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Preface

These notes are for a sequence of graduate courses on probability and stochastic
analysis. The notes are not intended to stand alone, but rather to use with the
textbooks listed in the references. The notes do not contain a proof for every
result. We have included proofs with techniques that are especially important
to beginning students. The student should refer to the corresponding textbook
for proofs that we have omitted.

To get the most out of these notes, the student should have had prior expo-
sure to measure theory. In this case, Part I serves only as a review of measure
and integration. Most of the proofs in this part are omitted. The student may
regard Part I as a reference of results to recall as needed.

It is possible, though, to use these notes without any prior exposure to
measure theory. For such a student, more proofs have been added at the end of
Part I. In this case, the student should at least be proficient in undergraduate
mathematical analysis. This includes, but is not limited to, the following topics:

1. set theory, including relations, equivalence relations, functions, arbitrary
Cartesian products, and projection maps,

2. partial orderings and the well-ordering principle,

3. cardinality, countability, and the Schröder-Bernstein theorem,

4. the extended real number system, supremum, infimum, limit superior, and
limit inferior, and

5. metric spaces, separability, continuity, compactness, total boundedness,
the Bolzano-Weierstrass theorem, and the Heine-Borel theorem.

For a more complete list, see [5, Chapter 0].
In addition to this background, students should also have taken an under-

graduate course in probability. For a review of undergraduate probability, see
[12].
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Chapter 1

Measures

1.1 σ-algebras

If X is a set, we write 2X for the power set of X.
Let X be a nonempty set and M Ă 2X a nonempty collection of subsets of

X. If

• E1, . . . , En P M implies
Ťn

j“1Ej P M, and

• E P M implies Ec P M,

then M is an algebra (or field) on X. If

• E1, E2, . . . P M implies
Ť8

n“1En P M, and

• E P M implies Ec P M,

then M is a σ-algebra (or σ-field) on X.
If M is a σ-algebra, and E1, E2, . . . P M, then

Ş8

n“1En “ p
Ť8

n“1E
c
nqc P M.

The smallest σ-algebra on X is tH, Xu, which is called the trivial σ-algebra.
The largest σ-algebra on X is 2X .

If E P M, define

M|E “ tAX E : A P Mu “ tA P M : A Ă Eu.

Then M|E is a σ-algebra on E (check).

Proposition 1.1. If C “ tMα : α P Au is a nonempty collection of σ-algebras
on X, then

č

αPA

Mα “ tE Ă X : E P Mα for all α P Au

is a σ-algebra.

Proof. Exercise 1.1. l

11



12 CHAPTER 1. MEASURES

Let E Ă 2X . Let C “ tMα : α P Au denote the collection of all σ-algebras
Mα on X such that E Ă Mα. Note that C is nonempty, since 2X P C .
It therefore follows that σpEq :“

Ş

αPA Mα is a σ-algebra. We call σpEq the
σ-algebra generated by E . It is usually described as the smallest σ-algebra
containing E . This description is justified by the following proposition.

Proposition 1.2. If E Ă 2X , then σpEq is the unique σ-algebra such that

(a) E Ă σpEq, and

(b) if G is a σ-algebra on X such that E Ă G, then σpEq Ă G.

Proof. Exercise 1.4. l

1.1.1 Borel σ-algebras

Let X be a set and T Ă 2X . If

• X P T , H P T ,

• U1, . . . , Un P T implies
Şn

j“1 Uj P T , and

• tUα : α P Au Ă T implies
Ť

αPA Uα P T ,

then T is a topology on X and pX, T q is a topological space. A set U P T
is called an open set. A neighborhood of x P X is any U P T such that
x P U . If txnu is a sequence in X and x P X, then we say xn converges to x,
written xn Ñ x, if, for any neighborhood U of x, there exists N P N such that
xn P U whenever n ě N . If pY,Uq is another topological space, then f : X Ñ Y
is continuous if f´1pUq P T for all U P U . We say that f is continuous at
x P X if, for any neighborhood V of fpxq, there exists a neighborhood U of x
such that fpUq Ă V . A function f : X Ñ Y is continuous if and only if it is
continuous at x for all x P X (see [10, Theorem 18.1]). If f is continuous at
x, then fpxnq Ñ fpxq whenever xn Ñ x (see [10, Theorem 21.3]). Unlike in
metric spaces, the converse is not true in general. A partial converse, however,
is provided by Lemma 1.10.

If pX, ρq is a metric space, then the collection of subsets of X which are
open (in the sense of a metric space) forms a topology on X called the metric
topology. Moreover, the definitions of convergence and continuous functions on
a metric space are equivalent to the topological definitions applied to the metric
topology (see [10, Section 20]). A topological space pX, T q is metrizable if
there exists a metric ρ on X such that T is the metric topology for pX, ρq.

If pX, T q is a topological space and X ‰ H, then BX :“ σpT q is called the
Borel σ-algebra on X. A set E P BX is called a Borel set.

The following is in [5, Proposition 1.2].

Proposition 1.3. Consider the following subsets of 2R:

(a) the open intervals: E1 “ tpa, bq : a ă bu,
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(b) the closed intervals: E2 “ tra, bs : a ă bu,

(c) the half-open intervals: E3 “ tpa, bs : a ă bu or E4 “ tra, bq : a ă bu,

(d) the open rays: E5 “ tpa,8q : a P Ru or E6 “ tp´8, aq : a P Ru,

(e) the closed rays: E7 “ tra,8q : a P Ru or E8 “ tp´8, as : a P Ru.

Then BR “ σpEiq for any i P t1, . . . , 8u.

1.1.2 Product σ-algebras

Let tXα : α P Au be an indexed collection of nonempty sets. Let X “
ś

αPAXα

be the Cartesian product of this collection. A typical element of X has the form
x “ pxαqαPA, where xα P Xα for all α. Let πα : X Ñ Xα denote the projection
onto the α-th component. That is, παpxq “ xα.

For each α P A, let Mα be a σ-algebra on Xα. We define

â

αPA

Mα “ σptπ´1
α pEαq : Eα P Mα, α P Auq, (1.1)

which we call the product σ-algebra on X.

The following propositions are from [5, Section 1.2].

Proposition 1.4. If A is countable, then

â

αPA

Mα “ σ

ˆ"

ź

αPA

Eα : Eα P Mα

*˙

.

Proposition 1.5. If, for each α P A, we have Mα “ σpEαq, then

â

αPA

Mα “ σptπ´1
α pEαq : Eα P Eα, α P Auq,

Proposition 1.6. If A is countable and, for each α P A, we have Mα “ σpEαq,
then

â

αPA

Mα “ σ

ˆ"

ź

αPA

Eα : Eα P Eα
*˙

.

Proposition 1.7. Let X1, . . . , Xn be metric spaces and let X “
śn

j“1Xj be

equipped with the product metric. Then
Ân

j“1 BXj
Ă BX . If the Xj’s are

separable, then
Ân

j“1 BXj
“ BX . In particular,

Ân
j“1 BR “ BRn .

Remark 1.8. We will adopt the notation R “ BR and Rn “ BRn .
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1.1.3 The topology of pointwise convergence

Let X be a set and B Ă 2X . If
Ť

BPB B “ X and, whenever B1, B2 P B and
x P B1 XB2, there exists B3 P B such that x P B3 Ă B1 XB2, then B is a basis
for a topology on X.

If B is a basis for a topology on X and

T “

#

ď

APA
A : A Ă B

+

,

then T is a topology on X. Moreover, U P T if and only if for all x P U , there
exists B P B such that x P B Ă U . In particular, this implies that for each
U P T , there exists A Ă B such that U “

Ť

APAA. We call T the topology
generated by B and say that B is a basis for T (see [10, Section 13]).

Let tpXα, Tαq : α P Au be an indexed collection of nonempty topological
spaces and let X “

ś

αPAXα. A set of the form

π´1
α1

pUα1q X ¨ ¨ ¨ X π´1
αn

pUαnq Ă X,

where Uαj P Tαj , is called a cylinder set. If B Ă 2X is the collection of
cylinder sets, then B is a basis for a topology on X. The topology generated
by B is called the product topology (see [10, Section 19]). The product
topology is the unique topology on X that satisfies the following property: if
pY,Uq is a topological space and f : Y Ñ X, then f is continuous if and only
if πα ˝ f : Y Ñ Xα is continuous for all α P A (see [10, Theorem 19.6] and [9,
Theorem 3.37]).

In the product topology, xn Ñ x in X if and only if παpxnq Ñ παpxq in Xα

for all α P A (see [10, Exercise 19.6]).
If A and B are sets, we write AB for the set of all functions from B to A.

Let X be a topological space and T a set. The set XT can be identified with
ś

tPT X and endowed with the product topology. Since fptq “ πtpfq, it follows
that fn Ñ f in the product topology if and only if fnptq Ñ fptq for all t P T .
It is for this reason that the product topology is also called the topology of
pointwise convergence.

We now wish to compare the Borel σ-algebra generated by the product
topology with the product σ-algebra. We will present a theorem giving sufficient
conditions for them to be equal. Before presenting this theorem, we need some
final preliminary definitions.

Let pX, T q be a topological space. Suppose that for all x P X, there exists
a countable set of neighborhoods of x, denoted Bx, such that for any neigh-
borhood U of x, there exists A P Bx with A Ă U . Then we say that A is
first-countable. If there exists B Ă T such that B is countable and B is a
basis for T , then pX, T q is said to be second-countable. Second-countability
implies first-countability (see Exercise 1.7). A metric space is second-countable
if and only if it is separable (see [10, Theorem 30.3(b) and Exercise 30.5(a)]).
Moreover, a countable product of second-countable spaces is second-countable
(see [10, Theorem 30.2]). A sometimes useful result in connection with this
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is that a countable product of metric spaces is metrizable (see [10, Exercise
21.3(b)]).

The following is a generalization of Proposition 1.7.

Theorem 1.9. Let tpXα, Tαq : α P Au be an indexed collection of topological
spaces and let X “

ś

αPAXα, endowed with the product topology. Let BX be
the Borel σ-algebra on X and Bα the Borel σ-algebra on Xα. Then

Â

αPA Bα Ă

BX . If A is countable and pXα, Tαq is second-countable for all α P A, then
Â

αPA Bα “ BX .

Proof. By Proposition 1.5,

â

αPA

Bα “ σptπ´1
α pUαq : Uα P Tα, α P Auq.

Since each π´1
α pUαq is a cylinder set and cylinder sets are open, it follows that

Â

αPA Bα Ă BX .
Now suppose A is countable and pXα, Tαq is second-countable for all α P A.

It will suffice to show that for every open U Ă X, we have U P
Â

αPA Bα. Let
pBα be a countable basis for Xα and let pB be the collection of cylinder sets of
the form

π´1
α1

pUα1
q X ¨ ¨ ¨ X π´1

αn
pUαn

q,

where Uαj
P pBαj

. Then pB is countable and, by the proof of [10, Theorem 30.2],
pB is a basis for the product topology. Note that pB Ă

Â

αPA Bα. Let U Ă X be

open. Then there exists A Ă pB such that U “
Ť

APAA. Since this is a countable
union and each A P A satisfies A P

Â

αPA Bα, it follows that U P
Â

αPA Bα. l

We now provide a useful application of the above theorem. The lemma below
is [10, Theorem 30.1(b)].

Lemma 1.10. Let pX, T q and pY,Uq be topological spaces and f : X Ñ Y .
Suppose X is first-countable and that fpxnq Ñ fpxq whenever xn Ñ x. Then f
is continuous at x.

Theorem 1.11. Let pX, T q be a second-countable topological space (this is the
case, for example, if X is a separable metric space), and let T be a countable
set. Let M “ BX and MT “

Â

tPT BX be the product σ-algebra on XT . Let
pY,Uq be a topological space and G : XT Ñ Y . If Gpfnq Ñ Gpfq whenever
fnptq Ñ fptq for all t P T , then G´1pUq P MT whenever U P U .

Proof. Let us endowXT with the product topology (or the topology of pointwise
convergence). Suppose Gpfnq Ñ Gpfq whenever fnptq Ñ fptq for all t P T . In
other words, Gpfnq Ñ Gpfq whenever fn Ñ f . Since a countable product of
second-countable spaces is second-countable, and second-countability implies
first-countability, Lemma 1.10 implies that G is continuous.

Now let U P U . By the definition of continuity, G´1pUq is open and therefore,
G´1pUq P BXT . But by Theorem 1.9, BXT “ MT . l
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Remark 1.12. As we will see in Section 2.1 (specifically Proposition 2.2),
under the hypotheses of Theorem 1.11, we may conclude that G is “pMT ,BY q-
measurable”.

Exercises

1.1. Prove Proposition 1.1.

1.2. Provide an example of a nonempty family of σ-algebras, C “ tMα : α P

Au, such that

ď

αPA

Mα “ tE Ă X : E P Mα for some α P Au

is not a σ-algebra.

1.3. Prove that ifM1 Ă M2 Ă ¨ ¨ ¨ are σ-algebras, then
Ť8

n“1 Mn is an algebra.

1.4. Prove Proposition 1.2.

1.5. A σ-algebra M is said to be countably generated if there exists a count-
able set C Ă 2X such that M “ σpCq. Prove that R is countably generated.

1.6. Show that every infinite σ-algebra is uncountable.

1.7. Prove that second-countability implies first-countability.

1.2 Measures

Let X be a nonempty set and M a σ-algebra on X. Then pX,Mq is called
a measurable space and the sets E P M are called measurable sets. A
measure on pX,Mq is a function µ : M Ñ r0,8s such that

(i) µpHq “ 0, and

(ii) if tEnu8
n“1 Ă M are disjoint, then

µ

ˆ 8
ě

n“1

En

˙

“

8
ÿ

n“1

µpEnq.

Note that an indexed collection of sets tEnu is disjoint if EnXEm “ H whenever
n ‰ m. Also note that

Ţ

means the same thing as
Ť

, except it indicates that
the sets in the union are disjoint.

Property (ii) is called countable additivity. It implies finite additivity:

(ii1) if tEjunj“1 Ă M are disjoint, then

µ

ˆ n
ě

j“1

Ej

˙

“

n
ÿ

j“1

µpEjq,
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since one can take Ej “ H for j ą n. A function µ : M Ñ r0,8s that satisfies
(i) and (ii1), but not necessarily (ii), is called a finitely additive measure on
pX,Mq.

If µ is a measure on pX,Mq, then pX,M, µq is called a measure space.
If µpXq ă 8, then µ is a finite measure. If there exists tEnu8

n“1 Ă M such
that X “

Ť8

n“1En and µpEnq ă 8 for all n, then µ is a σ-finite measure. If
µpXq “ 1, then µ is called a probability measure. If µpXq “ 0, then we say
µ is trivial. If µpXq ą 0, then µ is nontrivial.

Example 1.13. Let pX,Mq be any measurable space. For E P M, let µpEq “

|E|. That is, µpEq is the number of elements in E. Then µ is a measure on
pX,Mq and is called counting measure.

Example 1.14. Let pX,Mq be any measurable space and fix x0 P X. For
E P M, define µpEq “ 1 if x0 P E and µpEq “ 0 otherwise. Then µ is a measure
on pX,Mq and is called the point mass measure (or Dirac measure) at x0.

The following is in [5, Theorem 1.8].

Theorem 1.15. Let pX,M, µq be a measure space.

(a) (Monotonicity) If E,F P M and E Ă F , then µpEq ď µpF q.

(b) (Subadditivity) If tEnu8
n“1 Ă M, then µp

Ť8

n“1Enq ď
ř8

n“1 µpEnq.

(c) (Continuity from below) If tEnu8
n“1 Ă M and E1 Ă E2 Ă ¨ ¨ ¨ , then

µp
Ť8

n“1Enq “ limnÑ8 µpEnq.

(d) (Continuity from above) If tEnu8
n“1 Ă M and E1 Ą E2 Ą ¨ ¨ ¨ , and

µpE1q ă 8, then µp
Ş8

n“1Enq “ limnÑ8 µpEnq.

Proof. Recall that for any two sets A and B, we have AzB “ AXBc.
For (a), let E,F P M with E Ă F . Since F “ E Z pF zEq, we have

µpF q “ µpEq ` µpF zEq.

Since µpF zEq ě 0, it follows that µpF q ě µpEq.
For (b), let tEnu8

n“1 Ă M. Define F1 “ E1 and, for n ě 2, let

Fn “ Enz

ˆ n´1
ď

j“1

Ej

˙

.

Then tFnu8
n“1 are disjoint,

Ţ8

n“1 Fn “
Ť8

n“1En, and Fn Ă En. Thus,

µ

ˆ 8
ď

n“1

En

˙

“ µ

ˆ 8
ě

n“1

Fn

˙

“

8
ÿ

n“1

µpFnq ď

8
ÿ

n“1

µpEnq,

where the final inequality follows from (a).
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For (c), let tEnu8
n“1 Ă M with E1 Ă E2 Ă ¨ ¨ ¨ . Define tFnu8

n“1 as above.
Then

µ

ˆ 8
ď

n“1

En

˙

“ µ

ˆ 8
ě

n“1

Fn

˙

“

8
ÿ

n“1

µpFnq

“ lim
nÑ8

n
ÿ

j“1

µpFnq “ lim
nÑ8

µ

ˆ n
ě

j“1

Fj

˙

“ lim
nÑ8

µpEnq,

where we have used the fact that
Ţn

j“1 Fj “
Ťn

j“1Ej “ En.
Finally, for (d), let tEnu8

n“1 Ă M with E1 Ą E2 Ą ¨ ¨ ¨ . Define E1
n “ E1zEn.

Then E1
1 Ă E1

2 Ă ¨ ¨ ¨ . Let E “
Ş8

n“1En and E1 “
Ť8

n“1E
1
n. Then, by (c), we

have µpE1q “ limnÑ8 µpE1
nq. Also note that

E1 “

8
ď

n“1

pE1 X Ec
nq “ E1 X

ˆ 8
ď

n“1

Ec
n

˙

“ E1 X

ˆ 8
č

n“1

En

˙c

“ E1zE.

Thus, µpE1zEq “ limnÑ8 µpE1zEnq. Next, since E1 “ E Z pE1zEq, we have
µpE1q “ µpEq ` µpE1zEq. By (a), we have µpEq ď µpE1q ă 8. Therefore, we
may subtract it from both sides, giving µpE1zEq “ µpE1q ´µpEq. Similarly, we
have µpE1zEnq “ µpE1q ´ µpEnq. It follows that

µpE1q ´ µpEq “ µpE1q ´ lim
nÑ8

µpEnq.

Lastly, since µpE1q ă 8, this implies the conclusion of (d). l

Let pX,M, µq be a measure space. If N P M and µpNq “ 0, then N is
called a null set. If something is true for all x P X, except for x in some null
set, then we say the property is true µ-almost everywhere, abbreviated µ-a.e.
For example, if f : X Ñ R, then f “ 0 µ-a.e. means there exists a null set N
such that fpxq “ 0 for all x P N c. When the measure is understood, we drop
the µ and simply write f “ 0 a.e.

A set is called negligible if it is a subset of a null set. A measure space
pX,M, µq is complete if M contains all negligible sets. That is, a complete
measure space has the property that if N P M, µpNq “ 0, and F Ă N , then
F P M. Note that by monotonicity, we necessarily have µpF q “ 0 in this case.

The following is [5, Theorem 1.9].

Theorem 1.16. Let pX,M, µq be a measure space, and let N be the collection
of null sets. That is, N “ tN P M : µpNq “ 0u. Let

M “ tE Y F : E P M and F Ă N for some N P N u.

Then M is a σ-algebra on X and there exists a unique measure µ on pX,Mq

such that

(a) µpEq “ µpEq for all E P M, and

(b) pX,M, µq is a complete measure space.

The measure µ is called the completion of µ, and M is the completion of M
with respect to µ.
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Exercises

1.8. Prove that counting measure, defined in Example 1.13, is a measure.

1.9. Prove that the point mass measure, defined in Example 1.14, is a measure.

1.10. Let X “ R and

M “ tE Ă R : E or Ec is countableu.

Define µ : M Ñ r0,8s by

µpEq “

#

0 if E is countable,

1 if Ec is countable.

Prove that pR,M, µq is a complete measure space.

1.3 Premeasures and outer measures

Let X be a nonempty set and A an algebra on X. A premeasure on pX,Aq is
a function µ0 : A Ñ r0,8s such that

(i) µ0pHq “ 0, and

(ii) if tAnu8
n“1 Ă A are disjoint and

Ţ8

n“1An P A, then

µ0

ˆ 8
ě

n“1

An

˙

“

8
ÿ

n“1

µ0pAnq.

Example 1.17. Let X “ R and let A be the collection of sets of the form

A “

n
ě

j“1

paj , bjs,

where ´8 ď aj ď bj ď 8. (If aj “ bj , we interpret paj , bjs “ H, and if bj “ 8,
we interpret paj , bjs “ paj ,8q.) For any such A, let us define

µ0pAq “

n
ÿ

j“1

pbj ´ ajq.

Then A is an algebra on R and µ0 is a premeasure on pR,Aq. For a proof of
this, see, for example, [5, Proposition 1.15].

Let X be a nonempty set. An outer measure on X is a function µ˚ : 2X Ñ

r0,8s such that

(i) µ˚pHq “ 0,
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(ii) if A Ă B, then µ˚pAq ď µ˚pBq, and

(iii) µ˚p
Ť8

n“1Anq ď
ř8

n“1 µ
˚pAnq.

A set A Ă X is called µ˚-measurable if

µ˚pEq “ µ˚pE XAq ` µ˚pE XAcq,

for all E Ă X.
The following is [5, Proposition 1.10 and Proposition 1.13a].

Proposition 1.18. Let A be an algebra on a nonempty set X, and let µ0 be a
premeasure on pX,Aq. For any E Ă X, define

µ˚pEq “ inf

" 8
ÿ

n“1

µ0pAnq : An P A, E Ă

8
ď

n“1

An

*

. (1.2)

Then µ˚ is an outer measure on X with µ˚|A “ µ0, and every A P A is µ˚-
measurable.

The following theorem is the foundation for the creation of measures such as
Lebesgue measure on the real line. It can be found, for example, in [5, Theorem
1.11].

Theorem 1.19 (Carathéodory’s extension theorem). Let µ˚ be an outer mea-
sure on a nonempty set X, let M˚ be the collection of µ˚-measurable sets, and
let µ “ µ˚|M˚ . Then pX,M˚, µq is a complete measure space.

Remark 1.20. If µ˚ is created from a premeasure according to Proposition
1.18, then σpAq Ă M˚, so we may define µ “ µ˚|σpAq. Then pX,σpAq, µq is a
measure space, but it is not necessarily complete. This gives us a way to take a
premeasure µ0 on pX,Aq, and extend it to a measure µ on pX,σpAqq.

There may, however, be other ways to extend µ0. Suppose ν is another
measure on pX,σpAqq such that ν|A “ µ0. We cannot necessarily conclude that
µ “ ν. However, we can say two things:

(i) For any E P σpAq, we have νpEq ď µpEq, with equality when µpEq ă 8.

(ii) If there exists tAnu8
n“1 Ă A such that X “

Ť8

n“1An and µ0pAnq ă 8 for
all n, then µ “ ν.

If the conditions of (ii) hold, then we say µ0 is a σ-finite premeasure on pX,Aq.
If µ0 is σ-finite, then according to (ii), the measure µ is the unique extension of
µ0 fromA to σpAq. Moreover, if µ0 is σ-finite, then pX,M˚, µq is the completion
of pX,σpAq, µq.

Example 1.21. Continuing Example 1.17, recall the premeasure µ0 we defined
on pR,Aq. Let us define the outer measure µ˚ on R by (1.2). It can then be
shown that for any E Ă R, we have

µ˚pEq “ inf

" 8
ÿ

n“1

pbj ´ ajq : E Ă

8
ď

n“1

paj , bjs

*

.
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Let L be the collection of µ˚-measurable subsets of R, and let λ “ µ˚|L. Accord-
ing to Carathéodory’s extension theorem, pR,L, λq is a complete measure space
with λpAq “ µ0pAq for all A P A. In particular, λppa, bsq “ b ´ a. The mea-
sure λ is called Lebesgue measure, the σ-algebra L is called the Lebesgue
σ-algebra, and the sets E P L are called Lebesgue measurable sets.

It can be shown that σpAq “ R, the Borel σ-algebra on R. Let λ “ λ|R.
Then pR,R, λq is a measure space, although it is not complete. By an abuse of
terminology, the measure λ is also called Lebesgue measure, even though it is
only defined for Borel sets. According to Remark 1.20, Lebesgue measure λ is
the unique measure on pR,Rq that satisfies λppa, bsq “ b ´ a for all half-open
intervals, and pR,L, λq is the completion of pR,R, λq.

As one further abuse of notation, we will typically omit the bar, writing
pR,L, λq instead of pR,L, λq. The reader will often need to rely on context to
determine whether the domain of λ is meant to be L or R.

Exercises

1.11. Let µ˚ be an outer measure on a nonempty set X, and let M˚ be the
collection of µ˚-measurable sets. Suppose tAnu8

n“1 Ă M˚ are disjoint. Prove
that

µ˚

ˆ

E X

ˆ 8
ě

n“1

An

˙˙

“

8
ÿ

n“1

µ˚pE XAnq,

for any E Ă X.

1.4 Borel measures on R
Let X be a topological space. A Borel measure on X is a measure µ on pX,BXq.
The following is [5, Theorem 1.16]. In these notes, “increasing” is synonymous
with “nondecreasing”.

Theorem 1.22. If F : R Ñ R is any increasing, right-continuous function,
then there is a unique Borel measure µF on R such that

µF ppa, bsq “ F pbq ´ F paq,

for all a, b P R with a ă b. If G is another such function, then µF “ µG if and
only if F ´G is constant.

Conversely, if µ is a Borel measure on R that is finite on all bounded sets,
then the function

F pxq “

$

’

&

’

%

µpp0, xsq if x ą 0,

0 if x “ 0,

´µppx, 0sq if x ă 0,

is increasing, right-continuous, and µ “ µF .



22 CHAPTER 1. MEASURES

Remark 1.23. The measure µF is constructed as in Example 1.21, using the
outer measure

µ˚
F pEq “ inf

" 8
ÿ

j“1

pF pbjq ´ F pajqq : E Ă

8
ď

j“1

paj , bjs

*

, (1.3)

for all E Ă R. We then have µF “ µ˚
F |R.

If MF is the collection of all µ˚
F -measurable sets and µF “ µ˚

F |MF
, then

pR,MF , µF q is the completion of pR,R, µF q. As with Lebesgue measure, we
will typically omit the bar and write pR,MF , µF q instead of pR,MF , µF q. The
reader must depend on context to determine whether the domain of µF is R
or MF . The measure µF , in either case, is called the Lebesgue-Stieltjes
measure associated to F .

When F pxq “ x, we have MF “ L, which is the Lebesgue σ-algebra, and
µF “ λ, which is Lebesgue measure.

Equation (1.3) is useful for doing calculations, and it is often helpful to
recognize that we can use open intervals, instead of half-open intervals. This
is often useful when combined with the fact that any open subset of R can be
written as a countable union of disjoint open intervals. The following is [5,
Lemma 1.17].

Lemma 1.24. Let µF be a Lebesgue-Stieltjes measure. Then

µF pEq “ inf

" 8
ÿ

j“1

pF pbjq ´ F pajqq : E Ă

8
ď

j“1

paj , bjq

*

,

for all E P MF .

Another helpful tool in calculating Lebesgue-Stieltjes measures is the follow-
ing, which is [5, Theorem 1.18].

Theorem 1.25. Let µF be a Lebesgue-Stieltjes measure. Then

µF pEq “ inftµF pUq : E Ă U and U is openu, and

µF pEq “ suptµF pKq : K Ă E and K is compactu,

for all E P MF .

Recall that △ denotes the symmetric difference, E △A “ pEzAq Y pAzEq.
The following proposition is an example of the so-called Littlewood’s first

principle of real analysis: Every measurable set is nearly a finite union of inter-
vals. This proposition can be found in [5, Proposition 1.20].

