
\n
$$
1\sqrt{100} = P((GkH) \circ G(G8-H) | S2)
$$
\n
$$
= P(GkH) S2) + P(G8-H|S2)
$$
\n
$$
= \frac{19}{200} = \frac{19}{20}
$$
\n
$$
= \frac{19}{4000} + \frac{1}{100} (1 - P(H|S))
$$
\n
$$
= \frac{19}{4000} + \frac{1}{100} \cdot \frac{(1 - P(H|S))}{200}
$$
\n
$$
= \frac{19}{4000} + \frac{1}{100} \cdot \frac{(1 - P(H|S))}{200} + \frac{199}{20000}
$$
\n
$$
= \frac{95 + 199}{20000} = \frac{299}{20000} = \frac{197}{10000}
$$
\n
$$
P(H|S2kG) = \frac{19}{4000} - \frac{198800}{147} = \frac{195}{294} = \frac{195}{294} = 0.3231
$$
\n
$$
S2 is always given, so drop if from the notation:\n
$$
P(A) = P(A|S)
$$
, $P(A|S) = P(A|S28)$
\nProblem looks simple the sum of the solution.
$$

Given:
\n
$$
P(G|H) = \frac{19}{20}
$$
\n
$$
P(H|G)= ?
$$
\n
$$
P(H) = \frac{1}{200}
$$
\n
$$
P(H) = \frac{1}{200}
$$
\n
$$
P(H) = \frac{1}{200}
$$
\n
$$
P(H) = \frac{19}{200}
$$
\n
$$
P(H) = \frac{19}{400}
$$
\n
$$
P(H|G) = \frac{19}{4000} \cdot \frac{1}{P(G)}
$$
\n
$$
P(G) = P((G8H) or (G8-H)) = P(G8H) + P(G8-H)
$$
\n
$$
= P(H)P(G+H) + P(H)P(G+H) = \dots = \frac{197}{10000}
$$
\n
$$
P(H|G) = \frac{19}{4000} \cdot \frac{10000}{147} = \dots = \frac{95}{1294}
$$
\n
$$
P(H|G) = \frac{19}{4000} \cdot \frac{10000}{147} = \dots = \frac{95}{1294}
$$
\n
$$
T = \frac{195}{1294}
$$
\n
$$
T = \frac{195}{1294}
$$
\n
$$
P = \frac{
$$

To know P, it's enough to know
$$
P(A)
$$
 for all A.
multi. rule : $P(A&B) = P(B)P(AIB)$

 $\Rightarrow P(AIB) = \frac{P(ABB)}{P(B)}$

All truth assignments to E, F, G, H that make E&F true

$$
\frac{\begin{array}{cccccccccc}\n\hline\nF & F & G & H \\
\hline\nT & T & T & F & \leftarrow & \omega_{1} \\
T & T & T & F & \leftarrow & \omega_{2} \\
T & T & F & F & \leftarrow & \omega_{3} \\
T & T & F & F & \leftarrow & \omega_{4}\n\end{array}
$$

 ω , : outrome where person has the disease & gets. pos. result $\mathcal{M} = \mathcal{M}$ is healthy " ω_2 : \overline{N} has the disease "neg." ω z' \mathbf{W}^{\pm} is healthy " " " $\overline{\mathbf{1}}$ ω_{y} :

Propositions become sets:

In general, $\neg A = A^c$, $A \nrightarrow B = A \cup B$, $A \times B = A \cap B$ Also, $A \Rightarrow B$ means $A \subseteq B$ WEA means A is true under outcome w bg info. Finally, $D = \{w_1, w_2, w_3, w_4\} \leftarrow$ outcomes where EkF istrue I the set of all outcomes aka (sample space) A set of outcomes is called an event The "description" of an event is the proposition that corresponds to it.
1 Axiom 1 $0 \le P(A) \le 1$ $Axiom 2$ $P(S2) = 1$

Axiom 3	1f A ₁ , A ₂ , ... are mutually exclusive (meons that A _i \wedge A _j = ϕ whenever $i \neq j$), then	give add. rule
$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$	give add. rule	
\emptyset definition: If P(B) > 0, then P(A B) = \frac{P(A \cap B)}{P(B)}	gives gives with rule	
$(Axioms in §2.3, Defn in §3.2)$	gives frele	
$P_{top} \cdot 2.4.1$ P(A ^c) = 1 - P(A).	gives f = P(A) + P(A ^c)	gives f = P(A) + P(A ^c)
$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$	gives f = P(A) + P(A ^c)	
$\Rightarrow P(A^c) = 1 - P(A) \cdot \square$		

Here's our example in the formal axioms

$$
\frac{Givex:}{P(G|H)} = \frac{19}{20}
$$
\n
$$
\frac{GoaL}{P(H|G)} = ?
$$
\n
$$
P(G|H^{c}) = \frac{1}{100}
$$
\n
$$
P(H) = \frac{1}{200}
$$

$$
P(H) P(G+H) = P(G \cap H) = P(G) P(H|G)
$$
\n
$$
\frac{P(H|G) = \frac{19}{4000} \cdot \frac{1}{P(G)}
$$
\n
$$
P(H|G) = \frac{19}{4000} \cdot \frac{1}{P(G)}
$$
\n
$$
P(G) = P((G \cap H) \cup (G \cap H^{c})) = P(G \cap H) + P(G \cap H^{c})
$$
\n
$$
P(H) = \begin{cases} 1 & \text{when } F \in \mathbb{R} \\ 1 & \text{when } F \in \mathbb{R} \end{cases}
$$
\n
$$
P(H) = \begin{cases} 1 & \text{when } F \in \mathbb{R} \\ 1 & \text{when } F \in \mathbb{R} \end{cases}
$$
\n
$$
P(H|G) = \frac{19}{4000} + \frac{1}{100} (1 - P(H^{c})) = \frac{195}{1000}
$$
\n
$$
P(H|G) = \frac{19}{4000} \cdot \frac{10000}{147} = \dots = \boxed{\frac{95}{1999}}
$$
\n
$$
\frac{11}{111} (1, 2) = \frac{19}{4000} \cdot \frac{10000}{147} = \dots = \boxed{\frac{95}{1999}}
$$
\n
$$
\frac{11}{111} (1, 2) = \frac{19}{4000} \cdot \frac{10000}{147} = \dots = \boxed{\frac{95}{1999}}
$$