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Abstract

Variations of Stochastic Processes:

Alternative Approaches

by Jason Swanson

Chair of Supervisory Committee:

Professor Krzysztof Burdzy
Department of Mathematics

The work in this dissertation consists of three main parts. The first part generalizes some

of the results of Grannan and Swindle [14] regarding the scaled limit of transaction costs by

investigating the scaled limit of the p-th variation of a Brownian martingale, then applying

this to a portfolio process with p = 1.

In the second part, it is shown that the scaled median of n independent, standard,

one-dimensional Brownian motions converges weakly as n goes to infinity to a continuous,

centered Gaussian process. An explicit formula for the covariance of the limiting process is

derived.

Finally, in the third part, the solution to a certain stochastic heat equation is considered.

This solution is a random function of time and space. For a fixed point in space, the resulting

random function of time (call it Ft) has the same local behavior as a fractional Brownian

motion with Hurst parameter H = 1/4. The process Ft, therefore, has infinite quadratic

variation and, hence, is not a semimartingale. It follows, then, that the classical Ito calculus

does not apply to Ft. Heuristic ideas about a possible new calculus for this process lead,

in a natural way, to the introduction and study of the “signed” quadratic variation of Ft.

This signed variation, as a process of t, is shown to converge weakly to a Brownian motion.
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Chapter 1

INTRODUCTION

The work in this dissertation consists of three main parts. Each of these can stand alone,

yet they are all related in that they all stem from one original question. In this introduction,

I would like to describe this question and explain how the three projects arose out of its

consideration.

Consider a stock market that consists of N independent, identically distributed stocks

dX
(i)
t = σX

(i)
t dW

(i)
t , X

(i)
0 = 1

(where 1 ≤ i ≤ N , σ > 0, and W
(i)
t are independent, standard one-dimensional Brownian

motions) and a unit bond

X
(0)
t ≡ 1.

Let Mt denote the median of X
(1)
t , . . . , X

(N)
t and mt = N−1

∑N
1 X

(i)
t the mean. Consider

a European option with expiration time T = 1 and value at time T given by m1. Let

at = (a(1)
t , . . . , a

(N)
t ) be given by a

(i)
t ≡ N−1. Then

1 +
∫ 1

0
at dXt = m1 a.s.

and, thus, at is the portfolio that hedges this option. Since the portfolio is constant, there

will be no transactions involved in implementing it. It is in this sense that the mean is the

“easiest” option to hedge.

Now consider the same option, except this time its value at time T = 1 is given by M1.

Let at be the portfolio that hedges this option. To get an idea of what at looks like, we

can consider the much simpler situation where we are trying to hedge the maximum of two

stocks. Or, even simpler, we can consider hedging the maximum of one stock and a constant

q, i.e. a European call option.
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In this case, the “naive” portfolio is simply ãt = 1{Xt≥q}. This of course fails due to

local time. The Black-Scholes equation gives that the correct portfolio is

at = Φ(ρ+(1− t,Xt)) +
1

σ
√

1− t
Φ′(ρ+(1− t,Xt))− q

σ
√

1− tXt
Φ′(ρ−(1− t,Xt)),

where Φ(x) = (2π)−1/2
∫ x
−∞ e−u2/2 du and ρ±(t, x) = (σ2t)−1/2[log(x/q) ± tσ2/2]. Now,

X1 > q implies that ρ±(1−t,Xt) →∞ as t → 1 and X1 < q implies that ρ±(1−t,Xt) → −∞
as t → 1. It’s not hard to show, then, that at → 1{X1≥q} a.s. In some sense then, we can

consider at to be a smoothed-out version of ãt and use ãt to get a heuristic idea about the

behavior of at, at least for times t near 1.

Returning to our N stock model and the European option with terminal value M1, the

naive hedge is simply

ã
(i)
t = 1{X(i)

t =Mt}.

If the true hedge is qualitatively similar to this, then we see that for N large, this portfolio

will require a very large “number” of transactions. (Actually an infinite number, and this

is one of the problems that make it so difficult to quantify this statement.) This stands

in sharp contrast to the transaction-free method of hedging the mean value of the stocks.

Moreover, when N is very large, we might expect the mean and median to be very close, so

that these options, which generate very different hedging portfolios, will in fact have very

similar terminal values. This leads to the following question:

Question 1 Is there a sense in which the median is the “hardest” option to hedge.

Measuring the difficulty of hedging an option in this sense amounts to measuring the

amount of transactions involved. This is exactly the challenge faced when trying to incorpo-

rate transaction costs into a financial model. In this case, the transaction costs are related

to the total variation of the portfolio process, at. However, unless at is constant, it will

be of unbounded variation, making this impossible. The first chapter of this dissertation

approaches the problem of transaction costs by using scaling.

A second question one can naturally ask in this situation is the following:

Question 2 What is the limiting behavior of the median of N independent, standard one

dimensional Brownian motions as N →∞?
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The work of Harris [15] suggests that the median should behave, in the limit, like a

fractional Brownian motion Ft with exponent 1/4, i.e. E|Ft+∆t − Ft|2 ≈ |∆t|1/2 for ∆t

small. His model looks at the “median” of infinitely many particles distributed on the real

line according to a Poisson distribution.

Question 2 is answered in the second chapter of this dissertation. It is true that, in

the limit, the median behaves locally like a fractional Brownian motion. Globally, however,

it behaves like a Brownian motion. If we write MN
t for the median of N independent,

standard one-dimensional Brownian motions, then
√

NMN
t → Gt weakly, where Gt is a

Gaussian process with covariance

E[GsGt] =
√

st sin−1

(
s ∧ t√

st

)
.

This process has the property that E|Gt+∆t − Gt|2 ≈ |∆t|1/2 for ∆t small. However, for

t− s large, E|Gt −Gs|2 ≈ |t− s|.
The work in the third chapter of this dissertation is motivated by the results obtained

in studying Question 1. These results suggest a way to measure transaction costs based on

the scaled p-th variation of a Brownian martingale. The analysis of the variations (partic-

ularly, the quadratic variation) of martingales is at the heart of Ito’s stochastic calculus.

This calculus is now a deep and rich field of mathematics that is used in a wide array of

applications including economics, engineering, telecommunications, hydrology, biology, and

many others. The power of this calculus is its ability to give meaning to and to analyze

differential equations driven by random noise. An Ito stochastic differential equation is

driven by what is often called a “white” noise, which is the derivative, in a certain sense,

of Brownian motion. However, in many applications, Brownian motion may not be the

most realistic process to use. Brownian motion has independent increments, whereas most

real-world processes do not. An alternative to Brownian motion in these applications is

fractional Brownian motion. In this case, though, Ito’s stochastic calculus cannot be used,

since fractional Brownian motion is not a semimartingale.

Many approaches have been taken to constructing an alternative stochastic calculus for

fractional Brownian motion. Heuristic ideas about a possible new calculus for this process

will be presented in the third chapter of this dissertation. These ideas lead us, in a natural
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way, to introduce and study a new kind of variation for the process: the “signed” quadratic

variation. It will be proven that this signed variation converges, as a function of t, to a

Brownian motion.
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Chapter 2

SCALED VARIATIONS OF BROWNIAN MARTINGALES

2.1 Introduction

It is a fundamental fact of the Ito calculus that the quadratic variation of a stochastic

integral, Mt =
∫ t
0 θsdBs, where Bt is a Brownian motion, is given by 〈M〉t =

∫ t
0 θ2

sds, and

that this is the limit, in probability, of the sum of the squares of its increments. More

precisely, if Π = {t0, . . . , tn}, 0 = t0 ≤ · · · ≤ tn = t denotes a partition of the interval [0, t],

‖Π‖ = max(tj − tj−1) is its mesh size, and

V
(p)
t (Π) =

n∑

j=1

|Mtj −Mtj−1 |p,

then given any ε > 0, there exists δ > 0 such that

P (|V (2)
t (Π)− 〈M〉t| ≥ ε) < ε

whenever ‖Π‖ < δ. Note that this does not depend on the particular choice of partition,

only that its mesh size is sufficiently small. As a consequence, if p > 2, V
(p)
t (Π) tends to zero,

and if p < 2, V
(p)
t (Π) tends to infinity. Nevertheless, for values of p other than 2, V

(p)
t (Π)

will tend to a finite, nontrivial limit, provided that it is properly scaled. This time, however,

the limit is not independent of the choice of partition. Exactly what the appropriate scaling

is, what the limit is, and how it depends on the partition are the subjects of Theorem 2.2.1.

The application to mathematical finance is as follows: Let Xt denote the price process of

a stock or other risky asset and let at denote a portfolio process, i.e. at specifies the number

of shares of the asset to be held at time t. Let us assume the presence of proportional

transaction costs. If at is of bounded variation, then the cost of maintaining the portfolio

is proportional to the total variation of the process ζt =
∫ t
0 Xsdas. Typically, however, at

is a semimartingale with nontrivial martingale part, and therefore ζt is of unbounded first
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variation. According to Theorem 2.2.1, we may appropriately scale the discrete approxi-

mations to the transaction costs in order to reach a finite, nontrivial limit. Theorem 2.2.2

develops this idea in the case that at = g(t,Xt), where g is a sufficiently smooth function.

Theorem 2.2.4 is primarily a special case of Theorem 2.2.2, where g is taken to be a

partial derivative of a solution, h, to a Black-Scholes type PDE. The conditions on g in

Theorem 2.2.2 are reformulated in Theorem 2.2.4 as conditions on the terminal values,

u(x), of the PDE. The results of Theorem 2.2.4, under more restrictive conditions (namely,

the concavity of u and a strict boundedness condition on h), are given in [14].

2.2 Results

The following definitions will be used throughout the remainder of this chapter. Let

(Ω,F , P ) be a probability space and {Bt,Ft} a standard, one-dimensional Brownian mo-

tion, where Ft is the augmentation of the filtration, FB
t , generated by Bt. Let {θt,Ft} be

a progressively measurable, real-valued process and f a C1, increasing diffeomorphism of

[0, T ] for some fixed T > 0. For each n ∈ N, define tj = f−1( jT
n ) for 0 ≤ j ≤ n.

Theorem 2.2.1 Let p ∈ [0,∞) and suppose that
∫ T
0 |θs|p∨2ds < ∞, P-a.s. If Mt =

∫ t
0 θsdBs, then

(
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p → Cp

∫ T

0
|θs|p(f ′(s))1−

p
2 ds

in probability as n →∞, where Cp = E|ξ|p, ξ ∼ N(0, 1). Moreover, if E
∫ T
0 |θs|2p∨2ds < ∞,

then convergence is in L2.

Definition 2.2.1 A continuous function, g : [0, T )×(0,∞) is of class Cn,m([0, T )×(0,∞))

if for every 0 ≤ j ≤ n, 0 ≤ k ≤ m, the partial derivatives ∂j
t g and ∂k

xg are of class

C((0, T ) × (0,∞)) and have continuous extensions to [0, T ) × (0,∞). Similar definitions

hold for Cn,m((0, T ]× (0,∞)) and Cn,m([0, T ]× (0,∞)).

Theorem 2.2.2 Suppose g(t, x) ∈ C1,2([0, T )×(0,∞)) and dXt = µXtdt+σXtdBt, σ > 0,

X0 = x. For t ∈ [0, T ), let ϕt = gt(t,Xt) + µXtgx(t, Xt) + 1
2σ2X2

t gxx(t,Xt) and θt =
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σXtgx(t,Xt) so that

g(t,Xt) = g(0, X0) +
∫ t

0
ϕsds +

∫ t

0
θsdBs, t ∈ [0, T ) (2.2.1)

If either

(a) there exists q > 2 such that E
∫ T
0 (|ϕs|q + |θs|q)ds < ∞, or

(b) g ∈ C1,2([0, T ]× (0,∞)),

then
√

T

n

n∑

j=1

Xtj |g(tj , Xtj )− g(tj−1, Xtj−1)| → σ

√
2
π

∫ T

0
X2

s

∣∣∣∣
∂g

∂x
(s,Xs)

∣∣∣∣
√

f ′(s)ds

in probability as n →∞. Moreover, if (a) holds, then convergence is in L2.

Definition 2.2.2 A function, u : (0,∞) → R, is of class Sk if u ∈ Ck((0,∞)) and there

exists a,C > 0 such that |u(k)(ex)| ≤ Cea|x| for all x ∈ R.

Let P̃ denote the risk-neutral probability measure on (Ω,F) so that dXt = σXtdB̃t,

where B̃t is a Brownian motion under P̃ .

Lemma 2.2.3 If u ∈ Sk, k ≥ 0 and w ∈ C([0, T ]) with w ≥ 1, then there is a unique

h(t, x) ∈ C([0, T ]× (0,∞)) ∩ C1,2([0, T )× (0,∞)) that satisfies |h(t, ex)| ≤ Cea|x| for some

a,C ∈ R, for all (t, x) ∈ [0, T ]× R and solves

∂h

∂t
+

1
2
σ2w(t)x2 ∂2h

∂x2
= 0; (t, x) ∈ [0, T )× (0,∞) (2.2.2)

h(T, x) = u(x); x ∈ (0,∞) (2.2.3)

Moreover, h(t, x) = Ẽx[u(Xs(t))], where s(t) =
∫ T
t w(u)du, and satisfies

(a) h ∈ C0,k([0, T ]× (0,∞)), and

(b) ∃b,K ∈ R such that for all (t, x) ∈ [0, T ]× R and all 0 ≤ j ≤ k, |∂j
xh(t, ex)| ≤ Keb|x|.

Theorem 2.2.4 If u ∈ S3 and w(t), h(t, x) are as in Lemma 2.2.3, then
√

T

n

n∑

j=1

Xtj |hx(tj , Xtj )− hx(tj−1, Xtj−1)| → σ

√
2
π

∫ T

0
X2

s

∣∣∣∣
∂2h

∂x2
(s,Xs)

∣∣∣∣
√

f ′(s)ds (2.2.4)

in L2 as n →∞.
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2.3 Proof of Theorem 2.2.1

The idea of the proof in the case where f(t) = t is simple, though the details are somewhat

tedious. Informally, we have

(
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p =
(

T

n

)1− p
2

n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

θsdBs

∣∣∣∣∣
p

≈
(

T

n

)1− p
2

n∑

j=1

|θtj−1 |p|Btj −Btj−1 |p

≈
(

T

n

)1− p
2

n∑

j=1

|θtj−1 |pE|Btj −Btj−1 |p

=
(

T

n

)1− p
2

n∑

j=1

|θtj−1 |p|tj − tj−1|p/2Cp

= Cp

(
T

n

) n∑

j=1

|θtj−1 |p

→ Cp

∫ T

0
|θs|pds

The general case is treated by a time change.

The formal proof requires three lemmas, the first of which uses the following nota-

tion. Let Π = {t0, . . . , tn}, 0 = t0 ≤ · · · ≤ tn = T denote a partition of the interval

[0, T ] and ‖Π‖ = max1≤j≤n(tj − tj−1). We will say a simple process, ζ(t) = ζ01{0}(t) +
∑n

j=1 ζj−11(tj−1,tj ](t), where ζj ∈ Ftj , is supported on Π.

Lemma 2.3.1 Let α ∈ (0,∞). If there exists K < ∞ such that

P

(
sup

t∈[0,T ]
|θt| ≤ K

)
= 1,

then given any sequence of partitions, {Πn}, with ‖Πn‖ → 0, there exists a subsequence

{Πnj} and a sequence, {ζ(j)}, of simple processes that satisfy

(a) ζ(j) is supported on Πnj ,

(b) P (supt∈[0,T ] |ζ(j)(t)| ≤ K) = 1, and



9

(c) E
∫ T
0 |θt − ζ(j)(t)|αdt → 0 as j →∞.

Proof. Let Ft =
∫ t
0 θsds and for each m ∈ N, θ

(m)
t = m(Ft − F(t−1/m)∨0).

Now fix m ∈ N. Given n ∈ N, write Πn = {t0, . . . , tk} and define θ
(m,n)
t = θ

(m)
0 1{0}(t) +

∑k
j=1 θ

(m)
tj−1

1(tj−1,tj ](t). Since θ
(m)
t is continuous,

∫ T
0 |θ(m)

t − θ
(m,n)
t |αdt → 0 as n →∞, P-a.s.

Thus, by bounded convergence, E
∫ T
0 |θ(m)

t − θ
(m,n)
t |αdt → 0 as n →∞.

As in part (b) of the proof of Lemma 3.2.4 in [17], E
∫ T
0 |θ(m)

t − θt|αdt → 0. Thus, we

may extract a subsequence, ζ(j)(t) = θ
(mj ,nj)
t , with nj > nj−1, that satisfies the conditions

of the lemma. ¥

Lemma 2.3.2 If p ∈ [1,∞), then

(a) ||a|p − |b|p| ≤ p|a− b|(|a|p−1 + |b|p−1), ∀a, b ∈ R

(b)
∣∣∣∑n

j=1 an

∣∣∣
p
≤ np−1

∑n
j=1 |an|p, ∀an ∈ R

(c)
∣∣∣
∫ b
a f(t)dt

∣∣∣
p
≤ (b− a)p−1

∫ b
a |f(t)|pdt, ∀f ∈ Lp((a, b))

If p ∈ (0, 1], then

(d) ||a|p − |b|p| ≤ |a− b|p, ∀a, b ∈ R

(e)
∑n

j=1 |an|p ≤ n1−p
∣∣∣∑n

j=1 |an|
∣∣∣
p
, ∀an ∈ R

(f)
∫ b
a |f(t)|pdt ≤ (b− a)1−p

∣∣∣
∫ b
a |f(t)|dt

∣∣∣
p
, ∀f ∈ L1((a, b))

Proof. For (a) and (d), we may assume, by symmetry, that |a| > |b| > 0. Set t = |b|/|a| ∈
(0, 1). Since, for every p ∈ (0,∞), t 7→ (1 − tp)/(1 − t) is monotone on t ∈ [0, 1], and

(1 − tp)/(1 − t) → p as t → 1, we have (1 − tp) ≤ (p ∨ 1)(1 − t). Thus, ||a|p − |b|p| =

|a|p(1− tp) ≤ (p ∨ 1)|a|p(1− t).

Thus, for any p ∈ (0,∞), ||a|p−|b|p| ≤ (p∨1)|a|p−1(|a|−|b|) ≤ (p∨1)|a−b|(|a|p−1+|b|p−1),

which gives (a). If p ∈ (0, 1], then ||a|p − |b|p| ≤ (|a|(1 − t)1/p)p ≤ (|a|(1 − t))p ≤ |a − b|p,
which gives (d).
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Parts (b) and (c) are just Jensen’s inequality; (e) and (f) are derived by applying (b)

and (c) with 1/p. ¥

Lemma 2.3.3 Let p > 0, 1 ≤ r ≤ 2. Let µt, νt be progressively measurable processes and

set ∆Mj =
∫ tj
tj−1

µsdBs, ∆Nj =
∫ tj
tj−1

νsdBs. Let Xn =
(

T
n

)1− p
2
∑n

j=1 ||∆Mj |p − |∆Nj |p|.
Suppose αt is progressively measurable and |µt| ≤ αt, |νt| ≤ αt. Then there exists C < ∞,

depending only on p, r, and T , such that

(a) E|Xn|r ≤ C
(
E

∫ T
0 |µs − νt|2ds

)pr/2
, if p ≤ 1;

(b) E|Xn|r ≤ C
(
E

∫ T
0 |αs|2ds

)r(p−1)/2 (
E

∫ T
0 |µs − νt|2ds

)r/2
, if 1 ≤ p ≤ 2/r;

(c) E|Xn|r ≤ C
(
E

∫ T
0 |αs|prds

)(p−1)/p (
E

∫ T
0 |µs − νt|prds

)1/p
, if p ≥ 2/r;

Proof. First, by Lemma 2.3.2(b),

E|Xn|r ≤
(

T

n

)r−pr/2

nr−1
n∑

j=1

E||∆Mj |p − |∆Nj |p|r

= κ1n
pr/2−1

n∑

j=1

E||∆Mj |p − |∆Nj |p|r

where κ1 = T r−pr/2.

Now suppose p ≤ 1. In this case, Lemma 2.3.2(d) gives

E|Xn|r ≤ κ1n
pr/2−1

n∑

j=1

E|∆Mj −∆Nj |pr

= κ1n
pr/2−1

n∑

j=1

E

∣∣∣∣∣
∫ tj

tj−1

(µs − νs)dBs

∣∣∣∣∣
pr

≤ κ1n
pr/2−1

n∑

j=1

KE

∣∣∣∣∣
∫ tj

tj−1

|µs − νs|2ds

∣∣∣∣∣
pr/2

by the Burkholder-Davis-Gundy inequalities, where K depends only on the product pr. By

the assumptions on p and r, pr/2 ≤ 1, so Jensen’s inequality followed by Lemma 2.3.2(e)
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gives

E|Xn|r ≤ κ1Knpr/2−1
n∑

j=1

∣∣∣∣∣E
∫ tj

tj−1

|µs − νs|2ds

∣∣∣∣∣
pr/2

≤ κ1K

∣∣∣∣∣∣

n∑

j=1

E

∫ tj

tj−1

|µs − νs|2ds

∣∣∣∣∣∣

pr/2

= κ1K

(
E

∫ T

0
|µs − νs|2ds

)pr/2

.

Now suppose p > 1. In this case, Lemma 2.3.2(a) gives

E|Xn|r ≤ κ1n
pr/2−1

n∑

j=1

E(p|∆Mj −∆Nj | · ||∆Mj |p−1 + |∆Nj |p−1|)r.

Using Hölder’s inequality with the conjugate exponents p and p/(p− 1) gives

E|Xn|r ≤ κ1p
rnpr/2−1




n∑

j=1

E|∆Mj −∆Nj |pr




1
p

·



n∑

j=1

E||∆Mj |p−1 + |∆Nj |p−1|pr/(p−1)




p−1
p

.

Now note that

E|∆Mj |pr = E

∣∣∣∣∣
∫ tj

tj−1

µsdBs

∣∣∣∣∣
pr

≤ KE

∣∣∣∣∣
∫ tj

tj−1

|µs|2ds

∣∣∣∣∣
pr/2

≤ KE

∣∣∣∣∣
∫ tj

tj−1

|αs|2ds

∣∣∣∣∣
pr/2

and similarly,

E|∆Nj |pr ≤ KE

∣∣∣∣∣
∫ tj

tj−1

|αs|2ds

∣∣∣∣∣
pr/2

.

Thus, using ||a|+ |b||q ≤ 2q(|a|q + |b|q), we have

E|Xn|r ≤ κ1p
rnpr/2−1




n∑

j=1

KE

∣∣∣∣∣
∫ tj

tj−1

|µs − νs|2ds

∣∣∣∣∣
pr/2




1
p

·



n∑

j=1

2pr/(p−1)+1KE

∣∣∣∣∣
∫ tj

tj−1

|αs|2ds

∣∣∣∣∣
pr/2




p−1
p

,
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i.e.

E|Xn|r ≤ κ2n
pr/2−1




n∑

j=1

E

∣∣∣∣∣
∫ tj

tj−1

|µs − νs|2ds

∣∣∣∣∣
pr/2




1
p

·



n∑

j=1

E

∣∣∣∣∣
∫ tj

tj−1

|αs|2ds

∣∣∣∣∣
pr/2




p−1
p

(2.3.1)

where κ2 = κ1p
rK2r+(p−1)/p.

If p ≤ 2/r, so that pr/2 ≤ 1, then Jensen’s inequality followed by Lemma 2.3.2(e) gives

E|Xn|r ≤ κ2n
pr/2−1

(
n1−pr/2

∣∣∣∣E
∫ T

0
|µs − νs|2ds

∣∣∣∣
pr/2

) 1
p

·
(

n1−pr/2

∣∣∣∣E
∫ T

0
|αs|2ds

∣∣∣∣
pr/2

) p−1
p

= κ2

(
E

∫ T

0
|αs|2ds

) r(p−1)
2

(
E

∫ T

0
|µs − νs|2ds

) r
2

.

If p ≥ 2/r, so that pr/2 ≥ 1, then Lemma 2.3.2(c) applied to (2.3.1) gives

E|Xn|r ≤ κ2n
pr/2−1




n∑

j=1

(
T

n

)pr/2−1

E

∫ tj

tj−1

|µs − νs|prds




1
p

·



n∑

j=1

(
T

n

)pr/2−1

E

∫ tj

tj−1

|αs|prds




p−1
p

= κ3

(
E

∫ T

0
|αs|prds

) p−1
p

(
E

∫ T

0
|µs − νs|prds

) 1
p

where κ3 = κ2T
pr/2−1. ¥

Proof of Theorem 2.2.1. In this proof, several different cases are considered.

Case 1: M and θ are bounded, f(t) = t.

Suppose there exists K < ∞ such that, with probability one, |Mt| ≤ K and |θt| ≤ K,

∀t ∈ [0, T ]. It will be shown that

(
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p → Cp

∫ T

0
|θs|pds
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in L2 as n →∞.

By Lemma 2.3.1, it may be assumed without loss of generality that for each n ∈ N,

0 ≤ j < n, ∃ξ(n)
tj

∈ Ftj such that |ξ(n)
tj
| ≤ K a.s. and θ

(n)
t = ξ

(n)
0 1{0}(t)+

∑n
j=1 ξ

(n)
tj−1

1(tj−1,tj ](t)

satisfies E
∫ T
0 |θt − θ

(n)
t |2p∨2dt → 0 as n →∞.

Now write
(

T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p − Cp

∫ T

0
|θs|pds = X

(n)
1 + X

(n)
2 + X

(n)
3

where

X
(n)
1 =

(
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p −
(

T

n

)1− p
2

n∑

j=1

|ξ(n)
tj−1

|p|Btj −Btj−1 |p,

X
(n)
2 =

(
T

n

)1− p
2

n∑

j=1

|ξ(n)
tj−1

|p|Btj −Btj−1 |p − Cp

(
T

n

) n∑

j=1

|ξ(n)
tj−1

|p,

X
(n)
3 = Cp

(
T

n

) n∑

j=1

|ξ(n)
tj−1

|p − Cp

∫ T

0
|θs|pds

It will be shown that each X
(n)
j → 0 in L2 as n →∞.

First, X
(n)
3 = Cp

∫ T
0 (|θ(n)

s |p − |θs|p)ds. If p ≤ 1, then Lemma 2.3.2(d) gives |X(n)
3 | ≤

Cp

∫ T
0 |θ(n)

s − θs|pds. Hence, by Lemma 2.3.2(c),

E|X(n)
3 |2 ≤ C2

pTE

∫ T

0
|θ(n)

s − θs|2pds

which tends to zero as n →∞.

If p ≥ 1, then Lemma 2.3.2(a) gives

|X(n)
3 | ≤ pCp

∫ T

0
|θ(n)

s − θs|(|θ(n)
s |p−1 + |θs|p−1)ds

≤ C

∫ T

0
|θ(n)

s − θs|ds

where C = 2pCpK
p−1. Thus,

E|X(n)
3 |2 ≤ C2TE

∫ T

0
|θ(n)

s − θs|2ds

which also tends to zero as n →∞.
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Next, X
(n)
2 = T

n

∑n
j=1 |ξ(n)

tj−1
|pY (n)

j , where Y
(n)
j =

(
T
n

)−p/2 |Btj − Btj−1 |p − Cp. If k > j,

then Y
(n)
k is independent of |ξ(n)

tj−1
ξ
(n)
tk−1

|pY (n)
j ; and

(
T
n

)−1/2 (Btj−Btj−1) is normal with mean

zero and variance one, so that EY
(n)
k = 0. Therefore

E|X(n)
2 |2 =

T 2

n2

n∑

j=1

E
(
|ξ(n)

tj−1
|2p|Y (n)

j |2
)
≤ T 2K2p

n2

n∑

j=1

E|Y (n)
j |2.

But E|Y (n)
j |2 is just a constant which does not depend on j or n. Thus, E|X(n)

2 |2 ≤ C
n and

X
(n)
2 → 0 in L2 as n →∞.

Finally, for X
(n)
1 , write M

(n)
t =

∫ t
0 θ

(n)
s dBs and adopt the notation ∆Mj = Mtj −Mtj−1

and similarly for ∆M
(n)
j , so that

X
(n)
1 =

(
T

n

)1− p
2

n∑

j=1

(|∆Mj |p − |∆M
(n)
j |p).

Applying Lemma 2.3.3 with r = 2 gives that if p ≤ 1, then

E|X(n)
1 |2 ≤ C

(
E

∫ T

0
|θs − θ(n)

s |2ds

)p

and if p ≥ 1, then

E|X(n)
1 |2 ≤ C

(
E

∫ T

0
K2pds

) p−1
p

(
E

∫ T

0
|θs − θ(n)

s |2pds

) 1
p

= C̃

(
E

∫ T

0
|θs − θ(n)

s |2pds

) 1
p

.

In either case, X
(n)
1 → 0 in L2 as n →∞.

Case 2: E
∫ T
0 |θs|2p∨2ds < ∞, f(t) = t.