Proposition 1.26. Let µF be a Lebesgue-Stieltjes measure. Let E P MF with
µF pEq ă 8. Then for every ε ą 0, there is a set of the form A “

Ťn
j“1paj , bjq

such that µF pE △Aq ă ε.
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At this point, it is possible to prove that Lebesgue measure behaves as
you would anticipate with respect to translations and dilations. The following
theorem is [5, Theorem 1.21].

Theorem 1.27. If E P L, then

E ` s :“ tx` s : x P Eu P L, and

rE :“ trx : x P Eu P L.

Moreover, λpE ` sq “ λpEq and λprEq “ |r|λpEq.

The previous two results show that Lebesgue measure fits with our intuition
in some rather important ways. However, there are still many counterintuitive
facts about Lebesgue measure that can catch us off guard. An important source
of counterexamples is the Cantor set and the associated Cantor function.

The Cantor set, C, is the set obtained iteratively from r0, 1s by successively
removing the middle third from each remaining subinterval. Informally, we
generate a sequence of sets that begins with

E0 “ r0, 1s,

E1 “ r0, 1{3s Y r2{3, 1s,

E2 “ r0, 1{9s Y r2{9, 1{3s Y r2{3, 7{9s Y r8{9, 1s.

This pattern continues, and we define C “
Ş8

n“0En. For a rigorous definition
of the Cantor set using ternary expansions, see [5, Section 1.5].

The Cantor set is compact. It is also nowhere dense, which means its closure
has empty interior. The Cantor set is totally disconnected, meaning the only
connected subsets of C are single points. Moreover, the Cantor set contains no
isolated points. It can be shown that the Cantor set is uncountable, and also
that λpCq “ 0.

A variant on the Cantor set is something called the generalized Cantor
set. Instead of removing the middle thirds at the n-th stage, we remove the
middle αn-ths, where each αn P p0, 1q. The resulting generalized Cantor set, K,
is compact, nowhere dense, totally disconnected, and uncountable. However, if
tαnu is chosen so that αn Ñ 0 sufficiently fast, then λpKq ą 0. Generalized
Cantor sets can provide examples of nowhere dense sets with positive Lebesgue
measure. For details, see [5, Section 1.5].

The complement of the Cantor set, relative to r0, 1s, is Cc “
Ť8

n“0E
c
n. Note

that

Ec
0 “ H,

Ec
1 “ p1{3, 2{3q,

Ec
2 “ p1{9, 2{9q Y p1{3, 2{3q Y p7{9, 8{9q,

and, in general, Ec
n “

Ţ2n´1
j“1 Ij,n, where I1,n, . . . , I2n´1,n are open intervals,

ordered so that the endpoints of Ij,n are less than the endpoints of Ij`1,n. With
this notation, the Cantor function (or Cantor-Lebesgue function) is the
unique function f : r0, 1s Ñ r0, 1s such that



24 CHAPTER 1. MEASURES

• fpxq “ j2´n for all x P Ij,n, and

• f is continuous.

For a rigorous definition of the Cantor function using ternary expansions, see
[5, Section 1.5]. The Cantor function is an increasing function. Since it is also
continuous, it is a surjection from r0, 1s onto itself. Note that f is constant on
every open subinterval of Cc. Thus, for every x P Cc, we have that f 1pxq exists
and f 1pxq “ 0. Since λpCq “ 0, we have f 1 “ 0 a.e. on r0, 1s. Thus, the Cantor
function is an example of a continuous, nonconstant function whose derivative
is zero almost everywhere.

The Cantor function can be used to construct sets which are Lebesgue mea-
surable, but not Borel measurable. For an example, see [5, Exercise 2.9].

Exercises

1.12. Let µF be a Lebesgue-Stieltjes measure. For x P R, define

F px´q “ lim
yÑx´

F pyq,

which exists, since F is increasing. Prove that

(a) µF ptauq “ F paq ´ F pa´q,

(b) µF pra, bqq “ F pb´q ´ F pa´q,

(c) µF pra, bsq “ F pbq ´ F pa´q, and

(d) µF ppa, bqq “ F pb´q ´ F paq.

1.13. Let E P L with λpEq ą 0. Prove that for any α ă 1, there is an open
interval I such that λpE X Iq ą αλpIq.



Chapter 2

Integration

2.1 Measurable functions

Let X and Y be sets, and let f : X Ñ Y . Recall that if E Ă Y , then

f´1pEq “ tx P X : fpxq P Eu.

Also recall that

f´1

ˆ

ď

αPA

Eα

˙

“
ď

αPA

f´1pEαq,

f´1

ˆ

č

αPA

Eα

˙

“
č

αPA

f´1pEαq,

and f´1pEcq “ pf´1pEqqc.
Now let pX,Mq and pY,N q be measurable spaces. A function f : X Ñ Y is

said to be pM,N q-measurable if f´1pEq P M whenever E P N . The following
propositions are from [5, Section 2.1].

Proposition 2.1. Let pX,Mq, pY,N q, and pZ,Oq be measurable spaces. If
f : X Ñ Y is pM,N q-measurable and g : Y Ñ Z is pN ,Oq-measurable, then
g ˝ f : X Ñ Z is pM,Oq-measurable.

Proof. Exercise 2.1. l

Proposition 2.2. Let pX,Mq and pY,N q be measurable spaces. Suppose N “

σpEq for some E Ă 2Y , and let f : X Ñ Y . Then f is pM,N q-measurable if
and only if f´1pAq P M for all A P E.

Consequently, if X and Y are topological spaces, then every continuous func-
tion f : X Ñ Y is pBX ,BY q-measurable.

Proof. We will just prove the “if” part of the first claim. The remainder of the
proof is Exercise 2.2.

25
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Suppose f´1pAq P M for all A P E . We want to show that f´1pEq P M
for all E P σpEq. Unfortunately, there is no nice way of taking a set E P σpEq

and writing it in terms of sets in E . We therefore employ the following common
proof technique.

Let

L “ tE Ă Y : f´1pEq P Mu.

Suppose tEnu8
n“1 Ă L and let E “

Ť8

n“1En. Then

f´1pEq “ f´1

ˆ 8
ď

n“1

En

˙

“

8
ď

n“1

f´1pEnq.

Since each f´1pEnq P M and M is a σ-algebra, it follows that f´1pEq P M.
Thus, E P L, and we have shown that L is closed under countable unions.

Next, suppose E P L, and note that f´1pEcq “ pf´1pEqqc. Since f´1pEq P

M and M is a σ-algebra, it follows that f´1pEcq P M. Thus, Ec P L, and we
have shown that L is closed under complements.

Since L is closed under countable unions and complements, it follows that
L is a σ-algebra. Moreover, by hypothesis, E Ă L. Since L is a σ-algebra, it
follows that σpEq Ă L. In other words, if E P σpEq, then E P L, which implies
f´1pEq P M. l

The technique in the above proof is very common. In general, there is no
good way to represent a generic set E P σpEq in terms of the generating sets
A P E . (It is possible using something called transfinite induction, but few
people would consider that a “good” way.) So the typical approach is to define
the collection of sets, L, that satisfy the property we wish to prove, and then
show that this collection is a σ-algebra that contains E .

Sometimes, however, it can be difficult to prove that L is a σ-algebra. In
this case, we can use something called the π-λ theorem, which is often used in
probability theory.

To state the theorem, we first need two pieces of terminology. Let X be a
set. Then E Ă 2X is a π-system if it is closed under intersections, meaning
that AXB P E whenever A,B P E . Also, L Ă 2X is a λ-system if the following
three properties hold.

(a) X P L.

(b) If A,B P L and A Ă B, then BzA P L.

(c) If tAnu8
n“1 Ă L and An Ă An`1 for all n P N, then

Ť8

n“1An P L.

The following is [2, Theorem 2.1.2].

Theorem 2.3 (The π-λ theorem). If E is a π-system, L is a λ-system, and
E Ă L, then σpEq Ă L.
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For an example of the π-λ theorem in action, see the proof of Theorem 6.11.
Let pX,Mq be a measurable space and Y a topological space. If f : X Ñ Y is

pM,BY q-measurable, then we will just say f is M-measurable, or we shorten
it further to simply say f is measurable. In other words, we always take
the σ-algebra on the range space to be the Borel σ-algebra, unless otherwise
specified.

For example, if we say that f : R Ñ R is Lebesgue measurable, then it means
that f is pL,Rq-measurable. But if we say that f : R Ñ R is Borel measurable,
then it means that f is pR,Rq-measurable.

Also note that, especially in probability, we will often use the abuse of no-
tation, f P M, to mean that f is M-measurable.

Remark 2.4. Proposition 2.1 shows that the composition of Borel measur-
able functions is Borel measurable. But note that the composition of Lebesgue
measurable functions is not necessarily Lebesgue measurable.

Proposition 2.5. If pX,Mq is a measurable space and f : X Ñ R, then the
following are equivalent:

(a) f is M-measurable.

(b) f´1ppa,8qq P M for all a P R.

(c) f´1pra,8qq P M for all a P R.

(d) f´1pp´8, aqq P M for all a P R.

(e) f´1pp´8, asq P M for all a P R.

Proof. Exercise 2.4. l

Let X be a set and pY,N q a measurable space. Let f : X Ñ Y and define

σpfq :“ tf´1pEq : E P N u.

Then σpfq is a σ-algebra, and f is pσpfq,N q-measurable. Moreover, if M is
another σ-algebra on X such that f is pM,N q-measurable, then σpfq Ă M. In
other words, σpfq is the smallest σ-algebra on X that makes f a measurable
function. We call σpfq the σ-algebra generated by f .

More generally, if tpYα,NαquαPA is a family of measurable spaces, and for
each α P A, we have a function fα : X Ñ Yα, then

σptfα : α P Auq “ σptf´1
α pEαq : Eα P Nα, α P Auq.

This is the σ-algebra generated by the family tfαu, and it is the smallest
σ-algebra on X that makes all of the fα’s measurable.

As an example, take X “
ś

αPA Yα and let fα “ πα be the coordinate
projections. By (1.1), we have σptπα : α P Auq “

Â

αPA Nα. In other words, the
product σ-algebra is just the σ-algebra generated by the coordinate projections.

The following propositions are from [5, Section 2.1].
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Proposition 2.6. Let pX,Mq and tpYα,NαquαPA be measurable spaces. Let
Y “

ś

αPA Yα and N “
Â

αPA Nα. Let πα : Y Ñ Yα be the coordinate projec-
tions. Then f : X Ñ Y is pM,N q-measurable if and only if fα :“ πα ˝ f is
pM,Nαq-measurable for all α P A.

Corollary 2.7. Let pX,Mq be a measurable space and f : X Ñ Rd. Let
f1, . . . , fd be the components of f , so that fpxq “ pf1pxq, . . . , fdpxqq. Then f is
M-measurable if and only if f1, . . . , fd are all M-measurable.

Corollary 2.8. Let pX,Mq be a measurable space and f : X Ñ C. Then f is
M-measurable if and only if Ref and Imf are both M-measurable.

Proposition 2.9. Let pX,Mq be a measurable space and f, g : X Ñ C. If f
and g are both M-measurable, then so are f ` g and fg.

We frequently need to allow our functions to take on the values 8 and ´8.
For this reason, let us introduce the extended real line, R˚ “ r´8,8s. We
equip R˚ with the metric ρpx, yq “ |Apxq ´Apyq|, where Apxq “ tan´1pxq. This
generates a topology on R˚, allowing us to define the Borel σ-algebra, BR˚ . It
can be shown that BR˚ “ tE Ă R˚ : E X R P Ru. We will adopt the notation
R˚ “ BR˚ .

When working in R˚, keep in mind that 8 ´ 8 is undefined. However, we
will adopt the convention that 0 ¨ 8 “ 0.

Proposition 2.10. Let pX,Mq be a measurable space and let f, g : X Ñ R˚ be
M-measurable.

(i) The function fg is M-measurable.

(ii) Fix a P R˚ and define

hpxq “

#

a if fpxq ` gpxq is undefined,

fpxq ` gpxq otherwise.

Then h is M-measurable.

Proof. Exercise 2.6. l

If a, b P R˚, then a _ b “ maxpa, bq and a ^ b “ minpa, bq. The following
propositions are from [5, Section 2.1].

Proposition 2.11. If tfnu is a sequence of R˚-valued measurable functions on
pX,Mq, then the functions supn fn, lim supnÑ8 fn, infn fn, and lim infnÑ8 fn
are all measurable. If fpxq “ limnÑ8 fnpxq exists for all x P X, then f is
measurable.

Corollary 2.12. If f, g : X Ñ R˚ are measurable, then so are f _ g and f ^ g.

Corollary 2.13. If tfnu is a sequence of C-valued measurable functions on
pX,Mq, and fpxq “ limnÑ8 fnpxq exists for all x P X, then f is measurable.
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It is often useful to combine these propositions with the following.

Proposition 2.14. If tfnu is a sequence of R˚-valued measurable functions on
pX,Mq, then tx : limnÑ8 fnpxq existsu is a measurable set.

Proof. Exercise 2.7. l

If f : X Ñ R˚, then the positive part and negative part of f are f` “

f _ 0 and f´ “ p´fq _ 0, respectively. Note that if f is measurable, then so
are f` and f´.

If E Ă X, then the indicator function of E is defined by

1Epxq “

#

1 if x P E,

0 if x R E.

It is easy to verify that 1E is M-measurable if and only if E P M.
A simple function on pX,Mq is an M-measurable function φ : X Ñ C

such that the range of φ is a finite subset of C. Let φ be a simple function
with range ta1, . . . , anu and let Ej “ φ´1pajq. Then the aj ’s are distinct,
the collection tEju is a partition of X, and we can write φ “

řn
j“1 aj1Ej

.
This expression is called the standard representation of φ. Note that there
may be a j such that aj “ 0, but this term is still included in the standard
representation.

We say that fn Ñ f pointwise if fnpxq Ñ fpxq for all x P X. An essential
part of the theory of integration is that a function is measurable if and only if it
is a pointwise limit of simple functions. This is formally stated in the following
theorem, which is [5, Theorem 2.10].

Theorem 2.15. Let pX,Mq be a measurable space.

(a) If f : X Ñ r0,8s is measurable, then there exists a sequence tφnu of
simple functions with 0 ď φ1 ď φ2 ď ¨ ¨ ¨ ď f and satisfying φn Ñ f
pointwise and φn Ñ f uniformly on any set on which f is bounded.

(b) If f : X Ñ C is measurable, then there exists a sequence tφnu of simple
functions with 0 ď |φ1| ď |φ2| ď ¨ ¨ ¨ ď |f | and satisfying φn Ñ f pointwise
and φn Ñ f uniformly on any set on which f is bounded.

With this result in hand, we can present a result which is closely related to
the π-λ theorem.

Theorem 2.16 (monotone class theorem). Let X be a set and P Ă 2X a
π-system such that X P P. Let H be a collection of functions from X to R
satisfying:

(i) If A P P, then 1A P H.

(ii) If f, g P H and c P R, then f ` g P H and cf P H.
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(iii) If fn P H are nonnegative and there exists a bounded f such that fn Ò f ,
then f P H.

Then H contains all bounded functions that are σpPq-measurable.

Proof. Let L “ tE : 1E P Hu. Since X P P, (ii) and (iii) imply that L is a
λ-system. Condition (i) implies that P Ă L. By the π-λ theorem, σpPq Ă L.
Therefore, by (ii), H contains all simple, σpPq-measurable functions.

Let f be bounded and σpPq-measurable. By considering f` and f´, we
may assume without loss of generality that f is nonnegative. Choose simple,
σpPq-measurable functions φn such that 0 ď φn Ò f . As above, each φn P H.
And so by (iii), f P H. l

The last two results of this section deal with complete measure spaces. The
proof of the first is an exercise. The second is [5, Proposition 2.12].

Proposition 2.17. The following implications are valid if and only if the mea-
sure space pX,M, µq is complete.

(a) If f is measurable and f “ g µ-a.e., then g is measurable.

(b) If fn is measurable for each n P N and fn Ñ f µ-a.e., then f is measurable.

Proof. Exercise 2.8. l

Proposition 2.18. Let pX,M, µq be a measure space and pX,M, µq its com-
pletion. If f is an M-measurable function, then there exists an M-measurable
function g such that f “ g µ-a.e.

Proposition 2.11 and Theorem 2.15 together show that a real-valued function
is measurable if and only if it can be written as the pointwise limit of simple
functions. The restriction that these functions be real (or extended real, or
complex) is not necessary. This is in fact true for any separable metric space.

If pX,Mq is a measurable space and pM,ρq is a metric space, then an M-
valued simple function is a measurable function f : X Ñ M with a finite
range.

Theorem 2.19. If M is totally bounded and f : X Ñ M is measurable, then
there exists a sequence of M -valued simple functions φn such that φn Ñ f
uniformly.

Proof. Let n P N. Choose y1, . . . , ympnq P M such that
Ťmpnq

j“1 B1{npyjq Ą M .
Let

Aj,n “ B1{npyjqz

j´1
ď

k“1

B1{npykq

and Ej “ f´1pAj,nq P M. Define φn “
řmpnq

j“1 yj1Ej
.

Let ε ą 0. Choose N P N such that 1{N ă ε. Let n ě N and let x P X.
Choose j P t1, . . . ,mpnqu such that fpxq P Aj,n. Then

ρpfpxq, yjq “ ρpfpxq, φnpxqq ă 1{n ă ε,

which shows that φn Ñ f uniformly. l
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Corollary 2.20. If M is separable and f : X Ñ M is measurable, then there
exists a sequence of M -valued simple functions φn such that φn Ñ f pointwise.

Proof. By [13, p. 182], a metric space is separable if and only if it is homeomor-

phic to a totally bounded metric space. Let pĂM, rρq be totally bounded and let

ψ :M Ñ ĂM be a homeomorphism. Choose ĂM -valued simple functions rφn such
that rφn Ñ ψ ˝ f uniformly. Let φn “ ψ´1 ˝ rφn. Then φn are M -valued simple
functions with φn Ñ f pointwise. l

Theorem 2.21. Let M be separable and fn : X Ñ M a sequence of measurable
functions. If fn Ñ f pointwise, then f is measurable.

Proof. Let tqku be a countable dense set inM . Let U Ă M be open. Let x P X.
Suppose fpxq P U . Choose r P Q X p0,8q such that B2rpfpxqq Ă U . Choose
n such that qk P Br{2pfpxqq. Note that Brpqkq Ă B3r{2pfpxqq Ă U . Also note
that fpxq P Br{2pqkq, so there exists N P N such that for all n ě N , we have
fnpxq P Br{2pqkq.

Let S “ tpr, kq P Q ˆ N : r ą 0, Brpqkq Ă Uu. We have shown here that if
fpxq P U , then there exists pr, kq P S and N P N such that for all n ě N , we
have fnpxq P Br{2pqkq. In other words,

f´1pUq Ă
ď

pr,kqPS

8
ď

N“1

8
č

n“N

f´1
n pBr{2pqkqq.

Conversely, if there exists pr, kq P S and N P N such that for all n ě N , we
have fnpxq P Br{2pqkq, then ρpfpxq, qkq ď r{2, so fpxq P Brpqkq Ă U . Hence,

f´1pUq “
ď

pr,kqPS

8
ď

N“1

8
č

n“N

f´1
n pBr{2pqkqq.

Since S is countable and each fn is measurable, it follows that f´1pUq P M,
and so f is measurable. l

More generally, this last result is true whenM is a second countable, regular
topological space. See https://math.stackexchange.com/q/2587155.

It can sometimes be helpful to combine Theorem 2.21 with the following.

Theorem 2.22. Let M be complete and separable, and fn : X Ñ M a se-
quence of measurable functions. Then E “ tx P X : limnÑ8 fnpxq existsu is
measurable.

Proof. If M is complete, then x P E if and only if tfnpxqu8
n“1 is Cauchy. In

other words, x P E if and only if, for all ε ą 0, there exists N P N such that for
all n,m ě N , we have ρpfnpxq, fmpxqq ă ε. Since it suffices that this holds for
ε of the form 1{k, this means that

E “

8
č

k“1

ď

NPN

č

n,měN

tx P X : ρpfnpxq, fmpxqq ă 1{ku.

https://math.stackexchange.com/q/2587155
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Define gn,m : X Ñ M ˆM by gn,mpxq “ pfnpxq, fmpxqq, so that the above may
be rewritten as

E “

8
č

k“1

ď

NPN

č

n,měN

pρ ˝ gn,mq´1pr0, 1{kqq.

By Proposition 2.6, the functions gn,m are pM,BM b BM q-measurable. By
Theorem 1.9, we have BM b BM “ BMˆM . In general, a metric is a continuous
function, so it follows that ρ : M ˆ M Ñ r0,8q is BMˆM -measurable. Thus,
ρ ˝ gn,m is measurable, which implies E is measurable. l

Exercises

2.1. Prove Proposition 2.1.

2.2. Complete the proof of Proposition 2.2.

2.3. Let f and g be measurable functions from a measurable space pX,Mq to
R. Let E P M and define h : X Ñ R by

hpxq “

#

fpxq if x P E,

gpxq if x P Ec.

Prove that h is measurable.

2.4. Prove Proposition 2.5.

2.5. Let X be a set and pY,N q a measurable space, with N “ σpEq for some
E Ă 2Y . Let f : X Ñ Y and show that σpfq “ σptf´1pAq : A P Euq.

2.6. Prove Proposition 2.10.

2.7. Prove Proposition 2.14.

2.8. Prove Proposition 2.17.

2.2 Integration of nonnegative functions

Let pX,M, µq be a measure space and let φ be a nonnegative simple function
with standard representation φ “

řn
j“1 aj1Ej

. Then we define the integral of
φ with respect to µ to be

ż

φdµ “

n
ÿ

j“1

ajµpEjq.

Note that
ş

φdµ P r0,8s. When it helps to explicitly display the argument of
φ, we will write

ż

φpxqµpdxq “

ż

φdµ.
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Other notation for the integral includes
ş

φ and
ş

φpxq dµpxq.
If A P M, then φ1A is also a nonnegative simple function, and we define

ż

A

φdµ “

ż

φ1A dµ.

Note, then, that
ş

X
φdµ “

ş

φdµ.
All of these notational conventions will also apply to integrals of more general

functions, which we will be defining shortly.
If f : X Ñ r0,8s is measurable, then we define

ż

f dµ “ sup

"
ż

φdµ : φ is simple and 0 ď φ ď f

*

.

It can be shown that this definition agrees with the previous definition when f
is simple.

The following results are all contained in [5, Section 2.2].

Proposition 2.23. Let f, g : X Ñ r0,8s be measurable.

(a) If c ě 0, then
ş

cf dµ “ c
ş

f dµ.

(b)
ş

pf ` gq dµ “
ş

f dµ`
ş

g dµ.

(c) If f ď g a.e., then
ş

f dµ ď
ş

g dµ.

(d) If f “ g a.e., then
ş

f dµ “
ş

g dµ.

(e)
ş

f dµ “ 0 if and only if f “ 0 a.e.

(f) If
ş

f dµ ă 8, then f ă 8 a.e.

Theorem 2.24 (Monotone convergence theorem). Let tfnu8
n“1 be a sequence

of measurable functions from X to r0,8s. Suppose that for each n P N, we have
fn ď fn`1 a.e. Also suppose fn Ñ f a.e. for some measurable function f .
Then

lim
nÑ8

ż

fn dµ “

ż

lim
nÑ8

fn dµ “

ż

f dµ.

Theorem 2.25 (Fatou’s lemma). Let tfnu8
n“1 be a sequence of measurable

functions from X to r0,8s. Then

ż

lim inf
nÑ8

fn dµ ď lim inf
nÑ8

ż

fn dµ.

Remark 2.26. To remember the direction of the inequality in Fatou’s lemma,
keep in mind the following example. Define fn : R Ñ r0,8s by fn “ n1p0,1{nq.
Recall that λ denotes Lebesgue measure. Then

ş

fn dλ “ 1 for all n, but
ş

lim fn dλ “ 0, since fn Ñ 0 pointwise.
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Exercises

2.9. Let pX,M, µq be a measure space and let f : X Ñ r0,8s be measurable.
Define ν : M Ñ r0,8s by νpEq “

ş

E
f dµ. Prove that ν is a measure on pX,Mq

and that
ż

g dν “

ż

gf dµ, (2.1)

for all measurable g : X Ñ r0,8s. (Hint: Use Theorem 2.15.)
Remark: We often use the shorthand dν “ f dµ to indicate that ν is defined

by νpEq “
ş

E
f dµ. This shorthand also reminds of the above formula for

transforming integrals.

2.10. Let tfnu be a sequence of M-measurable functions from X to r0,8s. Let
f “

ř8

n“1 fn. Show that f is well-defined and measurable, and that

8
ÿ

n“1

ż

fn dµ “

ż 8
ÿ

n“1

fn dµ “

ż

f dµ.

2.11. Let tfnu be a sequence of M-measurable functions from X to r0,8s.
Assume for each n P N, we have fn ě fn`1 a.e. Also assume

ş

f1 dµ ă 8. Prove
that

lim
nÑ8

ż

fn dµ “

ż

lim
nÑ8

fn dµ.

2.12. Let f : X Ñ r0,8s be M-measurable with
ş

f dµ ă 8. Prove that for
each ε ą 0, there exists E P M such that µpEq ă 8 and

ż

E

f dµ ą

ż

f dµ´ ε.

2.3 General integration

Let pX,M, µq be a measure space. If f : X Ñ R˚ is measurable, then f` and
f´ are both measurable and nonnegative, and we define

ż

f dµ “

ż

f` dµ´

ż

f´ dµ,

provided at least one of the integrals on the right-hand is finite. We say that f
is integrable if

ş

|f | dµ ă 8. Since |f | “ f` ` f´, we have that f is integrable
if and only if

ş

f dµ exists and is real.
If g : X Ñ C is measurable, then we say g is integrable if

ş

|g| dµ ă 8. Since
|g| ď |Reg| ` |Img| ď 2|g|, it follows that g is integrable if and only if both Reg
and Img are integrable. In this case, we define

ż

g dµ “

ż

pRegq dµ` i

ż

pImgq dµ.
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Note that if f : X Ñ R˚ is integrable, then |f | ă 8 a.e., so there exists
g : X Ñ R such that f “ g a.e. Since R Ă C, we can regard g as a map from
X to C. Therefore, when talking about integrable functions, we will generally
assume they are complex-valued, unless otherwise specified.

More generally, if E P M, we say that f is integrable on E if
ş

E
|f | dµ ă 8.

The proof of the following proposition can be found in [5, Section 2.3].

Proposition 2.27. Let f, g : X Ñ C be integrable, and let a, b P C.

(a) af ` bg is integrable and
ş

paf ` bgq dµ “ a
ş

f dµ` b
ş

g dµ.

(b) |
ş

f dµ| ď
ş

|f | dµ.

(c) The following are equivalent:

(i)
ş

E
f dµ “

ş

E
g dµ for all E P M.

(ii)
ş

|f ´ g| dµ “ 0.

(iii) f “ g a.e.

We can define an equivalence relation on the set of integrable functions f :
X Ñ C, where f and g are equivalent if f “ g a.e. We then define L1pX,M, µq

to be the set of equivalence classes under this relation. More specifically, if
f : X Ñ C is integrable, then rf s P L1pX,M, µq, where rf s “ tg : f “ g a.e.u.
By the previous proposition, the value of

ş

E
g dµ is the same for all g P rf s. In

other words, we can change a function on a null set, and this will not affect the
integral of this function over any measurable set.

Instead of writing L1pX,M, µq, we will frequently abuse notation and drop
one or more of X, M, and µ. We will also abuse notation and write f P

L1pX,M, µq when what is meant is rf s P L1pX,M, µq.
It is easy to check that L1 is a normed vector space over C with norm

}rf s}1 “
ş

|f | dµ. (The aforementioned equivalence relation is needed to ensure
that }rf s}1 “ 0 implies rf s “ r0s.) Again, we usually abuse notation by writing
}f}1 “

ş

|f | dµ. The norm on L1 induces a metric, so that the distance between
f and g in L1 is }f ´ g}1. Convergence in this metric is called convergence in
L1. That is, fn Ñ f in L1 means that }fn ´ f}1 Ñ 0 as n Ñ 8.

The following two theorems can be found in [5, Section 2.3].