For k ∈ N, let θ
(k)
t = −k ∨ (θt ∧ k) and τk = T ∧ inf{t ∈ [0, T ] :

∣∣∣
∫ t
0 θ

(k)
s dBs

∣∣∣ ≥ k}. Define

M
(k)
t =

∫ t∧τk

0 θ
(k)
s dBs =

∫ t
0 θ̃

(k)
s dBs, where θ̃

(k)
t = θ

(k)
t 1[0,τk](t). Note that, with probability

one, θ̃
(k)
t → θt pointwise on [0, T ].

Now write

(
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p − Cp

∫ T

0
|θs|pds = X

(n,k)
1 + X

(n,k)
2 + X

(k)
3
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where

X
(n,k)
1 =

(
T

n

)1− p
2

n∑

j=1

(|∆Mj |p − |∆M
(k)
j |p),

X
(n,k)
2 =

(
T

n

)1− p
2

n∑

j=1

|∆M
(k)
j |p − Cp

∫ T

0
|θ̃(k)

s |pds,

X
(k)
3 = Cp

∫ T

0
(|θ̃(k)

s |p − |θs|p)ds.

By case 1, X
(n,k)
2 → 0 in L2 as n →∞ for each fixed k. Also, E|X(k)

3 |2 → 0 by dominated

convergence.

It will be shown that there exists h(k) such that

(i) h(k) → 0 as k →∞, and

(ii) E|X(n,k)
1 |2 ≤ h(k) for all n ∈ N,

from which it follows that
(

T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p → Cp

∫ T

0
|θs|pds

in L2 as n →∞.

As in case 1, Lemma 2.3.3 shows that if p ≤ 1, then

E|X(n,k)
1 |2 ≤ C

(
E

∫ T

0
|θs − θ̃(k)

s |2ds

)p

and if p ≥ 1, then

E|X(n,k)
1 |2 ≤ C

(
E

∫ T

0
|θs|2pds

) p−1
p

(
E

∫ T

0
|θs − θ̃(k)

s |2pds

) 1
p

.

Since E
∫ T
0 |θs|2pds < ∞, this completes the proof of case 2.

Case 3: f(t) = t.

Let τk = T ∧ inf{t ∈ [0, T ] :
∫ t
0 |θs|p∨2ds ≥ k}. Let θ

(k)
t = θt1[0,τk](t) and M

(k)
t =

∫ t∧τk

0 θsdBs =
∫ t
0 θ

(k)
s dBs. Note that P (τk = T ) ↗ 1 as k → ∞ and Mt = M

(k)
t , θt = θ

(k)
t
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on {τk = T}. Hence, since

P




∣∣∣∣∣∣

(
T

n

)1− p
2

n∑

j=1

|∆Mj |p − Cp

∫ T

0
|θs|pds

∣∣∣∣∣∣
≥ ε




≤ P (τk < T ) + P




∣∣∣∣∣∣

(
T

n

)1− p
2

n∑

j=1

|∆M
(k)
j |p − Cp

∫ T

0
|θ(k)

s |pds

∣∣∣∣∣∣
≥ ε




it will suffice to show that for each fixed k ∈ N,

(
T

n

)1− p
2

n∑

j=1

|∆M
(k)
j |p → Cp

∫ T

0
|θ(k)

s |pds

in L1, and therefore in probability, as n →∞.

Fix k ∈ N and for each l ∈ N, let θ
(k,l)
t = −l ∨ (θ(k)

t ∧ l) and M
(k,l)
t =

∫ t
0 θ

(k,l)
s dBs. Write

(
T

n

)1− p
2

n∑

j=1

|∆M
(k)
j |p − Cp

∫ T

0
|θ(k)

s |pds = X
(n,l)
1 + X

(n,l)
2 + X

(l)
3

where

X
(n,l)
1 =

(
T

n

)1− p
2

n∑

j=1

(|∆M
(k)
j |p − |∆M

(k,l)
j |p),

X
(n,l)
2 =

(
T

n

)1− p
2

n∑

j=1

|∆M
(k,l)
j |p − Cp

∫ T

0
|θ(k,l)

s |pds,

X
(l)
3 = Cp

∫ T

0
(|θ(k,l)

s |p − |θ(k)
s |p)ds.

By case 2, for each fixed l, X
(n,l)
2 → 0 in L2, and therefore in L1, as n → ∞. By

dominated convergence, X
(l)
3 → 0 in L1 as n →∞.

It will be shown that there exists h(l) such that

(i) h(l) → 0 as l →∞, and

(ii) E|X(n,l)
1 | ≤ h(l) for all n ∈ N,

which will complete the proof in this case.



17

Applying Lemma 2.3.3 with r = 1 shows that if p ≤ 1, then

E|X(n,l)
1 | ≤ C

(
E

∫ T

0
|θ(k)

s − θ(k,l)
s |2ds

) p
2

;

if 1 ≤ p ≤ 2, then

E|X(n,l)
1 | ≤ C

(
E

∫ T

0
|θ(k)

s |2ds

) p−1
2

(
E

∫ T

0
|θ(k)

s − θ(k,l)
s |2ds

) 1
2

;

and if p ≥ 2, then

E|X(n,l)
1 | ≤ C

(
E

∫ T

0
|θ(k)

s |pds

) p−1
p

(
E

∫ T

0
|θ(k)

s − θ(k,l)
s |pds

) 1
p

.

As before, since E
∫ T
0 |θ(k)

s |p∨2ds ≤ k, this completes the proof of case 3.

Case 4: General case.

Let Xt =
∫ t
0

√
f ′(s)dBs, so that 〈X〉t = f(t) and, hence, B̃t = Xg(t), where g = f−1, is

a Brownian motion with respect to the filtration, Gt = Fg(t). Define Nt =
∫ t
0 ϕsdB̃s, where

ϕt = θg(t)

√
g′(t).

Claim: Nt = Mg(t).

Proof of claim: Let {Yt,Gt} be a continuous, square integrable martingale, so that

〈N,Y 〉t =
∫ t

0
ϕsd〈B̃, Y 〉s

=
∫ t

0
θg(s)

√
g′(s)d

(〈X, Yf(·)〉g(s)

)

=
∫ g(t)

0
θs

√
g′(f(s))d〈X, Yf(·)〉s

= 〈Φ, Yf(·)〉g(t)

where

Φt =
∫ t

0
θs

1√
f ′(s)

dXs =
∫ t

0
θsdBs = Mt.

Thus, 〈N, Y 〉t = 〈M,Yf(·)〉g(t) = 〈Mg(·), Y 〉t. Since Y was arbitrary, this proves the claim.///

Now note that for any p ∈ (0,∞),
∫ T
0 |ϕs|pds =

∫ T
0 |θs|p(f ′(s))1−

p
2 ds. Since f is a C1,

increasing diffeomorphism, f ′ is both bounded above and bounded away from zero. Hence,
∫ T
0 |ϕs|p∨2ds < ∞, P-a.s. By the previous cases, then,

(
T

n

)1− p
2

n∑

j=1

|Nf(tj) −Nf(tj−1)|p → Cp

∫ T

0
|ϕs|pds,
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i.e. (
T

n

)1− p
2

n∑

j=1

|Mtj −Mtj−1 |p → Cp

∫ T

0
|θs|p(f ′(s))1−

p
2 ds

in probability as n → ∞. If E
∫ T
0 |θs|2p∨2ds < ∞, then E

∫ T
0 |ϕs|2p∨2ds < ∞ and conver-

gence is in L2. ¥

2.4 Proof of Theorem 2.2.2

In this section, let gj = g(tj , Xtj ), ∆gj = gj − gj−1, and Tn =
√

T
n

∑n
j=1 Xtj |∆gj |. As

before, the idea of the proof is straightforward: ignore the bounded variation part of the

semimartingale, g(t,Xt), and apply Theorem 2.2.1. Informally,
√

T

n

n∑

j=1

Xtj |∆gj | ≈
√

T

n

n∑

j=1

Xtj−1 |∆gj |

≈
√

T

n

n∑

j=1

Xtj−1

∣∣∣∣∣
∫ tj

tj−1

θsdBs

∣∣∣∣∣

=

√
T

n

n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

Xtj−1θsdBs

∣∣∣∣∣

≈
√

T

n

n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

XsθsdBs

∣∣∣∣∣

→ C1

∫ T

0
|Xsθs|

√
f ′(s)ds

= σ

√
2
π

∫ T

0
X2

s

∣∣∣∣
∂g

∂x
(s,Xs)

∣∣∣∣
√

f ′(s)ds

It should be noted that condition (a) in the statement of Theorem 2.2.2 is sharp in

the sense illustrated by the following example: Let T = 1/4, µ = 1/2, and σ = 1. Let

h ∈ C∞(R) satisfy |h| ≤ 1, h ≡ 0 on (−∞, 0], and h ≡ 1 on [1,∞). Let f(x) = h(x)ex2−x

and define g(t, x) = f(log x). With these choices, g(t,Xt) = f(Bt), so that θt = f ′(Bt) and

ϕt = 1
2f ′′(Bt). It can be shown (see, for example, section 4.3 of [17]) that t 7→ E|θt|2 and

t 7→ E|ϕt|2 are continuous for t ∈ [0, 1/4]. Thus, in this example, E
∫ T
0 (|θs|2 + |ϕs|2)ds <

∞.
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On the other hand, there is no n ∈ N for which Tn ∈ L2(Ω). To see this, assume that

Tn ∈ L2(Ω) and observe that for 0 < s ≤ t ≤ T ,

E|Xtg(s,Xs)|2 = E

∣∣∣∣
Xt

Xs

∣∣∣∣
2

E|Xsf(Bs)|2

= E

∣∣∣∣
Xt

Xs

∣∣∣∣
2 (

1√
2πs

∫ ∞

−∞
e2x|f(x)|2e−x2/2sdx

)

=
1√
2πs

E

∣∣∣∣
Xt

Xs

∣∣∣∣
2 (∫ 1

0
|f(x)|2e2x−x2/2sdx +

∫ ∞

1
e2x2−x2/2sdx

)

is finite if and only if s < T = 1/4. Thus, for any j < n, Xtj |∆gj | ∈ L2(Ω). Since

Tn ∈ L2(Ω) by assumption, it follows that Xtn |∆gn| ∈ L2(Ω). Therefore,

|XT g(T,XT )| = |Xtn(g(tn, Xtn)− g(tn−1, Xtn−1) + g(tn−1, Xtn−1))|

≤ Xtn |∆gn|+ Xtn |g(tn−1, Xtn−1)|

implies that XT g(T,XT ) ∈ L2(Ω), which is a contradiction.

Lemma 2.4.1 If Zt =
∫ t
0 αsds +

∫ t
0 βsdBs with E

∫ T
0 (|αs|γ + |βs|γ)ds < ∞, γ > 2, then

there exists C < ∞, depending only on γ, such that for any ε < 1,

E|Zt+ε − Zt|γ ≤ CE

∫ t+ε

t
(|αs|γ + |βs|γ)ds.

Moreover, if sup0≤t≤T (E|αt|γ + E|βt|γ) = M < ∞, then

E|Zt+ε − Zt|γ ≤ CMεγ/2.

Proof. We have

E|Zt+ε − Zt|γ ≤ 2γ

(
E

∣∣∣∣
∫ t+ε

t
αsds

∣∣∣∣
γ

+ E

∣∣∣∣
∫ t+ε

t
βsdBs

∣∣∣∣
γ)

≤ 2γ

(
εγ−1E

∫ t+ε

t
|αs|γds + KγE

∣∣∣∣
∫ t+ε

t
|βs|2ds

∣∣∣∣
γ/2

)

≤ C

(
εγ−1E

∫ t+ε

t
|αs|γds + εγ/2−1E

∫ t+ε

t
|βs|γds

)

where C = 2γ max{1,Kγ} and the lemma now follows. ¥

Proof of Theorem 2.2.2. First observe that if either condition (a) or (b) holds, then

(2.2.1) is valid on the entire closed interval, [0, T ].
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Now, assume (a) holds. Write Tn =
∑4

k=1 T
(k)
n , where

T (1)
n =

√
T

n

n∑

j=1

(Xtj −Xtj−1)|∆gj |,

T (2)
n =

√
T

n

n∑

j=1

(
|Xtj−1∆gj | −

∣∣∣∣∣Xtj−1

∫ tj

tj−1

θsdBs

∣∣∣∣∣

)
,

T (3)
n =

√
T

n

n∑

j=1

(∣∣∣∣∣Xtj−1

∫ tj

tj−1

θsdBs

∣∣∣∣∣−
∣∣∣∣∣
∫ tj

tj−1

XsθsdBs

∣∣∣∣∣

)
,

T (4)
n =

√
T

n

n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

XsθsdBs

∣∣∣∣∣.

Since

E

∫ T

0
|Xsθs|2ds ≤

(
E

∫ T

0
|θs|qds

)2/q (
E

∫ T

0
|Xs|2rds

)1/r

< ∞

where r is such that 1
r + 2

q = 1, we may apply Theorem 2.2.1 with p = 1 to conclude that

T (4)
n → C1

∫ T

0
|Xsθs|

√
f ′(s)ds = σ

√
2
π

∫ T

0
X2

s

∣∣∣∣
∂g

∂x
(s,Xs)

∣∣∣∣
√

f ′(s)ds

in L2 as n →∞. It will thus suffice to show that for k = 1, 2, 3, T
(k)
n → 0 in L2 as n →∞.

For T
(1)
n , Lemma 2.3.2(b) gives

E|T (1)
n |2 ≤ T

n∑

j=1

E[|Xtj −Xtj−1 |2|∆gj |2]

≤ T




n∑

j=1

E|Xtj −Xtj−1 |2r




1/r 


n∑

j=1

E|∆gj |q



2/q

.

By Lemma 2.4.1, there is a constant, C, such that

E|T (1)
n |2 ≤ CT




n∑

j=1

|tj − tj−1|r



1/r 


n∑

j=1

E

∫ tj

tj−1

(|θs|q + |ϕs|q)ds




2/q

which tends to zero as n →∞ since r > 1.

For T
(2)
n , we have

E|T (2)
n |2 ≤ T

n∑

j=1

E

∣∣∣∣∣Xtj−1

∫ tj

tj−1

ϕsds

∣∣∣∣∣
2

.
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Let X∗ = sup0≤t≤T |Xt|, so that

E|T (2)
n |2 ≤ T

n∑

j=1

(
E|X∗|2r

)1/r

(
E

∣∣∣∣∣
∫ tj

tj−1

ϕsds

∣∣∣∣∣
q)2/q

≤ Cn1−2/q

∣∣∣∣∣∣

n∑

j=1

|tj − tj−1|q−1E

∫ tj

tj−1

|ϕs|qds

∣∣∣∣∣∣

2/q

.

Since f−1 ∈ C1[0, T ], we may write

E|T (2)
n |2 ≤ C̃n1−2/q

∣∣∣∣∣∣

n∑

j=1

n1−qE

∫ tj

tj−1

|ϕs|qds

∣∣∣∣∣∣

2/q

=
C̃

n

(
E

∫ T

0
|ϕs|qds

)2/q

which tends to zero as n →∞.

Finally, for T
(3)
n , we have

E|T (3)
n |2 ≤ T

n∑

j=1

E

∣∣∣∣∣
∫ tj

tj−1

(Xs −Xtj−1)θsdBs

∣∣∣∣∣
2

= T

n∑

j=1

E

∫ tj

tj−1

|Xs −Xtj−1 |2|θs|2ds

≤ T

n∑

j=1

∫ tj

tj−1

(
E|Xs −Xtj−1 |2r

)1/r (E|θs|q)2/q ds.

By Lemma 2.4.1 and the fact that f−1 ∈ C1[0, T ], we can write

E|T (3)
n |2 ≤ C

n

∫ T

0
(E|θs|q)2/qds

≤ C

n
T 1−2/q

(
E

∫ T

0
|θs|qds

)2/q

which tends to zero as n →∞, and this completes the proof of (a).

Now suppose (b) holds. We may assume without loss of generality that X0 = 1. Let

τk = inf{t ≥ 0 : Xt /∈ [1/k, k]}. Choose compactly supported g(k) ∈ C1,2([0, T ] × (0,∞))

such that g(k) ≡ g on [0, T ]× [1/k, k] and define θ
(k)
t , ϕ

(k)
t as in (2.2.1).

First note that ϕ
(k)
t = g

(k)
t (t, Xt) + 1

2µXtg
(k)
xx (t,Xt) and θ

(k)
t = σXtg

(k)
x (t,Xt). Thus,

since g(k) has compact support, part (a) implies

T (k)
n =

√
T

n

n∑

j=1

Xtj |g(k)(tj , Xtj )− g(k)(tj−1, Xtj−1)| →
√

2
π

∫ T

0
|Xtθ

(k)
t |

√
f ′(t)dt
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in L2 as n → ∞. Next, note that τk ↗ ∞ a.s. and on {t ≤ τk}, g(t, Xt) = g(k)(t,Xt),

θt = θ
(k)
t , and ϕt = ϕ

(k)
t .

Now let ε > 0 be given and choose k sufficiently large so that P (T > τk) < ε. For this

particular choice of k, choose n0 such that for all n ≥ n0,

P

(∣∣∣∣∣T
(k)
n −

√
2
π

∫ T

0
|Xtθ

(k)
t |

√
f ′(t)dt

∣∣∣∣∣ ≥ ε

)
< ε.

It now follows that for any n ≥ n0,

P

(∣∣∣∣∣Tn −
√

2
π

∫ T

0
|Xtθt|

√
f ′(t)dt

∣∣∣∣∣ ≥ ε

)
≤ P (T > τk) +

P

(∣∣∣∣∣T
(k)
n −

√
2
π

∫ T

0
|Xtθ

(k)
t |

√
f ′(t)dt

∣∣∣∣∣ ≥ ε

)

< 2ε

which proves (b). ¥

2.5 Proofs of Lemma 2.2.3 and Theorem 2.2.4

Proof of Lemma 2.2.3. First note that for u ∈ Sk, k ≥ 1,
∣∣∣u(k−1)(ex)

∣∣∣ =
∣∣∣∣
∫ x

0
etu(k)(et)dt + u(k−1)(1)

∣∣∣∣

≤ C

∣∣∣∣
∫ x

0
etea|t|dt

∣∣∣∣ + K

≤ C

∣∣∣∣
∫ x

0
eb|t|dt

∣∣∣∣ + K

= C

∫ |x|

0
ebtdt + K

=
C

b
(eb|x| − 1) + K

≤
(

C

b
+

∣∣∣∣K − C

b

∣∣∣∣
)

eb|x|

where K = u(k−1)(1) and b = 1 + a. Thus, Sk−1 ⊂ Sk, and by induction, Sj ⊂ Sk for all

0 ≤ j ≤ k.

Now, define h(t, x) = Ẽx[u(Xs(t))] and note that

h(t, x) = g

(
s(t),

log x

σ
− σs(t)

2

)
,
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where g(t, x) = Ex[f(Bt)], f(x) = u(eσx). Since
∫ ∞

−∞
e−bx2 |f(x)|dx ≤ C

∫ ∞

−∞
e−bx2

eaσ|x|dx < ∞

for all b > 0, it follows that g(t, x) is well-defined, has derivatives of all orders, and satisfies

gt = 1
2gxx on (0,∞)×R. Moreover, since f is continuous, g ∈ C([0,∞)×R) with g(0, x) =

f(x). (See section 4.3 of [17].) Consequently, it can be verified that h ∈ C([0, T ]× (0,∞))∩
C1,2([0, T )× (0,∞)) and satisfies (2.2.2) and (2.2.3).

Moreover,

|g(t, x)| ≤ C√
2πt

∫ ∞

−∞
eaσ|y|e−(x−y)2/2tdy

≤ C√
2πt

eaσ|x|
∫ ∞

−∞
eaσ|v|e−v2/2tdv.

Since t 7→ 1√
2πt

∫∞
−∞ eaσ|v|e−v2/2tdv is continuous on [0,∞), there exists M < ∞ such that

|g(t, x)| ≤ Meaσ|x| for all (t, x) ∈ [0, s(0)]× R. Thus, for all (t, x) ∈ [0, T ]× R,

|h(t, ex)| =
∣∣∣∣g

(
s(t),

x

σ
− σs(t)

2

)∣∣∣∣

≤ M exp
(

aσ

∣∣∣∣
x

σ
− σs(t)

2

∣∣∣∣
)

≤ M̃ea|x|,

where M̃ = M exp(aσ2s(0)/2).

Furthermore, if h̃ is another such function, we may set g̃(t, x) = h(z(t), exp(σx+σ2t/2)),

where z = s−1, in which case Tychonoff’s Uniqueness Theorem gives that g̃ ≡ g and, hence,

h̃ ≡ h.

Finally, fix j ∈ {0, · · · , k}. By induction, there exists ci ∈ R such that

∂j
xh(t, x) =

j∑

i=1

cix
−j∂i

xg

(
s(t),

log x

σ
− σs(t)

2

)
.

Now, applying integration by parts to the results of problem 4.3.1 in [17] gives

∂i
xg(t, x) =

1√
2πt

∫ ∞

−∞
f (i)(y)e−(x−y)2/2tdy

=
1√
2πt

∫ ∞

−∞

[
i∑

n=1

pn(eσy)u(n)(eσy)

]
e−(x−y)2/2tdy
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for some polynomials, pn. Since u ∈ Sn for all n ≤ k, each pn(x)u(n)(x) ∈ S0. Therefore, as

above, each ∂i
xg ∈ C([0,∞)× R), so that ∂j

xh ∈ C([0, T ]× (0,∞)), which proves (a). Also,

as above, there exists Mn, an such that

∣∣∣∣
1√
2πt

∫ ∞

−∞
pn(eσy)u(n)(eσy)e−(x−y)2/2tdy

∣∣∣∣ ≤ Mnean|x|

for all (t, x) ∈ [0, s(0)]× R. Hence, |∂i
xg(t, x)| ≤ Nie

bi|x|, for all (t, x) ∈ [0, s(0)]× R, where

bi = max{a1, · · · , ai} and Ni = M1 + · · ·+ Mi. Finally, then, for all (t, x) ∈ [0, T ]× R,

|∂j
xh(t, ex)| ≤ e−jx

j∑

i=1

ciNi exp
(

bi

∣∣∣∣
x

σ
− σs(t)

2

∣∣∣∣
)

≤ ej|x|
j∑

i=1

Ñie
b̃i|x|

≤ Neb|x|

where b = j + max{b̃1, · · · , b̃j} and N = Ñ1 + · · ·+ Ñj , which proves (b). ¥

Proof of Theorem 2.2.4. By Lemma 2.2.3(a) and Theorem 2.2.2, it will suffice to show

that

E

∫ T

0
(|ϕs|q + |θs|q)ds < ∞

for some q > 2, where θt = σXthxx(t,Xt) and

ϕt = hxt(t,Xt) + µXthxx(t,Xt) +
1
2
σ2X2

t hxxx(t,Xt).

Note that

hxt = (ht)x

=
(
−1

2
σ2w(t)x2hxx

)

x

= −σ2w(t)xhxx − 1
2
σ2w(t)x2hxxx

so that

ϕt = (µ− σ2w(t))Xthxx(t, Xt) +
1
2
σ2(1− w(t))X2

t hxxx.
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It will thus suffice to show that for any p1, p2 > 0 and j ∈ {2, 3}, E
∫ T
0 Xp1

s |∂j
xh(s,Xs)|p2ds <

∞. To see this, observe that by Lemma 2.2.3(b),

|∂j
xh(t, x)| ≤ Keb| log x|

≤ K(eb log x + e−b log x)

= K(xb + x−b).

Thus,

E

∫ T

0
Xp1

s |∂j
xh(s,Xs)|p2ds ≤ Kp2E

∫ T

0
(Xp1+bp2

s + Xp1−bp2
s )ds,

which is finite. ¥

2.6 Conclusions

What follows are three topics I find interesting and worthy of further investigation. They

represent possible directions for my continued research in this area.

To apply the results given above to the field of mathematical finance, we could utilize

Theorem 2.2.4, taking for h the solution to the Black-Scholes equation, which is none other

than (2.2.2) and (2.2.3) with w ≡ 1. We could then estimate the transaction costs incurred

as we try to hedge the option u(XT ). However, in the presence of transaction costs, h no

longer succeeds in hedging the option, since our wealth at time T will be u(XT ) minus

the overall cumulative transaction costs. In the case that u has a strictly positive second

derivative, the absolute value bars in the integrand of (2.2.4) disappear, and Grannan and

Swindle [14] show that in this case, the appropriate h to consider is the solution to (2.2.2),

(2.2.3) with

w(t) = 1 +
2
σ

√
2
π

√
f ′(t),

and that the terminal wealth, Vn, obtained by a discrete hedge (and subtracting the scaled

transaction costs) converges in L2 to u(XT ). (It should be noted that the case considered

in [14] is actually not quite this general. There, it is further assumed that u is such that

the function, h, which solves their equation satisfies

‖h‖m,n,p ≡ sup
0≤x

0≤t≤T

[
xm ∂n+ph(t, x)

∂xn∂tp

]
< ∞
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for all nonnegative integers m, n, and p.)

When u is not convex, the appropriate h to consider seems to be one that solves a non-

linear PDE involving |∂2
xh|. Questions that come to mind are whether or not this PDE has

a unique solution and whether or not the discrete hedges converge to the desired limit.

Another important question is what can be said about the rate of convergence in all of

these various situations and how does it depend on f . Not only is this important because

actual transaction costs cannot be made arbitrarily small, but also because the freedom to

choose f implies the freedom to make the limit in (2.2.4) virtually anything we want. Again,

in [14], results are given on the rate of convergence of the Vn under the special restrictions

on u.

Finally, an interesting question not considered in [14] is what happens when we let f

be a random function. Certainly, in applications, we would have the ability to choose our

partition as we go, so we should require nothing more of f than that it be adapted. In fact,

it might be even more interesting to eliminate f altogether and consider partitions that

consist of increasing sequences of stopping times. In either case, the mesh size would be a

random variable, which could converge to zero in different ways, making it unclear as to

what the “right” way is to even formulate possible new theorems.
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Chapter 3

THE MEDIAN OF INDEPENDENT BROWNIAN MOTIONS

3.1 Introduction

Define the median function, M : Rn → R, as follows: given x = (x1, . . . , xn) ∈ Rn, let

τ : {1, . . . , n} → {1, . . . , n} be a bijection such that yj = xτ(j) satisfy y1 ≤ · · · ≤ yn, and

define M(x) = yk, where k = b(n + 1)/2c. (Here, b·c denotes the greatest integer, or floor,

function.)

Let {B(j)
t }∞j=1 be a sequence of independent, standard, one-dimensional Brownian mo-

tions and for each n ∈ N, let M
(n)
t = M(B(1)

t , . . . , B
(n)
t ) and X

(n)
t =

√
nM

(n)
t .

The space of continuous, real-valued function on [0,∞) is denoted by C[0,∞), and is

endowed with the metric of uniform convergence on compact intervals. Namely, for ω1,

ω2 ∈ C[0,∞), the metric is given by

d(ω1, ω2) =
∞∑

n=1

1
2n

max
0≤t≤n

(|ω1(t)− ω2(t)| ∧ 1).

The σ-algebra generated by the open sets in this metric space will be denoted by B(C[0,∞)).

The random variables, X(n) = {X(n)
t : 0 ≤ t < ∞}, take values in this space, and it will be

shown that they converge in distribution to the process described in the following theorem.

Theorem 3.1.1 There exists a continuous, centered Gaussian process, X = {Xt : 0 ≤ t <

∞}, with covariance

E[XsXt] = ρ(s, t) =
√

st sin−1

(
s ∧ t√

st

)
,

where sin−1 takes values in [−π/2, π/2], and which is locally Hölder-continuous with expo-

nent γ for every γ ∈ (0, 1/4).

The proof of this theorem will be postponed until after we have investigated the conver-

gence of the finite-dimensional distributions of the scaled median processes.

The main result of this article is the following.
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Theorem 3.1.2 Let X be as in Theorem 3.1.1. Let {X(n)}∞n=1 be the scaled median

processes as in the discussion preceding Theorem 3.1.1. Then {X(2n+1)
t : 0 ≤ t < ∞} d→

{Xt : 0 ≤ t < ∞} as n →∞.

The restriction to odd integers in Theorem 3.1.2 is for convenience only. The probability

estimates we shall derive are “one-sided”, i.e. we shall derive an upper bound for P (X(n)
t −

X
(n)
s > ε), but not for P (X(n)

t −X
(n)
s < −ε). The latter estimate follows from the former

in the case that X
(n)
·

d= −X
(n)
· , which holds if n is odd. Clearly, analogous methods can

be used to separately derive the latter estimate in the case that n is even and remove the

restriction from Theorem 3.1.2.

The chief difficulty in proving the main result will be in establishing tightness. Let us

first give the definition of tightness.

Definition 3.1.1 Let (S, ρ) be a metric space and let Π be a family of probability measures

on (S,B(S)). We say that Π is tight if for every ε > 0, there exists a compact set K ⊂ S

such that P (K) ≥ 1 − ε, for every P ∈ Π. If {Xα}α∈A is a family of random variables,

each one defined on a probability space (Ωα,Fα, Pα) and taking values in S, we say that this

family is tight if the family of induced measures {PαX−1
α }α∈A is tight.

The proof of Theorem 3.1.2 will rely on the following result, which is Theorem 2.4.15 in

[17].

Theorem 3.1.3 Let {X(n)}∞n=1 be a tight sequence of continuous processes with the property

that, whenever 0 ≤ t1 < · · · < td < ∞, the sequence of random vectors {(X(n)
t1

, . . . , X
(n)
td

)}∞n=1

converges in distribution. Let Pn be the measure induced on (C[0,∞),B(C[0,∞))) by X(n).

Then {Pn}∞n=1 converges weakly to a measure P , under which the coordinate mapping process

Wt(ω) = ω(t) on C[0,∞) satisfies

(X(n)
t1

, . . . , X
(n)
td

) d→ (Wt1 , . . . , Wtd), 0 ≤ t1 < · · · < td < ∞, d ≥ 1.

By Theorem 3.1.3, the main result will follow from the following two theorems.

Theorem 3.1.4 For every 0 ≤ t1 < · · · < td < ∞, d ≥ 1,

(X(n)
t1

, . . . , X
(n)
td

) d→ (Xt1 , . . . , Xtd).
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Theorem 3.1.5 The sequence {X(2n+1)
t }∞n=1 is tight.

The finite dimensional convergence, Theorem 3.1.4, is easy to establish. However, the

tightness for {X(2n+1)
t : 0 ≤ t < ∞}∞n=1 is much harder to prove. The major portion of this

chapter is devoted to establishing Theorem 3.1.5.

3.2 Convergence of Finite Dimensional Distributions

The starting point for the proof of Theorem 3.1.4 is the following result, which is a special

case of Theorems 7.1.1 and 7.1.2 in [22].

Theorem 3.2.1 (Multi-Dimensional Median Central Limit Theorem) Let ξ(n) ∈ Rd, n ∈ N,

be iid random vectors. Let Fj(x) = P (ξ(1)
j ≤ x) and Gij(x, y) = P (ξ(1)

i ≤ x, ξ
(1)
j ≤ y). Let

M (n) ∈ Rd have components M
(n)
j = M(ξ(1)

j , . . . , ξ
(n)
j ) and ρij = Gij(0, 0)− 1/4. If

(i) Fj(0) = 1/2 and F ′
j(0) > 0 for all j; and

(ii) Gij is continuous at (0, 0) for all i, j,

then
√

nM (n) d→ N , where N is multi-normal with mean zero and covariance σ, where

σij = ENiNj =
ρij

F ′
i (0)F ′

j(0)
.

Corollary 3.2.2 If ξ(1), ξ(2), . . . are iid, mean zero, multinormal, Rd-valued random vec-

tors with covariance σ and M (n) ∈ Rd has components M
(n)
j = M(ξ(1)

j , . . . , ξ
(n)
j ), then

√
nM (n) d→ Z, where Z is multinormal with mean zero and covariance

τij = EZiZj =
√

σiiσjj sin−1

(
σij√
σiiσjj

)
.

(Here, sin−1 takes values in [−π/2, π/2].)

Proof. By Theorem 3.2.1,
√

nM (n) d→ Z, where Z is multinormal with mean zero and

covariance

τij =
ρij

F ′
i (0)F ′

j(0)
,



30

where ρij = P (ξ(1)
i ≤ 0, ξ

(1)
j ≤ 0)− 1/4 and

Fj(x) = P (ξ(1)
j ≤ x) =

1√
2πσjj

∫ x

−∞
e−t2/2σjj dt.

Since F ′
j(0) = (2πσjj)−1/2, it remains only to show that

ρij =
1
2π

sin−1

(
σij√
σiiσjj

)
.

For notational simplicity, let X = ξ
(1)
i , Y = ξ

(1)
j and define

a± = 1± σij√
σiiσjj

X̃± =
1√
2a±

(
1√
σii

X ± 1√
σjj

Y

)
,

so that X̃+, X̃− are independent standard normals. Since

X =
√

σii

2

(√
2a+X̃+ +

√
2a−X̃−

)

Y =
√

σjj

2

(√
2a+X̃+ −

√
2a−X̃−

)
,

we have that X ≤ 0 and Y ≤ 0 if and only if (X̃+, X̃−) lies above the lines in the plane

through the origin with slopes ±
√

a+/a−. This sector of the plane has an angle, θ, that

satisfies

cos θ =
1− a+/a−

1 + a+/a−
= − σij√

σiiσjj
, θ ∈ [0, π].

Thus,

P (X ≤ 0, Y ≤ 0) =
θ

2π

=
1
2π

cos−1

(
− σij√

σiiσjj

)

=
1
4

+
1
2π

sin−1

(
σij√
σiiσjj

)
,

where sin−1 takes values in [−π/2, π/2]. ¥

We may now prove Theorem 3.1.1, after which Theorem 3.1.4 is an immediate conse-

quence of Corollary 3.2.2.
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Proof of Theorem 3.1.1. Let ρ(s, t) be as in the statement of Theorem 3.1.1. Let T

be the set of finite sequences t = (t1, . . . , tn) of distinct, nonnegative numbers, where the

length n of these sequences ranges over the set of positive integers. For each t of length

n, let Nt = (N1, . . . , Nn) be a multinormal random vector with mean zero and covariance

ENiNj = ρ(ti, tj). (By Corollary 3.2.2, with ξ(1) d= (B(1)
t1

, . . . , B
(1)
tn ), such an Nt exists.)

Define the measure Qt on Rn by Qt(A) = P (N ∈ A). The family of finite-dimensional

distributions, {Qt}t∈T , is clearly consistent, so there exists a real-valued process, Xt, on

[0,∞) that has the desired finite-dimensional distributions. It remains only to show that

this process has a continuous modification, which is locally Hölder-continuous with exponent

γ for every γ ∈ (0, 1/4).

By the Kolmogorov-Čentsov Theorem (Theorem 2.2.8 in [17]), it will suffice to show

that for every α > 4 and every T > 0,

E|Xt −Xs|α ≤ CT |t− s|α/4

for some CT > 0 (depending only on T ) and all 0 ≤ s < t ≤ T .

First, observe that Xt −Xs is normal with mean zero and variance

σ2(s, t) = E(Xt −Xs)2

= EX2
t + EX2

s − 2EXtXs

=
π

2
t +

π

2
s− 2

√
st sin−1

(√
s

t

)
.

An application of L’Hôpitals’ Rule shows that

π/2− sin−1 x√
1− x2

→ 1

as x → 1. Hence, for some constant C, − sin−1 x ≤ C
√

1− x2− π/2 for all 0 ≤ x ≤ 1. Now

let x = s/t. Then

σ2(s, t) = tσ2(x, 1)

= t
[π

2
+

π

2
x− 2

√
x sin−1(

√
x)

]
.

Using the above observation,

σ2(s, t) ≤ t
[π

2
+

π

2
x + 2

√
x

(
C
√

1− x− π

2

)]

= t
[π

2
(1−√x)2 + 2C

√
x
√

1− x
]
.
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Since 1−√x ≤ √
1− x for 0 ≤ x ≤ 1,

σ2(s, t) ≤
(π

2
+ 2C

)
t
√

1− x

=
(π

2
+ 2C

)√
t
√

t− s

≤ C̃T |t− s|1/2

where C̃T =
(

π
2 + 2C

)√
T .

Now, for every α > 0, there is a constant Kα such that if N is normal with EN = 0,

then E|N |α = Kα(EN2)α/2. Thus, for any α > 4,

E|Xt −Xs|α = Kα|σ2(s, t)|α/2

≤ KαC̃
α/2
T |t− s|α/4

= CT |t− s|α/4

where CT = KαC̃
α/2
T . ¥

3.3 General Tightness Criteria

The following result is often used to show tightness.

Proposition 3.3.1 Let {X(n)}∞n=1 be a sequence of continuous stochastic processes X(n) =

{X(n)
t : 0 ≤ t < ∞} on (Ω,F , P ), satisfying the following conditions:

(i) supn≥1 E|X(n)
t −X

(n)
s |α ≤ CT |t− s|1+β, ∀ T > 0 and 0 ≤ s, t ≤ T ,

(ii) supn≥1 E|X(n)
0 |ν < ∞

for some positive constants α, β, ν (universal) and CT (depending on T > 0). Then the prob-

ability measures Pn = P (X(n))−1, n ≥ 1 induced by these processes on (C[0,∞),B(C[0,∞)))

form a tight sequence.

This proposition is Problem 2.4.11 in [17], which has a worked solution. An inspection

of the proof reveals that condition (i) can be weakened. The version we shall employ here

is the following.
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Proposition 3.3.2 Let {X(n)}∞n=1 be a sequence of continuous stochastic processes X(n) =

{X(n)
t : 0 ≤ t < ∞} on (Ω,F , P ), satisfying the following conditions:

(i) supn≥1 P (|X(n)
t −X

(n)
s | ≥ ε) ≤ CT ε−α|t− s|1+β, ∀ 0 < ε < 1, T > 0, and 0 ≤ s, t ≤ T ,

(ii) supn≥1 E|X(n)
0 |ν < ∞

for some positive constants α, β, ν (universal) and CT (depending on T > 0). Then the prob-

ability measures Pn = P (X(n))−1, n ≥ 1 induced by these processes on (C[0,∞),B(C[0,∞)))

form a tight sequence.

Proof. By Theorem 2.4.10 in [17], the measures Pn form a tight sequence if and only if

(a) limλ↑∞ supn≥1 P (|X(n)
0 | > λ) = 0, and

(b) limδ↓0 supn≥1 P (mT (X(n)
· , δ) > ε) = 0 ∀ T > 0 and ε > 0

where, for f ∈ C[0,∞),

mT (f(·), δ) = sup
|t−s|≤δ
s,t∈[0,T ]

|f(t)− f(s)|.

Since P (|X(n)
0 | > λ) ≤ E|X(n)

0 |ν/λν , condition (a) follows from condition (ii).

Now fix T = 1, ε > 0, and n ∈ N. Let η > 0 be arbitrary. It will be shown that there

exists m0 ∈ N, independent of n, such that for all δ ≤ 2−m0 ,

P (mT (X(n)
· , δ) > ε) ≤ η,

which will prove condition (b) in the case T = 1.

For l ∈ N, let

Ωl =
∞⋂

m=l

{
max

1≤k≤2m
|X(n)

k/2m −X
(n)
(k−1)/2m | < 2−γm

}
,

where 0 < γ < β/α. By (i), since 0 < 2−γm < 1,

P (|X(n)
k/2m −X

(n)
(k−1)/2m | ≥ 2−γm) ≤ C12γmα2−m(1+β)

= C12−m(1+β−αγ)
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Hence,

P

(
max

1≤k≤2m
|X(n)

k/2m −X
(n)
(k−1)/2m | ≥ 2−γm

)
= P

(
2m⋃

k=1

{
|X(n)

k/2m −X
(n)
(k−1)/2m | ≥ 2−γm

})

≤ C12−m(β−αγ).

and thus

P (Ωc
l ) ≤

∞∑

m=l

C12−m(β−αγ).

Since 0 < γ < β/α, we have β − αγ > 0 and we may therefore choose l ∈ N such that

P (Ωc
l ) ≤ η.

Now, for each m ∈ N, let Dm = {k/2m : 0 ≤ k ≤ 2m} and D =
⋃∞

m=1 Dm.

Claim: Fix ω ∈ Ωl and m ≥ l. Then for every h > m,

|X(n)
t (ω)−X(n)

s (ω)| ≤ 2
h∑

j=m+1

2−γj

whenever s, t ∈ Dh and 0 ≤ t− s < 2−m.

Proof of Claim: The claim is trivial for t− s = 0, so suppose t− s > 0. If h = m + 1, then

0 < t − s < 2−m implies that t = k/2h and s = (k − 1)/2h for some 1 ≤ k ≤ 2h. Thus,

ω ∈ Ωl and h ≥ l imply that max1≤k≤2h |X(n)

k/2h −X
(n)

(k−1)/2h | < 2−γh and the claim holds.

Now suppose the claim holds for all h ∈ {m + 1,m + 2, . . . , M − 1}. Let h = M

and suppose s, t ∈ Dh, 0 < t − s < 2−m. Let s1 = min{u ∈ DM−1 : u ≥ s} and

t1 = max{u ∈ DM−1 : u ≤ t}. Then

|X(n)
t (ω)−X(n)

s (ω)| ≤ |X(n)
t (ω)−X

(n)
t1

(ω)|+ |X(n)
t1

(ω)−X(n)
s1

(ω)|+ |X(n)
s1

(ω)−X(n)
s (ω)|.

Now, if t1 = t, then |X(n)
t (ω) −X

(n)
t1

(ω)| = 0 < 2−γM . If t1 6= t, then t = k/2M and t1 =

(k − 1)/2M for some odd k with 1 ≤ k ≤ 2M − 1. Thus, as above, ω ∈ Ωl and M ≥ l imply

that |X(n)
t (ω)−X

(n)
t1

(ω)| < 2−γM . Similarly, |X(n)
s1 (ω)−X

(n)
s (ω)| < 2−γM . By the induction

hypothesis, since 0 ≤ t1− s1 ≤ t− s < 2−m, we have |X(n)
t1

(ω)−X
(n)
s1 (ω)| ≤ 2

∑M−1
j=m+1 2−γj ,

and this proves the claim.

By the claim, for each fixed ω ∈ Ωl and m ≥ l,

sup
|t−s|<2−m

s,t∈D

|X(n)
t (ω)−X(n)

s (ω)| ≤ 2
∞∑

j=m+1

2−γj

≤ ξ2−γm
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where ξ = 2/(1− 2−γ). Since t 7→ X
(n)
t (ω) is continuous and D is dense in [0, 1], we have

sup
|t−s|<2−m

s,t∈[0,1]

|X(n)
t (ω)−X(n)

s (ω)| ≤ ξ2−γm.

Now choose m0 ≥ l such that ξ2−γm0 < ε and suppose δ ≤ 2−m0 . Then

P (mT (X(n)
· , δ) > ε) = P


 sup
|t−s|≤δ
s,t∈[0,1]

|X(n)
t −X(n)

s | > ε




≤ P


 sup
|t−s|≤2−m0

s,t∈[0,1]

|X(n)
t −X(n)

s | > ε


 .

By the above,

Ωl ⊂





sup
|t−s|<2−m0

s,t∈[0,1]

|X(n)
t −X(n)

s | ≤ ξ2−γm0




⊂





sup
|t−s|<2−m0

s,t∈[0,1]

|X(n)
t −X(n)

s | ≤ ε





,

so that P (mT (X(n)
· , δ) > ε) ≤ P (Ωc

l ) ≤ η, which completes the proof for the case T = 1.

By observing that

mT (f(·), δ) = sup
|t−s|≤δ
s,t∈[0,T ]

|f(t)− f(s)|

= sup
|t−s|≤δ/T
s,t∈[0,1]

|f(Tt)− f(Ts)|

= m1(f(T ·), δ/T ),

the general case now follows. ¥

For any real number c ≥ 0, M(cx) = cM(x), so that the median processes inherit the

scaling property of Brownian motion; namely, {X(n)
ct : 0 ≤ t < ∞} d= {√cX

(n)
t : 0 ≤ t < ∞}.

In applying Proposition 3.3.2, we should like to make use of this scaling property. To this

end, we once again reformulate the tightness criteria as follows.

Proposition 3.3.3 Let {X(n)}∞n=1 be a sequence of continuous stochastic processes X(n) =

{X(n)
t : 0 ≤ t < ∞} on (Ω,F , P ). Suppose there exists r > 0 such that for every c ≥ 0,

{X(n)
ct : 0 ≤ t < ∞} d= {crX

(n)
t : 0 ≤ t < ∞}. Suppose that
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(i) supn≥1 P (|X(n)
1+δ −X

(n)
1 | > ε) ≤ Cε−αδ1+β, ∀ 0 < ε < 1 and 0 < δ < δ0

for some positive constants δ0, C, α, and β. Define γ = min{(α∧ β)r, 1 + β}. If γ > 1 and

(ii) supn≥1 E|X(n)
1 |γ/r < ∞

then the probability measures Pn = P (X(n))−1, n ≥ 1 induced by these processes on

(C[0,∞),B(C[0,∞))) form a tight sequence.

Proof. Since X
(n)
0 ≡ 0, it suffices by Proposition 3.3.2 to show that

sup
n≥1

P (|X(n)
t −X(n)

s | ≥ ε) ≤ CT ε−(α∨β)|t− s|γ (3.3.1)

for all 0 < ε < 1, T > 0, and 0 ≤ s, t ≤ T .

First, suppose that ε ≥ 1 and 0 < δ < δ0. Choose m ∈ N such that 1
2 ≤ ε

m < 1. For

j ∈ {0, . . . , m}, define tj = jδ/m. Then

P (|X(n)
1+δ −X

(n)
1 | > ε) ≤

m∑

j=1

P (|X(n)
1+tj

−X
(n)
1+tj−1

| > ε/m).

If cj = (1 + tj−1)−1, then

X
(n)
1+tj

−X
(n)
1+tj−1

= (1 + tj−1)r(cr
jX

(n)
1+tj

− cr
jX

(n)
1+tj−1

)

d= (1 + tj−1)r(X(n)
cj(1+tj)

−X
(n)
1 )

= (1 + tj−1)r(X(n)
1+τj

−X
(n)
1 )

where 1 + τj = (1 + tj)/(1 + tj−1), i.e. τj = δ/[m(1 + tj−1)]. Thus,

P (|X(n)
1+δ −X

(n)
1 | > ε) ≤

m∑

j=1

P

(
|X(n)

1+τj
−X

(n)
1 | > ε

m(1 + tj−1)r

)

≤
m∑

j=1

C

(
ε

m(1 + tj−1)r

)−α

τ1+β
j

≤
m∑

j=1

C

(
1

2(1 + δ0)r

)−α (
δ

m

)1+β

Let C̃ = C2α(1 + δ0)rα and observe that m > ε. Hence,
m∑

j=1

C

(
1

2(1 + δ0)r

)−α (
δ

m

)1+β

= C̃m−βδ1+β

≤ C̃ε−βδ1+β.
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We have now proven

(i)′ supn≥1 P (|X(n)
1+δ −X

(n)
1 | > ε) ≤ C̃ε−βδ1+β, ∀ ε ≥ 1 and 0 < δ < δ0.

Combining (i) and (i)′ gives

(i)′′ supn≥1 P (|X(n)
1+δ −X

(n)
1 | > ε) ≤ K(ε−α + ε−β)δ1+β, ∀ ε > 0 and 0 < δ < δ0,

where K = max{C, C̃}.
Now let 0 < ε < 1, T > 0, 0 ≤ s < t ≤ T , and n ∈ N. Define ρ = 1/(1 + δ0). We will

prove (3.3.1) by considering two separate cases.

Case 1: Suppose s > ρt. Then

X
(n)
t −X(n)

s = sr(s−rX
(n)
t − s−rX(n)

s )

d= sr(X(n)
t/s −X

(n)
1 )

= sr(X(n)
1+δ −X

(n)
1 )

where 1+δ = t/s, i.e. δ = (t−s)/s < (1−ρ)/ρ = δ0. In what follows, CT will be a constant

that depends on T (but not on ε, s, t, or n) that may change value from line to line.

We now have

P (|X(n)
t −X(n)

s | > ε) = P (|X(n)
1+δ −X

(n)
1 | > εs−r)

≤ K(srαε−α + srβε−β)δ1+β

≤ CT s(α∧β)rε−(α∨β)δ1+β

= CT s(α∧β)r−1−βε−(α∨β)|t− s|1+β (3.3.2)

If (α ∧ β)r − 1− β ≥ 0, then (3.3.2) and s < T imply

P (|X(n)
t −X(n)

s | > ε) ≤ CT ε−(α∨β)|t− s|1+β

≤ CT ε−(α∨β)|t− s|γ

If (α ∧ β)r − 1− β < 0, then (3.3.2) and s > ρt ≥ ρ|t− s| imply

P (|X(n)
t −X(n)

s | > ε) ≤ CT ε−(α∨β)|t− s|(α∧β)r

≤ CT ε−(α∨β)|t− s|γ .
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Case 2: Suppose s ≤ ρt. Then t = (t − s) + s ≤ (t − s) + ρt implies t ≤ τ(t − s), where

τ = 1/(1− ρ) = (1/δ0) + 1. Now,

P (|X(n)
t −X(n)

s | > ε) ≤ P (|X(n)
t |+ |X(n)

s | > ε)

≤ P
(
|X(n)

t | > ε

2

)
+ P

(
|X(n)

s | > ε

2

)

= P
(
|X(n)

1 | > ε

2tr

)
+ P

(
|X(n)

1 | > ε

2sr

)

≤ 2P
(
|X(n)

1 | > ε

2tr

)
.

Using Chebyshev, condition (ii), and the fact that t < τ(t− s) gives

P (|X(n)
t −X(n)

s | > ε) ≤ 2
(

2tr

ε

)γ/r

E|X(n)
1 |γ/r

≤ CT ε−γ/rtγ

≤ CT ε−γ/r|t− s|γ .

Finally, γ/r ≤ (α ∧ β) ≤ (α ∨ β), so

P (|X(n)
t −X(n)

s | > ε) ≤ CT ε−(α∨β)|t− s|γ ,

and this completes the proof. ¥

3.4 Median Estimates, Part I

With the general tightness criteria in place, we are now ready to formulate specific estimates

on the median processes themselves. We begin by verifying condition (ii) of Proposition

3.3.3.

Lemma 3.4.1 For all x > 0,
√

2πΦ(−x) ≤ x−1e−x2/2, where Φ(x) = 1√
2π

∫ x
−∞ e−t2/2 dt.

Proof. Write
√

2πΦ(−x) =
∫∞
x t−1 · te−t2/2 dt and integrate by parts. ¥

Proposition 3.4.2 Let M
(n)
t be as in the discussion preceding Theorem 3.1.1 and let k =

b(n + 1)/2c. Then M
(n)
1 has density function

fn(x) = k

(
n

k

)
1√
2π

Φ(x)k−1Φ(−x)n−ke−x2/2.
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Proof. This is a special case of Theorem 1.3.2 in [22]. ¥

Theorem 3.4.3 (Burkholder’s inequality) Let {ξj}∞j=1 be a sequence of independent random

variables with Eξj = 0 for all j. Then for each p > 1, there exists a constant Cp < ∞,

depending only on p, such that for all n ∈ N,

E

∣∣∣∣∣∣

n∑

j=1

ξj

∣∣∣∣∣∣

p

≤ CpE

∣∣∣∣∣∣

n∑

j=1

|ξj |2
∣∣∣∣∣∣

p
2

.

Proof. This is an immediate consequence of Theorem 6.3.10 in [25]. ¥

Proposition 3.4.4 Let X
(n)
t be as in the discussion preceding Theorem 3.1.1. Then for

each p > 2, there exists a constant Cp < ∞ such that for all y > 0 and all n ∈ N,

P (|X(n)
1 | > y) ≤ Cpy

−p.

Proof. First, suppose y ≥ 2
√

n. By Proposition 3.4.2,

P (X(n)
1 < −y) = P (M (n)

1 < −y/
√

n)

=
n!

(n− k)!(k − 1)!

∫ −y/
√

n

−∞
Φ(x)k−1Φ(−x)n−kΦ′(x) dx

≤ nk

(k − 1)!

∫ −y/
√

n

−∞
Φ(x)k−1Φ′(x) dx

=
nk

k!
Φ(−y/

√
n)k.

By Stirling’s formula, there exists a universal constant C < ∞ such that k! ≥ 1
C kke−k.

Moreover, by Lemma 3.4.1, Φ(−x) ≤ e−x2/2 for x ≥ 1. Thus, since k ≥ n/2,

P (X(n)
1 < −y) ≤ C

nk

kke−k
(e−y2/(2n))k

≤ C[(2e)(e−y2/(2n))]k.
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Since (2e)(e−y2/(2n)) ≤ (2e)(e−2) < 1,

P (X(n)
1 < −y) ≤ C[(2e)(e−y2/(2n))]n/2

= C(2e)n/2e−y2/4

≤ C(2e)y2/8e−y2/4

= C
(e

2

)−y2/8

≤ Cpy
−p.

Now, suppose y < 2
√

n. In this case,

P (X(n)
1 < −y) = P (M (n)

1 < −y/
√

n)

= P




n∑

j=1

1{B(j)
1 <−y/

√
n} ≥ k




= P




n∑

j=1

1{B(j)
1 <−y/

√
n} ≥

n

2




= P




n∑

j=1

ξj ≥ n (1/2− q)


 ,

where q = Φ(−y/
√

n) and ξj = 1{B(j)
1 <−y/

√
n}−q. By Theorem 3.4.3 and Jensen’s inequality,

E

∣∣∣∣∣∣

n∑

j=1

ξj

∣∣∣∣∣∣

p

≤ CpE

∣∣∣∣∣∣

n∑

j=1

|ξj |2
∣∣∣∣∣∣

p
2

≤ Cpn
p/2E

n∑

j=1

1
n
|ξj |p

≤ Cpn
p/2.

Thus, by Chebyshev,

P (X(n)
1 < −y) ≤ Cpn

p/2[n(1/2− q)]−p

= Cp[
√

n(1/2− q)]−p.

Now,
√

n(1/2− q) =
√

n√
2π

∫ y/
√

n

0
e−x2/2 dx ≥ y√

2π
e−y2/2n ≥ y√

2π
e−2.
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Combining these results gives that, for all y > 0, P (X(n)
1 < −y) ≤ Cpy

−p.

Finally, note that M(−x) ≤ −M(x). Thus, if M̃
(n)
t = M(−B

(1)
t , . . . ,−B

(n)
t ), then

M
(n)
1

d= M̃
(n)
1 ≤ −M

(n)
1 . Hence,

P (X(n)
1 > y) = P (M (n)

1 > y/
√

n)

= P (M̃ (n)
1 > y/

√
n)

≤ P (−M
(n)
1 > y/

√
n)

= P (M (n)
1 < −y/

√
n)

= P (X(n)
1 < −y),

which completes the proof. ¥

Corollary 3.4.5 For each p > 0, supn≥1 E|X(n)
1 |p < ∞.

Proof. For any p > 0,

E|X(n)
1 |p =

∫ ∞

0
pyp−1P (|X(n)

1 | > y) dy

by Lemma 1.5.7 in [10]. By Jensen’s inequality, we may assume without loss of generality

that p > 1. Thus, by Proposition 3.4.4,

E|X(n)
1 |p ≤

∫ 1

0
pyp−1 dy +

∫ ∞

1
pyp−1Cp+1y

−(p+1) dy

= 1 + pCp+1

∫ ∞

1
y−2 dy,

which is finite. ¥

Now that we have verified condition (ii) of Proposition 3.3.3, we must turn to condition

(i), which is more challenging to establish. The ultimate goal will be to prove the following

result.

Proposition 3.4.6 Let X
(n)
t be as in the discussion preceding Theorem 3.1.1. Then there

exists a constant δ0 > 0 and a family of finite, positive constants {Cp}p>2 such that for each

p > 2,

sup
n≥3

P (X(n)
1+δ −X

(n)
1 > ε) ≤ Cp(ε−1δ1/6)p (3.4.1)

for all 0 < ε < 1 and 0 < δ < δ0.
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Remark 3.4.1 The proof of Theorem 3.1.1 suggests that the right hand side of (3.4.1) could

be replaced by Cp(ε−1δ1/4)p. For technical reasons related to the method of proof, this sharp

bound could not be obtained. However, the choice of 1/6 as the exponent in (3.4.1) appears

to be arbitrary. Presumably, with minor modifications, the right hand side of (3.4.1) could

be replaced by Cp(ε−1δν)p for any fixed ν < 1/4.

Once we establish this result, Theorem 3.1.5, and hence Theorem 3.1.2, will follow.

Proof of Theorem 3.1.5, given Proposition 3.4.6. First observe that {X(2n+1)}∞n=1

satisfy the initial hypothesis of Proposition 3.3.3 with r = 1/2. Now choose any p > 18.

Let α = p, β = (p/6)− 1 > 2, and check that γ = min{(α ∧ β)r, 1 + β} = β/2 > 1. Let δ0

be as in Proposition 3.4.6 and let 0 < ε < 1, 0 < δ < δ0 be arbitrary. Using Proposition

3.4.6 and the fact that X
(2n+1)
·

d= −X
(2n+1)
· ,

sup
n≥1

P (|X(2n+1)
1+δ −X

(2n+1)
1 | > ε) = 2 sup

n≥1
P (X(2n+1)

1+δ −X
(2n+1)
1 > ε)

≤ 2 sup
n≥3

P (X(n)
1+δ −X

(n)
1 > ε)

≤ 2Cp(ε−1δ1/6)p

= 2Cpε
−αδ1+β.