Theorem 2.28 (The dominated convergence theorem). Let tfnu8
n“1 be a se-

quence in L1pX,M, µq. Suppose there exists a measurable function f such that
fn Ñ f a.e. Also suppose there exists g P L1 such that for each n P N, we have
|fn| ď g a.e. Then f P L1 and

lim
nÑ8

ż

fn dµ “

ż

f dµ.

Theorem 2.29 (A generalized dominated convergence theorem). Let tfnu8
n“1

be a sequence in L1pX,M, µq. Suppose there exists f P L1 such that fn Ñ f
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a.e. Also suppose there exist gn, g P L1 such that gn Ñ g a.e.,
ş

gn dµ Ñ
ş

g dµ,
and for each n P N, we have |fn| ď gn a.e. Then

lim
nÑ8

ż

fn dµ “

ż

f dµ.

The following result is part of [5, Theorem 2.26]. It is an example of the so-
called Littlewood’s second principle of real analysis: Every integrable function
is nearly continuous.

Theorem 2.30. Let µF be a Lebesgue-Stieltjes measure on pR,MF q. Let f P

L1pµF q and let ε ą 0. Then there exists a continuous g : R Ñ C that vanishes
outside a bounded interval such that }f ´ g}1 ă ε.

The next theorem is [5, Theorem 2.27]. It gives criteria for differentiation
under the integral. The proof uses the dominated convergence theorem. Varia-
tions on this theorem can also be found in [2, Section A.5].

Theorem 2.31. Let pX,M, µq be a measure space and ´8 ă a ă b ă 8. Let
f : X ˆ ra, bs Ñ C and suppose that fp¨, tq is integrable for each t P ra, bs. Let

F ptq “

ż

X

fpx, tqµpdxq.

(a) Suppose there exists g P L1pµq such that |fpx, tq| ď gpxq for all x and t. If,
for every x P X, we have fpx, tq Ñ fpx, t0q as t Ñ t0, then F ptq Ñ F pt0q

as t Ñ t0. In particular, if fpx, ¨q is continuous for each x P X, then F is
continuous.

(b) Suppose the partial derivative Btfpx, tq exists for all x and t. If there
exists g P L1pµq such that |Btfpx, tq| ď gpxq for all x and t, then F is
differentiable and

F 1ptq “
d

dt

ż

X

fpx, tqµpdxq “

ż

X

Btfpx, tqµpdxq.

A special case of the following theorem can be found in [2, Theorem 1.6.9].

Theorem 2.32. Let pX,M, µq be a measure space, and pS,Sq a measurable
space. Let h : X Ñ S be pM,Sq-measurable and let f : S Ñ C be S-measurable.
If either f ˝ h is nonnegative or f ˝ h P L1pµq, then

ż

X

f ˝ h dµ “

ż

S

f dpµ ˝ h´1q.

Remark 2.33. Since h : X Ñ S is pM,Sq-measurable, it follows that h´1 is a
function from S to M. Thus µ ˝ h´1 is a function from S to r0,8s, and it can
be shown that this function is a measure on pS,Sq.
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Proof of Theorem 2.32. Let us first assume that f “ 1B , where B P S. Then
ż

X

f ˝ h dµ “

ż

X

1Bphpxqqµpdxq “

ż

X

1ty:hpyqPBupxqµpdxq

“

ż

X

1h´1pBq dµ “ µph´1pBqq.

On the other hand,

ż

S

f dpµ ˝ h´1q “

ż

S

1B dpµ ˝ h´1q “ pµ ˝ h´1qpBq “ µph´1pBqq,

and so the result holds. By linearity, the result also holds whenever f is a simple
function.

Now suppose f ˝ h is nonnegative. In this case, f ˝ h “ f` ˝ h, so without
loss of generality, we may assume f is nonnegative. Choose simple φn such that
0 ď φn Ò f pointwise. Then 0 ď φn ˝ h Ò f ˝ h pointwise, and so by monotone
convergence,

ż

X

f ˝ h dµ “ lim
nÑ8

ż

X

φn ˝ h dµ “ lim
nÑ8

ż

S

φn dpµ ˝ h´1q “

ż

S

f dpµ ˝ h´1q,

and the result holds for all f ě 0.
Finally, assume f ˝ h P L1pµq. Since Repf ˝ hq “ pRefq ˝ h and Impf ˝ hq “

pImfq ˝ h, we may assume without loss of generality that f is real-valued. In
this case, we have that

ż

X

f ˝ h dµ “

ż

X

pf ˝ hq` dµ´

ż

X

pf ˝ hq´ dµ,

and both integrals are finite. Since pf ˝ hq` “ f` ˝ h and pf ˝ hq´ “ f´ ˝ h, it
follows from the result for nonnegative functions that

ż

X

f ˝ h dµ “

ż

S

f` dpµ ˝ h´1q ´

ż

S

f´ dpµ ˝ h´1q,

and both integrals are finite. Thus, f P L1pµ ˝ h´1q, and

ż

X

f ˝ h dµ “

ż

S

f dpµ ˝ h´1q,

which finishes the proof. l

Remark 2.34. The technique used in the above proof is extremely common in
the theory of measure and integration. The result is proved in four stages. First,
it is proved for indicator functions, then for simple functions by linearity, then
for nonnegative functions by monotone convergence, and finally for integrable
functions by considering the positive and negative parts. This proof technique
is a reflection of the manner in which the integral is defined.
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If f P L1pR,L, λq, then
ş

f dλ is called the Lebesgue integral of f . The
Lebesgue integral is a generalization of the Riemann integral. If a function f
is Riemann integrable on a bounded interval ra, bs, then f1ra,bs P L1pλq and
ş

ra,bs
f dλ agrees with the value of the Riemann integral of f over ra, bs. Since

λptauq “ 0, it does not matter whether we integrate over ra, bs or pa, bs. We will
henceforth adopt the notation that

ż b

a

fpxq dx “

ż

pa,bs

f dλ.

While it is true that the Lebesgue integral can handle a larger class of integrands
than the Riemann integral, the real power of the Lebesgue integral comes from
its associated convergence theorems: monotone convergence, Fatou’s lemma,
and dominated convergence. For a detailed discussion of the connection between
the Riemann and Lebesgue integrals, see [5, Section 2.3].

Remark 2.35. Suppose µ is counting measure on pN, 2Nq and f P L1pµq. Then
f : N Ñ C and

ş

|f | dµ ă 8. If we write fn instead of fpnq, then we have
ş

|f | dµ “
ř8

n“1 |fn| and
ş

f dµ “
ř8

n“1 fn. In other words, L1pµq is the space
of absolutely convergent series, and the integral is just the sum. In this way, we
can apply monotone convergence, Fatou’s lemma, and dominated convergence
to infinite series.

Remark 2.36. Let txαuαPA be a (possibly uncountable) collection of extended
real numbers. Suppose xα ě 0 for all α. Then we define

ÿ

αPA

xα “ sup

"

ÿ

αPF

xα : F Ă A and F is finite

*

.

It can be shown that if S “ tα P A : xα ą 0u is uncountable, then
ř

αPA xα “ 8.
Of course, if S if finite, then

ř

αPA xα “
ř

αPS xα. On the other hand, if S is
countably infinite, and g : N Ñ S is any bijection, then

ÿ

αPA

xα “ lim
nÑ8

n
ÿ

j“1

xgpjq.

In other words, this definition of summation agrees with the usual definition of
an infinite series.

Let us now drop the assumption that each xα is nonnegative, and assume
instead that

ř

αPA |xα| ă 8. Then S “ tα P A : xα ‰ 0u is countable. If
S is finite, then we define

ř

αPA xα “
ř

αPS xα. Assume S is countably in-
finite and let g : N Ñ S be a bijection. Then the series

ř8

j“1 xgpjq is abso-
lutely convergent, and its sum does not depend on g. We can therefore define
ř

αPA xα “
ř8

j“1 xgpjq.

Let X be any set, let µ be counting measure on pX, 2Xq, and let f : X Ñ C.
Then f is µ-integrable if and only if

ř

xPX |fpxq| ă 8, and in this case, we have
ş

f dµ “
ř

xPX fpxq.
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Remark 2.37. There are a number of wonderful exercises at the end of [5,
Section 2.3]. Some involve proving general, abstract results, and some involve
calculations with specific integrals and series. These exercises are an excellent
resource for reviewing.

2.4 Modes of convergence

Let pX,M, µq be a measure space, tfnu a sequence of C-valued functions on X,
and f : X Ñ C.

As usual, we say fn Ñ f uniformly if supxPX |fnpxq ´ fpxq| Ñ 0 as n Ñ 8.
As defined earlier, fn Ñ f pointwise if, for all x P X, we have fnpxq Ñ fpxq as
n Ñ 8. We also saw earlier that fn Ñ f a.e. if there exists a null set N such
that, for all x P N c, we have fnpxq Ñ fpxq.

Uniform convergence implies pointwise convergence, and pointwise conver-
gence implies a.e. convergence.

We also saw that fn Ñ f in L1 if
ş

|fn ´ f | dµ Ñ 0 as n Ñ 8. Another
important mode of convergence is convergence in measure. We say that fn Ñ f
in measure as n Ñ 8 if, for every ε ą 0,

lim
nÑ8

µptx : |fnpxq ´ fpxq| ě εuq “ 0.

The following results can be found in [5, Section 2.4].

Proposition 2.38. If fn Ñ f in L1, then fn Ñ f in measure.

Proposition 2.39. If fn Ñ f in measure, then there exists a subsequence tfnj
u

such that fnj
Ñ f a.e.

Proposition 2.40. If µpXq ă 8 and fn Ñ f a.e., then fn Ñ f in measure.

Exercises

2.13. Let pX,M, µq be a finite measure space and let L0pX,M, µq denote the
space of measurable f : X Ñ C. (As with L1, this space actually consists of
equivalence classes, where two functions are equivalent if they are equal a.e.)
For f, g P L0, define

ρpf, gq “

ż

|f ´ g|

1 ` |f ´ g|
dµ.

Prove that ρ is a metric on L0 and fn Ñ f in this metric if and only if fn Ñ f
in measure.

2.14. Suppose fn Ñ f in measure and gn Ñ g in measure.

(a) Prove that fn ` gn Ñ f ` g in measure.

(b) Prove that if µpXq ă 8, then fngn Ñ fg in measure.
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(c) Give an example to show that the conclusion of (b) can be false when
µpXq “ 8.

2.15. Let f P L1pX,M, µq. Prove that for all ε ą 0, there exists δ ą 0 such
that

ż

E

|f | dµ ă ε,

whenever µpEq ă δ.

2.5 Useful inequalities

Let a, b P R˚ with a ă b. A function φ : pa, bq Ñ R is convex if

φpλx` p1 ´ λqyq ď λφpxq ` p1 ´ λqφpyq,

for all λ P p0, 1q and x, y P pa, bq.
The following is [2, Theorem 1.5.1], as well as [5, Exercise 3.42(d)].

Theorem 2.41 (Jensen’s inequality). Let pX,M, µq be a measure space with
µpXq “ 1. Suppose f : X Ñ pa, bq is integrable, and φ : pa, bq Ñ R is convex.
Then

ş

φ ˝ f dµ exists, and

φ

ˆ
ż

f dµ

˙

ď

ż

φ ˝ f dµ.

Corollary 2.42. Let pX,M, µq be a finite, nontrivial measure space. Suppose
f : X Ñ pa, bq is integrable, and φ : pa, bq Ñ R is convex. Let c “ µpXq P p0,8q.
Then

φ

ˆ
ż

f dµ

˙

ď
1

c

ż

φpcfpxqqµpdxq,

where the integral on the right-hand side exists.

Proof. Let ν “ c´1µ and ψpxq “ φpcxq. Then νpXq “ 1 and ψ is convex, so by
Jensen’s inequality,

φ

ˆ
ż

f dµ

˙

“ ψ

ˆ
ż

f dν

˙

ď

ż

ψpfpxqq νpdxq “
1

c

ż

φpcfpxqqµpdxq,

where the integral on the right-hand side exists. l

Let pX,M, µq be a measure space. If f : X Ñ C is measurable and p P

p0,8q, then we define

}f}p “

ˆ
ż

|f |p dµ

˙1{p

.

We let LppX,M, µq denote the set of all functions f such that }f}p ă 8. As
with L1, we identify any two functions that are equal almost everywhere.

When dealing with Lp spaces, it is often helpful to remember the inequality,

|a` b|p ď p2p|a| _ |b|qqp “ 2pp|a|p _ |b|pq ď 2pp|a|p ` |b|pq.

The following is [2, Exercise 1.5.3], as well as [5, Theorem 6.5].
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Theorem 2.43 (Minkowski’s inequality). If p P r1,8q and f, g P Lp, then

}f ` g}p ď }f}p ` }g}p.

Using Minkowski’s inequality, it is easy to check that } ¨ }p is a norm on Lp

when p ě 1. The norm on Lp induces a metric, so that the distance between f
and g in Lp is }f ´ g}p. Convergence in this metric is called convergence in
Lp. That is, fn Ñ f in Lp means that }fn ´f}p Ñ 0 as n Ñ 8. By [5, Exercise
6.9], if fn Ñ f in Lp for some p P r1,8q, then fn Ñ f in measure.

By induction, Minkowski’s inequality extends to finite sums, so that

›

›

›

›

n
ÿ

j“1

fj

›

›

›

›

p

ď

n
ÿ

j“1

}fj}p,

whenever p P r1,8q and fj P Lp. It is frequently useful to note, however, that
it also extends to integrals.

The following is [5, Theorem 6.19].

Theorem 2.44 (Minkowski’s inequality for integrals). Suppose pX,M, µq and
pY,N , νq are σ-finite measure spaces.

(a) If f : X ˆ Y Ñ r0,8s is M b N -measurable and p P r1,8q, then

›

›

›

›

ż

fp¨, yq νpdyq

›

›

›

›

p

ď

ż

}fp¨, yq}p νpdyq. (2.2)

(b) Let f : X ˆ Y Ñ C be M b N -measurable and p P r1,8q. Assume that
fp¨, yq P Lppµq for ν-a.e. y, and that y ÞÑ }fp¨, yq}p is in L1pνq. Then
fpx, ¨q P Lppνq for µ-a.e. x,

ş

fp¨, yqνpdyq P Lppµq, and (2.2) holds.

Remark 2.45. Note that

ˆ
ż

ˇ

ˇ

ˇ

ˇ

ż

fpx, yq νpdyq

ˇ

ˇ

ˇ

ˇ

p

µpdxq

˙1{p

ď

ż
ˆ

ż

|fpx, yq|p µpdxq

˙1{p

νpdyq

is equivalent to (2.2).

If f : X Ñ C is measurable, then we define the essential supremum of f
to be

}f}8 “ inftM ě 0 : |f | ď M a.e.u.

It can be shown that the infimum is actually obtained, that is, one can show
that |f | ď }f}8 a.e. We let L8pX,M, µq denote the set of all functions f such
that }f}8 ă 8. As with L1, we identify any two functions that are equal almost
everywhere.

A function f P L8 need not be bounded. But if f P L8, then there exists a
bounded, measurable g such that f “ g a.e. For example, we can take g “ 1Ef ,
where E “ tx : |fpxq| ď }f}8u.
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By [5, Theorem 6.8], } ¨ }8 is a norm on L8. The norm on L8 induces a
metric, so that the distance between f and g in L8 is }f ´g}8. Convergence in
this metric is called convergence in L8. That is, fn Ñ f in L8 means that
}fn ´ f}8 Ñ 0 as n Ñ 8.

Also by [5, Theorem 6.8], we have fn Ñ f in L8 if and only if there exists
N P M such that µpNq “ 0 and fn Ñ f uniformly on N c.

If p, q P p1,8q and 1{p` 1{q “ 1, then p and q are conjugate exponents.
In addition, we say that 1 and 8 are conjugate exponents. Note that each
p P r1,8s has a unique conjugate exponent. Also note that p “ 2 is its own
conjugate exponent.

The following is a slight generalization of [2, Theorem 1.5.2], as well as a
combination of [5, Theorems 6.2 and 6.8].

Theorem 2.46 (Hölder’s inequality). Let p P r1,8s and let q be its conjugate
exponent. If f, g : X Ñ C are measurable, then }fg}1 ď }f}p}g}q.

Remark 2.47. The case p “ 2 is called the Cauchy-Schwarz inequality.

Exercises

2.16. Let pX,M, µq be a measure space with µpXq “ 1, and let f : X Ñ C be
measurable. Show that if 0 ă p ă q ď 8, then }f}p ď }f}q.

2.17. Let pX,M, µq be a measure space with µpXq “ 1, and let f : X Ñ C be
measurable. Show that }f}p Ñ }f}8 as p Ñ 8.

2.18. Let pX,M, µq be a measure space with µpXq “ 1, and suppose }f}p ă 8

for some p ą 0. Prove the following.

(a)
ş

log |f | dµ ď log }f}q for all q P p0, pq.

(b) log }f}q ď q´1p
ş

|f |q dµ´ 1q for all q P p0, pq.

(c) q´1p
ş

|f |q dµ´ 1q Ñ
ş

log |f | dµ as q Ñ 0.

(d) }f}q Ñ expp
ş

log |f | dµq as q Ñ 0.

2.6 Product measures

Let tpXj ,Mj , µjqunj“1 be σ-finite measure spaces. Let X “
śn

j“1Xj and M “
Ân

j“1 Mj . Then there exists a unique measure µ “ µ1 ˆ ¨ ¨ ¨ ˆ µn on pX,Mq

such that

µpA1 ˆ ¨ ¨ ¨ ˆAnq “

n
ź

j“1

µjpAjq,

for all Aj P Mj . Moreover, the measure space pX,M, µq is σ-finite. The
measure µ is called the product measure.
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The main results concerning integration with respect to product measures
are the theorems of Tonelli and Fubini. The construction of the product measure
and the proof of Fubini-Tonelli can be found in [5, Section 2.5], which was the
primary source for this section of the notes. This material is also found in [2,
Section 1.7].

Theorem 2.48. Let pX,M, µq and pY,N , νq be σ-finite measure spaces.

(a) (Tonelli) Suppose f : X ˆ Y Ñ r0,8s is MbN -measurable. Then fpx, ¨q
is N -measurable for all x P X and the function x ÞÑ gpxq “

ş

Y
fpx, ¨q dν

is nonnegative and M-measurable. Similarly, fp¨, yq is M-measurable for
all y P Y and the function y ÞÑ hpyq “

ş

X
fp¨, yq dµ is nonnegative and

N -measurable. Finally,
ż

XˆY

f dpµˆ νq “

ż

X

g dµ “

ż

Y

h dν.

(b) (Fubini) Suppose f P L1pX ˆ Y,M b N , µ ˆ νq. Then fpx, ¨q P L1pY, νq

for µ-a.e. x P X and the a.e.-defined function x ÞÑ gpxq “
ş

Y
fpx, ¨q dν

is in L1pX,µq. Similarly, fp¨, yq P L1pX,µq for ν-a.e. y P Y and the
a.e.-defined function y ÞÑ hpyq “

ş

X
fp¨, yq dµ is in L1pY, νq. Finally,

ż

XˆY

f dpµˆ νq “

ż

X

g dµ “

ż

Y

h dν.

Remark 2.49. Notice that
ż

X

g dµ “

ż

X

gpxqµpdxq

“

ż

X

„
ż

Y

fpx, ¨q dν

ȷ

µpdxq “

ż

X

„
ż

Y

fpx, yq νpdyq

ȷ

µpdxq.

Similarly,
ż

Y

h dν “

ż

Y

„
ż

X

fpx, yqµpdxq

ȷ

νpdyq.

Hence, the theorems of Tonelli and Fubini are saying that the integral over the
product space can be computed as an iterated integral in either order.

Remark 2.50. The theorems of Tonelli and Fubini are typically used in tan-
dem. For example, before one can use Fubini’s theorem, one must know that
ş

XˆY
|f | dpµˆ νq ă 8. But |f | is nonnegative, so one can use Tonelli’s theorem

to verify this.

The measure space pX ˆ Y,M b N , µ ˆ νq is typically not complete. It is
therefore often desirable to work with its completion, which we shall denote by
pX ˆ Y,O, ϖq. In that case, however, one usually encounters functions fpx, yq

that are only O-measurable, and not MbN -measurable. Therefore, the version
of Fubini-Tonelli given above will not apply. Instead, one can use the following,
which is [5, Theorem 2.39].
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Theorem 2.51 (Fubini-Tonelli for complete measures). Let pX,M, µq and
pY,N , νq be complete, σ-finite measure spaces, and let pX ˆ Y,O, ϖq be the
completion of pX ˆ Y,M b N , µˆ νq.

(a) (Tonelli) Suppose f : X ˆ Y Ñ r0,8s is O-measurable. Then fpx, ¨q is
N -measurable for µ-a.e. x P X and the a.e.-defined function x ÞÑ gpxq “
ş

Y
fpx, ¨q dν is nonnegative and M-measurable. Similarly, fp¨, yq is M-

measurable for ν-a.e. y P Y and the a.e.-defined function y ÞÑ hpyq “
ş

X
fp¨, yq dµ is nonnegative and N -measurable. Finally,

ż

XˆY

f dϖ “

ż

X

g dµ “

ż

Y

h dν.

(b) (Fubini) Suppose f P L1pX ˆ Y,O, ϖq. Then fpx, ¨q P L1pY, νq for µ-
a.e. x P X and the a.e.-defined function x ÞÑ gpxq “

ş

Y
fpx, ¨q dν is in

L1pX,µq. Similarly, fp¨, yq P L1pX,µq for ν-a.e. y P Y and the a.e.-
defined function y ÞÑ hpyq “

ş

X
fp¨, yq dµ is in L1pY, νq. Finally,

ż

XˆY

f dϖ “

ż

X

g dµ “

ż

Y

h dν.

The above treatment of product measures, which comes from [5], concerns
only product measures on finite product spaces. This is insufficient for probabil-
ity theory, so we consider one final topic in this section: Kolmogorov’s extension
theorem.

Let R8 “
ś8

j“1 R and R8 “
Â8

j“1 R. Kolmogorov’s extension theorem is
concerned with the existence of probability measures on pR8,R8q. Before we
can state the theorem, we need a piece of terminology.

For each n P N, let µn be a probability measure on pRn,Rnq. We say that
the measures tµnu8

n“1 are consistent if, for all n P N,

µn`1ppa1, b1s ˆ ¨ ¨ ¨ ˆ pan, bns ˆ Rq “ µnppa1, b1s ˆ ¨ ¨ ¨ ˆ pan, bnsq,

whenever ´8 ď aj ă bj ď 8.
The following is [2, Theorem A.3.1].

Theorem 2.52 (Kolmogorov’s extension theorem). For each n P N, let µn be
a probability measure on pRn,Rnq. If tµnu8

n“1 are consistent, then there exists
a unique probability measure µ on pR8,R8q such that

µptω : ωj P paj , bjs for 1 ď j ď nuq “ µnppa1, b1s ˆ ¨ ¨ ¨ ˆ pan, bnsq,

for all n P N and all ´8 ď aj ă bj ď 8.

Exercises

2.19. Let pX,M, µq be a σ-finite measure space and let f : X Ñ r0,8q be
measurable. The region under the graph of f is

Gf “ tpx, yq P X ˆ r0,8q : y ă fpxqu.
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(a) Show that Gf P M b R.

Hint: Let g : X ˆ r0,8q Ñ r0,8q2 be given by gpx, yq “ pfpxq, yq and let
h : r0,8q2 Ñ R be given by hpu, yq “ u´ y. Then ph ˝ gqpx, yq “ fpxq ´ y
and Gf “ ph ˝ gq´1pp0,8qq.

(b) Show that the integral of f is the area under its graph. That is, show that

ż

X

f dµ “ pµˆ λqpGf q.

(c) Show that

pµˆ λqpGf q “

ż 8

0

µptx : fpxq ą yuq dy.

2.7 Lebesgue integration on Rn

Recall that pR,L, λq is the Lebesgue measure space. It is the completion of
pR,R, λq, where λ is the unique measure on pR,Rq such that λppa, bsq “ b´ a.

The Lebesgue measure space on Rn is the completion of the product of
pR,R, λq with itself n-times. More specifically, consider the following. Note
that Rn “

śn
j“1 R. Also recall that Rn “

Ân
j“1 BR “ BRn . Using the results

from the previous section, we can now define the product measure, λn “
śn

j“1 λ,
giving us the product measure space, pRn,Rn, λnq. Let us denote its completion
by pRn,LRn , λnq. The measure λn is Lebesgue measure on Rn, the σ-algebra
LRn is the Lebesgue σ-algebra on Rn, and sets E P LRn are Lebesgue
measurable subset of Rn. It can be shown that pRn,LRn , λnq is also the
completion of the product measure space pRn,

Ân
j“1 L, λ

n
q.

As usual, we will typically omit the bar, and use λn for both Lebesgue
measure on LRn and Lebesgue measure on Rn. Also, when there is little chance
of confusion, we will often write λ instead of λn and L instead of LRn . We will
also write

ş

fpxq dx to mean
ş

f dλn, although in the case n ą 1, one should
remember that x is a vector.

The following is [5, Proposition 2.40]. The first part expresses a regularity
property of Lebesgue measure, and is an extension of Theorem 1.25. The second
part is an instantiation of Littlewood’s first principle, and is an extension of
Theorem 1.26.

Proposition 2.53. Suppose E P LRn . Then:

(a) λpEq “ inftλpUq : E Ă U,U openu “ suptλpKq : K Ă E,K compactu.

(b) If λpEq ă 8, then for any ε ą 0, there exist disjoint sets tRjuNj“1 with

Rj “
śn

i“1pai,j , bi,js and λpE △ p
ŤN

j“1Rjqq ă ε.

Now let U Ă Rn be open. For j P t1, . . . , nu, let gj : U Ñ R and let
G : U Ñ Rn be given by Gpxq “ pg1pxq, . . . , gnpxqq. Suppose G P C1pUq,
meaning that Bjgi exists and is continuous for each i and j. For x P U , let
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DxG : Rn Ñ Rn be the linear map whose matrix representation in the standard
basis is rDxGs “ rBjgipxqs. Note that if G is linear, then DxG “ G for all x P U .

The function G is called a C1 diffeomorphism if G is injective and DxG is
invertible for all x P U . If G is a C1 diffeomorphism, then it can be shown that
G´1 : GpUq Ñ U is a C1 diffeomorphism and DxpG´1q “ pDG´1pxqGq´1 for all
x P GpUq.

The following is [5, Theorem 2.47]. It states that the usual change of variable
formula for integrals on Rn extends to Lebesgue measure.

Theorem 2.54. Suppose U Ă Rn is open and G : U Ñ Rn is a C1 diffeomor-
phism. If f is a function on GpUq that is Lebesgue measurable, then f ˝ G is
Lebesgue measurable. If f is r0,8s-valued or f P L1pGpUq, λq, then

ż

GpUq

fpxq dx “

ż

U

pf ˝Gqpxq| detrDxGs| dx.

Example 2.55. Suppose U “ Rn and G is an affine linear function. Then
Gpxq “ v ` Ax for some linear function A and some v P Rn. Suppose further
that A is invertible. Then GpRnq “ Rn and rDxGs “ rAs for all x P Rn. Thus,

ż

Rn

fpxq dx “ |detrAs|

ż

Rn

fpv `Axq dx,

whenever f is nonnegative or integrable on Rn. In particular, if f “ 1E for
some E P LRn , then

λpEq “ | detA|λptx : v `Ax P Euq.

Here are three examples of this:

(i) If A “ I, then the result simply expresses the fact that Lebesgue measure
is translation invariant.

(ii) If v “ 0 and A “ r´1I for some r ‰ 0, then we obtain λprEq “ |r|nλpEq.

(iii) If v “ 0 and A is a rotation, then the result states that Lebesgue measure
is rotationally invariant.

Exercises

2.20. Show that e´xy sinx is integrable with respect to λ2 on the strip 0 ă x ă

a, 0 ă y. Use Fubini’s theorem to show that
ż a

0

sinx

x
dx “

π

2
´ pcos aq

ż 8

0

e´ay

1 ` y2
dy ´ psin aq

ż 8

0

ye´ay

1 ` y2
dy,

and replace 1 ` y2 by 1 to conclude |
şa

0
psinxq{x dx´ π{2| ď 2{a for a ě 1.