This verifies condition (i) of Proposition 3.3.3; condition (ii) is given by Corollary 3.4.5. ¥

So it only remains to prove Proposition 3.4.6. The starting point in the proof is an

investigation of the conditional distribution of M
(n)
1+δ − M

(n)
1 given M

(n)
1 . Informally, if

M
(n)
1 = x, then we know that one of B

(1)
1 , . . . , B

(n)
1 is equal to x and of the remaining n−1,

k − 1 of them (recall that k = b(n + 1)/2c) are less than x and n − k of them are greater

than x. The knowledge that M
(n)
1 = x gives us no other information than that. So we may

regard B
(1)
1 , . . . , B

(n)
1 as consisting of one Brownian particle located at x, a group of k − 1

iid Brownian particles conditioned to lie below x at time t = 1, and a group of n − k iid

Brownian particles conditioned to lie above x at time t = 1. Presumably, these heuristics

could be used to derive a precise formulation of the conditional distribution of M
(n)
1+δ−M

(n)
1

given M
(n)
1 . For our purposes, however, an inequality will suffice.
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To formulate this inequality, first recall that by Proposition 3.4.2, M
(n)
1 has a smooth

density function, fn(x). Now, for x, y ∈ R and δ > 0, define

p1 = p1(x, y, δ) = P
(
B

(1)
1+δ < x + y |B(1)

1 < x
)

=
1

Φ(x)

∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ′(t) dt.

Let p2 = p2(x, y, δ) = p1(−x,−y, δ) and qj = 1− pj . For each k ∈ N, let

ϕk(x, y, δ) =
k∑

i=0

k∑

j=i

(
k

i

)(
k

j

)
pi
1q

k−i
1 pj

2q
k−j
2 . (3.4.2)

Proposition 3.4.7 Let n ≥ 3 and k = b(n + 1)/2c ≥ 2. With the notation above, we have

that for all δ > 0 and all y > 0,

P (M (n)
1+δ −M

(n)
1 > y) ≤

∫ ∞

−∞
ϕk−1(x, y, δ)fn(x) dx.

Proof. Fix δ > 0 and y > 0. Let M ∈ N and let h > 0 with M/h ∈ N. Then

P (M (n)
1+δ −M

(n)
1 > y, |M (n)

1 | ≤ M) ≤
∑

x∈hZ
|x|≤M

P
(
M

(n)
1+δ −M

(n)
1 > y, M

(n)
1 ∈ [x, x + h)

)

≤
∑

x∈hZ
|x|≤M

P
(
M

(n)
1+δ > x + y, M

(n)
1 ∈ [x, x + h)

)
.

Let Sn = {1, . . . , n}, I = {I ⊂ Sn : |I| = k − 1}, S = {(I, j) : I ∈ I, j ∈ Sn \ I}, and for

(I, j) ∈ S, let I ′(j) = Sn \ (I ∪ {j}).
For (I, j) ∈ S, x ∈ R, and h > 0, define

A(I, j, x, h) = {B(j)
1 ∈ [x, x + h)} ∩ {B(i)

1 < B
(j)
1 , ∀i ∈ I} ∩ {B(i)

1 > B
(j)
1 , ∀i ∈ I ′(j)}.

Note that, up to a set of measure zero,

{M (n)
1 ∈ [x, x + h)} =

⋃

(I,j)∈S

A(I, j, x, h),

and that this is a disjoint union. Thus,

P
(
M

(n)
1+δ > x + y, M

(n)
1 ∈ [x, x + h)

)
=

∑

(I,j)∈S

P
(
M

(n)
1+δ > x + y, A(I, j, x, h)

)
.
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For (I, j) ∈ S, x ∈ R, and h > 0, define

Ã(I, j, x, h) = {B(j)
1 ∈ [x, x + h)} ∩ {B(i)

1 < x + h, ∀i ∈ I} ∩ {B(i)
1 > x, ∀i ∈ I ′(j)}

and observe that A ⊂ Ã, so that

P
(
M

(n)
1+δ > x + y, A(I, j, x, h)

)
≤ P

(
M

(n)
1+δ > x + y, Ã(I, j, x, h)

)
.

Now fix (I, j) ∈ S and x ∈ R. Define

N1 =
∑

i∈I

1{B(i)
1+δ<x+y}

N2 =
∑

i∈I′(j)

1{B(i)
1+δ>x+y}

N =
n∑

i=1

1{B(i)
1+δ>x+y}

and note that {M (n)
1+δ > x + y} = {N ≥ n− k + 1}. Also note that, up to a set of measure

zero,

N = N2 + (k − 1)−N1 + 1{B(j)
1+δ>x+y}

≤ N2 −N1 + k.

Thus, if d(n) = n− 2k + 1 = [(−1)n + 1]/2, then

{M (n)
1+δ > x + y} ⊂ {N2 −N1 ≥ d(n)}.

This gives

P
(
M

(n)
1+δ > x + y, Ã(I, j, x, h)

)
≤ P

(
N2 −N1 ≥ d(n), Ã(I, j, x, h)

)

=
k−1∑

l=0

n−k∑

m=d(n)+l

P (N1 = l, N2 = m, Ã(I, j, x, h))

=
k−1∑

l=0

n−k∑

m=d(n)+l

P (B(j)
1 ∈ [x, x + h))P 1

l P 2
m,

where

P 1
l = P

(
{N1 = l} ∩ {B(i)

1 < x + h, ∀i ∈ I}
)

P 2
m = P

(
{N2 = m} ∩ {B(i)

1 > x, ∀i ∈ I ′(j)}
)

.
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By symmetry and independence,

P 1
l =

(
k − 1

l

)
[ψ(x + y, x + h)]l[Φ(x + h)− ψ(x + y, x + h)]k−1−l,

where ψ(x, y) = P (B(1)
1+δ < x, B

(1)
1 < y). Similarly,

P 2
m =

(
n− k

m

)
[ψ(−x− y,−x)]m[Φ(−x)− ψ(−x− y,−x)]n−k−m.

Now, observe that

P (Ã(I, j, x, h)) = P (B(j)
1 ∈ [x, x + h))Φ(x + h)k−1Φ(−x)n−k.

Also,
ψ(x + y, x + h)

Φ(x + h)
= P (B(1)

1+δ < x + y |B(1)
1 < x + h) = p1,h

where p1,h = p1(x + h, y − h, δ). Similarly,

ψ(−x− y,−x)
Φ(−x)

= P (B(1)
1+δ > x + y |B(1)

1 > x) = p2.

Thus, if q1,h = 1− p1,h, then

P
(
M

(n)
1+δ > x + y | Ã(I, j, x, h)

)
≤

k−1∑

l=0

n−k∑

m=d(n)+l

(
k − 1

l

)(
n− k

m

)
pl
1,hqk−1−l

1,h pm
2 qn−k−m

2 .

If n is odd, then d(n) = 0 and n− k = k − 1, so

P
(
M

(n)
1+δ > x + y | Ã(I, j, x, h)

)
≤ ϕh

k−1(x, y, δ) (3.4.3)

where

ϕh
k(x, y, δ) =

k∑

i=0

k∑

j=i

(
k

i

)(
k

j

)
pi
1,hqk−i

1,h pj
2q

k−j
2 .

If n is even, then d(n) = 1 and n− k = k, so

P
(
M

(n)
1+δ > x + y | Ã(I, j, x, h)

)
≤

k−1∑

l=0

k∑

m=l+1

(
k − 1

l

)(
k

m

)
pl
1,hqk−1−l

1,h pm
2 qk−m

2

=
k−1∑

l=0

(
k − 1

l

)
pl
1,hqk−1−l

1,h

k∑

m=l+1

(
k

m

)
pm
2 qk−m

2 .
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To see that (3.4.3) holds in this case as well, we need simply observe that

k∑

m=l+1

(
k

m

)
pm
2 qk−m

2 ≤
k−1∑

m=l

(
k − 1

m

)
pm
2 qk−1−m

2 .

Indeed, if {ξj}∞j=1 are iid {0, 1}-valued random variables with P (ξ1 = 1) = p2, then

k∑

m=l+1

(
k

m

)
pm
2 qk−m

2 = P




k∑

j=1

ξj > l




= P




k−1∑

j=1

ξj > l − ξk




≤ P




k−1∑

j=1

ξj ≥ l




=
k−1∑

m=l

(
k − 1

m

)
pm
2 qk−1−m

2 .

Putting everything together, we have

P (M (n)
1+δ −M

(n)
1 > y, |M (n)

1 | ≤ M) ≤
∑

x∈hZ
|x|≤M

∑

(I,j)∈S

ϕh
k−1(x, y, δ)P (Ã(I, j, x, h))

=
∑

x∈hZ
|x|≤M

∑

(I,j)∈S

ϕh
k−1(x, y, δ)

P (Ã)
P (A)

P (A(I, j, x, h)).

Note that P (A(I, j, x, h)) ≥ P (B(j)
1 ∈ [x, x+h))Φ(x)k−1Φ(−x−h)n−k, so that P (Ã)/P (A) ≤

gh(x), where

gh(x) =
[
Φ(x + h)

Φ(x)

]k−1 [
Φ(−x)

Φ(−x− h)

]n−k

.

Thus, by dominated convergence,

P (M (n)
1+δ −M

(n)
1 > y, |M (n)

1 | ≤ M) ≤
∑

x∈hZ
|x|≤M

ϕh
k−1(x, y, δ)gh(x)

∑

(I,j)∈S

P (A(I, j, x, h))

=
∑

x∈hZ
|x|≤M

ϕh
k−1(x, y, δ)gh(x)P (M (n)

1 ∈ [x, x + h))

→
∫ M

−M
ϕk−1(x, y, δ)fn(x) dx.
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Letting M →∞ finishes the proof. ¥

Now, let us fix x ∈ R, y > 0, and δ > 0. Construct two independent sequences of

iid {0, 1}-valued random variables {ξ(i)
j }∞j=1, i ∈ {1, 2}, with P (ξ(i)

1 = 1) = pi(x, y, δ). Let

Yj = ξ
(2)
j − ξ

(1)
j and Sk =

∑k
j=1 Yj . Then

P (Sk ≥ 0) =
k∑

i=0

P

(
k∑

l=1

ξ
(1)
l = i,

k∑

l=1

ξ
(2)
l ≥ i

)

=
k∑

i=0

k∑

j=i

P

(
k∑

l=1

ξ
(1)
l = i,

k∑

l=1

ξ
(2)
l = j

)

=
k∑

i=0

k∑

j=i

(
k

i

)(
k

j

)
pi
1q

k−i
1 pj

2q
k−j
2

= ϕk(x, y, δ).

The idea will be to estimate ϕk(x, y, δ) = P (Sk ≥ 0) via Chebyshev’s inequality. However,

a straightforward application of Chebyshev to our situation will not provide sharp enough

estimates, so further refinement will be necessary. For this reason, we now take a brief

detour from our median processes to prove some general lemmas regarding probabilities of

this sort.

3.5 Miscellaneous Lemmas

Lemma 3.5.1 Let {Yj}∞j=1 be iid {−1, 0, 1}-valued random variables with P (Y1 = −1) = p1,

P (Y1 = 1) = p2 and let Sn =
∑n

j=1 Yj. Suppose that ε = p1 + p2 > 0 and µ = p1 − p2 > 0.

Then for each p > 1, there exists a finite constant Cp, depending only on p, such that

P (Sn ≥ 0) ≤ Cp
ε

npµ2p
. (3.5.1)

Proof. Since EY1 = −µ, we have

P (Sn ≥ 0) = P (Sn + nµ ≥ nµ)

≤ E|Sn + nµ|2p

n2pµ2p
.
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By Theorem 3.4.3 and Jensen’s inequality,

E|Sn + nµ|2p = E

∣∣∣∣∣∣

n∑

j=1

(Yj + µ)

∣∣∣∣∣∣

2p

≤ C̃pE

∣∣∣∣∣∣

n∑

j=1

|Yj + µ|2
∣∣∣∣∣∣

p

≤ C̃pn
pE|Y1 + µ|2p,

and

E|Y1 + µ|2p = p1(1− µ)2p + (1− ε)µ2p + p2(1 + µ)2p

≤ 22p(p1 + p2) + µ2p

≤ (22p + 1)ε

since µ ≤ ε. Thus, (3.5.1) holds with Cp = C̃p(22p + 1). ¥

For the estimates we will need, (3.5.1) will not suffice. We will need the numerator on

the right hand side of (3.5.1) to be of order εp, rather than of order ε. There is no way to

further refine the moment estimates in the above proof since, although we haven’t stated it

here, Burkholder’s inequality is two-sided. A different approach will be taken in the next

several lemmas to refine (3.5.1) and achieve the necessary level of precision.

Lemma 3.5.2 For n ∈ N, k ∈ {0, . . . , n}, p ∈ (0, 1), and x ∈ R, let f(n, k, p) =
(
n
k

)
pkqn−k,

where q = 1− p, and let g(n, x, p) = (2πnpq)−1/2 exp{−(x− np)2/2npq}. Then

sup
n∈N

(
sup

k∈{0,...,n}

f(n, k, p)
g(n, k, p)

)
< ∞

if and only if p = 1/2. However, there exists a universal constant, C, independent of p,

such that f(n, k, p)/g(n, k, p) ≤ C for all n ∈ N and all k ∈ {0, . . . , bnpc}, provided p ≤ 1/2.

Proof. It will first be shown that, for p ≤ 1/2, there is a universal constant, C, such that

f(n, 0, p)/g(n, 0, p) ≤ C and, if bnpc ≥ 1, f(n, 1, p)/g(n, 1, p) ≤ C. We start by showing

that if α > 0, then there exists a constant, Cα, such that

(np)α(qep/2q)n ≤ Cα.
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To prove this, first consider 2/5 ≤ p ≤ 1/2. In this case, qep/2q ≤ 3
5e1/2 < 1. Thus,

(np)α(qep/2q)n ≤ sup
n

[
nα

(
3
5
e1/2

)n]
< ∞.

Next, consider 0 < p < 2/5. We claim that in this case, q5/6ep/2q ≤ 1. This follows from the

fact that d
dq [log(q5/6ep/2q)] = (5q − 3)/6q2 > 0, for q > 3/5. Hence,

(np)α(qep/2q)n ≤ nαqn/6pα.

Elementary calculus shows that for x ≥ 0, xαqx/6 attains its maximum at x = −6α/ log q.

Thus,

nαqn/6pα ≤
(

6α

e

)α (
1− q

| log q|
)α

.

Since (q − 1)/ log q → 1 as q → 1, this proves the initial claim.

Thus, for p ≤ 1/2,

f(n, 0, p)
g(n, 0, p)

=
√

2πnpq qnenp/2q

=
√

2πq(np)1/2(qep/2q)n

≤
√

2πC1/2

and, if np ≥ 1,

f(n, 1, p)
g(n, 1, p)

=
√

2πnpq npqn−1 exp
{

np

2q
− 1

q
+

1
2npq

}

≤
√

2πq qn−1(np)3/2enp/2q

=
√

2π

q
(np)3/2(qep/2q)n

≤
√

4πC3/2.

Now, for k ∈ {1, . . . , n−1}, f(n, k, p) is bounded above and below by universal, positive

constant multiples of
nn+ 1

2

(n− k)n−k+ 1
2 kk+ 1

2

pkqn−k

by Stirling’s formula. Thus, if

ϕn(x) =
(

n +
1
2

)
log n−

(
n− x +

1
2

)
log(n− x)−

(
x +

1
2

)
log x

+x log p + (n− x) log q +
1
2

log n +
1
2

log p +
1
2

log q +
x2

2npq
− x

q
+

np

2q
,
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then there are universal, positive constants C1 and C2 such that

log C1 + ϕn(k) ≤ log
[
f(n, k, p)
g(n, k, p)

]
≤ log C2 + ϕn(k) (3.5.2)

for all n ∈ N and all k ∈ {1, . . . , n− 1}.
Now,

ϕn

(n

2

)
=

(
n +

1
2

)
log n− (n + 1) log

n

2
+

n

2
log p +

n

2
log q

+
1
2

log n +
1
2

log p +
1
2

log q +
n

8pq
− n

2q
+

np

2q

= n log n +
1
2

log n− n log n− log n + n log 2 + log 2

+
n

2
log p +

n

2
log q +

1
2

log n +
1
2

log p +
1
2

log q +
n

8pq
− n

2

= log 2 +
1
2

log p +
1
2

log q +
n

2

(
2 log 2 + log p + log q +

1
4pq

− 1
)

=
1
2

log(4pq) +
n

2
(ψ2(p) + ψ2(1− p)),

where ψ2(x) = log 2 + log x + 1/(4x)− 1/2. Now, ψ′2(x) = 1/x− 1/(4x2), so

ψ′2(p)− ψ′2(1− p) =
(

1
p
− 1

q

)
−

(
1

4p2
− 1

4q2

)

=
q − p

pq
− q2 − p2

4p2q2

=
(

q − p

pq

)(
1− 1

4pq

)
.

Since 1−1/(4pq) < 0 for all p 6= 1/2, the function p 7→ ψ2(p)+ψ2(1−p) is strictly decreasing

on (0, 1/2) and strictly increasing on (1/2, 0). Since ψ2(1/2) = 0, ψ2(p) + ψ2(1− p) > 0 for

all p 6= 1/2. Thus, if p 6= 1/2, then ϕn(n/2) → ∞ as n → ∞. It now follows from (3.5.2)

that if p 6= 1/2,

sup
n∈N

(
sup

k∈{0,...,n}

f(n, k, p)
g(n, k, p)

)
= ∞.

We now compute the following:

ϕ′n(x) = log(n− x) +
n− x + 1/2

n− x
− log x− x + 1/2

x
+ log p− log q +

x

npq
− 1

q

= log(n− x) +
1

2(n− x)
− log x− 1

2x
+ log

p

q
+

x

npq
− 1

q
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ϕ′′n(x) = − 1
n− x

+
1

2(n− x)2
− 1

x
+

1
2x2

+
1

npq

ϕ′′′n (x) = − 1
(n− x)2

+
1

(n− x)3
+

1
x2
− 1

x3

ϕ(4)
n (x) = − 2

(n− x)3
+

3
(n− x)4

− 2
x3

+
3
x4

=
3− 2(n− x)

(n− x)4
+

3− 2x

x4

Since ϕ
(4)
n ≤ 0 on [2, n − 2] and ϕ′′′n (n/2) = 0, it follows that ϕ′′′n ≥ 0 on [2, n/2], i.e. ϕ′′n is

increasing on [2, n/2]. Now suppose p ≤ 1/2, let x ∈ [2, np], and write

ϕn(x) = ϕn(np)−
∫ np

x
ϕ′n(t) dt.

Note that

ϕn(np) =
(

n +
1
2

)
log n−

(
nq +

1
2

)
log(nq)−

(
np +

1
2

)
log(np)

+np log p + nq log q +
1
2

log n +
1
2

log p +
1
2

log q +
np

2q
− np

q
+

np

2q

= n log n + log n− nq log n− 1
2

log n− nq log q − np log n− 1
2

log n

−np log p + np log p + nq log q

= 0

Next, write

ϕ′n(t) = ϕ′n(np)−
∫ np

t
ϕ′′n(s) ds.

and note that

ϕ′n(np) = log(nq) +
1

2nq
− log(np)− 1

2np
+ log

p

q

=
p− q

2npq
.

Thus,

ϕn(x) = −
∫ np

x

(
p− q

2npq
−

∫ np

t
ϕ′′n(s) ds

)
dt

≤ q − p

2q
+

∫ np

x

∫ s

x
ϕ′′n(s) dt ds

≤ 1
2

+
∫ np

x
(s− x)ϕ′′n(np) ds.
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Finally, note that

ϕ′′n(np) = − 1
nq

+
1

2n2q2
− 1

np
+

1
2n2p2

+
1

npq

=
p2 + q2

2n2p2q2
.

Thus,

ϕn(x) ≤ 1
2

+
p2 + q2

2n2p2q2

∫ np

x
(s− x) ds

≤ 1
2

+
p2 + q2

2n2p2q2
n2p2

≤ 3
2
.

It now follows from (3.5.2) that there is a universal constant, C, independent of p, such

that f(n, k, p)/g(n, k, p) ≤ C for all n ∈ N and all k ∈ {0, . . . , bnpc}, provided p ≤ 1/2.

Also, if p = 1/2, symmetry gives the same bound for k ∈ {bn/2c+ 1, . . . , n}, and it follows

that

sup
n∈N

(
sup

k∈{0,...,n}

f(n, k, p)
g(n, k, p)

)
< ∞,

which completes the proof. ¥

Lemma 3.5.3 Let ε ∈ (0, 1/2) and suppose that {ξj}∞j=1 are iid {0, 1}-valued random vari-

ables with P (ξ1 = 1) = ε. Let Tn =
∑n

j=1 ξj. Then for each p > 1, there exists a finite

constant Cp, depending only on p, such that for all n ∈ N,

P
(
Tn ≤ εn

2

)
≤ Cp

1
(εn)p

.

Proof. Let f and g be as in Lemma 3.5.2 with p = ε, so that there exists a universal,

finite constant C, independent of ε, such that f(n, k, ε) ≤ Cg(n, k, ε) for all n ∈ N and all

k ∈ {0, . . . , bεnc}.
Let m = bεn/2c, so that

P (Tn ≤ m) =
m∑

k=0

P (Tn = k)

≤ C

m∑

k=0

g(n, k, ε).
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If εn ≤ 4, then P (Tn ≤ m) ≤ 1 ≤ 4p/(εn)p, so that we may assume without loss of

generality that εn > 4. Note that x 7→ g(n, x, ε) is increasing on [0, εn] and εn > 4 implies

m + 1 ≤ (εn/2) + 1 < 3εn/4. Thus,

P (Tn ≤ m) ≤ C

∫ m+1

0
g(n, x, ε) dx

≤ C

∫ 3εn/4

−∞
g(n, x, ε) dx

=
C√
2πt

∫ 3εn/4

−∞
e−(x−εn)2/2t dx,

where t = nε(1− ε). By a change of variables, then

P (Tn ≤ m) ≤ CΦ
(
− εn

4
√

t

)

≤ CΦ
(
−
√

εn

4

)
.

By Lemma 3.4.1,

P (Tn ≤ m) ≤ C√
2π

· 4√
εn

e−εn/32

≤ C

√
2
π

e−εn/32.

Since there exists Kp < ∞ such that xpe−x/32 ≤ Kp for all x ∈ [0,∞),

P (Tn ≤ m) ≤ C

√
2
π

Kp
1

(εn)p
,

which finishes the proof. ¥

Corollary 3.5.4 Let ε, ξj, and Tn be as in Lemma 3.5.3. Then for each p > 1, there exists

a finite constant Cp, depending only on p, such that for all n ∈ N,

E

[
1
T p

n
; Tn > 0

]
≤ Cp

1
(εn)p

.

Proof. By Lemma 3.5.3,

E

[
1
T p

n
; Tn > 0

]
= E

[
1
T p

n
; 1 ≤ Tn ≤ εn

2

]
+ E

[
1
T p

n
; Tn >

εn

2

]

≤ P
(
Tn ≤ εn

2

)
+

(εn

2

)−p

≤ Cp
1

(εn)p
+

2p

(εn)p
,
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and the proof is complete. ¥

Lemma 3.5.5 Let {Yj}∞j=1 be iid {−1, 0, 1}-valued random variables with P (Y1 = −1) =

p1, P (Y1 = 1) = p2 and let Sn =
∑n

j=1 Yj. Suppose that ε = p1 + p2 ∈ (0, 1/2) and

µ = p1 − p2 > 0. Then for each p > 1, there exists a finite constant Cp, depending only on

p, such that

P (Sn ≥ 0) ≤ Cp
εp

npµ2p
. (3.5.3)

Proof. Let {Ỹj}∞j=1 be a sequence of iid {−1, 1}-valued random variables with P (Ỹ1 =

−1) = p1/ε. Let {ξj}∞j=1 be a sequence of iid {0, 1}-valued random variables, independent

of {Ỹj}∞j=1, with P (ξ1 = 1) = ε. Then {Ỹjξj}∞j=1 is an iid sequence of random variables with

Ỹ1ξ1
d= Y1.

Let S̃n =
∑n

j=1 Ỹj and note that by Lemma 3.5.1,

P (S̃n ≥ 0) ≤ C̃p
1

np(µ/ε)2p
= C̃p

ε2p

npµ2p
. (3.5.4)

Define Tn =
∑n

j=1 ξj , so that

P (Sn ≥ 0) = P




n∑

j=1

Ỹjξj ≥ 0




=
n∑

k=0

P




n∑

j=1

Ỹjξj ≥ 0, Tn = k




=
n∑

k=0

∑

α∈{0,1}n

|α|=k

P




n∑

j=1

Ỹjξj ≥ 0, ξ(n) = α


 ,

where |α| = α1 + · · ·+ αn and ξ(n) = (ξ1, . . . , ξn). Thus,

P (Sn ≥ 0) =
n∑

k=0

∑

α∈{0,1}n

|α|=k

P


 ∑

{j:αj=1}
Ỹj ≥ 0, ξ(n) = α




=
n∑

k=0

∑

α∈{0,1}n

|α|=k

P


 ∑

{j:αj=1}
Ỹj ≥ 0


P (ξ(n) = α).
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By symmetry,

P (Sn ≥ 0) =
n∑

k=0

∑

α∈{0,1}n

|α|=k

P




k∑

j=1

Ỹj ≥ 0


P (ξ(n) = α)

=
n∑

k=0

P (S̃k ≥ 0)P (Tn = k).

Using (3.5.4),

P (Sn ≥ 0) ≤ P (Tn = 0) + C̃p
ε2p

µ2p

n∑

k=1

1
kp

P (Tn = k)

= (1− ε)n + C̃p
ε2p

µ2p
E

[
1
T p

n
; Tn > 0

]

≤ (1− ε)n + C̃ ′
p

ε2p

µ2p

1
(εn)p

,

by Corollary 3.5.4. Now note that 1− ε ≤ e−ε, so that

(1− ε)n ≤ e−εn ≤ C̃ ′′
p

1
(εn)p

= C̃ ′′
p

εp

npε2p
≤ C̃ ′′

p

εp

npµ2p
,

which gives (3.5.3) with Cp = C̃ ′′
p + C̃ ′

p. ¥

3.6 Median Estimates, Part II

With Lemma 3.5.5 in place, let us return to the function ϕk(x, y, δ) of Proposition 3.4.7.

We saw earlier that, for fixed x ∈ R, y > 0, and δ > 0, ϕk(x, y, δ) = P (Sk ≥ 0), where

Sk =
∑k

j=1 Yj and {Yj}∞j=1 is an iid sequence of {−1, 0, 1}-valued random variables with

P (Y1 = −1) = p̃1(x, y, δ) = p1(x, y, δ)q2(x, y, δ)

P (Y1 = +1) = p̃2(x, y, δ) = p2(x, y, δ)q1(x, y, δ).

For (3.5.3) to be of use, we will need an upper bound on ε̃ = p̃1 + p̃2 and a lower bound on

µ̃ = p̃1 − p̃2. In particular, we will need ε̃ < 1/2 and µ̃ > 0. Unfortunately, although µ̃ is

increasing in x, it is negative for x sufficiently close to −∞. We will therefore need to make
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use of the fact that for any x0 ∈ R, Proposition 3.4.7 gives

P (M (n)
1+δ −M

(n)
1 > y) ≤

∫ ∞

x0

ϕk−1(x, y, δ)fn(x) dx +
∫ x0

−∞
ϕk−1(x, y, δ)fn(x) dx

≤
∫ ∞

x0

ϕk−1(x, y, δ)fn(x) dx +
∫ x0

−∞
fn(x) dx

=
∫ ∞

x0

ϕk−1(x, y, δ)fn(x) dx + P (M (n)
1 ≤ x0).

In fact, we can go one step further in obtaining a simple estimate for this probability by

proving that x 7→ ϕk(x, y, δ) is decreasing.

Lemma 3.6.1 Let n, k, and ϕk be as in Proposition 3.4.7. Fix y > 0 and δ > 0. Then for

all x0 ∈ R,

P (M (n)
1+δ −M

(n)
1 > y) ≤ ϕk−1(x0, y, δ) + P (M (n)

1 ≤ x0).

Proof. By the above discussion, it remains only to show that x 7→ ϕk(x, y, δ) is decreasing.

By our probabilistic representation of ϕk and the facts that qj = 1 − pj and p2(x, y, δ) =

p1(−x,−y, δ), it will suffice to show that for fixed y ∈ R and δ > 0, x 7→ p1(x, y, δ) is

increasing.

Let

ψ(x, y, δ) = P (B(1)
1+δ < x + y, B

(1)
1 < x)

=
∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ′(t) dt, (3.6.1)

so that p1 = ψ/Φ(x). Integrating by parts gives

ψ(x, y, δ) = Φ
(

y√
δ

)
Φ(x) +

1√
δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)
Φ(t) dt,

so that

∂xp1 = − Φ′(x)
[Φ(x)]2

ψ +
1

Φ(x)

[
Φ

(
y√
δ

)
Φ′(x) +

1√
δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)
Φ′(t) dt

]

= − Φ′(x)
[Φ(x)]2

√
δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)
Φ(t) dt +

1
Φ(x)

√
δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)
Φ′(t) dt

=
1

Φ(x)
√

δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)[
Φ′(t)
Φ(t)

− Φ′(x)
Φ(x)

]
Φ(t) dt (3.6.2)
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Now, note that

d

dx

[
Φ′(x)
Φ(x)

]
=

Φ′′(x)Φ(x)− [Φ′(x)]2

[Φ(x)]2

=
1

[Φ(x)]2

(
− 1√

2π
xe−x2/2Φ(x)− 1

2π
e−x2

)

= − e−x2/2

√
2π[Φ(x)]2

(
xΦ(x) +

1√
2π

e−x2/2

)
.

Clearly, xΦ(x) + 1√
2π

e−x2/2 ≥ 0 for x ≥ 0. For x < 0, Lemma 3.4.1 gives

xΦ(x) +
1√
2π

e−x2/2 = xΦ(−|x|) +
1√
2π

e−x2/2

≥ x
1√
2π
|x|−1e−x2/2 +

1√
2π

e−x2/2

= 0.

Thus, x 7→ Φ′(x)/Φ(x) is decreasing, so by (3.6.2), ∂xp1 ≥ 0. ¥

We now turn our attention to estimating ε̃ and µ̃. The goal of these estimates, of course,

will be to provide information on P (M (n)
1+δ −M

(n)
1 > y). The method of approximating this

probability will depend on the value of y. As it will turn out, the estimates will be quite

straightforward for y À
√

δ. We will focus our attention, primarily, on the case y ¿
√

δ.

These methods will then be slightly modified to cover the case y ≈
√

δ. Let us first state

the result we wish to prove.

Lemma 3.6.2 Let µ̃ = µ̃(x, y, δ) and qj = qj(x, y, δ) be as in the discussion preceding

Lemma 3.6.1. For each α0 > 0, there exists δ0 > 0 such that for all 0 < δ ≤ δ0 and all

α ≥ α0, if we set y = δ1/2+α and x = −δ1/4+α, then µ̃ ≥ 1√
2π

y and q1 < q2 ≤ 500δ1/2.

This result will follow from the following Taylor-like expansion, with remainder, of

p1(x, y, δ).

Lemma 3.6.3 Let p1(x, y, δ) be as in the discussion preceding Proposition 3.4.7 and write

p1(x, y, δ) = 1− 1
π

tan−1
√

δ +
y√
2π

+

√
δ

2π
(x + y)2 − y2

2π
√

δ
+ Rδ(x, y).
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Suppose δ ∈ (0, 1], α > 0, and β ∈ R. Let y = δ1/2+α, x = −δ1/4+β, and suppose that

y ≤ −x ≤ 1 (i.e. β ∈ [−1/4, α + 1/4]). Then

|Rδ(x, y)| ≤ 155(δ3/4+3β + δ3/4+β + δ1/2+4α),

and the same bound holds for |Rδ(−x,−y)|.

The proofs of the above lemmas will be postponed until the end of this section. To

derive the expansion in Lemma 3.6.3, we will make use of the function ψ, given by (3.6.1),

and the relation p1 = ψ/Φ. So to begin, we shall derive a Taylor expansion of ψ.

Lemma 3.6.4 Let ψ(x, y, δ) be given by (3.6.1). Then

(i) for i ≥ 0,

∂i
xψ =

∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(i+1)(t) dt;

and

(ii) for i ≥ 0, j ≥ 1,

∂i
x∂j

yψ = −
(

1√
δ

)j−1

Φ(j−1)

(
y√
δ

)
Φ(i+1)(x) + ∂i+1

x ∂j−1
y ψ.

Proof. For i = 0, part (i) is just the definition of ψ. If (i) is true for some i ≥ 0, then

∂i+1
x ψ = ∂x

[∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(i+1)(t) dt

]

= Φ
(

y√
δ

)
Φ(i+1)(x) +

1√
δ

∫ x

−∞
Φ′

(
x + y − t√

δ

)
Φ(i+1)(t) dt

=
∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(i+2)(t) dt,

by integration by parts.
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For part (ii), first consider j = 1. Then

∂i
x∂j

yψ = ∂y

[∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(i+1)(t) dt

]

=
∫ x

−∞
∂y

[
Φ

(
x + y − t√

δ

)]
Φ(i+1)(t) dt

=
∫ x

−∞
∂x

[
Φ

(
x + y − t√

δ

)]
Φ(i+1)(t) dt

= ∂x

[∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(i+1)(t) dt

]
− Φ

(
y√
δ

)
Φ(i+1)(x)

= −Φ
(

y√
δ

)
Φ(i+1)(x) + ∂i+1

x ψ,

and part (ii) holds for all i ≥ 0. Now suppose part (ii) holds for some j ≥ 1 and all i ≥ 0.

Then

∂i
x∂j+1

y ψ = ∂y

[
−

(
1√
δ

)j−1

Φ(j−1)

(
y√
δ

)
Φ(i+1)(x) + ∂i+1

x ∂j−1
y ψ

]

= −
(

1√
δ

)j

Φ(j)

(
y√
δ

)
Φ(i+1)(x) + ∂i+1

x ∂j
yψ.

By induction, the proof is complete. ¥

Lemma 3.6.5 Fix δ > 0 and let ψ(x, y) = ψ(x, y, δ) be given by (3.6.1). Then

(i) ψ(0, 0) = (π − tan−1
√

δ )/(2π);

(ii) ψx(0, 0) = (8π)−1/2(1 + (1 + δ)−1/2); and

(iii) ψxx(0, 0) =
√

δ /(2π(1 + δ)).

Proof. Note that Φ′′(t) = −tΦ′(t) and Φ′′′(t) = −Φ′(t) − tΦ′′(t) = (t2 − 1)Φ′(t). Let

P0(t) = 1, P1(t) = −t, and P2(t) = t2 − 1, so that for i ∈ {0, 1, 2}, Lemma 3.6.4 gives

∂i
xψ(0, 0) =

∫ 0

−∞
Φ

(
− t√

δ

)
Φ(i+1)(t) dt

=
∫ 0

−∞
Φ

(
− t√

δ

)
Pi(t)Φ′(t) dt

=
1
2π

∫ 0

−∞

∫ −t/
√

δ

−∞
Pi(t)e−(s2+t2)/2 ds dt.
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Using the symmetries of Pi(t) and changing to polar coordinates gives

∂i
xψ(0, 0) =

(−1)i

2π

∫ π/2

−π/2+tan−1
√

δ

∫ ∞

0
Pi(r cos θ)re−r2/2 dr dθ.

Integrating by parts, we compute

∫ ∞

0
re−r2/2 dr = 1,

∫ ∞

0
r2e−r2/2 dr =

√
π

2
, and

∫ ∞

0
r3e−r2/2 dr = 2.

Thus,

ψ(0, 0) =
1
2π

(π − tan−1
√

δ),

which proves (i). Next,

ψx(0, 0) =
1
2π

√
π

2

∫ π/2

−π/2+tan−1
√

δ
cos θ dθ

=
1

2
√

2π

(
1− sin

(
tan−1

√
δ − π

2

))
,

and sin(tan−1
√

δ − π
2 ) = − cos(tan−1

√
δ) = − 1√

1+δ
, which proves (ii). Finally,

ψxx(0, 0) =
1
2π

∫ π/2

−π/2+tan−1
√

δ
(2 cos2 θ − 1) dθ

=
1
2π

∫ π/2

−π/2+tan−1
√

δ
cos(2θ) dθ

=
1
4π

sin(2 tan−1
√

δ)

=

√
δ

2π(1 + δ)
,

which proves (iii). ¥

Lemma 3.6.6 Fix δ > 0 and let ψ(x, y) = ψ(x, y, δ) be given by (3.6.1). Then

(i) ψy(0, 0) = (8π(1 + δ))−1/2;
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(ii) ψxy(0, 0) =
√

δ /(2π(1 + δ)); and

(iii) ψyy(0, 0) = −(2π
√

δ(1 + δ))−1.

Proof. By Lemma 3.6.4,

ψy = −Φ
(

y√
δ

)
Φ′(x) + ψx.

Thus, by Lemma 3.6.5,

ψy(0, 0) = − 1
2
√

2π
+

1
2
√

2π

(
1 +

1√
1 + δ

)
,

which proves (i).

Similarly,

ψxy = −Φ
(

y√
δ

)
Φ′′(x) + ψxx

ψyy = − 1√
δ
Φ′

(
y√
δ

)
Φ′(x) + ψxy.

Hence,

ψxy(0, 0) = ψxx(0, 0)

ψyy(0, 0) = − 1
2π
√

δ
+ ψxy(0, 0),

which proves (ii) and (iii). ¥

Lemma 3.6.7 Fix δ > 0 and let ψ(x, y) = ψ(x, y, δ) be given by (3.6.1). Then for all

(x, y) ∈ R2,

(i) |ψxxx(x, y)| ≤ 10/
√

2π;

(ii) |ψxxy(x, y)| ≤ 12/
√

2π;

(iii) |ψxyy(x, y)| ≤ (|x|δ−1/2 + 12
√

2π)/(2π); and

(iv) |ψyyy(x, y)| ≤ (|y|δ−3/2 + |x|δ−1/2 + 12
√

2π)/(2π).
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Proof. By Lemma 3.6.4,

|ψxxx(x, y)| =
∣∣∣∣
∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ(4)(t) dt

∣∣∣∣

≤
∫ ∞

−∞
|Φ(4)(t)| dt.

Since Φ(4)(t) = (3t− t3)Φ′(t), we have

|ψxxx(x, y)| ≤ 2
∫ ∞

0
(3t + t3)Φ′(t) dt

=
10√
2π

,

which proves (i). Similarly,

|ψxxy(x, y)| =
∣∣∣∣−Φ

(
y√
δ

)
Φ′′′(x) + ψxxx(x, y)

∣∣∣∣

≤ |Φ′′′(x)|+ 10√
2π

.

Elementary calculus shows that for all x ∈ R, |Φ′′′(x)| ≤ 2(2π)−1/2, which proves (ii).

Likewise,

ψxyy = − 1√
δ
Φ′

(
y√
δ

)
Φ′′(x) + ψxxy

=
x√
δ
Φ′

(
y√
δ

)
Φ′(x) + ψxxy

ψyyy = −1
δ
Φ′′

(
y√
δ

)
Φ′(x) + ψxyy

=
y

δ3/2
Φ′

(
y√
δ

)
Φ′(x) + ψxyy,

and these yield (iii) and (iv). ¥

Lemma 3.6.8 Fix δ > 0 and let ψ(x, y) = ψ(x, y, δ) be given by (3.6.1). Write

ψ(x, y) =
1
2
− 1

2π
tan−1

√
δ +

x√
2π

+
y

2
√

2π
+

√
δ

4π
(x + y)2 − y2

4π
√

δ
+ R̃(x, y).

Then

|R̃(x, y)| ≤ (|x|+ |y|)3 +
|x||y|2√

δ
(|x|+ |y|) +

|y|4
δ3/2

+ δ3/2(x + y)2 + δ(|x|+ |y|).
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Proof. By Taylor’s Theorem (see, e.g., [26]), we have that

ψ(x, y) = ψ(0, 0) + xψx(0, 0) + yψy(0, 0)

+
1
2!

[x2ψxx(0, 0) + 2xyψxy(0, 0) + y2ψyy(0, 0)] + R(1)(x, y),

where

R(1)(x, y) =
1
3!

[x3ψxxx(x̄, ȳ) + 3x2yψxxy(x̄, ȳ) + 3xy2ψxyy(x̄, ȳ) + y3ψyyy(x̄, ȳ)]

and (x̄, ȳ) = (θx, θy) for some θ = θ(x, y) ∈ (0, 1). By the preceding lemmas, this gives

ψ(x, y) =
1
2
− 1

2π
tan−1

√
δ +

x

2
√

2π

(
1 +

1√
1 + δ

)
+

y

2
√

2π
√

1 + δ

+
(x + y)2

√
δ

4π(1 + δ)
− y2

4π
√

δ
+ R(1)(x, y).

Now,

x

2
√

2π

(
1 +

1√
1 + δ

)
=

x√
2π

+
x

2
√

2π

(
1√

1 + δ
− 1

)
,

y

2
√

2π
√

1 + δ
=

y

2
√

2π
+

y

2
√

2π

(
1√

1 + δ
− 1

)
, and

(x + y)2
√

δ

4π(1 + δ)
=

√
δ

4π
(x + y)2 +

√
δ

4π
(x + y)2

(
1

1 + δ
− 1

)
.

Thus, if

R(2)(x, y) =
x + y

2
√

2π

(
1√

1 + δ
− 1

)
− δ3/2(x + y)2

4π(1 + δ)
,

then R̃ = R(1) + R(2). Since x 7→ √
x is concave,

∣∣∣∣
1√

1 + δ
− 1

∣∣∣∣ =
∣∣∣∣
√

1 + δ − 1
δ

∣∣∣∣
∣∣∣∣

δ√
1 + δ

∣∣∣∣

≤ δ

2
√

1 + δ
.

Hence,

|R(2)(x, y)| ≤ δ(|x|+ |y|) + δ3/2(x + y)2.
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Next, by Lemma 3.6.7,

|R(1)(x, y)| ≤ 1
3!

[
10|x|3√

2π
+

36|x|2|y|√
2π

+ 3|x||y|2
( |x|

2π
√

δ
+

12√
2π

)

+|y|3
( |y|

2πδ3/2
+

|x|
2π
√

δ
+

12√
2π

)]

≤ 1
3!

[
12√
2π

(|x|+ |y|)3 +
3|x||y|2
2π
√

δ
(|x|+ |y|) +

|y|4
2πδ3/2

]

≤ (|x|+ |y|)3 +
|x||y|2√

δ
(|x|+ |y|) +

|y|4
δ3/2

.

Combined with the estimate for R(2), this completes the proof. ¥

Proof of Lemma 3.6.3. Let ψ(x, y) = ψ(x, y, δ) be given by (3.6.1). Then p1(x, y, δ) =

ψ(x, y)/Φ(x). Write

Φ(x) =
1
2

+
x√
2π

+ r1(x),

where r1(x) = 1
2x2Φ′′(x̄) and x̄ = θx for some θ = θ(x) ∈ (0, 1). Since

Φ′′(x) = − 1√
2π

xe−x2/2,

we have |r1(x)| ≤ 1
2
√

2π
|x|3. We may now write, for x 6= −

√
π/2,

1
Φ(x)

=
1

1
2 + x√

2π

+ r2(x),

where

r2(x) =
−r1(x)

Φ(x)
(

1
2 + x√

2π

) .

Similarly, we may write
1

Φ(x)
= 2 + r3(x),

where

r3(x) = r2(x) +
1

1
2 + x√

2π

− 2

= r2(x) +
2
√

2π − 2(
√

2π + 2x)√
2π + 2x

= r2(x)− 4x√
2π + 2x

.
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Now let us assume |x| ≤ 1. Then x 6= −
√

π/2 and the above applies. Note that

|r2(x)| ≤ |r1(x)|
Φ(−1)

(
1
2 − 1√

2π

) .

Since Φ(−1) ≥ 1
2 − 1√

2π
≥ 1

10 , we have |r2(x)| ≤ 100|r1(x)| ≤ 50√
2π
|x|3. Also,

|r3(x)| ≤ |r2(x)|+
(

4√
2π − 2

)
|x|

= |r2(x)|+ 2√
2π

(
1
2
− 1√

2π

)−1

|x|

≤ 50√
2π
|x|3 +

20√
2π
|x|.

Since |x| ≤ 1, this gives |r3(x)| ≤ 70√
2π
|x|.

We now apply Lemma 3.6.8, which yields

p1(x, y, δ) =
1

Φ(x)
ψ(x, y)

=
(

1
2

+
x√
2π

)
1

Φ(x)

+

(
− 1

2π
tan−1

√
δ +

y

2
√

2π
+

√
δ

4π
(x + y)2 − y2

4π
√

δ
+ R̃(x, y)

)
1

Φ(x)

= 1− 1
π

tan−1
√

δ +
y√
2π

+

√
δ

2π
(x + y)2 − y2

2π
√

δ
+ Rδ(x, y),

where

Rδ(x, y) =
(

1
2

+
x√
2π

)
r2(x)

+

(
− 1

2π
tan−1

√
δ +

y

2
√

2π
+

√
δ

4π
(x + y)2 − y2

4π
√

δ

)
r3(x)

+
R̃(x, y)
Φ(x)

.

Thus,

|Rδ(x, y)| ≤ |r2(x)|+
(

tan−1
√

δ

2π
+

|y|
2
√

2π
+

√
δ

4π
(x + y)2 +

y2

4π
√

δ

)
|r3(x)|+ |R̃(x, y)|

Φ(−1)

≤ 50√
2π
|x|3 +

(√
δ

2π
+

|y|
2
√

2π
+

√
δ

4π
(x + y)2 +

y2

4π
√

δ

)
70√
2π
|x|+ 10|R̃(x, y)|.
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By Lemma 3.6.8,

|Rδ(x, y)| ≤ 50√
2π
|x|3 +

(√
δ

2π
+

|y|
2
√

2π
+

√
δ

4π
(x + y)2 +

y2

4π
√

δ

)
70√
2π
|x|

+10
[
(|x|+ |y|)3 +

|x||y|2√
δ

(|x|+ |y|) +
|y|4
δ3/2

+ δ3/2(x + y)2 + δ(|x|+ |y|)
]

.

Now let x and y be as in the statement of Lemma 3.6.3. By assumption, 0 < y ≤ −x ≤ 1,

so the above estimates are valid. Note also that, by symmetry, this same bound holds for

|Rδ(−x,−y)|. It remains only to write everything in terms of δ. We have x = −δ1/4+β and

y = δ1/2+α. Using the fact that |x + y| ≤ |x|+ |y| ≤ 2|x| ≤ 2, we have that

|Rδ(x, y)| ≤ 25δ3/4+3β + 5δ3/4+β + 6δ3/4+α+β + 10δ3/4+β + 5δ3/4+2α+β

+80δ3/4+3β + 20δ3/4+2α+β + 10δ1/2+4α + 40δ2+2β + 20δ5/4+β

= 115δ3/4+3β + 15δ3/4+β + 6δ3/4+α+β + 25δ3/4+2α+β

+10δ1/2+4α + 40δ2+2β + 20δ5/4+β. (3.6.3)

To simplify further, note that α > 0 and δ ≤ 1, so that

|Rδ(x, y)| ≤ 115δ3/4+3β + 15δ3/4+β + 6δ3/4+β + 25δ3/4+β

+10δ1/2+4α + 40δ2+2β + 20δ3/4+β

= 115δ3/4+3β + 66δ3/4+β + 10δ1/2+4α + 40δ2+2β.

Now, if β ≥ 0, then 2 + 2β > 3/4 + β, and

|Rδ(x, y)| ≤ 115δ3/4+3β + 106δ3/4+β + 10δ1/2+4α.

Otherwise, if β < 0, then 2 + 2β > 3/4 + 3β, and

|Rδ(x, y)| ≤ 155δ3/4+3β + 66δ3/4+β + 10δ1/2+4α.

In either case,

|Rδ(x, y)| ≤ 155(δ3/4+3β + δ3/4+β + δ1/2+4α),

which completes the proof. ¥
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Proof of Lemma 3.6.2. First observe that

µ̃ = p̃1 − p̃2

= p1q2 − p2q1

= p1(1− p2)− p2(1− p1)

= p1 − p2.

Note that p2(x, y, δ) = p1(−x,−y, δ). Thus, if δ ∈ (0, 1], α > 0, y = δ1/2+α, and x =

−δ1/4+α, then y ≤ −x ≤ 1 and by Lemma 3.6.3 with β = α,

µ̃ =
2y√
2π

+ R±
δ (x, y),

where R±
δ (x, y) = Rδ(x, y)−Rδ(−x,−y); and, hence,

|R±
δ (x, y)| ≤ 310(δ3/4+3α + δ3/4+α + δ1/2+4α)

≤ 620(δ3/4+α + δ1/2+4α).

Note that if α ≥ 1
12 , then 1

2 + 4α ≥ 3
4 + α and

|R±
δ (x, y)| ≤ 1240δ3/4+α

= 1240δ1/4y.

On the other hand, if α < 1
12 , then 1

2 + 4α < 3
4 + α and

|R±
δ (x, y)| ≤ 1240δ1/2+4α

= 1240δ3αy.

Now let α0 > 0 be given and set γ = min{1/4, α0}. We then have

µ̃ ≥
(

2√
2π

− 1240δγ

)
y.

Choosing δ0 ∈ (0, 1], small enough so that 2√
2π
− 1240δγ

0 ≥ 1√
2π

, completes the proof of the

first part of the lemma.
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Next, note that µ̃ > 0 implies p1 > p2 and, hence, q1 < q2. Lemma 3.6.3 gives

q2 = 1− p2

= |1− p1(−x,−y, δ)|

≤ 1
π

tan−1
√

δ +
|y|√
2π

+

√
δ

2π
(x + y)2 +

y2

2π
√

δ
+ |Rδ(−x,−y)|

≤ δ1/2 + δ1/2+α + δ1+2α + δ1/2+2α + 155(δ3/4+3α + δ3/4+α + δ1/2+4α)

≤ 500δ1/2,

which completes the proof of the second part of the lemma. ¥

Lemma 3.6.2 will be used to estimate P (M (n)
1+δ−M

(n)
1 > y) in the case that y ¿

√
δ. As

mentioned previously, a slight modification will be necessary to handle the case y ≈
√

δ.

Lemma 3.6.9 Let p1 and Rδ be as in Lemma 3.6.3. Suppose δ ∈ (0, 1], α ≤ 0, and β ∈ R.

Let y = δ1/2+α, x = −δ1/4+β, and suppose that y ≤ −x ≤ 1. Then

|Rδ(x, y)| ≤ 155(δ3/4+3β + δ3/4+2α+β + δ1/2+4α),

and the same bound holds for |Rδ(−x,−y)|.

Proof. Everything from the proof of Lemma 3.6.3, up until (3.6.3), carries through without

modification. From (3.6.3), using α ≤ 0 and δ ≤ 1, gives

|Rδ(x, y)| ≤ 115δ3/4+3β + 66δ3/4+2α+β + 10δ1/2+4α + 40δ2+2β.

If β ≥ 0, then 2 + 2β > 3/4 + β ≥ 3/4 + 2α + β; if β < 0, then 2 + 2β > 3/4 + 3β. We

therefore have

|Rδ(x, y)| ≤ 155(δ3/4+3β + δ3/4+2α+β + δ1/2+4α),

and the proof is complete. ¥

Lemma 3.6.10 Let µ̃ and qj be as in Lemma 3.6.2. Let 0 < α0 < 1/16, choose δ0 as in

Lemma 3.6.2, and set β0 = (1−16α0)/12 > 0. Then for all 0 < δ ≤ δ0 and all γ ∈ [−β0, α0],

if we set y = δ1/2+γ and x = −δ1/4+γ, then µ̃ ≥ 1√
2π

δ1/2+α0 and q1 < q2 ≤ 500δ1/2−4β0.
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Proof. For fixed x and δ,

p1(x, y, δ) =
1

Φ(x)

∫ x

−∞
Φ

(
x + y − t√

δ

)
Φ′(t) dt

is clearly increasing in y; therefore, so is µ̃(x, y, δ). Let x, y, and δ be as in the statement

of the lemma and set ỹ = δ1/2+α0 . Then ỹ ≤ y, so

µ̃(x, y, δ) ≥ µ̃(x, ỹ, δ)

= p1(x, ỹ, δ)− p1(−x,−ỹ, δ)

=
2ỹ√
2π

+ R±
δ (x, ỹ),

where R±
δ is as in the proof of Lemma 3.6.2. It is easily verified that δ ∈ (0, 1], α0 > 0, and

γ ∈ [−1/4, α0 + 1/4], so that Lemma 3.6.3 applies, yielding

|R±
δ (x, ỹ)| ≤ 310(δ3/4+3γ + δ3/4+γ + δ1/2+4α0).

Since both 3
4 + 3γ and 3

4 + γ are bounded below by 3
4 − 3β0 = 1

2 + 4α0, we have

|R±
δ (x, y)| ≤ 1240δ1/2+4α0

= 1240δ3α0 ỹ,

which gives

µ̃ ≥
(

2√
2π

− 1240δ3α0

)
ỹ

≥
(

2√
2π

− 1240δα0
0

)
ỹ.

The proof of Lemma 3.6.2 shows that
(

2√
2π
− 1240δα0

0

)
≥ 1√

2π
, so µ̃ ≥ 1√

2π
ỹ = 1√

2π
δ1/2+α0 .

For the final assertion, the last part of the proof of Lemma 3.6.2 shows that

q1 < q2 ≤ 4δ1/2−2β0 + |Rδ(−x,−y)|.

Thus, if γ > 0, then Lemma 3.6.3 with α = β = γ gives that q2 ≤ 500δ1/2−2β0 . Otherwise,

if γ ≤ 0, then Lemma 3.6.9 with α = β = γ gives that q2 ≤ 500δ1/2−4β0 . ¥
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3.7 Median Estimates, Part III

We are finally in a position to piece everything together and prove Proposition 3.4.6. Writing

P (X(n)
1+δ − X

(n)
1 > ε) = P (M (n)

1+δ −M
(n)
1 > y), where y = εn−1/2, puts us in a position to

apply the results of the previous sections. We begin with the “trivial” case, y À
√

δ.

Lemma 3.7.1 Let M
(n)
t be as in the discussion preceding Theorem 3.1.1. Let 0 < α0 < 1/2.

Then for each p > 0, there exists a finite constant C = Cp,α0 such that

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ C(ε−1δ1/4)p

whenever 0 < ε < 1, δ ∈ (0, 1), and n ∈ N satisfy εn−1/2 ≥ δ1/2−α0.

Proof. Choose α ∈ [α0, 1/2) such that εn−1/2 = δ1/2−α. Then

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ P




n⋃

j=1

{B(j)
1+δ −B

(j)
1 > εn−1/2}




≤ nP (B(1)
1 > εn−1/2δ−1/2)

= (εδ−1/2+α)2P (B(1)
1 > δ−α).

Let p̃ = 1
α0

(p
4 + 1

)
and choose C = Cp̃ = Cp,α0 such that P (B(1)

1 > x) ≤ Cx−p̃ for all x > 0.

Then

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ Cδ2α−1+αp̃

≤ Cδ−1+αp̃

≤ Cδ−1+α0p̃

= Cδp/4

≤ C(ε−1δ1/4)p,

and the proof is done. ¥

Next, we turn to the case y ¿
√

δ.
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Lemma 3.7.2 Let M
(n)
t be as in the discussion preceding Theorem 3.1.1. Let α0 > 0.

Choose δ0 as in Lemma 3.6.2. Then for each p > 2, there exists a finite constant C = Cp,α0

such that

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ C(ε−1δ1/4)p

whenever ε > 0, δ ∈ (0, δ0], and n ∈ N satisfy n ≥ 3 and εn−1/2 ≤ δ1/2+α0.

Proof. Define y = εn−1/2 and choose α ≥ α0 such that y = δ1/2+α. Define x0 = −δ1/4+α.

By Lemma 3.6.1, since n ≥ 3,

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ ϕk−1(x0, y, δ) + P (M (n)

1 ≤ x0), (3.7.1)

where ϕ is given by (3.4.2) and k = b(n + 1)/2c.
By Proposition 3.4.4, since p > 2 and M

(n)
1 has a continuous density function,

P (M (n)
1 ≤ x0) = P (X(n)

1 ≤ −n1/2yδ−1/4)

≤ P (|X(n)
1 | > εδ−1/4)

≤ Cp(ε−1δ1/4)p

To estimate the first term on the right hand side of (3.7.1), we adopt the notation of

the discussion preceding Lemma 3.6.1, and write ϕk−1(x0, y, δ) = P (Sk−1 ≥ 0). We wish

to apply Lemma 3.5.5, so we must first verify its hypotheses; namely, we must check that

0 < ε̃ < 1/2 and µ̃ > 0. By Lemma 3.6.2, µ̃ ≥ 1√
2π

y > 0. Note also that, by making δ0

smaller if necessary, q1 < q2 ≤ 500δ1/2 < 1/4. Thus,

ε̃ = p̃1 + p̃1 = p1q2 + p2q1 < (p1 + p2)q2 < 1000δ1/2 < 1/2.

Clearly, ε̃ > 0, so, since p/2 > 1, Lemma 3.5.5 gives

ϕk−1(x0, y, δ) ≤ C ′
p

ε̃p/2

(k − 1)p/2µ̃p
.