2.21. Let E “ r0, 1s ˆ r0, 1s. Investigate the existence and equality of
ş

E
f dλ2,

ş1

0

ş1

0
fpx, yq dx dy, and

ş1

0

ş1

0
fpx, yq dy dx for the following f :
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(a) fpx, yq “ px2 ´ y2qpx2 ` y2q´1.

(b) fpx, yq “ p1 ´ xyq´a, where a ą 0.

(c) fpx, yq “ px´ 1{2q´31tpx,yq:0ăyă|x´1{2|u.

2.22. Let a ą 0 and suppose f is Lebesgue integrable on p0, aq. For x P

p0, aq, define gpxq “
şa

x
t´1fptq dt. Show that g is integrable on p0, aq and that

şa

0
gpxq dx “

şa

0
fpxq dx.
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Chapter 3

Signed Measures and
Integration

3.1 Signed measures

The primary source for the material in this section, as well as Section 3.2, is [5].
However, much of this material is also covered in [2, Section A.4].

Let pX,Mq be a measurable space and ν : M Ñ R˚. Then ν is a signed
measure on pX,Mq if:

(i) νpHq “ 0,

(ii) νpMq Ă p´8,8s or νpMq Ă r´8,8q, and

(iii) if tEju8
j“1 Ă M are disjoint, then νp

Ţ

j Ejq “
ř

j νpEjq, where this sum
converges absolutely whenever νp

Ţ

j Ejq ă 8.

Note that every measure is a signed measure. When helpful for clarity, we will
sometimes refer to a measure as a positive measure.

Example 3.1. Suppose µ1 and µ2 are measures on a measurable space pX,Mq.
If at least one of these is a finite measure, then ν “ µ1 ´µ2 is a signed measure
on pX,Mq.

Example 3.2. Let pX,M, µq be a measure space, and let f : X Ñ R˚ be
measurable. Suppose

ş

f dµ exists. Then one can check that νpEq “
ş

E
f dµ

defines a signed measure on pX,Mq. As in Exercise 2.9, we often use the
shorthand notation dν “ f dµ to indicate that ν is defined in this fashion.

Let ν be a signed measure on pX,Mq. A set E P M is positive for ν if
νpF q ě 0 for all F Ă E such that F P M. A set E P M is negative for ν
if νpF q ď 0 for all F Ă E such that F P M. As set E P M is null for ν if
νpF q “ 0 for all F Ă E such that F P M.

49
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Example 3.3. Let ν be as in Example 3.2. Then E P M is positive for ν if
and only if f ě 0 µ-a.e. on E. Similarly, E P M is negative for ν if and only if
f ď 0 µ-a.e. on E. And E P M is null for ν if and only if f “ 0 µ-a.e. on E.

The following is [5, Theorem 3.3].

Theorem 3.4 (Hahn decomposition). Let ν be a signed measure on pX,Mq.
Then there exists P , a positive set for ν, and N , a negative set for ν, such
that P X N “ H and P Y N “ X. If P 1, N 1 are another such pair, then
P △ P 1 “ N △N 1 and this set is null for ν.

The decomposition X “ P YN is called a Hahn decomposition for ν.
Let ν1 and ν2 be signed measures on pX,Mq. Suppose there exists E1, a null

set for ν1, and E2, a null set for ν2, such that E1 XE2 “ H and E1 YE2 “ X.
Then we say ν1 and ν2 are mutually singular, and we denote this by ν1 K ν2.
We may also describe this by saying that ν1 is singular with respect to ν2,
or vice versa.

The following is [5, Theorem 3.4]

Theorem 3.5 (Jordan decomposition). If ν is a signed measure on pX,Mq,
then there exist unique positive measures ν` and ν´ such that ν “ ν` ´ν´ and
ν` K ν´.

Remark 3.6. Let ν be a signed measure on pX,Mq and suppose X “ P YN is
a Hahn decomposition for ν. Then ν` and ν´ are given by ν`pEq “ νpE X P q

and ν´pEq “ ´νpE XNq.

The measures ν` and ν´ are called the positive and negative parts of ν,
respectively. The decomposition ν “ ν` ´ ν´ is called the Jordan decompo-
sition of ν. The total variation of ν is the measure |ν| “ ν` ` ν´. We say ν
is a finite (or σ-finite) signed measure if |ν| is a finite or (σ-finite) measure.

Proposition 3.7. Let ν be a signed measure on pX,Mq. Then |ν| is a finite
measure if and only if νpMq Ă R, and in this case, νpMq Ă r´K,Ks for some
K P R.

Proof. Suppose |ν| is a finite measure and let E P M. Then

|νpEq| “ |ν`pEq ´ ν´pEq| ď ν`pEq ` ν´pEq “ |ν|pEq ď |ν|pXq.

Since K :“ |ν|pXq ă 8, it follows that νpEq P r´K,Ks for all E P M.
It remains only to show that νpMq Ă R implies that |ν| is a finite measure.

Suppose νpMq Ă R. Let X “ P Y N be a Hahn decomposition for ν. Since
νpMq Ă r´8,8q, it follows that ν`pXq “ νpX X P q ă 8. Hence, ν` is a
finite measure. Similarly, since νpMq Ă p´8,8s, it follows that ν´pXq “

´νpX X Nq ă 8. Hence, ν´ is a finite measure. Therefore, |ν| “ ν` ` ν´ is a
finite measure. l

Proposition 3.8. Let pX,Mq be a measurable space and ν : M Ñ R˚. Then
ν is a signed measure if and only if there exists a measure µ on pX,Mq and a
measurable function f : X Ñ R such that dν “ f dµ. In this case, dν` “ f` dµ,
dν´ “ f´ dµ, and d|ν| “ |f | dµ.
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Proof. The “if” part is covered by Example 3.2. For the “only if” part, assume ν
is a signed measure on pX,Mq. Let µ “ |ν| and f “ 1P ´1N , where X “ P YN
is a Hahn decomposition for ν. Then

ż

E

f dµ “

ż

E

p1P ´ 1N q d|ν| “ |ν|pP X Eq ´ |ν|pN X Eq.

Since P is null for ν´, it follows that for any A Ă P , we have

|ν|pAq “ ν`pAq ` ν´pAq “ ν`pAq “ νpAX P q “ νpAq.

Similarly, for any A Ă N , we have |ν|pAq “ ´νpAq. Thus,

ż

E

f dµ “ νpP X Eq ` νpN X Eq “ νpEq,

since X “ P YN .
Finally, if dν “ f dµ, then P “ f´1pr0,8qq and N “ P c form a Hahn

decomposition for ν. Thus,

ν`pEq “ νpE X P q “

ż

E

f` dµ,

ν´pEq “ ´νpE XNq “

ż

E

f´ dµ, and

|ν|pEq “ ν`pEq ` ν´pEq “

ż

E

|f | dµ,

for every E P M. l

Let ν be a signed measure on pX,Mq. We define L1pνq “ L1pν`q X L1pν´q

and
ż

f dν “

ż

f dν` ´

ż

f dν´,

for all f P L1pνq.

Exercises

3.1. Let µ, ν be a signed measures on pX,Mq and E P M. Prove that:

(a) E is null for ν if and only if |ν|pEq “ 0.

(b) The following are equivalent:

(i) ν K µ,

(ii) |ν| K µ,

(iii) ν` K µ and ν´ K µ.

3.2. Let ν be a signed measure on pX,Mq. Show that:
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(a) L1pνq “ L1p|ν|q.

(b) If f P L1pνq, then |
ş

f dν| ď
ş

|f | d|ν|.

(c) If E P M, then |ν|pEq “ supt|
ş

E
f dν| : |f | ď 1u.

3.3. Let ν be a signed measure on pX,Mq and µ1, µ2 measures on pX,Mq.
Assume that ν “ µ1 ´ µ2. Prove that µ1 ě ν` and µ2 ě ν´.

3.4. Let ν1, ν2 be signed measures on pX,Mq with νjpMq Ă p´8,8s for j P

t1, 2u. Use Exercise 3.3 to prove that |ν1 ` ν2| ď |ν1| ` |ν2|.

3.2 The Radon-Nikodym derivative

Let pX,M, µq be a measure space, and ν a signed measure on pX,Mq. We
say that ν is absolutely continuous with respect to µ if µpEq “ 0 implies
νpEq “ 0. We denote this by ν ! µ.

The following is [5, Theorem 3.8].

Theorem 3.9 (The Lebesgue-Radon-Nikodym theorem). Let pX,M, µq be a
σ-finite measure space and ν a σ-finite signed measure on pX,Mq. Then there
exist unique σ-finite signed measures η, ρ on pX,Mq such that η K µ, ρ ! µ,
and ν “ η ` ρ. Moreover, there is a measurable function f : X Ñ R such that
dρ “ f dµ, and any two such functions are equal µ-a.e.

The decomposition ν “ η ` ρ is called the Lebesgue decomposition of ν
with respect to µ.

If ν ! µ, then η “ 0, and we have dν “ f dµ, for some measurable function
f . This function f is called the Radon-Nikodym derivative of ν with respect
to µ. Since the function f is only unique µ-a.e., the Radon-Nikodym derivative
is only defined up to a null set. We sometimes say that f is a version of the
Radon-Nikodym derivative, and that any two versions are equal µ-a.e.

The Radon-Nikodym derivative is typically denoted by dν{dµ, so that

νpEq “

ż

E

dν

dµ
dµ,

for all E P M. Or, in shorthand,

dν “
dν

dµ
dµ.

Note that if ν is a positive measure, then dν{dµ ě 0 µ-a.e.
The results in the following proposition can be found in [5, Section 3.2].

Proposition 3.10. Let pX,Mq be a measurable space, ν, ν1, ν2 σ-finite signed
measures on pX,Mq and µ, η σ-finite measures on pX,Mq. Suppose ν ! µ,
ν1 ! µ, ν2 ! µ, and µ ! η. Then:
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(a) ν1 ` ν2 ! µ and
dpν1 ` ν2q

dµ
“
dν1
dµ

`
dν2
dµ

.

(b) If g P L1pνq, then gpdν{dµq P L1pµq and

ż

g dν “

ż

g
dν

dµ
dµ.

(c) ν ! η and
dν

dη
“
dν

dµ

dµ

dη
, η-a.e.

(d) If we also have η ! µ, then

dη

dµ

dµ

dη
“ 1, η-a.e. and µ-a.e.

Example 3.11. Let µF be the Lebesgue-Stieltjes measure on pR,BRq associated
with F pxq “ 1r0,8qpxqex, and let λ denote Lebesgue measure. Then we can
write µF “ δ0 ` µG, where δ0 is the point mass measure at 0 and Gpxq “

1r0,8qpxqpex ´ 1q.
Since t0u is null for λ and Rzt0u is null for δ0, it follows that δ0 K λ. Let

us defined the measure ν by dν “ Fdλ. It is easily verified that νppa, bsq “

Gpbq ´Gpaq for all a ă b. By Theorem 1.22, it follows that ν “ µG, and hence,
dµG “ Fdλ. In particular, this shows that µG ! λ, so that µF “ δ0 ` µG is
the Lebesgue decomposition of µF with respect to λ. Moreover, this shows that
F is a version of the Radon-Nikodym derivative, dµG{dλ. Any other version of
this Radon-Nikodym derivative will be equal to F λ-a.e.

Exercises

3.5. Let pX,M, µq be a measure space and ν a signed measure on pX,Mq.
Prove that the following are equivalent:

(a) ν ! µ.

(b) |ν| ! µ.

(c) ν` ! µ and ν´ ! µ.

3.6. Let µ be counting measure on pr0, 1s,Br0,1sq and let λ be Lebesgue measure.
Show that λ ! µ, but there does not exist any function f such that dλ “ f dµ.
Why does this not contradict the Lebesgue-Radon-Nikodym theorem?

3.7. Suppose that µ, ν are σ-finite measures on pX,Mq with ν ! µ. Let η “

µ ` ν and let f be a version of dν{dη. Prove that 0 ď f ă 1 µ-a.e. and that
f{p1 ´ fq is a version of dν{dµ.
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3.3 Complex measures

The primary source for the material in this section, as well as Section 3.4, is
[5]. This material does not seem to be present in [2]. Even though it is material
that may not be covered in a typical course on measure and integration, I
am nonetheless including it in these notes for completeness. Section 3.4 is
particularly important, as it includes the fundamental theorem of calculus for
Lebesgue integrals, as well as concepts that are needed in the theory of stochastic
integration.

Let pX,Mq be a measurable space and α : M Ñ C. Then α is a complex
measure on pX,Mq if:

(i) αpHq “ 0, and

(ii) if tEju8
j“1 Ă M are disjoint, then αp

Ţ

j Ejq “
ř

j αpEjq, where this sum
converges absolutely.

Note that every finite signed measure is a complex measure.
Every complex measure α can be written as α “ αr ` iαi, where αr, αi are

finite signed measures. By Proposition 3.7, it follows that αpMq is a bounded
subset of C.

We define L1pαq “ L1pαrq X L1pαiq and, for f P L1pαq, we define

ż

f dα “

ż

f dαr ` i

ż

f dαi.

If α is a complex measure and ν is a signed measure, then we say α K ν if αr K ν
and αi K ν. If β is another complex measure, then we say α K β if α K βr and
α K βi.

If µ is a positive measure, then we say α ! µ if αr ! µ and αi ! µ.
By applying Theorem 3.9 to the real and imaginary parts of a complex

measure, we obtain the following, which is [5, Theorem 3.12].

Theorem 3.12 (The Lebesgue-Radon-Nikodym theorem). Let pX,M, µq be a
σ-finite measure space and α a complex measure on pX,Mq. Then there exists
a unique complex measure η and a µ-a.e. unique f P L1pµq such that η K µ and
dα “ dη ` f dµ.

As for signed measures, if α ! µ, then the function f is called the Radon-
Nikodym derivative of α with respect to µ and denoted by dα{dµ.

Proposition 3.13. Let α be a complex measure on a measurable space pX,Mq.
There exists a measure µ on pX,Mq and an f P L1pµq such that dα “ f dµ.

If ν is another measure on pX,Mq and g P L1pνq with dα “ g dν, then
|f | dµ “ |g|dν.

Proof. Let µ “ |αr|`|αi|. Then α ! µ, so by Theorem 3.12, we have dα “ f dµ,
where f “ dα{dµ.
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Suppose we also have dα “ g dν. Let ρ “ µ ` ν. Then µ ! ρ and ν ! ρ, so
by Proposition 3.10(b), we have

αpEq “

ż

E

f dµ “

ż

E

f
dµ

dρ
dρ,

for all E P M. Similarly,

αpEq “

ż

E

g dν “

ż

E

g
dν

dρ
dρ,

for all E P M. By Proposition 2.27(c), this implies

f
dµ

dρ
“ g

dν

dρ
ρ-a.e.

Since dµ{dρ and dν{dρ are nonnegative functions, this implies

|f |
dµ

dρ
“ |g|

dν

dρ
ρ-a.e.

Hence,
ż

E

|f | dµ “

ż

E

|f |
dµ

dρ
dρ “

ż

E

|g|
dν

dρ
dρ “

ż

E

|g| dν,

for all E P M. l

Let α be a complex measure on pX,Mq. By Proposition 3.13, we can write
dα “ f dµ for some measure µ and some f P L1pµq. Also by Proposition 3.13,
we may unambiguously define the total variation of α to be the measure |α|

on pX,Mq given by d|α| “ |f | dµ. By Proposition 3.8, this definition agrees
with our previous definition when α is a signed measure.

Proposition 3.14. If α, β are complex measures on pX,Mq, then |α ` β| ď

|α| ` |β|.

Proof. Write dα “ f dµ and dβ “ g dν, where µ, ν are measures on pX,Mq,
f P L1pµq and g P L1pνq. Let ρ “ µ` ν. We then have

pα ` βqpEq “

ż

E

f dµ`

ż

E

g dν “

ż

E

ˆ

f
dµ

dρ
` g

dν

dρ

˙

dρ,

for all E P M. Thus,

|α ` β|pEq “

ż

E

ˇ

ˇ

ˇ

ˇ

f
dµ

dρ
` g

dν

dρ

ˇ

ˇ

ˇ

ˇ

dρ ď

ż

E

|f |
dµ

dρ
dρ`

ż

E

|g|
dν

dρ
dρ

“

ż

E

|f | dµ`

ż

E

|g| dν “ |α|pEq ` |β|pEq,

for all E P M. l
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Let α be a complex Borel measure on Rn. Then α is discrete if there exists
a countable set txju8

j“1 Ă Rn and complex numbers cj such that
ř8

j“1 |cj | ă 8

and α “
ř8

j“1 cjδxj
, where δx is the point mass measure at x. On the other

hand, α is continuous if αptxuq “ 0 for all x P Rn. Note that if α ! λ, then α
is continuous. Also note that if α is discrete, then α K λ.

Proposition 3.15. Every complex Borel measure α on Rn can be written
uniquely as

α “ αd ` αac ` αsc,

where αd is discrete, αac ! λ, and αsc is continuous with αsc K λ.

Proof. Let E “ tx P Rn : αptxuq ‰ 0u and let Ek “ tx P Rn : |αptxuq| ą 1{ku,
so that E “

Ť8

k“1Ek.

Suppose x1, . . . , xN are N distinct elements in Rn such that tx1, . . . , xNu Ă

Ek. Then
N
ÿ

j“1

|α|ptxjuq “ |α|ptx1, . . . , xNuq ď |α|pEkq ď M,

where M “ |α|pRnq ă 8. Let us write dα “ f dν, where ν is a measure on Rn

and f P L1pνq. Then

αptxjuq “

ż

txju

f dν “ fpxjqνptxjuq, and

|α|ptxjuq “

ż

txju

|f | dν “ |fpxjq|νptxjuq.

Since ν is a positive measure, it follows that |α|ptxjuq “ |αptxjuq|. Thus,

M ě

N
ÿ

j“1

|αptxjuq| ą N{k,

since each xj P Ek. It follows that N ă Mk, so that Ek has fewer than Mk
elements. In particular, Ek is finite, so E is countable. Therefore, if we define
αdpAq “ αpAXEq and αcpAq “ αpAzEq, then α “ αd `αc, where αd is discrete
and αc is continuous. It is easy to see that this is the unique way to decompose
α into a discrete and continuous part.

Using Theorem 3.12, let αc “ αsc ` αac be the Lebesgue decomposition of
αc with respect to λ, where αsc K λ and αac ! λ, and this gives us the desired
decomposition of α. l

Remark 3.16. The “sc” in αsc stands for “singularly continuous”, to remind
us that αsc is singular with respect to Lebesgue measure, but also continuous,
since αscptxuq “ 0 for all x P Rn.
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Exercises

3.8. Let pX,M, µq be a measure space and α, β complex measures on pX,Mq.
Prove that:

(a) α K β if and only if |α| K |β|.

(b) α ! µ if and only if |α| ! µ.

3.9. Let α be a complex measure on pX,Mq with αpXq “ |α|pXq. Prove that
α “ |α|.

3.4 Functions of bounded variation

For a function F : R Ñ C, we define

F px`q “ lim
yÓx

F pyq,

F px´q “ lim
yÒx

F pyq,

F p8q “ lim
xÑ8

F pxq, and

F p´8q “ lim
xÑ´8

F pxq,

provided these limits exist. Also, in this section, the phrase “almost everywhere”
will always be with respect to Lebesgue measure.

The following is [5, Theorem 3.23].

Theorem 3.17. Let F : R Ñ R be increasing and define Gpxq “ F px`q. Then:

(a) The set of points at which F is discontinuous is countable.

(b) The function G is increasing, right-continuous, and G “ F a.e.

(c) F and G are differentiable a.e., and F 1 “ G1 a.e.

If a, b P R, a ă b, and F : ra, bs Ñ C, then the total variation of F on ra, bs
is

sup

" n
ÿ

j“1

|F pxjq ´ F pxj´1q| : n P N, a “ x0 ă ¨ ¨ ¨ ă xn “ b

*

.

If F : R Ñ C, then we define the total variation function of F to be

TF pxq “ sup

" n
ÿ

j“1

|F pxjq ´ F pxj´1q| : n P N,´8 ă x0 ă ¨ ¨ ¨ ă xn “ x

*

.

It can be verified that in this case, if a, b P R and a ă b, then the total variation
of F on ra, bs is TF pbq ´ TF paq, provided this latter quantity is well-defined.
Thus, TF : R Ñ r0,8s is an increasing function.
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The set of functions F : ra, bs Ñ C that have finite total variation on ra, bs is
denoted by BV pra, bsq. The set of functions F : R Ñ C that have TF p8q ă 8

is denoted by BV .
If F P BV , then F |ra,bs P BV pra, bsq. Conversely, suppose F P BV pra, bsq.

For x ă a, define F pxq “ F paq, and for x ą b, define F pxq “ F pbq. Then F
extended this way satisfies F P BV . Consequently, we will lose no generality by
focusing our attention on BV , rather than BV pra, bsq.

Proposition 3.18.

(a) If F : R Ñ R is bounded and increasing, then F P BV and TF pxq “

F pxq ´ F p´8q for all x P R.

(b) If F,G P BV and a, b P C, then aF ` bG P BV .

(c) If F is differentiable on R and F 1 is bounded and a, b P R with a ă b, then
F |ra,bs P BV pra, bsq.

Proof. Exercise 3.10. l

The following is [5, Theorem 3.27].

Theorem 3.19.

(a) F P BV if and only if ReF P BV and ImF P BV .

(b) If F : R Ñ R, then F P BV if and only if F is the difference of two
increasing functions. For F P BV , those functions may be taken to be
pTF ` F q{2 and pTF ´ F q{2.

(c) If F P BV and x P R, then F px`q, F px´q, F p8q, and F p´8q exist.

(d) If F P BV and Gpxq “ F px`q, then F 1 and G1 exist a.e. and F 1 “ G1

a.e.

Let F P BV . Define PF “ pTF ` F q{2 and NF “ pTF ´ F q{2, so that PF

and NF are increasing functions with F “ PF ´NF .
The functions PF and NF are called the positive and negative variations

of F , respectively. Since x` :“ x _ 0 “ p|x| ` xq{2 and x´ :“ ´px ^ 0q “

p|x| ´ xq{2, it follows that

PF pxq “
1

2
F p´8q

` sup

" 8
ÿ

j“1

pF pxjq ´ F pxj´1qq` : n P N,´8 ă x0 ă ¨ ¨ ¨ ă xn “ x

*

,

NF pxq “ ´
1

2
F p´8q

` sup

" 8
ÿ

j“1

pF pxjq ´ F pxj´1qq´ : n P N,´8 ă x0 ă ¨ ¨ ¨ ă xn “ x

*

.
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The space of normalized bounded variation functions is defined by

NBV “ tF P BV : F is right continuous and F p´8q “ 0u.

It can be shown that if F P BV and Gpxq “ F px`q ´ F p´8q, then G P NBV
and G´ F is constant almost everywhere. (See Exercise 3.11.)

The following theorem is a combination of [5, Theorem 3.29] and [5, Exercise
3.29].

Theorem 3.20. If α is a complex Borel measure on R and F pxq “ αpp´8, xsq,
then F P NBV . Conversely, if F P NBV , then there is a unique complex
Borel measure αF such that F pxq “ αF pp´8, xsq, and in this case, |αF | “ αTF

.
Moreover, if F is real-valued, then α`

F “ αPF
and α´

F “ αNF
.

A function F : R Ñ C is absolutely continuous if for all ε ą 0, there exists
δ ą 0 such that for any finite set of disjoint intervals, pa1, b1q, . . . , pan, bnq, we
have

n
ÿ

j“1

pbj ´ ajq ă δ implies
n

ÿ

j“1

|F pbjq ´ F pajq| ă ε.

More generally, F is absolutely continuous on ra, bs if this condition is
satisfied whenever the intervals paj , bjq all lie in ra, bs.

By taking N “ 1, we see that absolute continuity implies uniform continuity.
On the other hand, using the mean value theorem, we see that if F 1pxq exists
for all x and F 1 is bounded, then F is absolutely continuous.

The following result is contained in [5, Propositions 3.30 and 3.32].

Proposition 3.21. Let F P NBV . Then F 1 P L1pλq. Also, αF K λ if and only
if F 1 “ 0 a.e. And αF ! λ if and only if F is absolutely continuous.

If F P NBV , then we will adopt the notation

ż b

a

gpxq dF pxq “

ż

pa,bs

g dαF . (3.1)

We may also use variations on this notation, such as
ş

pa,bs
g dF . Integrals such

as these are called Lebesgue-Stieltjes integrals.
The following integration by parts formula is [5, Theorem 3.36].

Theorem 3.22. If F,G P NBV and at least one of them is continuous, then
ż

pa,bs

F dG “ F pbqGpbq ´ F paqGpaq ´

ż

pa,bs

GdF.

Finally, we have the following, which is [5, Theorem 3.35].

Theorem 3.23 (The fundamental theorem of calculus for Lebesgue integrals).
Let a, b P R with a ă b and F : ra, bs Ñ C. Then the following are equivalent:

(a) F is absolutely continuous on ra, bs.
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(b) There exists f P L1pra, bs, λq such that for all x P ra, bs, we have

F pxq ´ F paq “

ż x

a

fptq dt.

(c) F is differentiable a.e. on ra, bs, F 1 P L1pra, bs, λq, and

F pxq ´ F paq “

ż x

a

F 1ptq dt.

Exercises

3.10. Prove Proposition 3.18. (Hint: For Part ((c)), use the mean value theo-
rem.)

3.11. Prove that if F P BV and Gpxq “ F px`q ´ F p´8q, then G P NBV and
G´ F is constant almost everywhere.

3.12. Construct an increasing function on R whose set of discontinuities is Q.

3.13. Let F pxq “ x2 sinpx´1q1t0ucpxq and Gpxq “ x2 sinpx´2q1t0ucpxq. Prove
that:

(a) F 1pxq and G1pxq exist for all x P R.

(b) F P BV pr´1, 1sq, but G R BV pr´1, 1sq.

3.14. Let G : ra, bs Ñ R be continuous and increasing, with Gpaq “ c and
Gpbq “ d. Prove that:

(a) If E Ă rc, ds is a Borel set, then λpEq “ µGpG´1pEqq.

(Hint: First consider the case where E is an interval.)

(b) If f P L1prc, ds, λq, then

ż d

c

fpyq dy “

ż b

a

fpGpxqq dGpxq.

In particular, if G is absolutely continuous, then

ż d

c

fpyq dy “

ż b

a

fpGpxqqG1pxq dx.

(Remark: This result may fail if G is merely right-continuous.)
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3.5 Functions with one-sided limits

3.5.1 Definition and basic properties

Let pX, dq be a metric space. A function f : R Ñ X is said to have one-sided
limits if, for each t P R, the limits fpt`q “ limsÓt fpsq and fpt´q “ limsÒt fpsq
both exist. These functions are more well-behaved than one might initially
expect, as the following theorems demonstrate.

Theorem 3.24. A function with one-sided limits is bounded on compact sets.

Proof. Let f have one-sided limits and let K Ă R be compact. Fix any p P X.
We want to show that there exists r ą 0 such that fpKq Ă Brppq.

Fix t P K. Since fpt`q exists, there exists δt` ą 0 such that dpfpsq, fpt`qq ă

1 for all s P pt, t` δt`q. Thus, if rt` “ 1 ` dpfpt`q, pq, then

dpfpsq, pq ď dpfpsq, fpt`qq ` dpfpt`q, pq ă rt`.

In other words, fpsq P Brt`
ppq, for all s P pt, t` δt`q.

Similarly, since fpt´q exists, there exists δt´ ą 0 such that fpsq P Brt´
ppq

for all s P pt ´ δt´, tq, where rt´ “ 1 ` dpfpt´q, pq. Thus, for all s P Ut “ pt ´

δt´, t`δt`q, we have that fpsq P Brtppq, where rt “ maxtrt´, rt`, dpfptq, pq`1u.
Since tUt : t P Ku is an open cover of K, there exists tt1, . . . , tnu Ă K such

that K Ă U1 Y ¨ ¨ ¨ Y Un. It follows that, for all s P K, we have fpsq P Brppq,
where r “ maxtrt1 , . . . , rtnu. That is, fpKq Ă Brppq. l

This next theorem shows that a function with one-sided limits cannot have
large discontinuities which accumulate.