Finally, note that for n ≥ 3, k − 1 ≥ n/6. Thus,

ϕk−1(x0, y, δ) ≤ C ′
p

1000p/2δp/4

np/26−p/2(2π)−p/2yp

= C ′′
p

δp/4

np/2(εn−1/2)p

= C ′′
p (ε−1δ1/4)p.
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Letting C = Cp + C ′′
p completes the proof. ¥

Finally, we must deal with the case y ≈
√

δ. Here is where we use a modification of

the technique used to prove Lemma 3.7.2. This modification causes us to lose precision and

we are unable to achieve the sharp bounds we achieved in the previous two lemmas. (See

Remark 3.4.1.)

Lemma 3.7.3 Let M
(n)
t be as in the discussion preceding Theorem 3.1.1 and let β0 = 1/108.

Then there exists δ0 ∈ (0, 1) and a family of finite constants {Cp}p>2 such that for each

p > 2,

P (M (n)
1+δ −M

(n)
1 > εn−1/2) ≤ Cp(ε−1δ1/6)p

whenever ε > 0, δ ∈ (0, δ0], and n ∈ N satisfy n ≥ 3 and δ1/2+6β0 ≤ εn−1/2 ≤ δ1/2−β0.

Proof. Let α0 = 6β0 and check that 0 < α0 < 1/16 and β0 = (1 − 16α0)/12 so that the

hypotheses of Lemma 3.6.10 are satisfied. Choose δ0 as in Lemma 3.6.10 and let ε, δ, and

n be as above. Define y = εn−1/2 so that δ1/2+α0 ≤ y ≤ δ1/2−β0 . Choose γ ∈ [−β0, α0]

such that y = δ1/2+γ and define x0 = −δ1/4+γ . As before, since n ≥ 3, Lemma 3.6.1 yields

(3.7.1). Also as before, since p > 2 and M
(n)
1 has a continuous density function, Proposition

3.4.4 yields

P (M (n)
1 ≤ x0) ≤ Cp(ε−1δ1/4)p ≤ Cp(ε−1δ1/6)p.

To estimate the first term on the right hand side of (3.7.1), we again adopt the notation

of the discussion preceding Lemma 3.6.1, and write ϕk−1(x0, y, δ) = P (Sk−1 ≥ 0). We

wish to apply Lemma 3.5.5, so we must first verify its hypotheses; namely, we must check

that 0 < ε̃ < 1/2 and µ̃ > 0. By Lemma 3.6.10, µ̃ ≥ 1√
2π

δ1/2+α0 > 0. Note also

that, by making δ0 smaller if necessary, q1 < q2 ≤ 500δ1/2−4β0 < 1/4. Thus, as before,

ε̃ < 1000δ1/2−4β0 < 1/2. Clearly, ε̃ > 0, so, since p/2 > 1, Lemma 3.5.5 gives

ϕk−1(x0, y, δ) ≤ C ′
p

ε̃p/2

(k − 1)p/2µ̃p
.
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Finally, note that for n ≥ 3, k − 1 ≥ n/6. Thus,

ϕk−1(x0, y, δ) ≤ C ′
p(1000δ1/2−4β0)p/2

(n

6

)−p/2
(

1√
2π

δ1/2+α0

)−p

= C ′′
p (δ1/2−4β0)p/2(ε2y−2)−p/2(δ1/2+α0)−p

= C ′′
p (ε−2δ1/2−4β0δ1+2γδ−1−2α0)p/2

= C ′′
p (ε−2δ1/2−4β0+2γ−2α0)p/2.

Since 1
2 − 4β0 + 2γ − 2α0 ≥ 1

2 − 6β0 − 2α0 = 1
3 , we have ϕk−1(x0, y, δ) ≤ C ′′

p (ε−1δ1/6)p.

Letting C = Cp + C ′′
p completes the proof. ¥

Proof of Proposition 3.4.6. Fix p > 2. Take α0 = 1/108 in Lemma 3.7.1. Let C
(1)
p =

Cp,α0 , where Cp,α0 is as in the conclusion of that lemma. Next, take α0 = 1/18 in Lemma

3.7.2. Let δ
(2)
0 = δ0 and C

(2)
p = Cp,α0 , where δ0 and Cp,α0 are as in the conclusion of that

lemma. Finally, let δ
(3)
0 = δ0 and C

(3)
p = Cp, where δ0 and Cp are as in the conclusion of

Lemma 3.7.3. Define δ0 = min{δ(2)
0 , δ

(3)
0 } and Cp = max{C(1)

p , C
(2)
p , C

(3)
p }. (Observe that δ0

does not depend on p.)

Let ε ∈ (0, 1), δ ∈ (0, δ0], and n ∈ N with n ≥ 3. If εn−1/2 ≥ δ1/2−1/108 or εn−1/2 ≤
δ1/2+1/18, then Lemma 3.7.1 or Lemma 3.7.2, respectively, give

P (X(n)
1+δ −X

(n)
1 > ε) = P (M (n)

1+δ −M
(n)
1 > εn−1/2)

≤ Cp(ε−1δ1/4)p

≤ Cp(ε−1δ1/6)p.

If δ1/2+1/18 ≤ εn−1/2 ≤ δ1/2−1/108, then Lemma 3.7.3 gives

P (X(n)
1+δ −X

(n)
1 > ε) = P (M (n)

1+δ −M
(n)
1 > εn−1/2)

≤ Cp(ε−1δ1/6)p,

and we are done. ¥
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Chapter 4

SIGNED VARIATIONS OF AN SPDE SOLUTION

4.1 Introduction and Main Results

It is well known that for any H ∈ (0, 1), there exists a continuous, centered Gaussian process

BH(t) that satisfies

(i) BH(0) = 0 a.s., and

(ii) E|BH(t)−BH(s)|2 = |t− s|2H for all s, t ≥ 0.

This process is known as fractional Brownian motion (or fBm) and the number H is its

Hurst parameter. When H = 1/2, BH(t) is simply a standard Brownian motion. (Note

that in (ii), we are adopting the convention that EXk denotes E[Xk]. We shall use this

convention throughout this chapter.)

Fractional Brownian motion is a self-similar process, i.e. BH(ct) d= cHBH(t). The Hurst

parameter of fBm tells us several things about the process. For example, the increments

of BH(t) are positively correlated when H ∈ (1/2, 1) and negatively correlated when H ∈
(0, 1/2). Also, for any β ∈ (0,H), the sample paths of BH(t) are almost surely Hölder

continuous with index β. Moreover, when H ∈ (1/2, 1), fBm exhibits long-range dependence,

i.e.
∞∑

n=1

E[BH(1)(BH(n + 1)−BH(n))] = ∞,

which can be verified directly by observing that

EBH(s)BH(t) =
1
2

(
t2H + s2H − |t− s|2H

)
.

(Note that long-range dependence, according to this definition, does not occur when H ∈
(0, 1/2).) It is the long-range dependence property of fBm that has made it an appealing
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alternative to Brownian motion in many applications such as economics, hydrology, and

the study of fluctuations in solids. See [19] and the references therein for further detailed

information about fBm and its applications.

For H 6= 1/2, fBm is not a semi-martingale (see [23]) and, hence, Ito’s calculus cannot

be used to define an integral with respect to fBm or to construct a stochastic differential

equation (SDE) driven by fractional noise. Several approaches have been taken to construct

an alternative stochastic calculus for fBm. Among the key ingredients in these constructions

are the development of a stochastic integral and the subsequent derivation of an “Ito-like”

formula for change of variables.

Before discussing some of these approaches, let us first present some situations in which

one might be motivated to consider fBm, or other similar processes, and in which one would

like to utilize a corresponding stochastic calculus.

The first example comes from mathematical finance. The celebrated Black-Scholes model

represents the logarithm of the price of a risky asset (such as a stock) by a Brownian motion.

Ito’s calculus is then used to perform analysis on the model such as pricing derivative

commodities. It has been suggested that fBm with H ∈ (1/2, 1), rather than Brownian

motion, is a more realistic representative of the logarithm of the price process due to its

long-range dependence. Constructing an analog of Black and Scholes’ method for fBm

obviously requires the use of a stochastic calculus for fBm. It should be noted that there

can be many examples like this, not just in finance. Such an example could occur anytime

one wants to model a phenomenon with long-range dependence using SDEs.

The second example stems from the connection between probability and deterministic

partial differential equations (PDEs). Consider the heat equation, ∂tu = 1
2∂2

xu, u(0, x) =

f(x). Its solution can be represented probabilistically as u(t, x) = Ex[f(Bt)], where Bt

is a Brownian motion. Intuitively, we can imagine a large collection of heat “particles”,

initially distributed with density f(x), performing Brownian motions and thereby distrib-

uting themselves according to the heat equation. In reality, of course, the heat comes from

particles whose motion is not Brownian, but linear. These particles collide and (at least

heuristically) the collisions produce Brownian motion in the limit as the number of particles

increases. If, however, the colliding particles were performing Brownian motion, then the
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collisions ought to produce, in the limit, fBm with H = 1/4. In [15], Harris considered

an infinite number of particles, initially placed on the real line according to a Poisson dis-

tribution, performing independent Brownian motions and undergoing “elastic” collisions.

By this, it is meant simply that the particles perform independent Brownian motions, but

are continuously relabelled so as to preserve their initial ordering, i.e. their trajectories are

interchanged whenever their paths intersect. The trajectory of a fixed particle was then

observed and it was shown that, after rescaling, this trajectory indeed converged to a fBm

with H = 1/4. These results were strengthened and generalized in [9]. Earlier in this

dissertation, we considered a similar model of colliding particles. There, we took n indepen-

dent Brownian motions, B
(1)
t , . . . , B

(n)
t , all starting at the origin, and studied the process

X
(n)
t =

√
nM

(n)
t , where at any time t, M

(n)
t is the median of the n numbers B

(1)
t , . . . , B

(n)
t .

There it was shown that X
(n)
t converged, as n → ∞, to a centered Gaussian process, Xt,

with covariance

E[XsXt] =
√

st sin−1

(
s ∧ t√

st

)
.

While Xt is certainly not a fBm, it does share many of the same properties as fBm with

H = 1/4. In particular, the process Xt exhibits fourth-order scaling, i.e. E|Xt+∆t −Xt|2 ≈
∆t1/2 for ∆t small. These heuristics suggest a connection between fBm with H = 1/4, as

well as other processes with fourth-order scaling, to higher order parabolic PDEs such as

∂tu = ∂4
xu. These connections are explored in [2], [5], and [13]. Clearly, any extension to

fBm of the connection between SDEs and PDEs will require a stochastic calculus for fBm

(or, more generally, a stochastic calculus for processes with same order scaling as fBm).

With these examples in mind, let us now consider some of the approaches that have

been taken to constructing a stochastic integral and an “Ito” rule for fBm. (For a survey of

many of these approaches and for references to the remainder of this introduction, see [6].)

The most natural thing to do is to define

∫
u(s) dBH(s) = lim

∆t→0

∑

j

u(tj)(BH(tj + ∆t)−BH(tj)) (4.1.1)

and then to determine the conditions under which this definition makes sense. For example,

the limit on the right-hand side of (4.1.1) exists (at least in probability) if the integrand u is
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Hölder continuous with index β for some β > 1−H. In this case, the process t 7→ ∫ t
0 u dBH

is Hölder continuous with index β for all β < H. This implies, among other things, that we

can only be assured of a well-defined iterated integral of this type when H ∈ (1/2, 1).

This is the so-called “pathwise” approach to integration against fBm. It is the regularity

of the sample paths of the integrand, not the adaptedness of the integrand, that is important

in this approach. In particular, there is nothing terribly special about the use of left-endpoint

Riemann sums in (4.1.1). In fact, if H ∈ (1/2, 1), then when this integral exists and when

the integrand is of bounded quadratic variation, we may replace u(tj) in (4.1.1) by u(t∗j ),

where t∗j is any point in the interval [tj , tj + ∆t], without changing the definition of the

integral (see Theorem 3.16 in [8]).

The change-of-variables formula for this integral, when H ∈ (1/2, 1), is very simple:

f(BH(t)) = f(BH(0)) +
∫ t

0
f ′(BH(s)) dBH(s).

For other values of H, the change of variables formula can be significantly more complicated

(see, for example, [1], [3], and [21], as well as Section 3.4, Proposition 3.1, and Remark 4.3

in [6]). This integral also, unfortunately, lacks one of the key features of the Ito integral.

Namely, E
∫

u dBH need not be zero. See [8] for an explicit example. From the point of view

of applications, this seems to be a difficulty for modelling, since a term such as σt dBH(t)

in an SDE ought to represent a random fluctuation about the mean. On the other hand,

from a purely mathematical perspective, it is also disappointing. The zero mean of the

Ito integral is a key ingredient in developing the connection between Ito diffusions and

their corresponding PDEs. A nonzero mean for the integral against fBm would present a

significant hurdle to developing any analog of this for higher order parabolic equations.

An alternative approach is to define the integral with respect to fBm via the Malliavin

calculus, as in section 3.3 of [6] (see also [7]). For H > 1/2, the integral defined in this way

agrees with the integral defined in [8] by means of the Wick product, i.e.
∫

u(s) dBH(s) = lim
∆t→0

∑

j

u(tj) ¦ (BH(t + ∆t)−BH(t)).

(Here, ¦ denotes the Wick product; for the definition of the Wick product in this context,

see [8].) This approach is motivated by the fact that, when H = 1/2, this definition yields
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the classical Ito integral. Of course, when H = 1/2, each of the Wick products in this

definition agrees with the ordinary product. In fact, it should be noted that the Ito integral

with respect to a martingale that is not Brownian motion cannot, in general, be defined as

the limit of Riemann sums of Wick products.

Unlike the pathwise integral, this integral does have the property that E
∫

u dBH = 0.

Also, at least for H > 1/2, the change-of-variables formula is fairly simple:

f(BH(t)) = f(BH(0)) +
∫ t

0
f ′(BH(s)) dBH(s) + H

∫ t

0
s2H−1f ′′(BH(s)) ds.

However, the change-of-variables formula for f(Xt), where Xt is itself an integral with

respect to fBm, is less simple in that it involves derivatives in the sense of Malliavin. Also,

for H < 1/2, a change-of-variables formulas is either not known or is significantly more

complicated (see Remark 4.3 in [6] and the references therein). Moreover, from a modelling

perspective, it is unclear what the Wick products in the approximating Riemann sums

actually represent.

There are still several other approaches to constructing an integral against fBm. The

work of Terry Lyons [18] provides a general construction for developing an integral against

rough paths on a manifold. Coutin and Qian [4] directly apply Lyons’ results to construct

an integral against fBm when H > 1/4. This approach, of course, is pathwise in nature.

Carmona, Coutin, and Montseny [3] also cite the work of Lyons as a primary source of

motivation for their approach, which is to approximate fBm by semimartingales. The in-

tegrals with respect to these semimartingales are well-defined in the Ito sense, and they

use a limiting procedure to define the integral with respect to fBm. Surprisingly, however,

their approach seems to bear a stronger relationship to the Malliavin construction than to

the pathwise construction. For a discussion on the connections between all of these various

developments, see [6].

The motivation behind the work presented in this chapter lies in the attempt to derive

an Ito rule for a pathwise integral with respect to fBm when H = 1/4. Consider a process,

Ft, with fourth-order scaling, i.e. E|Ft+∆t − Ft|2 ≈ ∆t1/2 for ∆t small, and let g : R → R

be a smooth function with g(0) = 0. Write

g(x + h) = g(x) + g′(x)h +
1
2
g′′(x)h2 +

1
6
g′′′(x1)h3
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where x1 lies between x and x + h. Plugging in h1 and h2 and subtracting yields

g(x + h1)− g(x + h2) = g′(x)(h1 − h2) +
1
2
g′′(x)(h2

1 − h2
2)

+
1
6
g′′′(x1)h3

1 −
1
6
g′′′(x2)h3

2

Now define ∆+Ft = Ft+∆t − Ft and ∆−Ft = Ft − Ft−∆t, and take x = Ft, h1 = ∆+Ft, and

h2 = −∆−Ft, so that

g(Ft+∆t)− g(Ft−∆t) = g′(Ft)(Ft+∆t − Ft−∆t) +
1
2
g′′(Ft)(|∆+Ft|2 − |∆−Ft|2)

1
6
g′′′(F (1)

t )(∆+Ft)3 +
1
6
g′′′(F (2)

t )(∆−Ft)3

where F
(j)
t are random points lying between Ft−∆t and Ft+∆t. Therefore, we can write

g(Ft) =
∑

j

g′(Ftj )(Ftj+∆t − Ftj−∆t) +
1
2

∑

j

g′′(Ftj )(|∆+Ftj |2 − |∆−Ftj |2)

+
1
6

∑

j

g′′′(F (1)
tj

)(∆+Ftj )
3 +

1
6

∑

j

g′′′(F (1)
tj

)(∆−Ftj )
3 (4.1.2)

where the sums are over a suitable partition of the interval [0, t]. If, then, we wish to define

a pathwise, Stratonovich-type integral with respect to Ft by
∫ t

0
g′(Fs) dFs = lim

∆t→0

∑

j

g′(Ftj )(Ftj+∆t − Ftj−∆t), (4.1.3)

we must investigate the convergence of the last three sums on the right-hand side of (4.1.2).

If Ft has mean zero and a symmetric distribution, then (∆+Ftj )
3 has mean zero and an

approximate variance of ∆t3/2. The same is also true for (∆−Ftj )
3. We might therefore

expect the last two sums on the right-hand side of (4.1.2) to converge to zero as ∆t → 0.

As for the second sum, let us simplify things for the moment and assume that g′′ ≡ 1. In

this case, we must consider the sum

∑

j

(|∆+Ftj |2 − |∆−Ftj |2) (4.1.4)

Each of the random variables, |∆+Ftj |2−|∆−Ftj |2, has an approximate mean of zero and an

approximate variance of ∆t. This is reminiscent of the construction of Brownian motion as

the scaling limit of random walks, and we might therefore expect (4.1.4), as a function of t,
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to converge as ∆t → 0 to a Brownian motion. The chief difficulty in the heuristic arguments

in this paragraph is, of course, that the random variables being summed together are not

independent. If, however, these conclusions are valid, this suggests that the integral defined

by (4.1.3) obeys an Ito rule of the form

g(Ft) =
∫ t

0
g′(Fs) dFs +

1
2

∫ t

0
g′′(Fs) dBs.

In this chapter, we shall focus on a specific process Ft with fourth-order scaling. To

simplify things, we will not study the sum in (4.1.4), but rather the sum

∑

j

[(∆+Ftj )
2 · sgn(∆+Ftj )] (4.1.5)

We then show, despite the lack of independence, that this sum, as a function of t, converges

as ∆t → 0 to a Brownian motion. Presumably, the mean and covariance structure of the

summands in (4.1.5) are asymptotically similar enough to those in (4.1.4) that the results

and techniques in this chapter can be used to make rigorous the heuristics outlined above.

We will now describe the process Ft and state our main results. The notation established

in the remainder of this introduction shall be used throughout the entirety of this chapter.

To describe the process Ft that we shall study, first consider the stochastic heat equation

ut =
1
2
uxx + Ẇ (t, x) (4.1.6)

with boundary conditions u(0, x) ≡ 0, where Ẇ (t, x) is a two-dimensional white noise. For

the deterministic heat equation with a potential

ut =
1
2
uxx + g(t, x)

and with the same boundary conditions, it is well known that the solution is given by

u(t, x) =
∫

R

∫ t

0
p(t− r, x− y)g(r, y) dr dy,

where p(t, x) = 1√
2πt

e−x2/2t is the heat kernel. (See, for example, Chapter 4 in [11].) We

therefore regard the random process

u(t, x) =
∫

R

∫ t

0
p(t− r, x− y) dW (r, y) (4.1.7)
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as the solution to (4.1.6). For the precise meaning of (4.1.7), we define the Hilbert space

H = L2(R2) and construct a centered Gaussian process, I(h), indexed by h ∈ H, such that

E[I(g)I(h)] =
∫

gh. (See, for example, [16] or [20] for details.) We then interpret (4.1.7) as

u(t, x) = I(htx), where htx(r, y) = 1[0,t](r)p(t− r, x− y) ∈ H.

For fixed x ∈ R, let Ft = F
(x)
t = u(t, x). By (4.1.7), we see that Ft is a centered

Gaussian process. As will be seen later, the process Ft shares many of the properties of fBm

with Hurst parameter 1/4. It is self-similar, i.e. Fct
d= c1/4Ft; its increments are negatively

correlated; and E|Ft+∆t−Ft|2 ≈ ∆t1/2 for ∆t small. In fact, since fBm also has a stochastic

integral representation (see [6]), i.e.

BH(t) =
∫ t

0
KH(t, r) dB(r),

we expect that the techniques in this chapter can be directly applied to fBm itself.

Now, for fixed n ∈ N, let ∆t = 1
n and tj = j∆t. We will consider the three processes

V
(n)
t =

bntc∑

j=1

∆F 4
j + (nt− bntc)∆F 4

bntc+1

Z
(n)
t =

bntc∑

j=1

∆F 3
j + (nt− bntc)∆F 3

bntc+1

W
(n)
t =

bntc∑

j=1

∆F 2±
j + (nt− bntc)∆F 2±

bntc+1

where ∆Fj = Ftj − Ftj−1 and xr± = xrsgn(x). To keep the notation manageable, ∆F k
j

shall always denote (∆Fj)k. The processes V (n) are, of course, discrete approximations

to the 4-th variation of the process F . The processes Z(n) and W (n) will be referred to,

respectively, as the discrete cubic and quadratic signed variations of F . We will prove the

following three results regarding the above processes.

Theorem 4.1.1 As n → ∞, V
(n)
t → 6

π t, where convergence is in the weak sense on the

space C[0,∞), endowed with the topology of locally uniform convergence.

Theorem 4.1.2 As n →∞, Z
(n)
t → 0, with convergence as in Theorem 4.1.1.
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Theorem 4.1.3 As n → ∞, W
(n)
t → κWt, with convergence as in Theorem 4.1.1, where

Wt is a Brownian motion and κ is a positive constant. Moreover, κ is given explicitly by

κ = ( 6
π − 4

π ξ)1/2, where ξ ≡ ∑∞
i=1 K(1

2γi), γi = 2
√

i−√i− 1−√i + 1, and

K(x) =
6
π

x
√

1− x2 +
2
π

(1 + 2x2) sin−1(x).

4.2 Proof of Theorem 4.1.1

Recall that Ft is a centered Gaussian process. We begin by computing its covariance struc-

ture.

Lemma 4.2.1 For all s, t ∈ [0,∞), E[FsFt] = 1√
2π

(|t + s|1/2 − |t− s|1/2).

Proof. Without loss of generality, assume s ≤ t. By (4.1.7),

E[FsFt] =
∫

R

∫ s

0
p(t− r, x− y)p(s− r, x− y) dr dy

=
1
2π

∫ s

0

1√
(t− r)(s− r)

∫

R
exp

{
−(x− y)2

2(t− r)
− (x− y)2

2(s− r)

}
dy dr

=
1
2π

∫ s

0

1√
(t− r)(s− r)

∫

R
exp

{
−(x− y)2(t + s− 2r)

2(t− r)(s− r)

}
dy dr

=
1√
2π

∫ s

0

1√
t + s− 2r

dr

= − 1√
2π

√
t + s− 2r

∣∣∣∣
s

0

=
1√
2π

(|t + s|1/2 − |t− s|1/2),

which verifies the formula. ¥

Now, since ∆Fj is a mean zero, normal random variable, its distribution is determined

by its variance, σ2
j ≡ E|∆Fj |2. Using the covariance structure of F , we estimate the order

of σj .

Lemma 4.2.2 For all j ∈ N,
∣∣∣∣∣σ

2
j −

√
2∆t

π

∣∣∣∣∣ ≤
1√

π (1 +
√

2)
1

t
3/2
j

∆t2 ≤ 1

t
3/2
j

∆t2.



83

Proof. Note that for s < t,

E|Ft − Fs|2 =
1√
2π

(
√

2t +
√

2s− 2(
√

t + s−√t− s))

=
1√
π

(
√

t +
√

s−√2t + 2s +
√

2t− 2s). (4.2.1)

Thus,
∣∣∣∣∣E|Ft − Fs|2 −

√
2(t− s)

π

∣∣∣∣∣ =
1√
π
|
√

t +
√

s−√2t + 2s|

=
1√
π

∣∣∣∣
(
√

t +
√

s)2 − (2t + 2s)√
t +

√
s +

√
2t + 2s

∣∣∣∣

≤ 1√
π (1 +

√
2)

∣∣∣∣
(
√

t−√s)2√
t

∣∣∣∣

=
1√

π (1 +
√

2)
|t− s|2√

t(
√

t +
√

s)2

≤ 1√
π (1 +

√
2)

1
t3/2

|t− s|2. (4.2.2)

Now, take t = tj and s = tj−1. ¥

Corollary 4.2.3 For all j ∈ N, π−1/2
√

∆t ≤ σ2
j ≤ 2

√
∆t.

Proof. The upper bound follows from Lemma 4.2.2 since 2 < π and tj = j/n ≥ 1/n = ∆t.

Lemma 4.2.2 also implies

σ2
j ≥

√
2∆t

π
− 1√

π (1 +
√

2)
1

t
3/2
j

∆t2

≥
(√

2
π
− 1√

π (1 +
√

2)

)√
∆t

= π−1/2
√

∆t,

which gives the lower bound. ¥

In the analysis to come, we will need the following estimate on the covariance of ∆Fi

and ∆Fj for i 6= j.
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Lemma 4.2.4 For any i, j ∈ N with i < j,
∣∣∣∣∣E[∆Fi∆Fj ] +

√
∆t

2π
γj−i

∣∣∣∣∣ ≤
∆t2

(ti + tj)3/2

where γi is as in Theorem 4.1.3.

Proof. First note that for any k ≥ i,

E[Ftk∆Fi] = E[FtkFti − FtkFti−1 ]

=
1√
2π

(
√

tk + ti −
√

tk − ti −
√

tk + ti−1 +
√

tk − ti−1)

=
1√
2πn

(
√

k + i−
√

k − i−
√

k + i− 1 +
√

k − i + 1).

Thus,

E[∆Fi∆Fj ] = E[Ftj∆Fi]−E[Ftj−1∆Fi]

=
1√
2πn

(
√

j + i−
√

j − i−
√

j + i− 1 +
√

j − i + 1

−
√

j + i− 1 +
√

j − i− 1 +
√

j + i− 2−
√

j − i)

= −
√

∆t

2π
(γj+i−1 + γj−i).

Next, note that by the concavity of x 7→ √
x, γk > 0 for all k ∈ N. Also,

γk = (
√

k −
√

k − 1)− (
√

k + 1−
√

k)

= f(k − 1)− f(k)

where f(x) =
√

x + 1−√x. For k ≥ 2, the Mean Value Theorem gives γk = |f ′(k− θ)|, for

some θ ∈ [0, 1]. Now,

f ′(x) =
1
2

(
1√

x + 1
− 1√

x

)

=
1
2

(√
x−√x + 1√

x(x + 1)

)

= −1
2

(
1√

x(x + 1)(
√

x +
√

x + 1)

)
.
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Thus, |f ′(x)| ≤ 1
4x−3/2 and hence, γk ≤ 1

4(k − 1)−3/2 ≤ 1
4(k/2)−3/2 = 1√

2
k−3/2. For k = 1,

we have γ1 = 2−√2 < 1√
2
. Therefore, for all k ∈ N,

0 < γk ≤ 1√
2 k3/2

. (4.2.3)

We now have, since j + i ≥ 2,
∣∣∣∣∣E[∆Fi∆Fj ] +

√
∆t

2π
γj−i

∣∣∣∣∣ ≤
√

∆t

2π

1√
2 (j + i− 1)3/2

≤
√

∆t

2π

1√
2

(
j + i

2

)−3/2

=

√
2∆t

π

1
(i + j)3/2

.

Since 2 < π, tk = k/n, and ∆t = 1/n, this completes the proof. ¥

Corollary 4.2.5 For any i, j ∈ N with i < j, |E[∆Fi∆Fj ]| ≤ 2∆t2(tj − ti)−3/2.

Proof. This follows from Lemma 4.2.4 and (4.2.3) since
√

∆t
2π γj−i ≤

√
∆t(j − i)−3/2. ¥

The last lemma we will need for this section regards the covariance of powers of correlated

Gaussian random variables.

Lemma 4.2.6 Let X1, X2 be mean zero, jointly normal random variables with variances

σ2
j . If ρ = (σ1σ2)−1E[X1X2], then

(i) E[X3
1X3

2 ] = σ3
1σ

3
2ρ(6ρ2 + 9) and

(ii) E[X4
1X4

2 ] = σ4
1σ

4
2(24ρ4 + 72ρ2 + 9).