Theorem 3.25. Let f have one-sided limits. Then for all t P R and ε ą 0,
there exists δ ą 0 such that

dpfps`q, fpsqq ` dpfpsq, fps´qq ă ε,

whenever s ‰ t and |t´ s| ă δ.

Proof. Suppose not. Then there exists t P R, ε ą 0, and a sequence tsnu of real
numbers such that, for all n, we have sn ‰ t, |t´ sn| ă 1{n, and

dpfpsn`q, fpsnqq ` dpfpsnq, fpsn´qq ě ε,

Consider the following four sets:

S1 “ tn : sn ą t and dpfpsn`q, fpsnqq ě ε{2u,

S2 “ tn : sn ą t and dpfpsnq, fpsn´qq ě ε{2u,

S3 “ tn : sn ă t and dpfpsn`q, fpsnqq ě ε{2u,

S4 “ tn : sn ă t and dpfpsnq, fpsn´qq ě ε{2u.
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Since these sets cover N, at least one of them is infinite. By passing to a
subsequence, we may assume that the entire sequence tsnu is contained in one
of these sets.

First assume that each sn P S1. For each n, choose un P psn, sn ` 1{nq such
that dpfpunq, fpsn`qq ă ε{4. Then

ε

2
ď dpfpsn`q, fpsnqq ď dpfpsn`q, fpunqq ` dpfpunq, fpsnqq

ă
ε

4
` dpfpunq, fpsnqq.

But sn Ñ t` and un Ñ t`, so dpfpunq, fpsnqq Ñ dpfpt`q, fpt`qq “ 0, a
contradiction.

Next assume that each sn P S2. For each n, choose un P pt, snq such that
dpfpunq, fpsn´qq ă ε{4. Then

ε

2
ď dpfpsnq, fpsn´qq ď dpfpsnq, fpunqq ` dpfpunq, fpsn´qq

ă dpfpunq, fpsnqq `
ε

4
.

But sn Ñ t` and un Ñ t`, so dpfpunq, fpsnqq Ñ dpfpt`q, fpt`qq “ 0, a
contradiction.

Next assume that each sn P S3. For each n, choose un P psn, tq such that
dpfpunq, fpsn`qq ă ε{4. Then

ε

2
ď dpfpsn`q, fpsnqq ď dpfpsn`q, fpunqq ` dpfpunq, fpsnqq

ă
ε

4
` dpfpunq, fpsnqq.

But sn Ñ t´ and un Ñ t´, so dpfpunq, fpsnqq Ñ dpfpt´q, fpt´qq “ 0, a
contradiction.

Finally assume that each sn P S4. For each n, choose un P psn ´ 1{n, snq

such that dpfpunq, fpsn´qq ă ε{4. Then

ε

2
ď dpfpsnq, fpsn´qq ď dpfpsnq, fpunqq ` dpfpunq, fpsn´qq

ă dpfpunq, fpsnqq `
ε

4
.

But sn Ñ t´ and un Ñ t´, so dpfpunq, fpsnqq Ñ dpfpt´q, fpt´qq “ 0, a
contradiction. l

Theorem 3.26. A function with one-sided limits has at most countably many
discontinuities.

Proof. Let f have one-sided limit. Then f is continuous at t if and only if
fpt´q “ fpt`q “ fptq, which happens if and only if

dpfpt`q, fptqq ` dpfptq, fpt´qq “ 0.
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Let

An “ tt P R : dpfpt`q, fptqq ` dpfptq, fpt´qq ě 1{nu.

Then A “
Ť8

n“1An is the set of discontinuities of f .

FixM,n P N. Fix t P r´M,M s. By Theorem 3.25 with ε “ 1{n, there exists
δt ą 0 such that ppt´ δt, tq Y pt, t` δtqq XAn “ H. Thus, if Ut “ pt´ δt, t` δtq,
then Ut X An Ă ttu. Since r´M,M s is compact, and tUt : t P r´M,M su is
an open cover of r´M,M s, it follows that there exists tt1, . . . , tku Ă r´M,M s

such that r´M,M s Ă Ut1 Y ¨ ¨ ¨ Y Utk . Hence, r´M,M s XAn Ă tt1, . . . , tku. In
particular, r´M,M s XAn is finite.

Therefore,

A “

8
ď

n“1

8
ď

M“1

r´M,M s XAn

is a countable set. l

3.5.2 Cadlag functions

If f has one-sided limits, we define f` : R Ñ R and f´ : R Ñ R by f`ptq “ fpt`q

and f´ptq “ fpt´q. Note that a function f with one-sided limits is right-
continuous if and only if fpt`q “ fptq for all t P R, which is equivalent to saying
that f` “ f . If f has one-sided limits and is right-continuous, then we say
that f is cadlag. This is an acronym for the French phrase, “continu à droite,
limite à gauche”. If f has one-sided limits and is left-continuous, that is, if
fpt´q “ fptq for all t P R (which is equivalent to f´ “ f), then we say that f
is caglad.

If f has one-sided limits, we also define the function ∆f : R Ñ R by ∆f “

f` ´ f´. Note that, by Theorem 3.26, the set tt : ∆fptq ‰ 0u is countable.

Given any f : R Ñ R, let us define Rf : R Ñ R by Rfptq “ fp´tq.

Lemma 3.27. If f has one-sided limits, then so does Rf . Moreover, pRfq` “

Rf´ and pRfq´ “ Rf`.

Proof. Let f have one-sided limits. Then

lim
sÓt

Rfpsq “ lim
sÓt

fp´sq “ lim
zÒp´tq

fpzq “ f´p´tq,

and

lim
sÒt

Rfpsq “ lim
sÒt

fp´sq “ lim
zÓp´tq

fpzq “ f`p´tq,

which shows that Rf has one-sided limits, and that pRfq` “ Rf´ and pRfq´ “

Rf`. l

Lemma 3.28. If f : R Ñ R is increasing, then f has one-sided limits, and f`

and f´ are both increasing.
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Proof. Fix t P R and fix some strictly increasing sequence ttnu with tn Ñ t.
Then tfptnqu is an increasing sequence of real numbers, bounded above by fptq.
Hence, there exists L P R such that fptnq Ñ L.

Now let tsnu be any other strictly increasing sequence with sn Ñ t. As
above, fpsnq Ñ L1 for some L1 P R. Now fix m P N. Since sm ă t and tn Ñ t,
there exists N P N such that for all n ě N , we have sm ă tn. This implies
fpsmq ď fptnq. Letting n Ñ 8, we have fpsmq ď L. But this holds for all m,
so letting m Ñ 8, we have L1 ď L. A similar argument shows that L ď L1.
Thus, L1 “ L, so that fpsnq Ñ L. Since this holds for any such sequence tsnu,
we have that L “ limsÑt´ fpsq, and so fpt´q exists.

A similar argument shows that fpt`q exists for all t P R.
Now let s ă t. Choose a strictly decreasing sequence tsnu Ă ps, tq such that

sn Ñ s, and choose a strictly decreasing sequence ttnu such that tn Ñ t. Then
sn ă t ă tn for all n. Hence, fpsnq ď fptnq for all n. Letting n Ñ 8 gives
fps`q ď fpt`q, showing that f` is increasing. A similar argument shows that
f´ is increasing. l

Theorem 3.29. If f has one-sided limits, then

f`pt`q “ f´pt`q “ fpt`q, and

f`pt´q “ f´pt´q “ fpt´q,

for all t P R. In other words, pf`q` “ pf´q` “ f` and pf`q´ “ pf´q´ “ f´.
In particular, f` is cadlag and f´ is caglad.

Proof. Fix t P R and let ttnu be a strictly decreasing sequence of real numbers
such that tn Ñ t. Let ε ą 0 be arbitrary. Using Theorem 3.25 and the fact
that fptnq Ñ fpt`q, we may choose N P N such that for all n ě N , we have
dpfptn`q, fptnqq ă ε, dpfptn´q, fptnqq ă ε, and dpfptnq, fpt`qq ă ε. By the tri-
angle inequality, this implies that dpfptn`q, fpt`qq ă 2ε and dpfptn´q, fpt`qq ă

2ε. Since ε was arbitrary, this shows that f`ptnq “ fptn`q Ñ fpt`q and
f´ptnq “ fptn´q Ñ fpt`q. Since the sequence ttnu was arbitrary, this shows
that f`pt`q “ fpt`q and f´pt`q “ fpt`q. Since this holds for all t P R, we
have pf`q` “ pf´q` “ f`.

Now let g “ Rf . We have already shown that pg`q` “ pg´q` “ g`. By
Lemma 3.27, we have g` “ Rf´. Therefore, pg`q` “ Rpf´q´ and similarly,
pg´q` “ Rpf`q´. Hence, Rpf`q´ “ Rpf´q´ “ Rf´, which implies pf`q´ “

pf´q´ “ f´.
Lastly, since pf`q` “ f`, it follows that f` is cadlag, and since pf´q´ “ f´,

it follows that f´ is caglad. l

Remark 3.30. By Theorem 3.29, if f is cadlag (or any function with one-sided
limits), then g “ f´ is caglad. Conversely, if g is any caglad function, then
g “ g´ “ pg`q´. In other words, g “ f´, where f “ g` is a cadlag function.
What this shows is that a function g : R Ñ R is caglad if and only if g “ f´ for
some cadlag function f .
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3.5.3 Relation to BV functions

By Theorem 3.19, a function G : R Ñ R is in BV if and only if G can be
written as G “ G1 ´ G2, where each Gj is a bounded, increasing function.
Since increasing functions have one-sided limits, every BV function has one-
sided limits. Moreover, by Lemma 3.28, this shows that G` and G´ are both
BV functions.

If G P BV , then G` is right-continuous and BV , and G` ´Gp´8q P NBV .
As in Theorem 3.20, there exists a unique signed Borel measure µG`

on R such
that µG`

pps, tsq “ G`ptq ´G`psq for all s ă t. Note that

µG`pttuq “ lim
sÒt

µG`
pps, tsq

“ lim
sÒt

pG`ptq ´G`psqq

“ G`ptq ´G`pt´q

“ G`ptq ´G´ptq,

by Theorem 3.29. If we recall that ∆G “ G` ´G´, then µG`
pttuq “ ∆Gptq.

In (3.1), we defined the Lebesgue-Stieltjes integral for integrators which are
NBV . We now extend this by defining the Lebesgue-Stieltjes integral of a
Borel measurable function f with respect to a BV function G by

ż

A

f dG “

ż

A

f dµG`
.

The following theorem illustrates a relationship between the Lebesgue-Stieltjes
integral and classical Riemann sums.

Theorem 3.31. Let G P BV and let f be a function with one-sided limits.

Fix a ă b. For each m P N, let Pm “ tt
pmq

j u
npmq

j“0 be a strictly increasing,

finite sequence of real numbers with a “ t
pmq

0 ă . . . ă t
pmq

npmq
“ b. Assume that

}Pm} “ maxt|t
pmq

j ´ t
pmq

j´1| : 1 ď j ď npmqu Ñ 0 as m Ñ 8. Let

I
pmq

´ “

npmq
ÿ

j“1

fpt
pmq

j´1qpGpt
pmq

j q ´Gpt
pmq

j´1qq, and

I
pmq

` “

npmq
ÿ

j“1

fpt
pmq

j qpGpt
pmq

j q ´Gpt
pmq

j´1qq.

Then:

(i) If G is cadlag, then I
pmq

´ Ñ
ş

pa,bs
f´ dG as m Ñ 8.

(ii) If f and G are both cadlag, then I
pmq

` Ñ
ş

pa,bs
f` dG “

ş

pa,bs
f dG as

m Ñ 8.
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(iii) If G is caglad, then I
pmq

` Ñ
ş

ra,bq
f` dG as m Ñ 8.

(iv) If f and G are both caglad, then I
pmq

´ Ñ
ş

ra,bq
f´ dG “

ş

ra,bq
f dG as

m Ñ 8.

Proof. In this proof, for notational simplicity, we will suppress the dependence
of n, tj , and I˘ on m.

Let us first assume that G is cadlag. Then G “ G`, and so

I´ “

n
ÿ

j“1

fptj´1qµG`pptj´1, tjsq “

ż

pa,bs

f p1q
m dµG`

,

where

f p1q
m ptq “

n
ÿ

j“1

fptj´1q1ptj´1,tjsptq.

For each fixed t, we have f
p1q
m ptq “ fptj´1q, where tj´1 ă t and |t ´ tj´1| ď

}Pm}. Thus, f
p1q
m ptq Ñ f´ptq. By Theorem 3.24, there exists M ă 8 such that

|f
p1q
m | ď M for all m. Thus, by dominated convergence, I´ Ñ

ş

pa,bs
f´ dµG`

“
ş

pa,bs
f´ dG, and this proves (i).

Similarly,

I` “

n
ÿ

j“1

fptjqµG`pptj´1, tjsq “

ż

pa,bs

f p2q
m dµG`

,

where

f p2q
m ptq “

n
ÿ

j“1

fptjq1ptj´1,tjsptq.

For each fixed t, we have f
p2q
m ptq “ fptjq, where t ď tj and |t ´ tj | ď }Pm}.

Because of the possibility that t “ tj , we cannot conclude that f
p2q
m ptq Ñ f`ptq

asm Ñ 8. However, if we make the further assumption that f is cadlag, so that

f` “ f , then we do obtain f
p2q
m ptq Ñ fptq as m Ñ 8, and again by dominated

convergence, we have I` Ñ
ş

pa,bs
f dµG`

“
ş

pa,bs
f dG, and this proves (ii).

Next assume that G is caglad. Then G “ G´ “ G` ´ ∆G, and so for any
s ă t, we have

Gptq ´Gpsq “ G`ptq ´G`psq ´ ∆Gptq ` ∆Gpsq

“ µG`
pps, tsq ´ µG`

pttuq ` µG`
ptsuq

“ µG`
prs, tqq.

Hence,

I` “

n
ÿ

j“1

fptjqµG`prtj´1, tjqq “

ż

ra,bq

f p3q
m dµG`

,
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where

f p3q
m ptq “

n
ÿ

j“1

fptjq1rtj´1,tjqptq.

For each fixed t, we have f
p3q
m ptq “ fptjq, where t ă tj and |t´tj | ď }Pm}. Thus,

f
p3q
m ptq Ñ f`ptq. Again, by dominated convergence, I` Ñ

ş

ra,bq
f` dµG`

“
ş

ra,bq
f` dG, and this proves (iii).

Similarly,

I´ “

n
ÿ

j“1

fptj´1qµG`prtj´1, tjqq “

ż

ra,bq

f p4q
m dµG`

,

where

f p4q
m ptq “

n
ÿ

j“1

fptj´1q1rtj´1,tjqptq.

For each fixed t, we have f
p4q
m ptq “ fptj´1q, where tj´1 ď t and |t´ tj | ď }Pm}.

Because of the possibility that t “ tj´1, we cannot conclude that f
p4q
m ptq Ñ f´ptq

asm Ñ 8. However, if we make the further assumption that f is caglad, so that

f´ “ f , then we do obtain f
p4q
m ptq Ñ fptq as m Ñ 8, and again by dominated

convergence, we have I´ Ñ
ş

ra,bq
f dµG`

“
ş

ra,bq
f dG, and this proves (iv). l

Remark 3.32. In (ii) and (iv) of Theorem 3.31, the assumptions on f cannot
be omitted. For example, let f “ 1p0,8q, G “ 1r0,8q, a “ ´1, and b “ 1. In this

case, G is cadlag and f is caglad, but I
pmq

` need not converge to anything.
To see this, let tPmu be a sequence of partitions with }Pm} Ñ 0, satisfying

the following conditions:

(i) If m is even, then there exists k “ kpmq such that t
pmq

k “ 0.

(ii) If m is odd, then then there exists k “ kpmq such that t
pmq

k´1 ă 0 ă t
pmq

k .

In this case, Gpt
pmq

j q ´Gpt
pmq

j´1q “ 1 if j “ kpmq, and 0 otherwise. Thus,

I
pmq

` “ fpt
pmq

k q “

#

0 if m is even,

1 if m is odd,

and so I
pmq

` does not converge. Similarly, if f “ 1r0,8q, G “ 1p0,8q, and tPmu

are the above partitions, then I
pmq

´ does not converge.

Remark 3.33. If f and G are both cadlag, then

ż

pa,bs

f dG´

ż

pa,bs

f´ dG “

ż

pa,bs

pf ´ f´q dG “

ż

pa,bs

∆f dµG`
.
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Since ∆f vanishes outside a countable set, we have

ż

pa,bs

∆f dµG`
“

ÿ

tPpa,bs

∆fptqµG`
pttuq “

ÿ

tPpa,bs

∆fptq∆Gptq,

where this sum is, in fact, a countable sum. In particular, this shows that I
pmq

´

and I
pmq

` need not converge to the same limit. More specifically,

I
pmq

` ´ I
pmq

´ “

n
ÿ

j“1

pfptjq ´ fptj´1qqpGptjq ´Gptj´1qq Ñ
ÿ

tPpa,bs

∆fptq∆Gptq,

as m Ñ 8. This quantity is called the covariation of f and G.

If f has one-sided limits, but is not of bounded variation, then the integral
ş

pa,bs
Gdf is undefined. More specifically, the map ps, ts ÞÑ f`ptq ´f`psq cannot

be extended to a signed measure. But, even though the integral is undefined,
we can still obtain convergence of the Riemann sums in Theorem 3.31, provided
that the integrand is of bounded variation.

Theorem 3.34. Let G P BV and let f be a function with one-sided limits.
Assume f and G are both cadlag. Fix a ă b. For each m P N, let Pm “

tt
pmq

j u
npmq

j“0 be a strictly increasing, finite sequence of real numbers with a “

t
pmq

0 ă . . . ă t
pmq

npmq
“ b. Assume that }Pm} “ maxt|t

pmq

j ´ t
pmq

j´1| : 1 ď j ď

npmqu Ñ 0 as m Ñ 8. Let

J
pmq

´ “

npmq
ÿ

j“1

Gpt
pmq

j´1qpfpt
pmq

j q ´ fpt
pmq

j´1qq, and

J
pmq

` “

npmq
ÿ

j“1

Gpt
pmq

j qpfpt
pmq

j q ´ fpt
pmq

j´1qq.

Then

J
pmq

´ Ñ fpbqGpbq ´ fpaqGpbq ´

ż

pa,bs

f´ dG´
ÿ

tPpa,bs

∆fptq∆Gptq, and (3.2)

J
pmq

` Ñ fpbqGpbq ´ fpaqGpbq ´

ż

pa,bs

f dG`
ÿ

tPpa,bs

∆fptq∆Gptq, (3.3)

as m Ñ 8.

Proof. As before, for notational simplicity, we will suppress the dependence of
n, tj , and J˘ on m.
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We begin by observing that

J´ “

n
ÿ

j“1

Gptj´1qfptjq ´

n´1
ÿ

j“0

Gptjqfptjq

“ fpbqGpbq ´ fpaqGpaq ´

n
ÿ

j“1

fptjqpGptjq ´Gptj´1qq.

By Theorem 3.31, we have J´ Ñ fpbqGpbq ´ fpaqGpbq ´
ş

pa,bs
f dG. By Remark

3.33, this prove (3.2).
Next, we write

J` “

n`1
ÿ

j“2

Gptj´1qfptj´1q ´

n
ÿ

j“1

Gptjqfptj´1q

“ fpbqGpbq ´ fpaqGpaq ´

n
ÿ

j“1

fptj´1qpGptjq ´Gptj´1qq.

By Theorem 3.31, we have J` Ñ fpbqGpbq´fpaqGpbq´
ş

pa,bs
f´ dG. By Remark

3.33, this prove (3.3). l

As a corollary, we obtain the following generalizations of Theorem 3.22.

Corollary 3.35. If f and G are both cadlag functions of bounded variation,
then

ż

pa,bs

G´ df “ fpbqGpbq ´ fpaqGpaq ´

ż

pa,bs

f´ dG´
ÿ

tPpa,bs

∆fptq∆Gptq, and

ż

pa,bs

Gdf “ fpbqGpbq ´ fpaqGpaq ´

ż

pa,bs

f dG`
ÿ

tPpa,bs

∆fptq∆Gptq.

Proof. Combine Theorem 3.34 with Theorem 3.31. l

3.5.4 The Stratonovich integral for cadlag functions

If g and h are cadlag, with h P BV , then let us define the Stratonovich
integral of g with respect to h as

ż t

0

gpsq ˝ dhpsq :“

ż

p0,ts

g´ ` g

2
dh

By Theorem 3.31, we have

n
ÿ

j“1

gptj´1q ` gptjq

2
phptjq ´ hptj´1qq Ñ

ż t

0

gpsq ˝ dhpsq,

as the mesh of the partition tends to zero.
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Theorem 3.36. Let f , g, and h be cadlag functions, with h P BV . Let

kptq “

ż t

0

gpsq ˝ dhpsq.

Then k is cadlag, k P BV , and

ż t

0

fpsq ˝ dkpsq “

ż t

0

fpsqgpsq ˝ dhpsq ´
1

4

ÿ

sPp0,ts

∆fpsq∆gpsq∆hpsq.

Proof. Since

kptq “

ż

p0,ts

g´ ` g

2
dh,

we have

ż t

0

fpsq ˝ dkpsq “

ż

p0,ts

f´ ` f

2
dk

“

ż

p0,ts

ˆ

f´ ` f

2

˙ ˆ

g´ ` g

2

˙

dh

“

ż

p0,ts

ˆ

f´g´ ` fg

2
´

pf ´ f´qpg ´ g´q

4

˙

dh

“

ż

p0,ts

f´g´ ` fg

2
dh´

1

4

ż

p0,ts

∆f∆g dh

“

ż t

0

fpsqgpsq ˝ dhpsq ´
1

4

ÿ

sPp0,ts

∆fpsq∆gpsq∆hpsq,

and we are done. l

Remark 3.37. This theorem shows that as long as f , g, and h have no si-
multaneous discontinuities, then the Stratonovich integral satisfies the usual
transformation rule of calculus that if dk “ g ˝ dh, then f ˝ dk “ fg ˝ dh.
In general, however, the transformation rule involves a correction term which
represents the triple covariation of the three functions, f , g, and h.
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Chapter 4

The Principal Definitions

Probability theory is based on two things.
The first is the notion of a probability space. Recall that a probability space

is a measure space, pΩ,F , P q, such that P pΩq “ 1. If A P F , then P pAq is called
the probability of A.

The second is the notion of conditional probability. If A,B P F and P pBq ą

0, then the conditional probability of A given B is defined as

P pA | Bq “
P pAXBq

P pBq
.

Since P pAq “ P pA | Ωq for all A P F , all probabilities are in fact conditional
probabilities.

Proposition 4.1. Let pΩ,F , P q be a probability space. Let A P F with P pAq ą

0. Define PA : F Ñ r0, 1s by PApBq “ P pB | Aq. Then PA is a probability
measure on pΩ,Fq with PApAq “ 1. Moreover, if B P F and P pA X Bq ą 0,
then PApBq ą 0 and PAXBpCq “ PApC | Bq for all C P F .

Proof. The proof that PA is a probability measure with PApAq “ 1 is left to
the reader. For the second part, suppose B P F and P pAXBq ą 0. Then

PApBq “ P pB | Aq “
P pB XAq

P pAq
ą 0,

so PApC | Bq is well-defined. We now have

PAXBpCq “ P pC | AXBq “
P pAXB X Cq

P pAXBq
“
P pAXB X Cq

P pAq
¨

P pAq

P pAXBq

“
PApB X Cq

PApBq
“ PApC | Bq,

for all C P F . l
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Corollary 4.2. Let pΩ,F , P q be a probability space. Let A,B,C P F with
P pCq ą 0.

(a) If P pAXB | Cq “ 0, then P pAYB | Cq “ P pA | Cq ` P pB | Cq.

(b) If P pAX Cq ą 0, then P pAXB | Cq “ P pA | CqP pB | AX Cq.

Proof. Since PC is a finite measure, we have

PCpAYBq “ PCpAq ` PCpBq ´ PCpAXBq,

and (a) follows immediately.
Suppose P pAX Cq ą 0. Then

PAXCpBq “ PCpB | Aq “
PCpAXBq

PCpAq
.

Multiplying by PCpAq gives (b). l

The statements expressed in (a) and (b) are sometimes called the addition
rule and the multiplication rule, respectively, and are often regarded as the
foundational principles of probability. The addition rule comes primarily from
the finite additivity1 of the measure P , whereas the multiplication rule comes
primarily from the definition of conditional probability. As such, the probability
space structure and the definition of conditional probability together form the
basis for probability theory. In Chapter 5, we will focus on the probability space
structure. In Chapter 6, we will turn our attention to conditional probability.

Exercises

4.1. Complete the proof of Proposition 4.1.

1The countable additivity of P is needed so that we may take limits, which is especially
important when we study stochastic processes later in these notes.



Chapter 5

Probability Spaces and
Random Variables

5.1 Probability spaces

This section corresponds to [2, Section 1.1].
Recall that a probability space is a measure space, pΩ,F , P q, such that

P pΩq “ 1. Traditionally, elements ω P Ω are referred to as “outcomes” and
measurable sets A P F are referred to as “events”.

Example 5.1. Let Ω be a countable set and F “ 2Ω. Let p : Ω Ñ r0, 1s be
such that

ř

ωPΩ ppωq “ 1. Define P : F Ñ r0, 1s by P pAq “
ř

ωPA ppωq. Then
pΩ,F , P q is a probability space.

A common special case is where Ω is a finite set and ppωq “ 1{|Ω| for all
ω P Ω. The resulting measure P , in this case, is often called the uniform
probability measure on Ω.

For instance, if Ω “ t1, . . . , 6u and P is the uniform measure, then pΩ,F , P q

is a common model for the roll of a fair 6-sided die. The subset A “ t2, 3, 5u

corresponds to the event that the die lands on a prime number.
Or if Ω “ t00, 0, 1, . . . , 36u and P is the uniform measure, then pΩ,F , P q is

a common model for the spin of a balanced American roulette wheel. To model
the spin of an imbalanced American roulette wheel, we could use the same
pΩ,Fq, but generate our probability measure P using a nonconstant function
p : Ω Ñ r0, 1s.

Remark 5.2. The elements ω P Ω can be thought to correspond to possible
“states of the world.” In the fair die example, with Ω “ t1, . . . , 6u, the element
ω “ j can be thought to correspond to the aggregate of physical conditions that
results in the die landing on the number j. Suppose S is the sentence, “The die
lands on a prime number.” Then the set A “ t2, 3, 5u consists of all states of
the world that result in S being true. In this way, we can think of probabilities
applying to propositions rather than sets. When thought of in this way, the
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set operations of union, intersection, and complement correspond to the logical
operations of disjunction, conjunction, and negation, respectively. This point
of view provides an intuitive foundation that is not only useful in applications,
but also in constructing proofs and solving purely mathematical problems in
probability theory. For a somewhat mild example, see Example 5.10.

5.2 Real-valued random variables

This section corresponds to [2, Section 1.2].
A random variable on a probability space pΩ,F , P q is an F-measurable

function X : Ω Ñ R. Recall that R is the Borel σ-algebra on R. Since X is
pF ,Rq-measurable, it follows that X´1 : R Ñ F . (In fact, X´1 is a Boolean
σ-algebra homomorphism from R to F .)

If B P R, then

X´1pBq “ tω : Xpωq P Bu P F

It is very common practice in probability to omit ω from our notation, so instead
of the above, we usually write

X´1pBq “ tX P Bu P F .

The set tX P Bu is the event that the random variable takes a value in B. Since
tX P Bu P F , it has a probability, P ptX P Buq. It is also common practice in
probability to omit the curly brackets inside of our probability measure, so we
usually just write this as P pX P Bq, which is read as “the probability that X is
in B.”

Let X be a random variable on a probability space pΩ,F , P q. Define the
function µ : R Ñ r0, 1s by µpAq “ P pX P Aq. Then µ is a Borel probability
measure on R, and is called the distribution of X, or the law of X. Note
that µ “ P ˝X´1. We write X „ µ to indicate that X has distribution µ.

The function F : R Ñ r0, 1s given by F pxq “ µpp´8, xsq is called the
distribution function of X. Note that F pxq “ P pX ď xq.

By Theorem 1.22, F is increasing and right-continuous. It is also easy to
check, as in Exercise 1.12, that F p8q “ 1, F p´8q “ 0, F px´q “ P pX ă xq,
and P pX “ xq “ F pxq ´ F px´q.

Sometimes, µ and F are denoted by µX and FX to indicate their relationship
to X.

Example 5.3. Let Ω “ p0, 1q, F “ Bp0,1q, and let P be Lebesgue measure.
Define X : Ω Ñ R by Xpωq “ ω. Then X is a random variable with distribution
function F : R Ñ R. If x P p0, 1q, then

F pxq “ P pX ď xq “ P pp0, xsq “ x.

If x ď 0, then

F pxq “ P pX ď xq “ P pHq “ 0,
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and if x ě 1, then

F pxq “ P pX ď xq “ P pp0, 1qq “ 1.

Thus,

F pxq “

$

’

&

’

%

0 if x ď 0,

x if 0 ă x ă 1,

1 if x ě 1.

Or, more compactly, F pxq “ x1p0,1qpxq ` 1r1,8q.
The distribution of X is the Borel measure µ on R associated with F accord-

ing to Theorem 1.22. In this case, µpBq “ λpB X p0, 1qq, where λ is Lebesgue
measure. The measure µ in this example is called the uniform distribution
on p0, 1q.

More generally, if C P R, 0 ă λpCq ă 8, and µ : R Ñ r0, 1s is given by
µpBq “ λpB X Cq{λpCq, then µ is a Borel probability measure on R and is
called the uniform distribution on C. We sometimes write UpCq for this
distribution. If C is an interval with endpoints a ă b, then we write Upa, bq for
this distribution.

Any random variable on any probability space whose distribution is the
uniform distribution on C is said to be uniformly distributed on C.

Theorem 5.4. Let F : R Ñ r0, 1s be increasing and right-continuous, with
F p8q “ 1 and F p´8q “ 0. Then there exists a random variable X on some
probability space pΩ,F , P q such that F “ FX .

Proof. If F is strictly increasing and continuous, then F has an inverse function
F´1 : r0, 1s Ñ R. More generally, if F is merely increasing and right-continuous,
then let us define, for x P p0, 1q,

F´1pxq “ supty : F pyq ă xu.

If F is strictly increasing and continuous, then this definition agrees with the
usual definition. In the general case, this function F´1 is sometimes called
a pseudo-inverse. In the proof of [2, Theorem 1.2.2], it is shown that for all
px, yq P p0, 1q ˆ R, we have F´1pxq ď y if and only if x ď F pyq.

Let U be a random variable on some probability space such that U „ Up0, 1q.
Let X “ F´1pUq. We will show that F “ FX . Let x P R. Then

FXpxq “ P pX ď xq “ P pF´1pUq ď xq “ P ptω : F´1pUpωqq ď xuq

“ P ptω : Upωq ď F pxquq “ P pU ď F pxqq “ F pxq,

which shows that F “ FX . l

Remark 5.5. There is an easier way to construct X from F . Namely, take
Ω “ R, F “ R, P “ µF , and define X : Ω Ñ R by Xpωq “ ω. However,
the above proof is very useful. It shows, in a constructive fashion, how any
distribution can be created from a uniform distribution. This is helpful for
both theoretical and applied purposes. It can aid in the construction of certain
proofs, and it is helpful in designing simulations.



78 CHAPTER 5. PROBABILITY SPACES AND RANDOM VARIABLES

On a probability space, pΩ,F , P q, the phrase “almost everywhere” is typi-
cally replaced by the phrase “almost surely” with the abbreviation a.s. For
example, if X and Y are random variables defined on pΩ,F , P q, then X “ Y
a.s. means there exists N P F such that P pNq “ 0 and Xpωq “ Y pωq for all
ω P N c.

Let X be a random variable defined on a probability space, pΩ,F , P q, and
let Y be a random variable defined on a possibly different probability space,
pΩ1,F 1, P 1q. Then both µX and µY are probability measure on pR,Rq. If
µX “ µY , then we say X and Y are equal in distribution, or in law, and we
write

X
d
“ Y,

or X “d Y . Note that X “d Y if and only if FX “ FY , that is, X “d Y if and
only if P pX ď xq “ P 1pY ď xq for all x P R.

Note that the statement, X “ Y a.s., implies that X and Y are defined on
the same probability space, but the statement X “d Y does not.

Let X be a random variable with distribution µ and distribution function
F . Suppose that µ ! λ, where λ is Lebesgue measure, and let f be a version of
the Radon-Nikodym derivative, dµ{dλ. Then dµ “ f dλ and, in particular,

F pxq “

ż x

´8

fptq dt.

In this case, we say that f is the density function of X, and we sometimes
denote it by fX . Note that f is nonnegative, integrable, and

ş

fpxq dx “ 1.
Conversely, if f is nonnegative and

ş

fpxq dx “ 1, then we may define a
probability measure by dµ “ f dλ. By Theorem 5.4, we have that µ is the
distribution of some random variable, X. It then follows that f is the density
of X.

By Theorem 3.23, the fundamental theorem of calculus for Lebesgue inte-
grals,

lim
hÑ0`

h´1P pX P rx, x` hsq “ lim
hÑ0`

F px` hq ´ F pxq

h

“ F 1pxq “ fpxq,

for Lebesgue a.e. x P R. Thus, if ∆x is small, then

P pX P rx, x` ∆xsq « fpxq∆x.

You will sometimes see authors write P pX “ xq “ fpxq. Of course, this is
false. If X has a density function, then P pX “ xq “ 0 for all x P R. The most
gracious, and perhaps the only sensible, interpretation in such a situation is to
assume the authors meant to refer to the above approximation.

Example 5.6. Fix r ą 0 and let fpxq “ re´rx1p0,8qpxq. Then f ě 0 and
ş

fpxq dx “ 1, so there exists a random variable X that has density f . The
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distribution function of X is then

F pxq “ P pX ď xq “

ż x

´8

fptq dt “

ż x`

0

re´rt dt “ p1 ´ e´rxq1p0,8qpxq.

The distribution of X is called the exponential distribution with rate r,
and is denoted by Expprq.

Note that X „ Expprq if and only if P pX ą tq “ e´rt for all t ą 0. Thus, if
X „ Expprq and s ą 0, then sX „ Expps´1rq.

Example 5.7. Let

fpxq “
1

?
2π
e´x2

{2.

Then f is nonnegative and
ş

fpxq dx “ 1, so there exists a random variable X
that has density f . The distribution function of X is then

F pxq “
1

?
2π

ż x

´8

e´t2{2 dt,

which has no closed form expression. The distribution of X is called the stan-
dard normal distribution, or standard Gaussian distribution, and is
denoted by Np0, 1q. The distribution function of a standard normal is typically
denoted by Φ.

In [2, Theorem 1.2.3], it is shown that

ˆ

1

x
´

1

x3

˙

e´x2
{2 ď

ż 8

x

e´t2{2 dt ď
1

x
e´x2

{2,

for all x ą 0. Thus, if X „ Np0, 1q, then

1
?
2π

ˆ

1

x
´

1

x3

˙

e´x2
{2 ď P pX ą xq ď

1
?
2π x

e´x2
{2,

for all x ą 0.

Let X be a random variable with X „ µ. Recall from Proposition 3.15 that
µ has a unique decomposition µ “ µd `µac `µsc, where µd is discrete, µac ! λ,
and µsc is continuous with µsc K λ. Note that X has a density function if and
only if µ ! λ, which holds if and only if µd “ µsc “ 0. Also note that FX is
continuous if and only if µ is continuous, which holds if and only if µd “ 0.

Example 5.8. Let pΩ,F , P q be a probability space. Choose c P R and define
X : Ω Ñ R by Xpωq “ c for all ω P Ω. Then X „ δc, where δc is the point
mass measure at c. In this case, X does not have a density function. In order
for X to have a density function, the distribution of X must be absolutely
continuous with respect to Lebesgue measure. But in this case, δc K λ, that is,
the distribution of X is singular with respect to Lebesgue measure. Note that
in this example, the distribution of X is discrete.
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Example 5.9. Let F be the Cantor function and let X be a random variable
with distribution function F . Then X „ µF . Since F is continuous, the measure
µF is continuous. However, µF K λ, so X does not have a density function.

Example 5.10. Suppose tXnu8
n“1 is a sequence of random variables defined

on a probability space pΩ,F , P q. Let

A “

!

ω : lim
nÑ8

Xnpωq “ 8

)

,

or, as we would more commonly write it in probability,

A “

!

lim
nÑ8

Xn “ 8

)

.

Note that Xn Ñ 8 if and only if

@M P N, DN P N,@n ě N,Xn ą M.

Guided by the intuitive understanding described in Remark 5.2, we are led
immediately to

A “
č

MPN

ď

NPN

8
č

n“N

tXn ą Mu.

Written in this way, we immediately see that A P F . Moreover, we may now be
able to say something about P pAq using what we may know about P pXn ą Mq.
We will have many opportunities to work with examples like this, especially
when discussing limit theorems for discrete-time stochastic processes, such as
the law of large numbers and the central limit theorem.

Exercises

5.1. [2, Exercise 1.2.2] Let X „ Np0, 1q. Use [2, Theorem 1.2.3] to find upper
and lower bounds on P pX ě 4q.

5.2. [2, Exercise 1.2.4] Let X be a random variable, and let Y “ FXpXq. Show
that if FX is continuous, then Y „ Up0, 1q.

5.3. [2, Exercise 1.2.6] Let X „ Np0, 1q. Find the density of Y “ eX .

5.4. [2, Exercise 1.2.7(i)] Let X be a random variable with density function f .
Find the density function of X2 in terms of f .

5.5. [2, Exercise 1.2.5] Let ´8 ď α ă β ď 8 and let X be a random variable
with P pX P pα, βqq “ 1. Assume X has a continuous density function f . Let
g : pα, βq Ñ R be strictly increasing and differentiable, and define Y “ gpXq.

(a) Prove that Y has a density function,

hpyq “
fpg´1pyqq

g1pg´1pyqq
1pgpαq,gpβqqpyq.

(b) Show that in the case gpxq “ ax` b, where a ą 0, the density reduces to

hpyq “
1

a
f

ˆ

y ´ b

a

˙

.
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5.3 General random variables

This section corresponds to [2, Section 1.3].
Let pΩ,F , P q be a probability space, and pS,Sq a measurable space. An

S-valued random variable is an pF ,Sq-measurable function X : Ω Ñ S.
Since X is pF ,Sq-measurable, it follows that X´1 : S Ñ F . (In fact, X´1 is a
Boolean σ-algebra homomorphism from S to F .)

If B P S, then
X´1pBq “ tω : Xpωq P Bu P F ,

which we usually write as

X´1pBq “ tX P Bu P F .

The set tX P Bu is the event that the X takes a value in B, and P pX P Bq is
the probability of this event.

Let X be an S-valued random variable. Define the function µ : S Ñ r0, 1s

by µpAq “ P pX P Aq. Then µ is a probability measure on pS,Sq, and is called
the distribution of X, or the law of X. Note that µ “ P ˝X´1.

We write X „ µ to indicate that X has distribution µ. More generally, if ν
is a finite, nontrivial measure on pS,Sq, then we write X „ ν to indicate that
X has distribution ν{νpSq.

Sometimes µ is denoted by µX to indicate its relationship to X. If X and Y
are S-valued random variables defined on possibly different probability spaces,
then we write

X
d
“ Y,

or X “d Y , to mean that µX “ µY , and we say X and Y are equal in
distribution, or in law.

If µ is any probability measure on pS,Sq, then we can create a random
variable with distribution µ simply by taking Ω “ S, F “ S, P “ µ, and
defining X : Ω Ñ S by Xpωq “ ω.

Typically, when we say X is a random variable, we will mean X is a real-
valued random variable, unless otherwise specified, either explicitly or by con-
text. An S-valued random variable may sometimes be called a random element
of S. If elements of S have a particular names, we may use that instead. For
example, an Rn-valued random variable may sometimes be called a random
vector.

Example 5.11. Let S “ Cr0, 1s, the set of all continuous functions from r0, 1s

to C. The mapping f ÞÑ }f} “ supxPr0,1s |fpxq| defines a norm on S, which
yields a metric. We can therefore let S “ BS be the Borel σ-algebra on S. An
S-valued random variable is an F-measurable function X : Ω Ñ S.

For each ω P Ω, we have that Xpωq is a function from r0, 1s to C. We
typically write Xpt, ωq “ pXpωqqptq. The object X is a random continuous
function on r0, 1s. An example of such a Cr0, 1s-valued random variable, which
we will learn about much later on, is Brownian motion.
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5.4 Expected value

This section corresponds to [2, Section 1.6].
If X is a real-valued random variable on pΩ,F , P q, then the expected value

of X is defined as

ErXs “

ż

Ω

X dP,

provided this integral exists. We frequently drop the brackets, writing EX when
non confusion is likely to arise. The expected value of X is also called the mean
of X.

On a probability space, constant random variables are integrable, and the
expected value of a constant is that constant itself. So in addition to the
usual properties of integration (linearity, monotonicity, etc.), we also have that
EraX ` bs “ aErXs ` b.

You will occasionally see the notation ErX;As “ ErX1As, where A P F .
We will try to avoid this notation in these notes, writing simply ErX1As.

Since the expected value is an integral, we have at our disposal all the usual
inequalities and limit theorems from measure and integration, such as Jensen’s
inequality, Hölder’s inequality, Fatou’s lemma, and so on. In addition to these,
here are two theorems that will be especially useful to us.

The following theorem is [2, Theorem 1.6.4].

Theorem 5.12 (Chebyshev’s inequality). Let X be a real-valued random vari-
able and φ : R Ñ r0,8q. For A P R, let mA “ inftφpxq : x P Au. Then

P pX P Aq ď
ErφpXqs

mA
,

for all A P R such that mA ą 0.

Proof. Since φ ě 0, we have

ErφpXqs ě ErφpXq1tXPAus ě ErmA1tXPAus “ mAEr1tXPAus “ mAP pX P Aq.

Dividing by mA finishes the proof. l

Remark 5.13. Many authors use the phrase “Chebyshev’s inequality” to refer
to the special case, φpxq “ |x|r and A “ p´a, aqc. In this case, the inequality
reduces to P p|X| ě aq ď Er|X|rs{ar.

If limxÑ8 fpxq “ limxÑ´8 fpxq “ L, then we say fpxq Ñ L as |x| Ñ 8.
The following is [2, Theorem 1.6.8]. See the book for the proof.

Theorem 5.14. Let Xn, X be real-valued random variables with Xn Ñ X a.s.
Let g : R Ñ r0,8q and h : R Ñ R be continuous. Assume that

(i) gpxq Ñ 8 as |x| Ñ 8,

(ii) |hpxq|{gpxq Ñ 0 as |x| Ñ 8, and
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(iii) supnEgpXnq ă 8.

Then EhpXnq Ñ EhpXq as n Ñ 8.

Corollary 5.15. Let Xn, X be real-valued random variables with Xn Ñ X a.s.
Let p ą 1 and suppose supnE|Xn|p ă 8. Then EXn Ñ EX as n Ñ 8.

Proof. Take gpxq “ |x|p and hpxq “ x. l

Let X be an S-valued random variable, where pS,Sq is a measurable space.
If g : S Ñ R is S-measurable, then gpXq is a real-valued random variable.
Assume either gpXq ě 0 a.s. or E|gpXq| ă 8. Then by Theorem 2.32, we have

EgpXq “

ż

Ω

g ˝X dP “

ż

S

g dpP ˝X´1q “

ż

S

g dµ,

where µ is the distribution of X. For example, if pS,Sq “ pRn,Rnq, then this
formula allows us to compute expected values by performing integrals on the
more familiar space Rn, rather than some abstract probability space pΩ,F , P q.

Example 5.16. Let X be a real-valued random variable with distribution µ
and distribution function F . If X ě 0 or E|X| ă 8, then taking gpxq “ x in
the above, we have

EX “

ż

R
xµpdxq.

Since µ is the Lebesgue-Stieltjes measure associated with F , we can also write
this as

EX “

ż

R
x dF pxq.

More generally,

EgpXq “

ż

R
gpxq dF pxq,

whenever g : R Ñ R is measurable and either gpXq ě 0 a.s. or E|gpXq| ă 8.

Example 5.17. Let X be a real-valued random variable with density f . Then
X „ µ, where dµ “ fpxq dx. As a special case of Example 5.16, if X ě 0 or
E|X| ă 8, then

EX “

ż

R
xfpxq dx.

More generally,

EgpXq “

ż

R
gpxqfpxq dx,

whenever g : R Ñ R is measurable and either gpXq ě 0 a.s or E|gpXq| ă 8.
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Example 5.18. Let X be a real-valued random variable with a discrete distri-
bution. That is, X „ µ and there exists a countable S Ă R such that µpSq “ 1.
As a special case of Example 5.16, if X ě 0 or E|X| ă 8, then

EX “
ÿ

xPS

xµptxuq “
ÿ

xPS

xP pX “ xq.

More generally,
EgpXq “

ÿ

xPS

gpxqP pX “ xq,

whenever g : R Ñ R is measurable and either gpXq ě 0 a.s. or E|gpXq| ă 8.

If k P N, then ErXks is called the k-th moment of X. Suppose X is a
square-integrable random variable, that is, X has a finite second moment. By
Exercise 2.16, this impliesX is integrable. Let µ “ EX P R. Then the variance
of X is defined to be varpXq “ Er|X ´ µ|2s. Note that

varpXq “ ErX2 ´ 2µX ` µ2s “ ErX2s ´ 2µErXs ` µ2 “ ErX2s ´ µ2.

From this, we get varpXq ď ErX2s. Also, suppose Y “ aX ` b, where a, b P R.
Then EY “ aµ` b, so Y ´ EY “ apX ´ µq. This gives

varpY q “ Er|Y ´ EY |2s “ a2Er|X ´ µ|2s “ a2 varpXq.

The standard deviation of X is defined as
a

varpXq.

Example 5.19. Recall Example 5.6 and let X „ Expp1q. Then X ě 0 a.s. and

ErXks “

ż 8

0

xke´x dx,

for all k P N. Using integration by parts and induction, one finds that ErXks “

k!. Thus, EX “ 1 and EX2 “ 2, which gives varpXq “ 2 ´ 12 “ 1.
Let r ą 0 and Y “ X{r. Then Y „ Expprq and ErY ks “ ErXks{rk “ k!{rk

for all k P N. In particular, EY “ 1{r and EY 2 “ 2{r2, which gives varpY q “

1{r2. In other words, if Y is exponentially distributed with parameter r, then
the mean and standard deviation of Y are both 1{r.

Example 5.20. Let us define 0!! “ 1!! “ 1 and, for integers n ą 1, let n!! “

nppn´ 2q!!q. The number n!! is called the double factorial of n.
Recall Example 5.7 and let X „ Np0, 1q. Then

EXk “
1

?
2π

ż

R
xke´x2

{2 dx,

for all k P N. Using integration by parts and symmetry, one can show that

EXk “

#

0 if k is odd,

pk ´ 1q!! if k is even.
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In particular, EX “ 0 and EX2 “ 1, which gives varpXq “ 1.

Let σ, µ P R with σ ‰ 0, and let Y “ σX ` µ. Then EY “ µ and varpY q “

σ2. By Exercise 5.5, the random variable Y has density,

fY pyq “
1

?
2πσ2

e´py´µq
2

{2σ2

.

The distribution of Y is called the normal (or Gaussian) distribution with
mean µ and variance σ2, and is denoted by Npµ, σ2q. Note that

e´py´µq
2

{2σ2

“ exp

ˆ

´
py ´ µq2

2σ2

˙

.

Although this is a violation of the order of operations, it is a standard abuse of
notation when writing the density of the normal distribution.

Example 5.21. Let p P r0, 1s and let X be a random variable with P pX “

1q “ p and P pX “ 0q “ 1´ p. The distribution of X is pδ1 ` p1´ pqδ0, which is
a discrete distribution. This distribution is called the Bernoulli distribution
with parameter p, and is denoted by Bernoullippq. Note that

EgpXq “
ÿ

xPt0,1u

gpxqP pX “ xq “ gp0qp1 ´ pq ` gp1qp.

In particular, we have EXk “ p for all k P N. Thus, varpXq “ p´p2 “ pp1´pq.
A frequently useful observation is that Xk “ X a.s., for any k P N.

Example 5.22. Let r ą 0 and let X be a random variable such that

P pX “ kq “ e´r r
k

k!
,

for all nonnegative integers k. The distribution of X is called the Poisson
distribution with parameter r, and is denoted by Poissonprq.

Let n P N and note that

E

„ n´1
ź

j“0

pX ´ jq

ȷ

“
ÿ

kPNYt0u

ˆ n´1
ź

j“0

pk´ jq

˙

P pX “ kq “

8
ÿ

k“0

ˆ n´1
ź

j“0

pk´ jq

˙

e´r r
k

k!

“ e´r
8
ÿ

k“n

ˆ

k!

pk ´ nq!

˙

rk

k!
“ e´rrn

8
ÿ

k“0

rk

k!
“ rn.

Taking n “ 1 gives EX “ r, and taking n “ 2 gives ErXpX ´ 1qs “ r2. Thus,

EX2 “ ErXpX ´ 1qs ` EX “ r2 ` r,

and, therefore, varpXq “ r2 ` r ´ r2 “ r.
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Example 5.23. Let p P p0, 1q and let X be a real-valued random variable with

P pX “ kq “ pp1 ´ pqk´1,

for each k P N. The distribution of X is called the geometric distribution
with parameter p, and is denoted by Geomppq.

By Theorem 2.31,

EX “
ÿ

kPN
kP pX “ kq “

8
ÿ

k“1

kpp1 ´ pqk´1

“ ´p
d

dp

8
ÿ

k“0

p1 ´ pqk “ ´p
d

dp

ˆ

1

p

˙

“
1

p
,

and, similarly,

ErXpX ´ 1qs “

8
ÿ

k“1

kpk ´ 1qpp1 ´ pqk´1 “ pp1 ´ pq
d2

dp2

ˆ

1

p

˙

“
2p1 ´ pq

p2
.

Thus,

varpXq “ ErX2s ´ pEXq2 “ ErXpX ´ 1qs ` EX ´ pEXq2

“
2p1 ´ pq

p2
`

1

p
´

1

p2
“

1 ´ p

p2
.

A similar technique could be used to derive higher moments of X.

As a closing remark, let us mention that expected values can be used to
derive the inclusion-exclusion formula:

P

ˆ n
ď

i“1

Ai

˙

“

n
ÿ

i“1

P pAiq ´
ÿ

iăj

P pAi XAjq `
ÿ

iăjăk

P pAi XAj XAkq

´ ¨ ¨ ¨ ` p´1qn´1P

ˆ n
č

i“1

Ai

˙

.

See [2, Exercise 1.6.9].

Exercises

5.6. [2, Exercise 1.6.7] Let Ω “ p0, 1q, F “ Bp0,1q, and let P be Lebesgue
measure. Fix α P p1, 2q and define Xn “ nα1p1{pn`1q,1{nq.

(a) Show that there does not exist an integrable random variable Y such that
|Xn| ď Y a.s. for each n P N. In other words, the dominated convergence
theorem does not apply to this sequence of random variables.
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(b) Use Theorem 5.14 to show that EXn Ñ 0 as n Ñ 8.

Hint: Use gpxq “ |x|2{α.

5.7. [2, Exercise 1.6.6] Let X be a nonnegative random variable with EX2 ă 8.
Prove that

P pX ą 0q ě
pEXq2

EX2
.

Hint: Apply Cauchy-Schwarz to X1tXą0u.

5.8. [2, Exercise 1.6.14] Let X be a nonnegative random variable. Prove that

lim
xÑ8

xErX´11tXąxus “ lim
xÓ0

xErX´11tXąxus “ 0.

Warning: Be careful not to assume that ErX´1s ă 8.
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Chapter 6

Independence and
Conditional Expectation

6.1 Conditional probability and independence

This section corresponds to [2, Section 2.1].
Let pΩ,F , P q be a probability space. Suppose B P F and P pBq ą 0. Recall

that the conditional probability of A given B is defined as

P pA | Bq “
P pAXBq

P pBq
.

Clearly, if B Ă A, then P pA | Bq “ 1. The following lemma provides a converse
result.

Lemma 6.1. Let A,B P F with P pBq ą 0. Then the following are equivalent.

(a) P pA | Bq “ 1.

(b) P pBzAq “ 0.

(c) P pBc YAq “ 1.

(d) There exists N P F such that P pNq “ 0 and B Ă AYN .

Remark 6.2. Recall Remark 5.2, in which we discussed the heuristic identifi-
cation of measurable sets with propositions. We noted that the set operations of
union, intersection, and complement correspond to the logical operations of dis-
junction, conjunction, and negation, respectively. We now note that the subset
relation corresponds to the relation of logical implication.

When we think of A and B as representing propositions, we usually interpret
P pA | Bq “ 1 as meaning that B logically implies A. While it is not quite true
that P pA | Bq “ 1 if and only if B Ă A, it is true up to null sets, as expressed
by the equivalence between (a) and (d).

89
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It is also interesting to point out that in propositional logic, there is a dif-
ference between logical implication and material implication (sometimes just
called implication). Material implication is an operation, denoted by Ñ. If S
and T are propositions, then T Ñ S is the statement, “T implies S”, which is
false when T is true and S is false, and is true otherwise. The statement T Ñ S
is logically equivalent to p„ T q _ S.

To say that T logically implies S is to say that T Ñ S is a tautology,
or equivalently, that p„ T q _ S is a tautology. The analogue for events in a
probability space is the equivalence between (a) and (c).

As Example 5.10 demonstrates, the events we work with in probability are
frequently cumbersome to write down, making it sometimes difficult to tell
at a glance when one event is a subset of another. The heuristic identification
between the subset relation and logical implication is frequently useful in making
this determination. We often think in terms of logical relations and operations,
while working with set relations and operations.

Proof of Lemma 6.1. Let A,B P F with P pBq ą 0. Since

P pBq “ P pAXBq ` P pAc XBq,

it follows that P pA X Bq “ P pBq if and only if P pAc X Bq “ 0. Thus, (a) and
(b) are equivalent. Also, since pBzAqc “ Bc YA, it follows that (b) and (c) are
equivalent.

Now assume (b). Let N “ BzA, so that P pNq “ 0. Since A Y N “ A Y B,
this gives (d).

Finally, assume (d). Then

B XAc Ă pAYNq XAc “ N XAc Ă N.

Thus, P pB XAcq ď P pNq “ 0, which gives (b). l

If A,B P F , and P pA X Bq “ P pAqP pBq, then we say A and B are inde-
pendent.

Lemma 6.3. Let A,B P F with P pAq ą 0 and P pBq ą 0. Then the following
are equivalent.

(a) P pA | Bq “ P pAq.

(b) P pB | Aq “ P pBq.

(c) A and B are independent.

Proof. Let A,B P F with P pAq ą 0 and P pBq ą 0.
Suppose P pA | Bq “ P pAq. Then

P pB | Aq “
P pAXBq

P pAq
“
P pAXBq

P pBq

P pBq

P pAq
“ P pA | Bq

P pBq

P pAq
“ P pBq.

By reversing the roles of A and B, we have that (a) and (b) are equivalent.
Since P pA X Bq “ P pAqP pB | Aq and P pAq ą 0, we have that (b) and (c) are
equivalent. l
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In words, P pA | Bq “ P pAq means that the probability of A remains unaf-
fected, whether we are given B or not. In other words, A is independent of B.
The lemma shows that this relationship between A and B is symmetric, so we
need only say that A and B are independent.

The lemma only applies when P pAq and P pBq are both positive, whereas
the definition of independence makes sense even when one of these probabilities
is zero.

Lemma 6.4. Let A,B P F . If P pAq P t0, 1u, then A and B are independent.

Proof. If P pAq “ 0, then P pA X Bq ď P pAq “ 0, so P pA X Bq “ P pAqP pBq,
and A and B are independent.