Proof. Define Yj = σ−1
j Xj , U = Y1, and V = (1 − ρ2)−1/2(Y2 − ρY1). Then U and V are

mean zero and jointly normal. Clearly, EU2 = 1. We also have

EV 2 = (1− ρ2)−1(1− 2ρE[Y1Y2] + ρ2)

= (1− ρ2)−1(1− 2ρ2 + ρ2)

= 1
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and E[UV ] = (1 − ρ2)−1/2(E[Y1Y2] − ρ) = 0. Thus U and V are independent standard

normals. Since X1 = σ1U and X2 = σ2(
√

1− ρ2 V + ρU), we have

E[X3
1X3

2 ] = σ3
1σ

3
2E[U3(

√
1− ρ2 V + ρU)3]

= σ3
1σ

3
2

{
3ρ(1− ρ2)E[U4V 2] + ρ3EU6

}

= σ3
1σ

3
2

{
9ρ(1− ρ2) + 15ρ3

}

= σ3
1σ

3
2ρ(6ρ2 + 9),

which is part (i); and we have

E[X4
1X4

2 ] = σ4
1σ

4
2E[U4(

√
1− ρ2 V + ρU)4]

= σ4
1σ

4
2

{
(1− ρ2)2E[U4V 4] + 6ρ2(1− ρ2)E[U6V 2] + ρ4EU8

}

= σ4
1σ

4
2

{
9(1− ρ2)2 + 6(15)ρ2(1− ρ2) + 105ρ4

}

= σ4
1σ

4
2(9− 18ρ2 + 9ρ4 + 90ρ2 − 90ρ4 + 105ρ4)

= σ4
1σ

4
2(24ρ4 + 72ρ2 + 9),

which is part (ii). ¥

Proof of Theorem 4.1.1:

In what follows, C is a finite, nonnegative, universal constant that may change value

from line to line. It will suffice to show that for all 0 ≤ s < t and all n ∈ N,

E

∣∣∣∣(V
(n)
t − V (n)

s )− 6
π

(t− s)
∣∣∣∣
2

≤ C√
n
|t− s|3/2.

To see why, note that this implies

E|V (n)
t − V (n)

s |2 ≤ 2
∣∣∣∣
6
π

(t− s)
∣∣∣∣
2

+ 2C|t− s|3/2

≤ C(|t− s|2 + |t− s|3/2)

so that, by the Kolmogorov-Čentsov Theorem (see Problem 2.4.11 in [17]), the sequence

V (n) is tight. Also, if 0 ≤ t1 < · · · < td and ‖ · ‖ denotes the Euclidean norm on Rd, then

E

∥∥∥∥(V (n)
t1

, . . . , V
(n)
td

)− 6
π

(t1, . . . , td)
∥∥∥∥

2

=
d∑

j=1

E

∣∣∣∣V
(n)
tj

− 6
π

tj

∣∣∣∣
2

≤ C√
n

d∑

j=1

t
3/2
j
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and, hence, the finite dimensional distributions of V (n) converge in L2, and therefore in

probability and in distribution, to those of the constant function t 7→ 6
π t.

To prove the initial estimate, we write

V
(n)
t − V (n)

s =
bntc∑

j=bnsc+1

∆F 4
j + (nt− bntc)∆F 4

bntc+1 − (ns− bnsc)∆F 4
bnsc+1.

Note that the number of terms in the above sum is bntc−bnsc < n(t−s)+1. First, assume

that n(t−s) ≤ 1. In this case, either bntc−bnsc = 0 or bntc−bnsc = 1. If bntc−bnsc = 0,

then

V
(n)
t − V (n)

s = (nt− bntc)∆F 4
bntc+1 − (ns− bnsc)∆F 4

bnsc+1

= n(t− s)∆F 4
bnsc+1

so by Corollary 4.2.3,

E

∣∣∣∣(V
(n)
t − V (n)

s )− 6
π

(t− s)
∣∣∣∣
2

= |t− s|2E
∣∣∣∣n∆F 4

bnsc+1 −
6
π

∣∣∣∣
2

≤ C|t− s|2

≤ C√
n
|t− s|3/2.

On the other hand, if bntc − bnsc = 1, then

V
(n)
t − V (n)

s = ∆F 4
bnsc+1 + (nt− bntc)∆F 4

bntc+1 − (ns− bnsc)∆F 4
bnsc+1

= ∆F 4
bntc + (nt− bntc)∆F 4

bntc+1 − (ns− bntc+ 1)∆F 4
bntc

= (bntc − ns)∆F 4
bntc + (nt− bntc)∆F 4

bntc+1.

Since ns < bnsc+ 1 = bntc ≤ nt,

|V (n)
t − V (n)

s | ≤ n(t− s)∆F 4
bntc + n(t− s)∆F 4

bntc+1

and by Corollary 4.2.3,

E

∣∣∣∣(V
(n)
t − V (n)

s )− 6
π

(t− s)
∣∣∣∣
2

≤ C(E|V (n)
t − V (n)

s |2 + |t− s|2)

≤ C(n2|t− s|2∆t2 + |t− s|2)

= C|t− s|2

≤ C√
n
|t− s|3/2.
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Next, assume n(t− s) > 1. In this case, Corollary 4.2.3 gives

E

∣∣∣∣(V
(n)
t − V (n)

s )− 6
π

(t− s)
∣∣∣∣
2

≤ C



E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(
∆F 4

j −
6
π

∆t

)∣∣∣∣∣∣

2

+ ∆t2



 .

Note that in this case, ∆t2 = n−2 ≤ n−1/2|t− s|3/2. Now let σ2
j = E|∆Fj |2 and write

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(
∆F 4

j −
6
π

∆t

)∣∣∣∣∣∣

2

≤ 2E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(∆F 4
j − 3σ4

j )

∣∣∣∣∣∣

2

+2

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(
3σ4

j −
6
π

∆t

)∣∣∣∣∣∣

2

.

By Lemma 4.2.2,

∣∣∣∣3σ4
j −

6
π

∆t

∣∣∣∣ = 3

∣∣∣∣∣σ
2
j +

√
2∆t

π

∣∣∣∣∣

∣∣∣∣∣σ
2
j −

√
2∆t

π

∣∣∣∣∣

≤ C
√

∆t

∣∣∣∣∣σ
2
j −

√
2∆t

π

∣∣∣∣∣

≤ C

t
3/2
j

∆t5/2.

Thus, by Jensen’s inequality,
∣∣∣∣∣∣

bntc∑

j=bnsc+1

(
3σ4

j −
6
π

∆t

)∣∣∣∣∣∣

2

≤ (bntc − bnsc)
bntc∑

j=bnsc+1

∣∣∣∣3σ4
j −

6
π

∆t

∣∣∣∣
2

≤ C(n(t− s) + 1)∆t5
bntc∑

j=bnsc+1

1
t3j

= C

(
t− s

n
+

1
n2

) bntc∑

j=bnsc+1

1
j3

≤ C√
n
|t− s|3/2. (4.2.4)

Finally, we adopt the notation x∼r = (xr ∨ 1), so that we may concisely combine Corol-

laries 4.2.3 and 4.2.5 into the inequality

|E[∆Fi∆Fj ]| ≤ 2
√

∆t

|i− j|∼3/2
(4.2.5)
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for all i, j ∈ N. Now, by Lemma 4.2.6 with ρij = (σiσj)−1E[∆Fi∆Fj ], write

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(∆F 4
j − 3σ4

j )

∣∣∣∣∣∣

2

≤
bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

|E[(∆F 4
i − 3σ4

i )(∆F 4
j − 3σ4

j )]|

=
bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

|E[∆F 4
i ∆F 4

j ]− 9σ4
i σ

4
j |

≤ C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

σ4
i σ

4
j ρ

2
ij

= C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

σ2
i σ

2
j |E[∆Fi∆Fj ]|2.

Now, by (4.2.5), we have

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

(∆F 4
j − 3σ4

j )

∣∣∣∣∣∣

2

≤ C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

√
∆t
√

∆t

(
∆t

|i− j|∼3

)

≤ C(bntc − bnsc)∆t2

≤ C

(
t− s

n
+

1
n2

)

≤ C√
n
|t− s|3/2,

which completes the proof. ¥

4.3 Proof of Theorem 4.1.2

This proof will rely on the lemmas of the previous section.

Proof of Theorem 4.1.2:

As in the proof of Theorem 4.1.1, it will suffice to show that for all 0 ≤ s < t and all

n ∈ N,

E|Z(n)
t − Z(n)

s |2 ≤ C

n1/4
|t− s|5/4.

As before, we write

Z
(n)
t − Z(n)

s =
bntc∑

j=bnsc+1

∆F 3
j + (nt− bntc)∆F 3

bntc+1 − (ns− bnsc)∆F 3
bnsc+1.
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Note that the number of terms in the above sum is bntc−bnsc < n(t−s)+1. First, assume

that n(t−s) ≤ 1. In this case, either bntc−bnsc = 0 or bntc−bnsc = 1. If bntc−bnsc = 0,

then

Z
(n)
t − Z(n)

s = n(t− s)∆F 3
bnsc+1

so by Corollary 4.2.3,

E|Z(n)
t − Z(n)

s |2 ≤ Cn2|t− s|2∆t3/2

= C
√

n|t− s|2

≤ C

n1/4
|t− s|5/4.

On the other hand, if bntc − bnsc = 1, then

Z
(n)
t − Z(n)

s = ∆F 3
bnsc+1 + (nt− bntc)∆F 3

bntc+1 − (ns− bnsc)∆F 3
bnsc+1

= ∆F 3
bntc + (nt− bntc)∆F 3

bntc+1 − (ns− bntc+ 1)∆F 3
bntc

= (bntc − ns)∆F 3
bntc + (nt− bntc)∆F 3

bntc+1.

Since ns < bnsc+ 1 = bntc ≤ nt,

|Z(n)
t − Z(n)

s | ≤ n|t− s||∆F 3
bntc|+ n|t− s||∆F 3

bntc+1|

and by Corollary 4.2.3,

E|Z(n)
t − Z(n)

s |2 ≤ Cn2|t− s|2∆t3/2

≤ C

n1/4
|t− s|5/4.

Next, assume n(t− s) > 1. In this case, Corollary 4.2.3 gives

E|Z(n)
t − Z(n)

s |2 ≤ C



E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 3
j

∣∣∣∣∣∣

2

+ ∆t3/2



 .

Note that in this case, ∆t3/2 = n−3/2 ≤ n−1/4|t − s|5/4. Now, by Lemma 4.2.6 with
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ρij = (σiσj)−1E[∆Fi∆Fj ], write

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 3
j

∣∣∣∣∣∣

2

≤
bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

|E[∆F 3
i ∆F 3

j ]|

≤ C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

σ3
i σ

3
j |ρij |

= C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

σ2
i σ

2
j |E[∆Fi∆Fj ]|.

By (4.2.5), we have

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 3
j

∣∣∣∣∣∣

2

≤ C

bntc∑

i=bnsc+1

bntc∑

j=bnsc+1

√
∆t
√

∆t

( √
∆t

|i− j|∼3/2

)

≤ C(bntc − bnsc)∆t3/2

≤ C

(
t− s√

n
+

1
n3/2

)

≤ C

n1/4
|t− s|5/4,

and we are done. ¥

4.4 Key Estimates

In this section we will establish some important estimates needed in the proof of Theorem

4.1.3.

Lemma 4.4.1 Let X1, X2 be mean zero, jointly normal random variables with EX2
j = 1

and ρ = E[X1X2]. Then

E[X2±
1 X2±

2 ] = K(ρ),

where K(x) = 6
πx
√

1− x2 + 2
π (1 + 2x2) sin−1(x) is as in Theorem 4.1.3.
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Proof. Define U = X1 and V = (1− ρ2)−1/2(X2− ρX1), so that U and V are independent

standard normals. Then X1 = U and X2 =
√

1− ρ2 V + ρU and

E[X2±
1 X2±

2 ] = E[U(
√

1− ρ2 V + ρU)]2±

=
1
2π

∫ ∫
[u(

√
1− ρ2 v + ρu)]2±e−(u2+v2)/2 du dv

=
1
2π

∫ 2π

0

∫ ∞

0
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2±r5e−r2/2 dr dθ

=
4
π

∫ 2π

0
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2± dθ

since
∫∞
0 r5e−r2/2 dr = 8. Now, since the above integrand remains unchanged under the

transformation θ 7→ θ + π, we have

E[X2±
1 X2±

2 ] =
8
π

∫ π/2

−π/2
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2± dθ.

Since cos θ ≥ 0 on the interval of integration, we have

E[X2±
1 X2±

2 ] =
8
π

∫ π/2

a
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2 dθ

− 8
π

∫ a

−π/2
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2 dθ

where a = tan−1(−ρ(1− ρ2)−1/2). With the change of variables θ 7→ −θ, we then have

E[X2±
1 X2±

2 ] =
8
π

∫ −a

−π/2
[cos θ(

√
1− ρ2 sin θ − ρcos θ)]2 dθ

− 8
π

∫ a

−π/2
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2 dθ.

Assume for the moment that ρ ≤ 0, so that a ≥ 0. Then

E[X2±
1 X2±

2 ] = −32
π

ρ
√

1− ρ2

∫ −a

−π/2
cos3 θ sin θ dθ

− 8
π

∫ a

−a
[cos θ(

√
1− ρ2 sin θ + ρcos θ)]2 dθ

=
8
π

ρ
√

1− ρ2 cos4 a− 16
π

(1− ρ2)
∫ a

0
cos2 θ sin2 θ dθ

−16
π

ρ2

∫ a

0
cos4 θ dθ

=
8
π

ρ
√

1− ρ2 cos4 a− 16
π

∫ a

0
cos4 θ dθ

+
16
π

(1− ρ2)
∫ a

0
(cos4 θ − cos2 θ sin2 θ) dθ.
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Note that a = sin−1(−ρ), so that ρ = − sin a. Thus,

E[X2±
1 X2±

2 ] = − 8
π

sin a cos5 a− 16
π

∫ a

0
cos4 θ dθ

+
16
π

cos2 a

∫ a

0
(cos4 θ − cos2 θ sin2 θ) dθ.

Observe that

d

dθ
(θ + sin θ cos θ + 2 sin θ cos3 θ) = 1 + cos2 θ − sin2 θ + 2 cos4 θ − 6 sin2 θ cos2 θ

= 2 cos2 θ(1 + cos2 θ − 3 sin2 θ)

= 2 cos2 θ(2 cos2 θ − 2 sin2 θ)

and

d

dθ
(3θ + 3 sin θ cos θ + 2 sin θ cos3 θ) = 3 + 3 cos2 θ − 3 sin2 θ + 2 cos4 θ − 6 sin2 θ cos2 θ

= 2 cos2 θ(3 + cos2 θ − 3 sin2 θ)

= 8 cos4 θ.

Thus,

E[X2±
1 X2±

2 ] =
2
π

[−4 sin a cos5 a− 3a− 3 sin a cos a− 2 sin a cos3 a

+2a cos2 a + 2 sin a cos3 a + 4 sin a cos5 a
]

=
2
π

[−3a− 3 sin a cos a + 2a cos2 a
]

=
2
π

[−3 sin a cos a− a(1 + 2 sin2 a)
]

=
2
π

[
3ρ

√
1− ρ2 + (1 + 2ρ2) sin−1 ρ

]
.

This proves the lemma in the case that ρ ≤ 0. In the case that ρ > 0, we have, by symmetry,

E[X2±
1 X2±

2 ] = −K(−ρ) = K(ρ). ¥

Lemma 4.4.2 Let K(x) be as in Theorem 4.1.3. For all x ∈ [−1, 1],
∣∣∣∣K(x)− 8

π
x

∣∣∣∣ ≤ 2|x|3.
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Proof. Note that K ∈ C∞(−1, 1) and

K ′(x) =
2
π

[
3
√

1− x2 − 3x2

√
1− x2

+ 4x sin−1(x) +
1 + 2x2

√
1− x2

]

=
8
π

[
√

1− x2 + x sin−1(x)]

K ′′(x) =
8
π

sin−1(x).

Since K ′′ is increasing, ∣∣∣∣K(x)− 8
π

x

∣∣∣∣ ≤
1
2
x2K ′′(|x|).

But for y ∈ [0, π/2], sin y ≥ 2y/π. Letting y = πx/2 gives sin−1(x) ≤ πx/2 for x ∈ [0, 1].

Thus, K ′′(|x|) ≤ 4|x|, which completes the proof. ¥

Corollary 4.4.3 Let X1, X2 be mean zero, jointly normal random variables with EX2
j = 1

and ρ = E[X1X2]. Then

|E[X2±
1 X2±

2 ]| ≤ 5|ρ|.

Proof. This follows since 8/π < 3 and |ρ|3 ≤ |ρ|. ¥

Lemma 4.4.4 Let X1, . . . , X4 be mean zero, jointly normal random variables with EX2
j = 1

and ρij = E[XiXj ]. Then ∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C max

1≤j≤3
|ρj4|

for some finite, nonnegative, universal constant C.

Proof. Let X̃ = (X1, X2, X3)T and v = (ρ14, ρ24, ρ34)T . Note that X̃ − vX4 and X4 are

independent. Define F : R3 → R by F (x1, x2, x3) =
∏

j x2±
j so that

∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
= |E[F (X̃)X2±

4 ]|

= |E[(F (X̃)− F (X̃ − vX4))X2±
4 ]|

≤
(
E|F (X̃)− F (X̃ − vX4)|2

)1/2 (
E|X4|4

)1/2
.
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Now, given x, h ∈ R3, there exists θ ∈ [0, 1] such that F (x+h)−F (x) = h ·∇F (x+ θh).

Moreover,

|∂1F (x)| = |2|x1|x2±
2 x2±

3 |

≤ 2‖x‖5

and similarly for ∂2F and ∂3F where ‖ · ‖ is the Euclidean norm in R3. Thus,

|F (x + h)− F (x)| ≤ C‖h‖(‖x‖5 + ‖h‖5)

which gives

∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C

(
E[‖vX4‖2‖X̃‖10] + E‖vX4‖12

)1/2

≤ C(‖v‖2 + ‖v‖12)1/2.

Since ‖v‖ ≤ C max1≤j≤3 |ρj4| and each |ρj4| ≤ 1, this completes the proof. ¥

Now, for k1 ≤ · · · ≤ k4 ∈ N, let

∆k1···k4 =
4∏

j=1

∆F 2±
kj

(4.4.1)

and recall that x∼r = (xr ∨ 1).

Corollary 4.4.5 For all k1 ≤ · · · ≤ k4 ∈ N,

|E∆k1···k4 | ≤ C
∆t2

(k4 − k3)∼3/2

and

|E∆k1···k4 | ≤ C
∆t2

(k2 − k1)∼3/2

for some finite, nonnegative, universal constant C.
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Proof. Define Xj = σ−1
kj

∆Fkj
. By Lemma 4.4.4 and (4.2.5),

|E∆k1···k4 | =

∣∣∣∣∣∣
E




4∏

j=1

∆F 2±
kj




∣∣∣∣∣∣

=




4∏

j=1

σ2
kj




∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣

≤ C




4∏

j=1

σ2
kj


 max

1≤j≤3
|E[XjX4]|

≤ C∆t3/2 max
1≤j≤3

|E[∆Fkj∆Fk4 ]|

≤ C
∆t2

(k4 − k3)∼3/2
.

By the symmetry of Lemma 4.4.4, we also have
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C max

2≤j≤4
|ρ1j |

which, as above, gives

|E∆k1···k4 | ≤ C
∆t2

(k2 − k1)∼3/2
,

finishing the proof. ¥

Lemma 4.4.6 Let X1, . . . , X4 be mean zero, jointly normal random variables with EX2
j = 1

and ρij = E[XiXj ]. Suppose that |ρ12| ≤ r < 1 and let

ρ̃ = max
i=1,2
j=3,4

|ρij |.

Then ∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C

(
|ρ12ρ34|+ 1√

1− r2
ρ̃

)

for some finite, nonnegative, universal constant C.

Proof. Let X̃1 = (X1, X2)T and X̃2 = (X3, X4)T . Define a = (a1, a2)T by

a =
1

1− ρ2
12


 1 −ρ12

−ρ12 1





 ρ13

ρ23


 =

(
E[X̃1X̃

T
1 ]

)−1


 ρ13

ρ23



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and note that |aj | ≤ Cρ̃(1− r2)−1. Let V1 = a1X1 + a2X2. Then

E
[
(X3 − V1)X̃T

1

]
= (ρ13, ρ23)− aT E[X̃1X̃

T
1 ] = 0

and, hence, X3 − V1 and X̃1 are independent. Also observe that

EV 2
1 = aT

(
E[X̃1X̃

T
1 ]

)
a

= aT (ρ13, ρ23)T

≤ Cρ̃2(1− r2)−1.

Similarly, we can define V2 with X4 − V2 and X̃1 independent and EV 2
2 ≤ Cρ̃2(1− r2)−1.

Now let V = (V1, V2)T so that X̃2 − V and X̃1 are independent. With F (x1, x2) =

x2±
1 x2±

2 , we may write
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
= |E[F (X̃1)F (X̃2)]|

≤ |E[F (X̃1)F (X̃2 − V )]|+ |E[F (X̃1)(F (X̃2)− F (X̃2 − V ))]|

≤ |EF (X̃1)||EF (X̃2 − V )|

+
(
E|F (X̃1)|2

)1/2 (
E|F (X̃2)− F (X̃2 − V )|2

)1/2
.

Since

|EF (X̃1)||EF (X̃2 − V )| ≤ |EF (X̃1)||EF (X̃2)|+ |EF (X̃1)||E[F (X̃2)− F (X̃2 − V )]|

and

|EF (X̃1)||E[F (X̃2)− F (X̃2 − V )]| ≤
(
E|F (X̃1)|2

)1/2 (
E|F (X̃2)− F (X̃2 − V )|2

)1/2
,

we have
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ |EF (X̃1)||EF (X̃2)|+ 2

(
E|F (X̃1)|2

)1/2 (
E|F (X̃2)− F (X̃2 − V )|2

)1/2
.

Observe that E|F (X̃1)|2 = E[X4
1X4

2 ] ≤ C. Also, as in the proof of Lemma 4.4.4,

|F (x + h)− F (x)| ≤ C‖h‖(‖x‖3 + ‖h‖3).
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Thus,

E|F (X̃2)− F (X̃2 − V )|2 ≤ CE
[
‖V ‖2(‖X̃2‖6 + ‖V ‖6)

]

≤ C
(
E‖V ‖4

)1/2
(
E‖X̃2‖12 + E‖V ‖12

)1/2
.

Note that for 2 ≤ k ≤ 6,

E‖V ‖2k = E(V 2
1 + V 2

2 )k

≤ C(EV 2k
1 + EV 2k

2 )

≤ C(|EV 2
1 |k + |EV 2

2 |k).

Since Vj is the L2-projection of Xj+2 onto the span of X1 and X2, and since the L2 norm

of Xj+2 is 1, EV 2
j ≤ 1. Hence, E‖V ‖12 ≤ C and

E‖V ‖4 ≤ C(|EV 2
1 |2 + |EV 2

2 |2)

≤ Cρ̃4(1− r2)−2.

Thus,
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C

(
|EF (X̃1)||EF (X̃2)|+ 1√

1− r2
ρ̃

)

≤ C

(
|ρ12ρ34|+ 1√

1− r2
ρ̃

)

by Corollary 4.4.3. ¥

Corollary 4.4.7 For all k1 ≤ · · · ≤ k4 ∈ N,

|E∆k1···k4 | ≤ C

(
1

(k4 − k3)∼3/2(k2 − k1)∼3/2
+

1
(k3 − k2)∼3/2

)
∆t2.

for some finite, nonnegative, universal constant C, where ∆k1···k4 is as in (4.4.1).

Proof. Define Xj = σ−1
kj

∆Fkj . Then by Corollary 4.2.3 and (4.2.5),

|ρij | = |E[XkiXkj ]|

= σ−1
i σ−1

j |E[∆Fki
∆Fkj

]|

≤ 2
√

π

|ki − kj |∼3/2
.
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We will consider three different cases.

Case 1: k2 − k1 ≥ 4.

In this case, |ρ12| ≤ r ≡ √
π/4 < 1. By Lemma 4.4.6 and (4.2.5),

|E∆k1···k4 | =

∣∣∣∣∣∣
E




4∏

j=1

∆F 2±
kj




∣∣∣∣∣∣

=




4∏

j=1

σ2
kj




∣∣∣∣∣∣
E




4∏

j=1

X2±
kj




∣∣∣∣∣∣

≤ C




4∏

j=1

σ2
kj





|ρ12ρ34|+ 1√

1− r2
max
i=1,2
j=3,4

|ρij |



≤ C∆t2
(

1
(k4 − k3)∼3/2(k2 − k1)∼3/2

+
1

(k3 − k2)∼3/2

)
.

Case 2: k4 − k3 ≥ 4.

By symmetry, Lemma 4.4.6 also holds if |ρ34| ≤ r < 1, and the proof of Case 1 carries

over to Case 2.

Case 3: k2 − k1 ≤ 3 and k4 − k3 ≤ 3.

In this case,
(

1
(k4 − k3)∼3/2(k2 − k1)∼3/2

+
1

(k3 − k2)∼3/2

)
>

1
(k4 − k3)∼3/2(k2 − k1)∼3/2

≥ 1
27

and Hölder’s inequality, together with (4.2.5), gives

|E∆k1···k4 | =
∣∣∣∣∣∣
E




4∏

j=1

∆F 2±
kj




∣∣∣∣∣∣
≤ E




4∏

j=1

∆F 2
kj


 ≤ C

4∏

j=1

σ2
kj
≤ C∆t2,

which completes the proof. ¥

Lemma 4.4.8 Let X1, . . . , X4 be mean zero, jointly normal random variables with EX2
j = 1

and ρij = E[XiXj ]. Suppose that

M ≡ max
i6=j

|ρij | < 1
2

and let R = (1− 3M2 − 2M3)−1 < ∞. Then
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ CR2M2

for some finite, nonnegative, universal constant C.
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Proof. Define X = (X1, X2, X3)T and let

Σ = E[XXT ] =




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 .

Note that

detΣ = 1− ρ2
23 − ρ12(ρ12 − ρ13ρ23) + ρ13(ρ12ρ23 − ρ13)

= 1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23

so that |det Σ| ≥ 1 − (3M2 + 2M3) = R−1 > 0 and Σ is invertible. If Σij is the 2 × 2

submatrix of Σ obtained by removing the i-th row and j-th column, and C is the 3 × 3

matrix given by Cij = (−1)i+j det Σij , then Σ−1 = (det Σ)−1CT . Since M < 1/2, |Cij | ≤ 1

for all i, j. Thus,

|(Σ−1)ij | ≤ R

for all i, j.

Now let c = (ρ14, ρ24, ρ34)T and define a = (a1, a2, a3)T = Σ−1c. Note that

|aj | = |(Σ−1)j1ρ14 + (Σ−1)j2ρ24 + (Σ−1)j3ρ34|

≤ 3RM

for all j. Define U = X4 − aT X and observe that

E[XU ] = E[XX4]−
(
E[XXT ]

)
a

= c− Σa

= 0

so that U and X are independent. In particular, EX2
4 = EU2 + E|aT X|2 and EU2 ≤ 1.

Now write
∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
= E

[
(X1X2X3)2±(U + aT X)2±

]

= f(a)
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where f : R3 → R is given by

f(x) = f(x1, x2, x3) = E
[
(X1X2X3)2±(U + x1X1 + x2X2 + x3X3)2±

]
.

By Theorem 2.27 in [12], f has continuous partial derivatives given by

∂1f(x) = 2E
[|X1|3(X2X3)2±|U + xT X|]

∂2f(x) = 2E
[|X2|3(X1X3)2±|U + xT X|]

∂3f(x) = 2E
[|X3|3(X1X2)2±|U + xT X|] .

First, consider ∂3f . Note that
∣∣∂3f(x)− 2E

[|X3|3(X1X2)2±|U |
]∣∣ ≤ 2E

[|X3|3|X1X2|2
∣∣|U + xT X| − |U |∣∣]

≤ 2E
[|X3|3|X1X2|2|xT X|]

≤ C‖x‖.

Thus, since U and (X1, X2, X3) are independent,

|∂3f(x)| ≤ C
∣∣E [|X3|3(X1X2)2±

]∣∣ + C‖x‖.

As in the proof of Lemma 4.4.6, let V be a linear combination of X1 and X2 such that

X3 − V and (X1, X2) are independent, and EV 2 ≤ CM2. Then

|E [|X3|3(X1X2)2±
] | ≤ |E [|X3 − V |3(X1X2)2±

] |+ E
[∣∣|X3|3 − |X3 − V |3∣∣ |X1X2|2

]

≤ (
E|X3 − V |3) |EX2±

1 X2±
2 |+ CE

{|V |(|X3|+ |V |)2|X1X2|2
}

≤ CM

by Corollary 4.4.3. Thus, |∂3f(x)| ≤ C(M + ‖x‖) and, by symmetry, the same estimate

holds for the other partial derivatives as well.

Now, since f(0) = 0, there exist θ = θ(x) ∈ [0, 1] such that

|f(x)| = |x · ∇f(θx)| ≤ C‖x‖(M + ‖x‖)

and, hence, since R ≥ 1, ∣∣∣∣∣∣
E




4∏

j=1

X2±
j




∣∣∣∣∣∣
≤ C‖a‖(M + ‖a‖)

≤ CRM(M + RM)

≤ CRM(2RM),
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and the proof is complete. ¥

Corollary 4.4.9 For all k1 ≤ · · · ≤ k4 ∈ N,

|E∆k1···k4 | ≤ C
∆t2

m∼3

for some finite, nonnegative, universal constant C, where ∆k1···k4 is as in (4.4.1), and

m = min
1≤i≤3

(ki+1 − ki).