Suppose P pAq “ 1. Then P pAc XBq ď P pAcq “ 0, so

P pAqP pBq “ P pBq “ P pAXBq ` P pAc XBq “ P pAXBq,

and A and B are independent. l

Example 6.5. Let Ω “ t1, . . . , 6u, F “ 2Ω, and let P be given by P pAq “ |A|{6.
Let A “ t2, 3, 5u and B “ t1, 2, 3, 4u. If we interpret this probability space as
modeling a single roll of a fair 6-sided die, then A is the event that we roll a
prime number, and B is the event that we roll a number less than 5.

Note that P pA X Bq “ P pt2, 3uq “ 1{3, whereas P pAqP pBq “ p1{2qp2{3q “

1{3. Thus, P pAXBq “ P pAqP pBq, and so A and B are independent.

Let pΩ,F , P q be a probability space. Let pS1,S1q and pS2,S2q be measurable
spaces. Let Xj be an Sj-valued random variable. We say that X1 and X2 are
independent if

P pX1 P B1, X2 P B2q “ P pX1 P B1qP pX2 P B2q,

for all Bj P Sj . Note that P pX1 P B1, X2 P B2q is shorthand for P ptX1 P

B1u X tX2 P B2uq. The use of the comma to mean intersection is common
practice in probability.

Proposition 6.6. Let A,B P F . The events A and B are independent if and
only if the random variables 1A and 1B are independent.

Proof. Exercise 6.2. l

Let G Ă F and H Ă F be σ-algebras. We say that G and H are indepen-
dent if, for all A P G and B P H, the events A and B are independent.

Proposition 6.7. Let X and Y be random variables, and G and H σ-algebras.
If X and Y are independent, then so are σpXq and σpY q. Conversely, if G and
H are independent, and X P G and Y P H, then X and Y are independent.

Proof. Exercise 6.1. l
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6.1.1 Independence of a set

Let pΩ,F , P q be a probability space and A1, . . . , An P F . Then A1, . . . , An are
independent if, for all I Ă t1, . . . , nu,

P

ˆ

č

jPI

Aj

˙

“
ź

jPI

P pAjq. (6.1)

We say that A1, . . . , An are pairwise independent if Ai and Aj are indepen-
dent whenever i ‰ j. By taking I “ ti, ju, we see that independence implies
pairwise independence, but the converse is not true. See [2, Example 2.1.1] for
an example of three events that are pairwise independent, but not independent.

For each j P t1, . . . , nu, let pSj ,Sjq be a measurable space, and let Xj be an
Sj-valued random variable. Then X1, . . . , Xn are independent if

P

ˆ n
č

j“1

tXj P Bju

˙

“

n
ź

j“1

P pXj P Bjq, (6.2)

for all Bj P Sj .
On the surface, it looks like the structure of (6.2) is less general than (6.1),

because it does not explicitly mention subsets of t1, . . . , nu. However, with
a small trick, we can see that it does, in fact, cover such subsets. Suppose
I Ă t1, . . . , nu. For j P I, let Bj P Sj be arbitrary. For j R I, let Bj “ Sj . Since
tXj P Sju “ Ω and P pXj P Sq “ 1, the above equality becomes

P

ˆ

č

jPI

tXj P Bju

˙

“
ź

jPI

P pXj P Bjq,

for all Bj P Sj .

Proposition 6.8. Let A1, . . . , An P F . The events A1, . . . , An are independent
if and only if the random variables 1A1

, . . . , 1An
are independent.

Proof. Exercise 6.3. l

For j P t1, . . . , nu, let Gj Ă F be a σ-algebra. Then G1, . . . ,Gn are inde-
pendent if

P

ˆ n
č

j“1

Aj

˙

“

n
ź

j“1

P pAjq,

whenever Aj P Gj . As above, suppose I Ă t1, . . . , nu. For j P I, let Aj P Gj

be arbitrary, and for j R I, let Aj “ Ω P Gj . Then the above equality becomes
P p

Ş

jPI Ajq “
ś

jPI P pAjq.

Proposition 6.9. Let X1, . . . , Xn be random variables, and let G1, . . . ,Gn be
σ-algebras. If X1, . . . , Xn are independent, then so are σpX1q, . . . , σpXnq. Con-
versely, if G1, . . . ,Gn are independent, and Xj P Gj, then X1, . . . , Xn are inde-
pendent.
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Proof. Exercise 6.4. l

More generally, if tAαuαPΛ Ă F is any collection of events, then tAαuαPΛ is
independent if, for all F Ă Λ such that F is finite, tAαuαPF is independent. The
analogous definitions for infinite collections of random variables or σ-algebras
also holds.

6.1.2 Sufficient conditions for independence

Our first order of business is to show that when checking independence of σ-
algebras, it is sufficient to check the product formula for collections of events
that generate the σ-algebras, provided those collections are closed under inter-
sections. (See Theorem 6.11 below.) The proof of this theorem is an excellent
example of the use of the π-λ theorem (Theorem 2.3.) To state and prove the
theorem, however, we first need a definition and a lemma.

For each j P t1, . . . , nu, suppose Ej Ă F . Note that we are not assuming that
Ej is a σ-algebra. Then E1, . . . , En are independent if, for all I Ă t1, . . . , nu,

P

ˆ

č

jPI

Aj

˙

“
ź

jPI

P pAjq,

whenever Aj P Ej .

Lemma 6.10. For each j P t1, . . . , nu, let Ej Ă F , and let Ej “ Ej YtΩu. Then
E1, . . . , En are independent if and only if E1, . . . , En are independent, which holds
if and only if

P

ˆ n
č

j“1

Aj

˙

“

n
ź

j“1

P pAjq,

whenever Aj P Ej.

Proof. The second equivalence holds by taking Aj “ Ω whenever j R I. In
the first equivalence, the “if” part is trivial. For the “only if” part, suppose
E1, . . . , En are independent. For each j P t1, . . . , nu, let Aj P Ej . Let I “ tj :
Aj ‰ Ωu. Then Aj P Ej whenever j P I, and so we have

P

ˆ n
č

j“1

Aj

˙

“ P

ˆ

č

jPI

Aj

˙

“
ź

jPI

P pAjq “

n
ź

j“1

P pAjq,

which shows that E1, . . . , En are independent. l

Recall the π-λ theorem (Theorem 2.3) from Section 2.1.

Theorem 6.11. Suppose E1, . . . , En are independent and each Ej is a π-system.
Then σpE1q, . . . , σpEnq are independent.
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Proof. Let Ej Ă F and suppose each Ej is a π-system. It suffices to prove
that if E1, . . . , En are independent, then σpE1q, E2, . . . , En are independent. In-
deed, suppose for the moment that this implication holds. Then applying it to
E2, . . . , En, σpE1q shows that σpE1q, σpE2q, E3, . . . , En are independent. Iterating
this argument yields the result of the theorem.

So assume E1, . . . , En are independent. By Lemma 6.10, E1, . . . , En are in-
dependent. We want to prove σpE1q, E2, . . . , En are independent. Since σpE1q “

σpE1q “ σpE1q, it suffices by Lemma 6.10 to prove that σpE1q, E2, . . . , En are
independent.

For j P t2, . . . , nu, let Aj P Ej , and let F “
Şn

j“2Aj . Let

L “ tA P σpE1q : P pAX F q “ P pAqP pF qu.

We will now prove, using the π-λ theorem (Theorem 2.3), that L “ σpE1q.
Since P pΩ X F q “ P pF q “ P pΩqP pF q, we have Ω P L. Suppose A,B P L

with A Ă B. Then

P ppBzAq X F q “ P ppB X F qzpAX F qq

“ P pB X F q ´ P pAX F q

“ P pBqP pF q ´ P pAqP pF q

“ pP pBq ´ P pAqqP pF q “ P pBzAqP pF q.

Thus, BzA P L. Lastly, suppose tBnunPN Ă L with Bn Ă Bn`1, and let
B “

Ť

nPNBn. Then

P pB X F q “ P

ˆ 8
ď

n“1

pBn X F q

˙

“ lim
nÑ8

P pBn X F q

“ lim
nÑ8

P pBnqP pF q

“ P pF q lim
nÑ8

P pBnq “ P pBqP pF q.

Thus, B P L, and this shows that L is a λ-system.
Since E1, . . . , En are independent, it follows that E1 Ă L. Therefore, by

the π-λ theorem (Theorem 2.3), we have σpE1q Ă L. Since L Ă σpE1q by the
definition of L, we have L “ σpE1q.

We have thus proven that for all A P σpE1q,

P pAXA2 X ¨ ¨ ¨ XAnq “ P pAqP pA2 X ¨ ¨ ¨ XAnq “ P pAqP pA2q ¨ ¨ ¨P pAnq.

Since A2, . . . , An, were arbitrary, this shows that σpE1q, E2, . . . , En are indepen-
dent. l

Theorem 6.12. Let X1, . . . , Xn be real-valued random variables. Suppose that
for any x1, . . . , xn P p´8,8s, we have

P pX1 ď x1, . . . , Xn ď xnq “

n
ź

j“1

P pXj ď xjq. (6.3)
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Then X1, . . . , Xn are independent.

Proof. Let Ej “ ttXj ď xu : x P p´8,8su. Then Ω P Ej for each j. Thus,
(6.3) implies E1, . . . , En are independent. Since each Ej is a π-system, we have
that σpE1q, . . . , σpEnq. It follows from Exercise 2.5 and Proposition 1.3(e) that
σpEjq “ σpXjq, so that X1, . . . , Xn are independent. l

Proposition 6.13. Let X “ pX1, . . . , Xnq be an Rn-valued random variable
with a density function f : Rn Ñ r0,8q. Suppose there exist nonnegative,
measurable functions gj : R Ñ R such that fpxq “

śn
j“1 gjpxjq for all x P Rn.

Then X1, . . . , Xn are independent, and, for each j, the function

x ÞÑ
gjpxq

ş

R gjpyq dy

is a density for Xj.

Proof. Exercise 6.5. l

Proposition 6.14. Let X1, . . . , Xn be random variables and assume that, for
each j, there exists a countable set Sj such that P pXj P Sjq “ 1. If

P pX1 “ x1, . . . , Xn “ xnq “

n
ź

j“1

P pXj “ xjq,

whenever xj P Sj, then X1, . . . , Xn are independent.

Proof. Exercise 6.6. l

Theorem 6.15. Suppose Fij, 1 ď i ď n, 1 ď j ď mpiq, are independent
σ-algebras. Let Gi “ σp

Ť

j Fijq. Then G1, . . . ,Gn are independent.

Proof. For each i, let Ei “ t
Ş

j Aij : Aij P Fiju. Then Ω P Ei and Ei is a
π-system. Also, E1, . . . , En are independent. Thus, σpE1q, . . . , σpEnq are inde-
pendent. Now, Ei Ă Gi implies σpEiq Ă Gi. Conversely,

Ť

j Fij Ă Ei implies
Gi Ă σpEiq. Hence, σpEiq “ Gi, and so G1, . . . ,Gn are independent. l

Corollary 6.16. Suppose Xi,j, 1 ď i ď n, 1 ď j ď mpiq, are independent
random variables, with Xi,j taking values in a measurable space pSij ,Sijq. Let

fi :
śmpiq

j“1 Sij Ñ R be
Âmpiq

j“1 Sij-measurable, and let Yi “ fipXi,1, . . . , Xi,mpiqq.
Then Y1, . . . , Yn are independent.

Proof. Let Fij “ σpXi,jq and Gi “ σp
Ť

j Fijq, so that G1, . . . ,Gn are indepen-
dent. Since Yi P Gi, the result follows from Proposition 6.9. l

Remark 6.17. This corollary is very fundamental and will frequently be used,
typically without citing the corollary.



96 CHAPTER 6. INDEPENDENCE AND CONDITIONAL EXPECTATION

6.1.3 Independence, distribution, and expectation

Theorem 6.18. Let X1, . . . , Xn be independent random variables with Xi „ µi,
and let X “ pX1, . . . , Xnq. Then X „ µ1 ˆ ¨ ¨ ¨ ˆ µn.

Proof. Let E “ tA1 ˆ ¨ ¨ ¨ ˆ An : Aj P Ru, so that Rn “ σpEq. Let X „ ν,
and define L “ tA P Rn : νpAq “ pµ1 ˆ ¨ ¨ ¨ ˆ µnqpAqu. We wish to show that
Rn Ă L. It is left to the reader to verify that L is a λ-system. Since E is clearly
a π-system, it remains only to show that E Ă L.

Let A “ A1 ˆ ¨ ¨ ¨ ˆAn P E . Then

νpAq “ P pX P Aq “ P pX1 P A1, . . . , Xn P Anq

“

n
ź

j“1

P pXj P Ajq “

n
ź

j“1

µjpAjq “ pµ1 ˆ ¨ ¨ ¨ ˆ µnqpAq,

and so A P L. l

Theorem 6.19. Let X1, . . . , Xn be independent random variables. Suppose that
either (a) each Xj ě 0 a.s., or (b) E|Xj | ă 8 for each j. Then

E

„ n
ź

j“1

Xj

ȷ

“

n
ź

j“1

EXj .

That is, the expected value on the left exists, and has the value given on the
right.

Proof. First assume n “ 2. Let |X1| „ µ and |X2| „ ν. Since |X1| and |X2| are
independent, Tonelli’s theorem gives

E|X1X2| “

ż

|xy| pµˆ νqpdx dyq “

ż ż

|xy|µpdxq νpdyq

“

ˆ
ż

|x|µpdxq

˙ˆ
ż

|y| νpdyq

˙

“ E|X1| ¨ E|X2|.

If each Xj ě 0 a.s., then we are done. Otherwise, the above expression is finite,
so using Fubini’s theorem as above gives ErX1X2s “ EX1 ¨ EX2.

Now assume the theorem is true for some n. To prove the theorem for n`1,
we apply the above to X1 and

śn`1
j“2 Xj . l

Let tXαuαPA Ă L2pΩq. We say that tXαu are uncorrelated if ErXαXβs “

pEXαqpEXβq whenever α ‰ β. As shown above, independent random variables
are uncorrelated. The converse, however, is not true. See [2, Example 2.1.2] for
an elementary counterexample.

Theorem 6.20. If tXjunj“1 are uncorrelated, then

var

ˆ n
ÿ

j“1

Xj

˙

“

n
ÿ

j“1

varpXjq.
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Proof. Let µj “ EXj . Then

var

ˆ n
ÿ

j“1

Xj

˙

“ E

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

Xj ´

n
ÿ

j“1

µj

ˇ

ˇ

ˇ

ˇ

2

“ E

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

pXj ´ µjq

ˇ

ˇ

ˇ

ˇ

2

“

n
ÿ

i“1

n
ÿ

j“1

ErpXi ´ µiqpXj ´ µjqs

“

n
ÿ

j“1

E|Xj ´ µj |2 ` 2
n

ÿ

i“1

i´1
ÿ

j“1

ErpXi ´ µiqpXj ´ µjqs.

Since E|Xj ´µj |2 “ varpXjq, it suffices to show that ErpXi ´µiqpXj ´µjqs “ 0
whenever i ‰ j. For this, we calculate

ErpXi ´ µiqpXj ´ µjqs “ ErXiXjs ´ µjEXi ´ µiEXj ` µiµj

“ ErXiXjs ´ µiµj .

But Xi and Xj are uncorrelated, so ErXiXjs “ pEXiqpEXjq “ µiµj . l

6.1.4 Sums of independent random variables

Theorem 6.21. Let X and Y be independent random variables with distribution
functions F and G, respectively. Then the distribution function of X ` Y is

Hpzq “

ż

R
F pz ´ yq dGpyq.

Proof. Fix z P R. Let A “ tpx, yq P R2 : x` y ď zu. Then

Hpzq “ P pX ` Y ď zq “ Er1tX`Y ďzus

“ Er1ApX,Y qs “

ż ż

1Apx, yqµF pdxqµGpdyq.

Note that 1Apx, yq “ 1p´8,z´yspxq. Thus,

Hpzq “

ż

µF pp´8, z ´ ysqµGpdyq “

ż

F pz ´ yqµGpdyq,

which is what we wanted to prove. l

For a proof of the following special cases, see [2, Theorem 2.1.11].

Theorem 6.22. Let X and Y be independent random variables with distribution
functions F and G, respectively. If X has density f , then X ` Y has density

hpzq “

ż

fpz ´ yq dGpyq.
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If, in addition, Y has density g, then this can be rewritten as

hpzq “

ż

fpz ´ yqgpyq dy.

The gamma function is the function Γ : p0,8q Ñ R defined by Γpαq “
ş8

0
xα´1e´x dx. It can be shown that Γpα ` 1q “ αΓpαq for all α ą 0, and that

Γpnq “ pn´ 1q! for all n P N.
We say that a real-valued random variable has the gamma distribution

with parameters α and λ, written X „ Gammapα, λq, if X has density

fpxq “
λα

Γpαq
xα´1e´λx 1p0,8qpxq.

Note that Gammap1, λq “ Exppλq.
The proofs of the following results use the above theorems, as well as a lot

of tedious calculus. For details, see [2, Theorems 2.1.12 and 2.1.13].

Theorem 6.23. If X1, . . . , Xn are independent with Xj „ Gammapαj , λq, then
řn

j“1Xj „ Gammap
řn

j“1 αj , λq.

Theorem 6.24. If X „ Npµ, σ2q and Y „ Npν, τ2q are independent, then
X ` Y „ Npµ` ν, σ2 ` τ2q.

6.1.5 Constructing independent random variables

A measurable space pS,Sq is a standard Borel space if there exists a bijection
φ : S Ñ R such that φ is pS,Rq-measurable and φ´1 is pR,Sq-measurable. For
a proof of the following theorem, see [2, Theorem 2.1.15].

Theorem 6.25. Let pM,dq be a complete, separable metric space. Let S P BM

and S “ tAX S : A P BMu. Then pS,Sq is a standard Borel space.

The main result of this subsection is following theorem.

Theorem 6.26. For each j P N, let pSj ,Sjq be a standard Borel space, and νj a
probability measure on pSj ,Sjq. Then there exists a probability space pΩ,F , P q

and a sequence of independent random variables tXju8
j“1 defined on pΩ,F , P q

such that Xj takes values in Sj, and Xj „ νj.

Proof. For each j, choose φj : Sj Ñ R such that φj and φ´1
j are both measur-

able. Let ν1
j be the probability measure on pR,Rq defined by ν1

j “ νj ˝φ´1
j , and

let µn “
śn

j“1 ν
1
j . Then µn is a probability measure on pRn,Rnq and the mea-

sures tµnu8
n“1 are consistent. (See Theorem 2.52.) Let Ω “ R8 and F “ R8.

Let P be the probability measure on pΩ,Fq described in Theorem 2.52. Let
Xjpωq “ φ´1

j pωjq.

Since Xj “ φ´1
j ˝ πj , where πj : R8 Ñ R is the projection map, it follows

that Xj is measurable. Let Aj P Sj . Note that

tXj P Aju “ X´1
j pAjq “ π´1

j pφjpAjqq “ tπj P φjpAjqu.
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Thus, By Theorem 2.52,

P pX1 P A1, . . . , Xn P Anq “ P pπ1 P φ1pA1q, . . . , πn P φnpAnqq

“ P ptω : ωj P φjpAjq for 1 ď j ď nuq

“ µnpφ1pA1q ˆ ¨ ¨ ¨ ˆ φnpAnqq

“

n
ź

j“1

ν1
jpφjpAjqq.

Taking Aj “ Sj for j ă n shows that Xn „ ν1
n ˝ φn “ νn, and this is valid

for every n P N. Therefore, the above shows that X1, . . . , Xn are independent.
Since n was arbitrary, this implies X1, X2, . . . are independent. l

Exercises

6.1. [2, Exercise 2.1.1] Prove Proposition 6.7.

6.2. [2, Exercise 2.1.2(i)] Prove Proposition 6.6. (Hint: First show that if A
and B are independent, then so are Ac and B, A and Bc, and Ac and Bc.)

6.3. [2, Exercise 2.1.3(ii)+] Prove Proposition 6.8.

6.4. Prove Proposition 6.9.

6.5. [2, Exercise 2.1.4+] Prove Proposition 6.13.

6.6. [2, Exercise 2.1.5] Prove Proposition 6.14.

6.7. [2, Exercise 2.1.8(i)] Let X and Y be real-valued random variables on a
probability space, pΩ,F , P q, with X „ µ and Y „ ν. Prove that if X and Y
are independent, then

P pX ` Y “ 0q “
ÿ

yPR
µpt´yuqνptyuq.

[Recall: See Remark 2.36 for the definition of infinite sums of this type.]

6.8. [2, Exercise 2.1.13] Let X and Y be integer-valued random variables on a
probability space, pΩ,F , P q. Prove that if X and Y are independent, then

P pX ` Y “ nq “
ÿ

mPZ
P pX “ mqP pY “ n´mq,

for all n P Z.

6.9. [2, Exercise 2.1.14] Let X and Y be real-valued random variables on a
probability space, pΩ,F , P q, with X „ Poissonprq and Y „ Poissonpsq, where
r, s ą 0. Use Exercise 6.8 to prove that if X and Y are independent, then
X ` Y „ Poissonpr ` sq.
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6.2 Conditional expectation

This section corresponds to [2, Subsections 5.1.1 and 5.1.2].

6.2.1 The general definition

Let pΩ,F , P q be a probability space and let A P F with P pAq ą 0. Recall that
PA :“ P p¨ | Aq is a probability measure on pΩ,Fq. If X is a random variable,
we define the conditional expectation of X given A as

ErX | As “

ż

Ω

X dPA, (6.4)

whenever this integral is well-defined. Note that Er1B | As “ P pB | Aq.

Theorem 6.27. We have that X is PA-integrable if and only if Er|X|1As ă 8.
If X ě 0 or Er|X|1As ă 8, then

ErX | As “
ErX1As

P pAq
. (6.5)

Remark 6.28. Note that (6.5) may be written as

ErX | As “
αpAq

P pAq
, (6.6)

where dα “ X dP . Also note that (6.5) gives us the formula ErX1As “

P pAqErX | As. If X “ 1B , then this reduces to the familiar multiplication
rule, P pAXBq “ P pAqP pB | Aq.

Proof of Theorem 6.27. Note that if P pBq “ 0, then PApBq “ 0. Hence PA !

P . Also note that

PApBq “

ż

B

1A
P pAq

dP, for all B P F .

Thus, dPA{dP “ 1A{P pAq. It follows that if X ě 0, then

ErX | As “

ż

X dPA “

ż

X
dPA

dP
dP “ E

„

X
1A
P pAq

ȷ

“
ErX1As

P pAq
.

Therefore, X is PA-integrable if and only if Er|X|1As ă 8, and in this case,
the same formula holds. l

Lemma 6.29. Let pΩ,F , P q be a probability space and G Ă F a σ-algebra.
Suppose A P G and X is a G-measurable random variable. If X ě 0 a.s., then

ErX1As “

ż

A

X dP “

ż

A

X dpP |Gq.

Also, if E|X| ă 8, then X P L1pΩ,G, P |Gq and the above equality holds.
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Proof. Exercise 6.10. l

Theorem 6.30. Let pΩ,F , P q be a probability space, X an integrable random
variable, and G Ă F a σ-algebra. Then there exists a random variable Z such
that

(i) Z P G, and

(ii) ErX1As “ ErZ1As, for all A P G.

If Z 1 is any other such random variable, then Z “ Z 1 a.s. Moreover, Z is
integrable with E|Z| ď E|X|.

Remark 6.31. The random variable Z in the above theorem is called the
conditional expectation of X given G, written ErX | Gs. Since it is only
unique up to a P -null set, we may sometimes refer to Z as a version of ErX | Gs.

The conditional probability of A given G is defined by P pA | Gq “

Er1A | Gs.
Subsection 6.2.2 may provide help in developing an intuitive understanding

of this definition.

Proof of Theorem 6.30. Let α be the complex measure on pΩ,Fq given by dα “

X dP . Note that α|G is a complex measure on pΩ,Gq and P |G is a probability
measure on pΩ,Gq. Suppose A P G and pP |GqpAq “ 0. Then P pAq “ 0 and

pα|GqpAq “ αpAq “

ż

A

X dP “ 0.

Thus, α|G ! P |G , so we may define Z “ dpα|Gq{dpP |Gq, the Radon-Nikodym
derivative of α|G with repsect to P |G .

By definition, Z P G. Let A P G. Then

ErX1As “

ż

A

X dP “ αpAq “ pα|GqpAq.

By Lemma 6.29,

ErZ1As “

ż

A

Z dP “

ż

A

Z dpP |Gq “

ż

A

dpα|Gq

dpP |Gq
dpP |Gq “ pα|GqpAq.

Thus, ErX1As “ ErZ1As for all A P G.
Suppose Z 1 is another random variable satisfying (i) and (ii). Then, as above,

ż

A

Z 1 dpP |Gq “ ErZ 11As “ ErX1As “ pα|GqpAq,

for all A P G. By the uniqueness of the Radon-Nikodym derivative, this implies
Z 1 “ Z a.s.

Finally, since Z` “ Z1A, where A “ tZ ą 0u P G, we have
ż

Z` dP “

ż

Z1A dP “ ErZ1As “ ErX1As ď Er|X|1As ă 8.
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Similarly,
ş

Z´ dP ď Er|X|1Acs ă 8. Thus,

E|Z| “

ż

Z` dP `

ż

Z´ dP ď Er|X|1As ` Er|X|1Acs “ E|X| ă 8,

and so Z is integrable with E|Z| ď E|X|. l

Remark 6.32. From the proof, we see that

ErX | Gs “
dpα|Gq

dpP |Gq
,

where dα “ X dP . Note the similarity between this and (6.6).

Lemma 6.33. Let pΩ,F , P q be a probability space, pS,Sq a measurable space,
and Y an S-valued random variable. Let pS1,S 1q be another measurable space
and suppose X is an S1-valued random variable that is σpY q-measurable. Then
there exists an pS,S 1q-measurable function h : S Ñ S1 such that X “ hpY q a.s.
If h1 is another such function, then h “ h1 µY -a.e.

Proof. Exercise 6.11. l

Let pΩ,F , P q be a probability space and X an integrable random variable.
Let Y be an arbitrary random variable. The conditional expectation of X
given Y is defined by ErX | Y s “ ErX | σpY qs. We also define the conditional
probability of A given Y as P pA | Y q “ Er1A | Y s. Note that ErX | Y s is
σpY q-measurable. By Lemma 6.33, there exists a measurable function h (which
depends on X) such that ErX | Y s “ hpY q, and this function is unique µY -a.e.

6.2.2 Elementary special cases

Lemma 6.34. Let pΩ,Gq be a measurable space and assume that G is a finite set.
Then there exists a unique partition E “ tAjunj“1 of Ω such that G “ σptAjunj“1q.

Proof. For each ω P Ω, let Aω be the smallest measurable set containing ω. That
is, Aω “

Ş

Gω, where Gω “ tA P G : ω P Au. Since this is a finite intersection,
Aω P G. In particular, E “ tAω : ω P Ωu is a finite set. We claim that E is a
partition of Ω and that G “ σpEq.

Clearly, Ω “
Ť

ωPΩAω, so to show that E is a partition, it suffices to show
that this is a disjoint union. More specifically, we wish to show that if ω, ω1 P Ω,
then either Aω “ Aω1 or Aω X Aω1 “ H. Let ω, ω1 P Ω. Note that for any
A P G, if ω P A, then A P Gω, which implies Aω Ă A. Hence, if ω P Aω1 ,
then Aω Ă Aω1 ; and if ω P Ac

ω1 , then Aω Ă Ac
ω1 . That is, either Aω Ă Aω1 or

Aω Ă Ac
ω1 . By symmetry, either Aω1 Ă Aω or Aω1 Ă Ac

ω. Taken together, this
shows that either Aω “ Aω1 or Aω XAω1 “ H.

To see that G “ σpEq, simply note that any A P G can be written as A “
Ť

ωPAAω, and that this is a finite union.
For uniqueness, suppose that G “ σptBjunj“1q, where Ω “

Ţn
j“1Bj . If

ω P Bj , then Aω “ Bj . Therefore, E “ tBjunj“1. l
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Remark 6.35. The technique in this proof can be used in Exercise 1.6.