Proof. First, assume m ≤ 3. Then Hölder’s inequality, together with Corollary 4.2.3, gives

|E∆k1···k4 | ≤
4∏

j=1

E|∆Fkj |2 ≤ C∆t2 ≤ C
∆t2

m∼3
.

Now, assume m ≥ 4. Define Xj = σ−1
kj

∆Fkj . Then by Corollary 4.2.3 and (4.2.5),

|ρij | = |E[XiXj ]|

= σ−1
i σ−1

j |E[∆Fki∆Fkj ]|

≤ 2
√

π

|ki − kj |∼3/2
,

and, hence,

M ≡ max
i 6=j

|ρij | ≤
√

π

4
<

1
2

and

R ≡ (1− 3M2 − 2M3)−1 ≤ (1− 5M2)−1 ≤
(

1− 5π

16

)−1

< ∞.

By Lemma 4.4.8 and (4.2.5), we have

|E∆k1···k4 | =

∣∣∣∣∣∣
E




4∏

j=1

∆F 2±
kj




∣∣∣∣∣∣

=




4∏

j=1

σ2
kj




∣∣∣∣∣∣
E




4∏

j=1

X2±
kj




∣∣∣∣∣∣

≤ C




4∏

j=1

σ2
kj


max

i6=j
|E[XiXj ]|2

≤ C(∆t) max
i6=j

|E[∆Fki∆Fkj ]|2

≤ C
∆t2

m∼3
,
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and we are done. ¥

4.5 Moments

We now use the estimates of the previous section to analyze the second and fourth moments

of the increments of the processes W
(n)
t in Theorem 4.1.3.

Proposition 4.5.1 There exists a finite, nonnegative, universal constant C such that,

E|W (n)
t −W (n)

s |4 ≤ C|t− s|2

for all 0 ≤ s < t and all n ∈ N, where W
(n)
t is as in Theorem 4.1.3.

Proof. Write

W
(n)
t −W (n)

s =
bntc∑

j=bnsc+1

∆F 2±
j + (nt− bntc)∆F 2±

bntc+1 − (ns− bnsc)∆F 2±
bnsc+1.

Note that the number of terms in the above sum is bntc−bnsc < n(t−s)+1. First, assume

that n(t−s) ≤ 1. In this case, either bntc−bnsc = 0 or bntc−bnsc = 1. If bntc−bnsc = 0,

then

W
(n)
t −W (n)

s = n(t− s)∆F 2±
bnsc+1

so by Corollary 4.2.3,

E|W (n)
t −W (n)

s |4 ≤ Cn4|t− s|4∆t2

= Cn2|t− s|4

≤ C|t− s|2.

On the other hand, if bntc − bnsc = 1, then

W
(n)
t −W (n)

s = ∆F 2±
bnsc+1 + (nt− bntc)∆F 2±

bntc+1 − (ns− bnsc)∆F 2±
bnsc+1

= ∆F 2±
bntc + (nt− bntc)∆F 2±

bntc+1 − (ns− bntc+ 1)∆F 2±
bntc

= (bntc − ns)∆F 2±
bntc + (nt− bntc)∆F 2±

bntc+1.
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Since ns < bnsc+ 1 = bntc ≤ nt,

|W (n)
t −W (n)

s | ≤ n|t− s|∆F 2
bntc + n|t− s|∆F 2

bntc+1

and by Corollary 4.2.3,

E|W (n)
t −W (n)

s |4 ≤ Cn4|t− s|4∆t2

≤ C|t− s|2.

Next, assume n(t− s) > 1. In this case, Corollary 4.2.3 gives

E|W (n)
t −W (n)

s |4 ≤ C



E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 2±
j

∣∣∣∣∣∣

4

+ ∆t2



 .

Note that in this case, ∆t2 = n−2 ≤ |t− s|2. Hence, it suffices to show that

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 2±
j

∣∣∣∣∣∣

4

≤ C|t− s|2.

To this end, we first make several definitions. Let

S = {k ∈ N4 : bnsc+ 1 ≤ k1 ≤ · · · ≤ k4 ≤ bntc}.

For k ∈ S, define h = h(k) ∈ Z3
+ by hi = ki+1 − ki. Also define

M(k) = max(h1, h2, h3)

m(k) = min(h1, h2, h3)

c(k) = med(h1, h2, h3)

where “med” denotes the median function. For i ∈ {1, 2, 3}, let

Si = {k ∈ S : hi = M}.

Define N = bntc − (bnsc+ 1) and for j ∈ {0, 1, . . . , N}, let

Sj
i = {k ∈ Si : M = j}.

Further define

T `
i = T j,`

i = {k ∈ Sj
i : m = `}
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and

V ν
i = V j,`,ν

i = {k ∈ T `
i : c = ν}.

We now have

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 2±
j

∣∣∣∣∣∣

4

≤ 4!
∑

k∈S

|E∆k1···k4 |

≤ 4!
3∑

i=1

∑

k∈Si

|E∆k1···k4 |

where ∆k1···k4 is given by (4.4.1). Observe that

∑

k∈Si

|E∆k1···k4 | =
N∑

j=0

∑

k∈Sj
i

|E∆k1···k4 |

and
∑

k∈Sj
i

|E∆k1···k4 | =
b√jc∑

`=0

∑

k∈T `
i

|E∆k1···k4 |+
j∑

`=b√jc+1

∑

k∈T `
i

|E∆k1···k4 |.

First suppose 0 ≤ ` ≤ b√jc. In this case, write

∑

k∈T `
i

|E∆k1···k4 | =
j∑

ν=`

∑

k∈V ν
i

|E∆k1···k4 |.

Fix k ∈ V ν
i . If i = 1, then j = M = h1 = k2 − k1. If i = 3, then j = M = h3 = k4 − k3. In

either case, Corollary 4.4.5 gives

|E∆k1···k4 | ≤ C
1

j∼3/2
∆t2 ≤ C

(
1

(`ν)∼3/2
+

1
j∼3/2

)
∆t2.

If i = 2, then j = M = h2 = k3 − k2 and `ν = h3h1 = (k4 − k3)(k2 − k1). Hence, by

Corollary 4.4.7,

|E∆k1···k4 | ≤ C

(
1

(`ν)∼3/2
+

1
j∼3/2

)
∆t2.

Now, if k ∈ V ν
i = V j,`,ν

i , choose i′ 6= i such that hi′ = `. With i′ given, k is determined by

ki. Since there are two possibilities for i′ and N + 1 possibilities for ki, |V ν
i | ≤ 2(N + 1).
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Thus,

b√jc∑

`=0

∑

k∈T `
i

|E∆k1···k4 | ≤ C(N + 1)
b√jc∑

`=0

j∑

ν=`

(
1

(`ν)∼3/2
+

1
j∼3/2

)
∆t2

≤ C(N + 1)
b√jc∑

`=0

(
1

`∼3/2
+

1
j∼1/2

)
∆t2

≤ C(N + 1)∆t2.

Next suppose b√jc+1 ≤ ` ≤ j. In this case, if k ∈ T `
i , then m = min1≤i≤3(ki+1−ki) = `,

so that by Corollary 4.4.9,

|E∆k1···k4 | ≤ C
1

`∼3
∆t2.

Since |T `
i | =

∑j
ν=` |V ν

i | ≤ 2(N + 1)j, we have

j∑

`=b√jc+1

∑

k∈T `
i

|E∆k1···k4 | ≤ C(N + 1)j
j∑

`=b√jc+1

1
`∼3

∆t2

≤ C(N + 1)j

(∫ ∞

b√jc

1
x3

dx

)
∆t2

≤ C(N + 1)∆t2.

Thus,

E

∣∣∣∣∣∣

bntc∑

j=bnsc+1

∆F 2±
j

∣∣∣∣∣∣

4

≤ C

N∑

j=0

(N + 1)∆t2

= C(N + 1)2∆t2

= C

(bntc − bnsc
n

)2

≤ C|t− s|2,

and the proof is complete. ¥

We now know, by Jensen’s inequality, that E|W (n)
t −W

(n)
s |2 ≤ C|t − s|. However, for

convergence purposes, we need to be more precise.

Proposition 4.5.2 Fix 0 ≤ s < t. Then

lim
n→∞E|W (n)

t −W (n)
s |2 = κ2(t− s)

where κ is as in Theorem 4.1.3.
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Proof. First assume that s > 0. Write

∆Wn ≡ W
(n)
t −W (n)

s = Sn + εn

where

Sn =
bntc∑

j=bnsc+1

∆F 2±
j

and

εn = (nt− bntc)∆F 2±
bntc+1 − (ns− bnsc)∆F 2±

bnsc+1.

Then write

ES2
n =

bntc∑

j=bnsc+1

E∆F 4
j + 2

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

E
[
∆F 2±

i ∆F 2±
j

]

=
bntc∑

j=bnsc+1

6
π

∆t− 4
π

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

K
(

1
2γj−i

)
∆t + Rn

where K(x) is as in Theorem 4.1.3 and

Rn =
bntc∑

j=bnsc+1

(
E∆F 4

j −
6
π

∆t

)
+2

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

(
E

[
∆F 2±

i ∆F 2±
j

]
+

2
π

K
(

1
2γj−i

)
∆t

)
.

Now, observe that by Hölder’s inequality and Proposition 4.5.1,

E∆W 2
n −ES2

n = E
[
2Snεn + ε2

n

]

= E
[
2∆Wnεn − ε2

n

]

≤ C
√

t− s |Eε2
n|1/2 + Eε2

n.

By (4.2.5), Eε2
n ≤ C∆t → 0 as n →∞. Hence, it suffices to show that ES2

n → κ2(t− s).

Next, observe that

bntc∑

j=bnsc+1

6
π

∆t =
6
π

(bntc − bnsc
n

)
→ 6

π
(t− s)

and
bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

K
(

1
2γj−i

)
∆t =

bntc∑

j=bnsc+2

j−bnsc−1∑

i=1

K
(

1
2γi

)
∆t

=
N∑

j=1

j∑

i=1

1
n

K
(

1
2γi

)
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where N = bntc − bnsc − 1. Thus,

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

K
(

1
2γj−i

)
∆t =

N∑

i=1

N∑

j=i

1
n

K
(

1
2γi

)

=
N∑

i=1

(
N

n
− i

n

)
K

(
1
2γi

)
.

Note that by (4.2.3) and Lemma 4.4.2, ξ ≡ ∑∞
i=1 K(1

2γi) < ∞. Thus,
∑N

i=1
i
nK(1

2γi) → 0

as n →∞. Since N
n → (t− s), we have

bntc∑

j=bnsc+1

6
π

∆t− 4
π

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

K
(

1
2γj−i

)
∆t → 6

π
(t− s)− 4

π
ξ(t− s)

= κ2(t− s)

and it suffices to show that Rn → 0 as n →∞.

Now, by Lemma 4.4.1,

E
[
∆F 2±

i ∆F 2±
j

]
= σ2

i σ
2
j E

[(
∆Fi

σi

)2±(
∆Fj

σj

)2±]

= σ2
i σ

2
j K(ρij)

where

ρij = E

[(
∆Fi

σi

)(
∆Fj

σj

)]

= (σiσj)−1E[∆Fi∆Fj ].

Define a = σ2
i σ

2
j , b = K(ρij), c = 2

π∆t, and d = K(−1
2γj−i). By (4.2.5), |a| ≤ C∆t. By

(4.2.5) and Lemma 4.2.2,

|a− c| =

∣∣∣∣∣σ
2
i

(
σ2

j −
√

2∆t

π

)
+

√
2∆t

π

(
σ2

i −
√

2∆t

π

)∣∣∣∣∣

≤ C
1

t
3/2
i

∆t5/2.

By Lemma 4.4.2, |K(x)−K(y)| ≤ C|x− y|, so that |d| ≤ C and

|b− d| ≤ C

∣∣∣∣ρij +
1
2
γj−i

∣∣∣∣

= C

∣∣∣∣∣
1

σiσj

(
E[∆Fi∆Fj ] +

√
∆t

2π
γj−i

)
−

√
∆t

2π
γj−i

(
1

σiσj
−

√
π

2∆t

)∣∣∣∣∣ .
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Observe that

σiσj

(
1

σiσj
−

√
π

2∆t

)
=

√
π

2∆t

[
σj

σi + σj

(√
2∆t

π
− σ2

i

)
+

σi

σi + σj

(√
2∆t

π
− σ2

j

)]

so that by (4.2.5) and Lemma 4.2.2
∣∣∣∣σ2

i σ
2
j

(
1

σiσj
−

√
π

2∆t

)∣∣∣∣ ≤ C
1

t
3/2
i

∆t2

and, hence, by Lemma 4.2.4,

|a||b− d| ≤ C
1

t
3/2
i

∆t5/2.

Putting it all together gives
∣∣∣∣E

[
∆F 2±

i ∆F 2±
j

]
+

2
π

K
(

1
2γj−i

)
∆t

∣∣∣∣ = |ab− cd|

= |a(b− d) + d(a− c)|

≤ |a||b− d|+ |d||a− c|

≤ C
1

t
3/2
i

∆t5/2.

Since ti > s > 0, this shows that

bntc∑

j=bnsc+2

j−1∑

i=bnsc+1

(
E

[
∆F 2±

i ∆F 2±
j

]
+

2
π

K
(

1
2γj−i

)
∆t

)
→ 0.

Combined with (4.2.4), this shows that Rn → 0.

We have now proved the proposition under the assumption that s > 0. Now assume

s = 0. Let ε ∈ (0, t) be arbitrary. Then by Hölder’s inequality and Proposition 4.5.1,

∣∣∣E|W (n)
t |2 − κ2t

∣∣∣ =
∣∣∣E|W (n)

t −W (n)
ε |2 − κ2(t− ε) + 2E

[
W

(n)
t W (n)

ε

]
− E|W (n)

ε |2 − κ2ε
∣∣∣

≤
∣∣∣E|W (n)

t −W (n)
ε |2 − κ2(t− ε)

∣∣∣ + C(
√

tε + ε).

First let n →∞, then let ε → 0 to complete the proof. ¥

The final lemma in this section shows that the limiting object in Theorem 4.1.3 is

nontrivial.

Lemma 4.5.3 Let κ be as in Theorem 4.1.3. Then κ > 0.
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Proof. By Lemma 4.4.2,

∞∑

i=1

K(1
2γi) ≤ 8

π

∞∑

i=1

1
2
γi + 2

∞∑

i=1

(
1
2
γi

)3

=
4
π

∞∑

i=1

γi +
1
4

∞∑

i=1

γ3
i .

Since γi = f(i − 1) − f(i), where f(x) =
√

x + 1 −√x, we have that
∑∞

i=1 γi = f(0) = 1.

Moreover, by (4.2.3),

∞∑

i=1

γ3
i ≤

∞∑

i=1

1
(
√

2 i3/2)3

=
1

2
√

2

∞∑

i=1

1
i9/2

≤ 1
2
√

2

(
1 +

∫ ∞

1

1
x9/2

dx

)
=

9
√

2
28

.

Thus,

∞∑

i=1

K(1
2γi) ≤ 4

π
+

9
√

2
112

<
4
3

+
9
54

=
3
2
.

Since

κ2 =
4
π

(
3
2
−

∞∑

i=1

K(1
2γi)

)
> 0,

we see that κ > 0. ¥

4.6 Proof of Theorem 4.1.3

By Proposition 4.5.1 and the Kolmogorov-Čentsov Theorem (see Problem 2.4.11 in [17]),

we know that the processes W (n) are tight; it only remains to show the convergence of the

finite dimensional distributions to those of Brownian motion. We will accomplish this in two

steps: (1) we will show that the increments of these processes converge to normal random

variables with the appropriate variances; and, (2) we will show that any process, which is

a subsequential limit of these processes, has independent increments. The primary tool in
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the proofs of these facts will be conditioning and we will make frequent use of the filtration

of σ-algebras

Ft = σ

{∫ ∫

A
dW (r, y) : A ⊂ R× [0, t],m(A) < ∞

}

where m denotes Lebesgue measure on R2. Note that the process Ft is adapted to Ft.

Lemma 4.6.1 If tj−1 ≥ u, then

E|E[∆Fj |Fu]|2 ≤ 2
(tj − u)3/2

∆t2.

Proof. Since the distribution of the process F = F (x) does not depend on x, we may

assume that x = 0. Thus, by (4.1.7), if t ≥ u, then

E[Ft|Fu] =
∫

R

∫ u

0
p(t− r, y) dW (r, y).

Therefore, if t ≥ s ≥ u, then

E|E[Ft − Fs|Fu]|2 =
∫

R

∫ u

0
|p(t− r, y)− p(s− r, y)|2 dr dy.

As in the proof of Lemma 4.2.1,
∫

R

∫ u

0
p(t− r, y)p(s− r, y) dr dy =

1√
2π

∫ u

0

1√
t + s− 2r

dr

=
1√
2π

(|t + s|1/2 − |(t− u) + (s− u)|1/2).

Thus,

E|E[Ft − Fs|Fu]|2 = π−1/2
[√

t−√t− u
]

+π−1/2
[√

s−√s− u
]

−π−1/2
[√

2
(√

t + s−
√

(t− u) + (s− u)
)]

= π−1/2
(√

t +
√

s−√2t + 2s +
√

2t− 2s
)

−π−1/2
(√

t− u +
√

s− u

−
√

2(t− u) + 2(s− u) +
√

2(t− u)− 2(s− u)
)

.

Hence, by (4.2.1),

E|E[Ft − Fs|Fu]|2 = E|Ft − Fs|2 −E|Ft−u − Fs−u|2 (4.6.1)
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and therefore, by (4.2.2),

E|E[Ft − Fs|Fu]|2 ≤
(

1
t3/2

+
1

(t− u)3/2

)
|t− s|2 ≤ 2

(t− u)3/2
|t− s|2,

which completes the proof. ¥

Proposition 4.6.2 Fix 0 ≤ s < t and let W (n) and κ be as in Theorem 4.1.3. Then

W
(n)
t −W (n)

s
d→ κ|t− s|1/2χ

as n →∞, where χ is a standard normal random variable.

Proof. We will prove this proposition by showing that every subsequence has a subsequence

converging in distribution to the given random variable.

Let {nj} be any subsequence. For each n ∈ N, choose m = mn ∈ {nj} such that

mn > mn−1 and mn ≥ n4/(t− s). Write

∆Wm ≡ W
(mn)
t −W (mn)

s = Sm + εm

where

Sm =
bmtc∑

j=bmsc+1

∆F 2±
j

and

εm = (mt− bmtc)∆F 2±
bmtc+1 − (ms− bmsc)∆F 2±

bmsc+1.

Note that by (4.2.5), Eε2
m ≤ C∆t = C/m. Hence, εm → 0 in probability and by the

Converging Together Lemma (see Exercise 2.2.10 in [10]), it will suffice to show that Sm
d→

κ|t− s|1/2χ as n →∞.

Now fix n ∈ N and let µ = m(t− s)/n. For 0 ≤ k < n, define uk = bmsc+ bkµc, and let

un = bmtc. Finally, define

X
(n)
k =

uk∑

j=uk−1+1

∆F 2±
j

so that Sm = X
(n)
1 + · · · + X

(n)
n . We wish to apply the Lindeberg-Feller Theorem (see

Theorem 2.4.1 in [10]) to this triangular array; the problem, of course, is that the X
(n)
k ’s

are not independent.
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Recall Ft from the beginning of this section and let F j denote Ftj . For uk−1+1 ≤ j ≤ uk,

let ∆F̃j = E[∆Fj |Fuk−1 ] and ∆F j = ∆Fj −∆F̃j . Note that by (4.1.7), ∆F j and Fuk−1 are

independent. Now define

X
(n)
k =

uk∑

j=uk−1+1

∆F
2±
j

so that X
(n)
k = X

(n)
k + Y

(n)
k , where

Y
(n)
k =

uk∑

j=uk−1+1

{
(∆F j + ∆F̃j)2± −∆F

2±
j

}
.

We then have Sm = Sn + Tn, where

Sn =
n∑

k=1

X
(n)
k

Tn =
n∑

k=1

Y
(n)
k .

Note that by the Mean Value Theorem, for all x, y ∈ R, there exists θ = θ(x, y) ∈ [0, 1] such

that (x + y)2± − x2± = 2|x + θy|y. Hence,

|(x + y)2± − x2±| ≤ C(|xy|+ |y|2), (4.6.2)

which gives

E|Y (n)
k | ≤ C

uk∑

j=uk−1+1

{
E|∆F j∆F̃j |+ E|∆F̃j |2

}
.

By independence, E|∆Fj |2 = E|∆F j |2 + E|∆F̃j |2, so that E|∆F j |2 ≤ E|∆Fj |2 ≤ C
√

∆t

by (4.2.5). Therefore, by Lemma 4.6.1,

E|Y (n)
k | ≤ C

uk∑

j=uk−1+1

1
(tj − tuk−1

)3/4
∆t5/4

=
C√
m

uk∑

j=uk−1+1

1
(j − uk−1)3/4

=
C√
m

uk−uk−1∑

j=1

1
j3/4

.
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Now, for 1 ≤ k < n,

uk − uk−1 = bkµc − b(k − 1)µc

≤ kµ− (k − 1)µ + 1

= µ + 1.

Also,

un − un−1 = bmtc − bmsc − b(n− 1)µc

≤ m(t− s)− nµ + µ + 2

= µ + 2.

Since µ ≥ 1, this gives uk − uk−1 ≤ Cµ for all 1 ≤ k ≤ n. Since, for a ∈ N,
∑a

j=1 j−3/4 ≤
∫ a
0 x−3/4 dx = Ca1/4, we have

E|Y (n)
k | ≤ C√

m
(uk − uk−1)1/4

≤ C√
m

µ1/4,

and, therefore,

E|Tn| ≤ C
µ1/4n√

m

= C
(t− s)1/4n3/4

m1/4
.

But since m = mn was chosen so that m ≥ n4/(t− s), we have that E|Tn| ≤ C
√

t− s /n1/4.

Thus, Tn → 0 in probability and, again by the Converging Together Lemma, it will suffice

to show that Sn
d→ κ|t− s|1/2χ as n →∞.

We now wish to apply the Lindeberg-Feller Theorem to the triangular array Sn =

X
(n)
1 + · · ·+ X

(n)
n , noting that X

(n)
1 , . . . , X

(n)
n are independent and EX

(n)
k = 0 for all n and

k. The key to checking the hypotheses of Lindeberg-Feller will be to show that

E

∣∣∣∣∣∣

uk∑

j=uk−1+1

∆F
2±
j

∣∣∣∣∣∣

4

≤ C

m2
|uk − uk−1|2. (4.6.3)
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(Compare this with Proposition 4.5.1.) To prove (4.6.3), let τ = uk−1∆t = uk−1/m and

define the process

Gt = Ft+τ − E[Ft+τ |Fτ ].

Since Gt and Fτ are independent, we have for t, s ≥ 0

E|Gt −Gs|2 = E|Ft+τ − Fs+τ |2 − E|E[Ft+τ − Fs+τ |Fτ ]|2

= E|Ft − Fs|2

by (4.6.1). Since G0 = 0, it follows that, as processes, G
d= F . Now observe that

∆F j = ∆Fj − E[∆Fj |Fτ ] = ∆Gj−uk−1
.

Thus, by Proposition 4.5.1,

E

∣∣∣∣∣∣

uk∑

j=uk−1+1

∆F
2±
j

∣∣∣∣∣∣

4

= E

∣∣∣∣∣∣

uk∑

j=uk−1+1

∆G2±
j−uk−1

∣∣∣∣∣∣

4

= E

∣∣∣∣∣∣

uk−uk−1∑

j=1

∆F 2±
j

∣∣∣∣∣∣

4

≤ C|(uk − uk−1)∆t|2

which proves (4.6.3).

We may now verify the conditions of the Lindeberg-Feller Theorem. We check that

n∑

k=1

E|X(n)
k |2 ≤ C

m

n∑

k=1

(uk − uk−1)

= C
bmtc − bmsc

m

≤ C(t− s + 1)

so that by passing to a subsequence, we may assume that
∑n

k=1 E|X(n)
k |2 → σ2 as n → ∞

for some σ ≥ 0. We also check that for all ε > 0,

n∑

k=1

E
[
|X(n)

k |2; |X(n)
k | > ε

]
≤ 1

ε2

n∑

k=1

E|X(n)
k |4 ≤ C

m2ε2

n∑

k=1

|uk − uk−1|2

≤ C
nµ2

m2ε2
= C

(t− s)2

nε2
→ 0
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as n → ∞. Thus, it follows that Sn
d→ σχ as n → ∞ and it remains only to show that

σ = κ|t− s|1/2; but this is immediate from Propositions 4.5.1 and 4.5.2. ¥

This concludes step (1) of our method of proof as outlined at the beginning of this

section. To accomplish step (2), we begin with a lemma.

Lemma 4.6.3 Let d ≥ 2 and X(n) = (X(n)
1 , . . . , X

(n)
d ) ∈ Rd with X(n) d→ X. Suppose that

for all 1 ≤ j ≤ d,

Xj
d= σjχ (4.6.4)

where σj > 0 and χ is a standard normal random variable. If X
(n)
d = X

(n) + Y (n), where

Y (n) → 0 in probability and, for all n, X
(n) and (X(n)

1 , . . . , X
(n)
d−1) are independent, then Xd

and (X1, . . . , Xd−1) are independent.

Proof. Fix x = (x1, . . . , xd) ∈ Rd. Let

Ad = {y ∈ Rd : yi ≤ xi for all 1 ≤ i ≤ d}

Ad−1 = {y ∈ Rd−1 : yi ≤ xi for all 1 ≤ i ≤ d− 1}

A0 = (∞, xd].

Note that by (4.6.4),

P [X ∈ ∂Ad] = P [(X1, . . . , Xd−1) ∈ ∂Ad−1] = P [Xd ∈ ∂A0] = 0.

Thus, since (X(n)
1 , . . . , X

(n)
d−1, X

(n)) = X(n) − (0, . . . , 0, Y (n)) d→ X by the Converging To-

gether Lemma, we have

P [X ∈ Ad] = lim
n→∞P [(X(n)

1 , . . . , X
(n)
d−1, X

(n)) ∈ Ad]

= lim
n→∞P [(X(n)

1 , . . . , X
(n)
d−1) ∈ Ad−1]P [X(n) ∈ A0]

= P [(X1, . . . , Xd−1) ∈ Ad−1]P [Xd ∈ A0]

which shows that Xd and (X1, . . . , Xd−1) are independent. ¥

Proposition 4.6.4 If n = nj is a subsequence such that {W (n)
t }t≥0

d→ {Xt}t≥0, then Xt

has independent increments.
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Proof. Fix 0 ≤ t1 < t2 < · · · < td < s < t. It will be shown that Xt−Xs and (Xt1 , . . . , Xtd)

are independent. Let

X
(n) =

bntc∑

j=bnsc+2

∆F
2±
j

where ∆F j = ∆Fj −∆F̃j , ∆F̃j = E[∆Fj |Fbnsc+1] and let

Y (n) = W
(n)
t −W (n)

s −X
(n)

.

Note that X
(n) and Fbnsc+1 are independent. Hence, X

(n) and (W (n)
t1

, . . . , W
(n)
td

) are inde-

pendent. Thus, by Lemma 4.6.3, it will suffice to show that Y (n) → 0 in probability.

To see this write

Y (n) =
bntc∑

j=bnsc+1

∆F 2±
j + (nt− bntc)∆F 2±

bntc+1 − (ns− bnsc)∆F 2±
bnsc+1 −

bntc∑

j=bnsc+2

∆F
2±
j

so that by (4.2.5), (4.6.2), and Lemma 4.6.1,

E|Y (n)| ≤ C




√

∆t +
bntc∑

j=bnsc+2

E
∣∣∣(∆F j + ∆F̃j)2± −∆F

2±
j

∣∣∣




≤ C




√

∆t +
bntc∑

j=bnsc+2

1
(tj − tbnsc+1)3/4

∆t5/4





=
C√
n



1 +

bntc−bnsc−1∑

j=1

1
j3/4





≤ C√
n

{
1 + n1/4(t− s)1/4

}
→ 0.

and we are done. ¥

We now formally summarize the preceding argument.

Proof of Theorem 4.1.3:

By Lemma 4.5.3, κ > 0. By Proposition 4.5.1 and the Kolmogorov-Čentsov Theorem (see

Problem 2.4.11 in [17]), the family of processes {W (n)
t }n∈N is tight. Thus, every subsequence

has a subsequence that converges in distribution to a continuous stochastic process. For a

given subsequence, call this process Xt. By Propositions 4.6.2 and 4.6.4, Xt
d= κWt, where

Wt is a Brownian motion. Since every subsequence has a subsequence converging to the

same limit process, the entire sequence converges to this limit. ¥
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