Proposition 6.36. Let pΩ,F , P q be a probability space and X an integrable
random variable. Let G Ă F be a finite σ-algebra. Write G “ σptAjunj“1q,
where tAjunj“1 is a partition of Ω. Then

ErX | Gspωq “

$

’

’

’

’

&

’

’

’

’

%

ErX | A1s if ω P A1,

ErX | A2s if ω P A2,
...

ErX | Ans if ω P An.

Proof. Exercise 6.12. l

Remark 6.37. As a special case of the above, if G “ tH,Ωu is the trivial
σ-algebra, then ErX | Gs “ EX.

Remark 6.38. To illustrate the idea of the preceding proposition, consider the
following heuristic example. Imagine my friend is at the local bar, and is about
to throw a dart at a dartboard. If I model the dart board by a unit circle, which
I call Ω, then his dart will land at some point ω P Ω.

Unfortunately, I am not there with him and will not be able to observe the
exact location of ω. But after he throws the dart, he is going to call me on the
phone and tell me what his score for that throw was. This information will not
be enough for me to determine ω. It will, however, narrow it down. Before I
receive his call, I can partition the dartboard Ω into several pieces, A1, . . . , An,
with each piece corresponding to a unique score. Once he calls me, I will know
which piece contains his dart.

Let X be the distance from his dart to the bullseye. Suppose he calls me and
I determine that his dart is somewhere inside Aj . I can then compute ErX | Ajs.
However, before he calls, I can get prepared by computing ErX | Ajs for all j,
and then encoding all this information into the single random variable ErX | Gs.

In probability theory, we model information by σ-algebras. In this example,
the σ-algebra G generated by the partition tAju models the information I will
receive from my friend’s phone call. Imagine that while I am waiting for my
friend’s phone call, an interviewer starts asking me questions. For various events
A, the interviewer asks me, “After your friend calls, will you know with certainty
whether or not A has occurred?” Depending on the event A, my answer will be
“yes”, “no”, or “it depends on what he says”. The events A P G are precisely
those events for which my answer is yes.

Proposition 6.39. Let pΩ,F , P q be a probability space and X an integrable
random variable. Let Y be a random variable, S a countable set, and assume
P pY P Sq “ 1 and P pY “ kq ą 0 for all k P S. For k P S, define

hpkq “ ErX | Y “ ks “
ErX1tY “kus

P pY “ kq
.

Then ErX | Y s “ hpY q.
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Proof. Exercise 6.13. l

Example 6.40. Suppose X and Y are random variables with a joint density
function fpx, yq. That is, for any A P R2, we have P ppX,Y q P Aq “

ş

A
f dλ.

Note that P pX P A | Y “ kq is undefined, since P pY “ kq “ 0. Nonetheless, it
may be intuitively clear to some that the following equation ought to hold:

P pX P A | Y “ kq “

ż

A

fpx, kq dx
ż

R
fpx, kq dx

. (6.7)

The integral in the denominator is necessary in order to make the function
x ÞÑ fpx, kq a probability density function. In this example, we will explore the
sense in which this formula is rigorously valid. (In an undergraduate class, it
may be rigorously valid by definition. But for us, as usual, it is a special case
of something more general.)

Proposition 6.41. Let X and Y have joint density fpx, yq. Let g be a mea-
surable function such that E|gpXq| ă 8. Define

hpkq “

ż

R
gpxqfpx, kq dx

ż

R
fpx, kq dx

,

whenever
ş

R fpx, kq dx ą 0, and hpkq “ 0 otherwise. Then ErgpXq | Y s “ hpY q.

Remark 6.42. If gpxq “ 1Apxq, then hpkq agrees with the right-hand side of
(6.7). Also, as can be seen from the proof below, we could have defined hpkq

arbitrarily when
ş

R fpx, kq dx “ 0.

Proof of Theorem 6.41. Since hpY q is σpY q-measurable, it will suffice for us to
show that ErhpY q1As “ ErgpXq1As for all A P σpY q. Let A P σpY q. Then
A “ tY P Bu for some B P R. We now have

ErhpY q1As “ ErhpY q1BpY qs “

ż

B

ż

R
hpyqfpx, yq dx dy

“

ż

B

ˆ

hpyq

ż

R
fpx, yq dx

˙

dy “

ż

BXC

ˆ

hpyq

ż

R
fpx, yq dx

˙

dy,

where C “ ty :
ş

R fpx, yq dx ą 0u. Note that for all y P C, we have

hpyq

ż

R
fpx, yq dx “

ż

R
gpxqfpx, yq dx.

Also, for all y P Cc, we have fpx, yq “ 0 for Lebesgue almost every x. Thus,
y P Cc implies

ş

R gpxqfpx, yq dx “ 0. It therefore follows that

ErhpY q1As “

ż

BXC

ż

R
gpxqfpx, yq dx dy “

ż

B

ż

R
gpxqfpx, yq dx dy

“ ErgpXq1BpY qs “ ErgpXq1As,
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which was what we needed to prove. l

In general, we interpret ErX | Y “ ys to mean gpyq, where g is a measurable
function such that ErX | Y s “ gpY q. Some caution is needed in these cases,
though, since such a function g is only defined µY -a.e.

6.2.3 Basic properties

For the remainder of this section, unless otherwise noted, pΩ,F , P q is a proba-
bility space, X is an integrable random variable, and G Ă F is a σ-algebra.

Proposition 6.43. ErErX | Gss “ EX.

Proof. By the definition of conditional expectation, we have ErErX | Gs1As “

ErX1As for all A P G. Take A “ Ω. l

Proposition 6.44. If X is G-measurable, then ErX | Gs “ X.

Proof. It follows trivially, since X is G-measurable and ErX1As “ ErX1As for
all A P G. l

If X is a random variable and G is a σ-algebra, then we say that X and
G are independent if σpXq and G are independent, which in turn means that
P pA X Bq “ P pAqP pBq whenever A P σpXq and B P G. Hence, X and G are
independent if and only if P ptX P Cu XBq “ P pX P CqP pBq for all C P R and
B P G.

Proposition 6.45. If X and G are independent, then ErX | Gs “ ErXs. In
particular, ErX | tH,Ωus “ ErXs.

Proof. A constant random variable is measurable with respect to every σ-
algebra, so ErXs is trivially G-measurable. Also, for all A P G, we have
ErX1As “ ErXsEr1As “ ErErXs1As. The final claim holds since every random
variable is independent of the trivial σ-algebra. l

Theorem 6.46. If G1 Ă G2 Ă F , then ErErX | G1s | G2s “ ErErX | G2s |

G1s “ ErX | G1s.

Remark 6.47. In words, this says that in a battle between nested σ-algebras,
the smallest σ-algebra always wins.

Proof of Theorem 6.46. Since G1 Ă G2 and ErX | G1s is G1-measurable, it is
also G2-measurable. Hence, by Proposition 6.44, ErErX | G1s | G2s “ ErX |

G1s. The other equality holds since ErX | G1s is G1-measurable and, for all
A P G1 Ă G2, we have ErErX | G1s1As “ ErX1As “ ErErX | G2s1As. l

Theorem 6.48. If Y and XY are integrable, and X is G-measurable, then

ErXY | Gs “ XErY | Gs a.s.
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Proof. Let dα “ Y dP , so that ErY | Gs “ dpα|Gq{dpP |Gq. Let dβ1 “ X dα`,
dβ2 “ X dα´, and β “ β1 ´ β2, so that dβ “ XY dP and ErXY | Gs “

dpβ|Gq{dpP |Gq. Since X is G-measurable, we have

dpβ1|Gq{dpα`|Gq “ dpβ2|Gq{dpα´|Gq “ X.

Hence,

ErXY | Gs “
dpβ|Gq

dpP |Gq
“
dpβ1|Gq

dpP |Gq
´
dpβ2|Gq

dpP |Gq

“
dpβ1|Gq

dpα`|Gq
¨
dpα`|Gq

dpP |Gq
´
dpβ2|Gq

dpα´|Gq
¨
dpα´|Gq

dpP |Gq

“ X

ˆ

dpα`|Gq

dpP |Gq
´
dpα´|Gq

dpP |Gq

˙

“ X
dpα|Gq

dpP |Gq
“ XErY | Gs, P -a.s.,

and we are done. l

Theorem 6.49 (linearity). EraX ` Y | Gs “ aErX | Gs ` ErY | Gs.

Proof. The right-hand side is clearly G-measurable. Let A P G. Then

ErpaErX | Gs ` ErY | Gsq1As “ aErErX | Gs1As ` ErErY | Gs1As

“ aErX1As ` ErY 1As “ ErpaX ` Y q1As,

and we are done. l

Lemma 6.50. Let U and V be G-measurable random variables. If ErU1As ď

ErV 1As for all A P G, then U ď V a.s. If ErU1As “ ErV 1As for all A P G,
then U “ V a.s.

Proof. By reversing the roles of U and V , the second claim follows from the
first. To prove the first, suppose ErU1As ď ErV 1As for all A P G. Let A “

tU ą V u P G and define Z “ pU ´ V q1A, so that Z ě 0. Note that EZ “

ErU1As ´ErV 1As ď 0. Hence, EZ “ 0, so Z “ 0 a.s., which implies P pAq “ 0.
l

Theorem 6.51 (monotonicity). If X ď Y a.s., then ErX | Gs ď ErY | Gs a.s.

Proof. For all A P G, we have ErErX | Gs1As “ ErX1As ď ErY 1As “ ErErY |

Gs1As. Hence, by Lemma 6.50, ErX | Gs ď ErY | Gs a.s. l

Theorem 6.52. Suppose X and Y are independent and φ is a measurable
function such that E|φpX,Y q| ă 8, then ErφpX,Y q | Xs “ gpXq, where gpxq “

Erφpx, Y qs.

Remark 6.53. It is important here that X and Y are independent. This result
is not true when X and Y are dependent.
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Proof of Theorem 6.52. Clearly, gpXq is σpXq-measurable. Let A P R. Then

ErφpX,Y q1tXPAus “

ż ż

φpx, yq1ApxqµY pdyqµXpdxq

“

ż

1Apxq

ˆ
ż

φpx, yqµY pdyq

˙

µXpdxq

“

ż

1ApxqgpxqµXpdxq “ ErgpXq1tXPAus,

and we are done. l

Example 6.54. Let X,Y, Z be i.i.d. (independent and identically distributed),
uniformly distributed on p0, 1q. We shall compute the distribution of pXY qZ .
We begin by computing the distribution of W “ XY . Let w P p0, 1q. Then

P pW ď wq “ P pXY ď wq “ Er1tXY ďwus “ ErEr1tXY ďwu | Xss.

By Theorem 6.52, Er1tXY ďwu | Xs “ fpXq, where

fpxq “ Er1txY ďwus “ P pxY ď wq “ P
´

Y ď
w

x

¯

“ 1txăwu `
w

x
1txěwu.

Thus,

P pW ď wq “ ErfpXqs “ E
”

1tXăwu `
w

X
1tXěwu

ı

“ w`

ż 1

w

w

x
dx “ w´w logw.

Differentiating, we find that W has density fW pwq “ p´ logwq1p0,1qpwq.

Similarly, for x P p0, 1q, we now compute

P ppXY qZ ď xq “ ErP pWZ ď x | W qs “ ErgpW qs,

where

gpwq “ P pwZ ď xq “ P

ˆ

Z ě
log x

logw

˙

“

ˆ

1 ´
log x

logw

˙

1twďxu.

Thus,

P ppXY qZ ď xq “ E

„ˆ

1 ´
log x

logW

˙

1tWďxu

ȷ

“

ż x

0

ˆ

1 ´
log x

logw

˙

p´ logwq dw

“ ´

ż x

0

logw dw ` x log x “ x.

In other words, pXY qZ is uniformly distributed on p0, 1q.
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6.2.4 Limit theorems and inequalities

Theorem 6.55 (monotone convergence). If 0 ď Xn Ò X a.s. and X is inte-
grable, then ErXn | Gs Ò ErX | Gs a.s.

Proof. By monotonicity, there exists a G-measurable random variable Z such
that ErXn | Gs Ò Z a.s. Let A P G. Using monotone convergence,

ErZ1As “ lim
nÑ8

ErErXn | Gs1As “ lim
nÑ8

ErXn1As “ ErX1As,

which shows Z “ ErX | Gs. l

Theorem 6.56. (Fatou’s lemma) If Xn ě 0 a.s., each Xn is integrable, and
lim infnÑ8 Xn is integrable, then

Erlim inf
nÑ8

Xn | Gs ď lim inf
nÑ8

ErXn | Gs a.s.

Proof. Let Xn “ infjěnXj and X “ lim infnÑ8 Xn. Note that 0 ď Xn Ò X.
In particular, Xn is integrable. For each j ě n, we have Xn ď Xj a.s. Hence,
by monotonicity, ErXn | Gs ď ErXj | Gs a.s. It follows that

ErXn | Gs ď inf
jěn

ErXj | Gs a.s.

Monotone convergence implies

ErX | Gs “ lim
nÑ8

ErXn | Gs ď lim inf
nÑ8

ErXn | Gs a.s.,

and we are done. l

Theorem 6.57 (dominated convergence). Let Xn be random variables with
Xn Ñ X a.s. Suppose there exists an integrable random variable Y such that
|Xn| ď Y a.s. for all n. Then

lim
nÑ8

ErXn | Gs “ ErX | Gs a.s.

Proof. Exercise 6.14. l

Lemma 6.58. Show that if φ : R Ñ R is convex, then the left-hand derivative,

φ1
´pcq “ lim

hÓ0

φpcq ´ φpc´ hq

h

exists for all c. Moreover,

φpxq ´ φpcq ´ px´ cqφ1
´pcq ě 0, (6.8)

for all x and c.

Proof. Exercise 6.15. l
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Theorem 6.59. (Jensen’s inequality) If φ is convex and X and φpXq are
integrable, then φpErX | Gsq ď ErφpXq | Gs.

Proof. Let Z “ pX´ErX | Gsqφ1
´pErX | Gsq, so that by (6.8), φpXq ´φpErX |

Gsq ´ Z ě 0, which implies

0 ď ErφpXq ´ φpErX | Gsq ´ Z | Gs “ ErφpXq | Gs ´ φpErX | Gsq ´ ErZ | Gs.

It therefore suffices to show that ErZ | Gs “ 0. To see this, we calculate

ErZ | Gs “ ErpX ´ ErX | Gsqφ1
´pErX | Gsq | Gs

“ φ1
´pErX | GsqErX ´ ErX | Gs | Gs

“ φ1
´pErX | GsqpErX | Gs ´ ErErX | Gs | Gsq

“ φ1
´pErX | GsqpErX | Gs ´ ErX | Gsq “ 0,

and we are done. l

Theorem 6.60 (Hölder’s inequality). Let p, q P p1,8q be conjugate exponents,
so that 1{p` 1{q “ 1. Suppose that |X|p and |Y |q are integrable. Then

Er|XY | | Gs ď pEr|X|p | Gsq1{ppEr|Y |q | Gsq1{q a.s.

Proof. Note that by the ordinary Hölder’s inequality, XY is integrable, so that
Er|XY | | Gs is well-defined. Let U “ pEr|X|p | Gsq1{p and V “ pEr|Y |q | Gsq1{q.
Note that both U and V are G-measurable. Observe that

Er|X|p1tU“0us “ ErEr|X|p1tU“0u | Gss

“ Er1tU“0uEr|X|p | Gss “ Er1tU“0uU
ps “ 0.

Hence, |X|1tU“0u “ 0 a.s., which implies

Er|XY | | Gs1tU“0u “ Er|XY |1tU“0u | Gs “ 0.

Similarly, Er|XY | | Gs1tV “0u “ 0. It therefore suffices to show that Er|XY | |

Gs1H ď UV , where H “ tU ą 0, V ą 0u. For this, we will use Lemma 6.50 to
prove that

Er|XY | | Gs

UV
1H ď 1 a.s..

Note that the left-hand side is defined to be zero on Hc.
Let A P G be arbitrary and define G “ H XA. Then

E

„

Er|XY | | Gs

UV
1H1A

ȷ

“ E

„

E

„

|XY |

UV
1G

ˇ

ˇ

ˇ

ˇ

G
ȷȷ

“ E

„

|X|

U
1G ¨

|Y |

V
1G

ȷ

ď

ˆ

E

„

|X|p

Up
1G

ȷ˙1{p ˆ

E

„

|Y |q

V q
1G

ȷ˙1{q

“

ˆ

E

„

Er|X|p | Gs

Up
1G

ȷ˙1{p ˆ

E

„

Er|Y |q | Gs

V q
1G

ȷ˙1{q

“ pEr1Gsq1{ppEr1Gsq1{q “ Er1Gs ď Er1As.
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Applying Lemma 6.50 finishes the proof. l

6.2.5 Minimizing the mean square error

We say that a random variable X is square integrable if E|X|2 ă 8. Let
X be square integrable and consider the function fpaq “ E|X ´ a|2 “ a2 ´

2pEXqa ` E|X|2. This function has a minimum at a “ EX. In other words,
if we wish to approximate X by a constant, then the constant EX is the one
which minimizes our mean square error.

The conditional expectation has a similar property. If we wish to approxi-
mate X by a square integrable, G-measurable random variable, then ErX | Gs

is the random variable which minimizes our mean square error. This is made
precise in the following theorem.

Theorem 6.61. Let pΩ,F , P q be a probability space and let X be square inte-
grable. Let G Ă F and define Z “ ErX | Gs. If Y is any square integrable,
G-measurable random variable, then E|X ´ Z|2 ď E|X ´ Y |2.

Proof. First note that by Jensen’s inequality,

|Z|2 “ |ErX | Gs|2 ď Er|X|2 | Gs a.s.

Hence, E|Z|2 ď ErEr|X|2 | Gss “ E|X|2 ă 8 and Z is square integrable. Let
W “ Z ´ Y . Since W is G-measurable,

ErWZs “ ErWErX | Gss “ ErErWX | Gss “ ErWXs.

Hence, ErW pX ´ Zqs “ 0, which implies

E|X ´ Y |2 “ E|X ´ Z `W |2 “ E|X ´ Z|2 ` 2ErW pX ´ Zqs ` E|W |2

“ E|X ´ Z|2 ` E|W |2 ě E|X ´ Z|2,

and we are done. l

Remark 6.62. In the language of Hilbert spaces and Lp spaces, this theorem
says the following: X is an element of the Hilbert space L2pΩ,F , P q, and ErX |

Gs is the orthogonal projection of X onto the subspace L2pΩ,G, P q.

Exercises

6.10. Prove Lemma 6.29.

6.11. Prove Lemma 6.33. [Hint: First prove it when X is an indicator function,
then a simple function, then a nonnegative function, then a general random
variable.]

6.12. Prove Proposition 6.36. [Hint: It may be notationally convenient to write
ErX | Gs “

řn
j“1ErX | Ajs1Aj

.]
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6.13. Prove Proposition 6.39.

6.14. Prove Theorem 6.57.

6.15. Prove Lemma 6.58.

6.16. [2, Exercise 5.1.1] Let X,Y be integrable random variables on a proba-
bility space, pΩ,F , P q. Let G Ă F be a σ-algebra, and let A P G. Assume that
X1A “ Y 1A a.s.

(a) Fix ε ą 0 and let B “ tErX | Gs ´ ErY | Gs ě εu. Use the definition of
conditional expectation to prove that

ErErX | Gs1AXB ´ ErY | Gs1AXBs “ 0.

(b) Use the definition of B to prove that

ErErX | Gs1AXB ´ ErY | Gs1AXBs ě εP pAXBq,

and conclude that P pAXBq “ 0.

(c) Use Parts (a) and (b) to prove that ErX | Gs1A ď ErY | Gs1A a.s.

(d) Prove that ErX | Gs1A “ ErY | Gs1A a.s.

6.17. [2, Exercise 5.1.2] Let pΩ,F , P q be a probability space and G Ă F a
σ-algebra. Let A P G and B P F .

(a) Prove that

P pA | Bq “
ErP pB | Gq1As

ErP pB | Gqs
.

(b) (Bayes’ theorem) Suppose G is generated by a partition, tAjunj“1. Use
Part (a) to show that

P pAi | Bq “
P pAiqP pB | Aiq

řn
j“1 P pAjqP pB | Ajq

,

for all i P t1, . . . , nu.

6.18. [2, Exercise 5.1.3] Let pΩ,F , P q be a probability space and G Ă F a
σ-algebra. Let X P L2pΩq and a ą 0. Prove that

P p|X| ą a | Gq ď
ErX2 | Gs

a2
a.s.

6.19. [2, Exercise 5.1.6] Let Ω “ ta, b, cu and F “ 2Ω. Show by example that
there exists a probability measure P on pΩ,Fq, a random variable X on Ω, and
σ-algebras Fj Ă F for which it is not the case that

ErErX | F1s | F2s “ ErErX | F2s | F1s a.s.
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6.20. [2, Exercise 5.1.7] Let X and Y be random variables such that E|X|,
E|Y |, and E|XY | are finite. Consider the following statements: (i) X and Y
are independent. (ii) ErY | Xs “ EY a.s. (iii) ErXY s “ pEXqpEY q.

(a) Prove that (i) implies (ii), and (ii) implies (iii).

(b) Find t´1, 0, 1u-valued random variables X and Y such that (ii) holds and
(i) fails.

(c) Find t´1, 0, 1u-valued random variables X and Y such that (iii) holds and
(ii) fails.

6.21. [2, Exercise 5.1.8] Let pΩ,F , P q be a probability space and G,H Ă F σ-
algebras. Let X be a square-integrable random variable. Prove that if G Ă H,
then

E|X ´ ErX | Hs|2 ` E|ErX | Hs ´ ErX | Gs|2 “ E|X ´ ErX | Gs|2 a.s.

[Remark: This implies E|X ´ErX | Hs|2 ď E|X ´ErX | Gs|2. In other words,
G Ă H implies ErX | Hs is closer to X in L2 than ErX | Gs. If G “ tH,Ωu,
then we obtain E|X ´ ErX | Hs|2 ď varpXq.]

6.22. [2, Exercise 5.1.9] Let pΩ,F , P q be a probability space and G Ă F a
σ-algebra. Let X be a square-integrable random variable. Define

varpX | Gq “ Er|X ´ ErX | Gs|2 | Gs.

(a) Prove that varpX | Gq “ ErX2 | Gs ´ pErX | Gsq2 a.s.

(b) Prove that varpXq “ ErvarpX | Gqs ` varpErX | Gsq.

6.23. [2, Exercise 5.1.11] Let pΩ,F , P q be a probability space and G Ă F a σ-
algebra. Let X be a square-integrable random variable, and let Z “ ErX | Gs.
Suppose that EX2 “ EZ2. Prove that X “ Z a.s.

6.3 Regular conditional distributions

This section corresponds to [2, Subsection 5.1.3].

6.3.1 Introduction

IfX is a real-valued random variable, then µXpAq “ P pX P Aq defines a measure
µX on the real line which we call the distribution (or law) of X. One feature of
the distribution is that it provides us with a way to calculate expectations:

ErfpXqs “

ż

R
fpxqµXpdxq.
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Likewise, if B is an event, then µX,BpAq “ P pX P A | Bq defines a measure
µX,B on R which is the conditional distribution of X given B, and we have

ErfpXq | Bs “

ż

R
fpxqµX,Bpdxq.

If G is a finite σ-algebra, so that G “ σptAjunj“1q, where tAjunj“1 is a partition
of Ω, then

P pX P A | Gqpωq “

$

’

’

’

’

&

’

’

’

’

%

P pX P A | A1q if ω P A1,

P pX P A | A2q if ω P A2,
...

P pX P A | Anq if ω P An.

In other words, P pX P ¨ | Gq is just a conditional probability distribution that
happens to depend on ω. Another way of saying it is that P pX P ¨ | Gq is a
random probability measure on the real line.

Conditional expectations can be computed by integrating against this ran-
dom measure. That is, if we define µX,Gpω,Aq “ µX,Aj pAq for ω P Aj , then

ErfpXq | Gspωq “

ż

R
fpxqµX,Gpω, dxq.

With a structure such as this, expectations conditioned on σ-algebras behave
very much like ordinary expectations. When this happens, we are able to make
valuable intuitive connections to mathematical ideas that we are already familiar
with. It would be nice if P pX P ¨ | Gq was always a random measure, even when
G is infinite. The following theorem is a step in this direction.

Theorem 6.63. Let pΩ,F , P q be a probability space and pS,Sq a measurable
space. Let X be an S-valued random variable and G Ă F a σ-algebra. Then

(i) P pX P A | Gq P r0, 1s a.s., for all A P S.

(ii) P pX P H | Gq “ 0 a.s.

(iii) P pX P S | Gq “ 1 a.s.

(iv) P pX P
Ţ8

n“1An | Gq “
ř8

n“1 P pX P An | Gq a.s., for all disjoint collec-
tions tAnu Ă S.

Proof. Exercise 6.24. l

Unfortunately, Theorem 6.63 does not show that A ÞÑ P pX P A | Gqpωq is
a measure for P -a.e. ω P Ω. This is because the null set in (iv) can depend on
the collection tAnu. So there may not exist a single event of probability one on
which (iv) holds simultaneously for all disjoint collections.

However, when X takes values in a standard Borel space, such as the real
line, it is possible to express P pX P ¨ | Gq as a genuine random measure. The
remainder of this section elaborates on this topic.
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6.3.2 Random measures

Let pS,Sq be a measurable space and letMpSq be the set of all σ-finite measures
on pS,Sq. Let MpSq be the σ-algebra on MpSq generated by sets of the form
tν : νpAq P Bu, where A P S and B P R. Note that MpSq is the smallest σ-
algebra such that the projection functions πA :MpSq Ñ R, defined by πApνq “

νpAq, are MpSq-measurable for all A P S. Taking A “ S and B “ t1u shows
that M1pSq, the set of all probability measures on pS,Sq is measurable. Let
M1pSq denote MpSq restricted to M1pSq.

Let pT, T q be another measurable space. If µ : T Ñ MpSq, we will write
µpt, Aq “ pµptqqpAq. Note that µ is pT ,MpSqq-measurable if and only if πA˝µ “

µp¨, Aq is pT ,Rq-measurable for all A P S. Any such measurable function is
called a kernel from T to S. If µ takes values inM1pSq, then µ is a probability
kernel.

Let pΩ,F , P q be a probability space. A random measure on S is anMpSq-
valued random variable. In other words, it is a kernel from Ω to S. If a random
measure takes values in M1pSq, then it is a random probability measure on
S. Note that if µ is a kernel from T to S and Y is a T -valued random variables,
then µpY q is a random measure.

6.3.3 Regular conditional distributions

Let pΩ,F , P q be a probability space and pS,Sq and pT, T q measurable spaces.
Let X and Y be S- and T -valued random variables, respectively. Let G Ă F
be a σ-algebra. If there exists a random measure µ “ µX,G on S such that
P pX P A | Gq “ µp¨, Aq a.s. for every A P S, then µ is a regular conditional
distribution for X given G, and we write X | G „ µ. Similarly, if there exists
a probability kernel µ “ µX,Y from T to S such that P pX P A | Y q “ µpY,Aq

a.s. for every A P S, then µpY q is a regular conditional distribution for X given
σpY q, and we write X | Y „ µpY q.

The following theorem is an expanded version of [2, Theorem 5.1.9]. The
version that appears here, along with its proof, can be found in [7, Theorem
5.3].

Theorem 6.64. Let pΩ,F , P q be a probability space and pS,Sq and pT, T q mea-
surable spaces. Let X and Y be S- and T -valued random variables, respectively.
If S is a standard Borel space, then there exists a probability kernel µ “ µX,Y

from T to S such that X | Y „ µpY q. If rµ is another such probability kernel,
then µ “ rµ, µY -a.e.

Corollary 6.65. Let pΩ,F , P q be a probability space and pS,Sq a measurable
space. Let X be an S-valued random variable and G Ă F a σ-algebra. If S
is a standard Borel space, then there exists a G-measurable random probability
measure µ “ µX,G such that X | G „ µ. If rµ is another such random probability
measure, then µ “ rµ a.s.

Proof. Apply Theorem 6.64 with pT, T q “ pΩ,Gq and Y the identity function.
l
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The first example of what we can do with regular conditional distributions
is the following theorem, which can be regarded as a generalized version of
Theorem 6.52.

Theorem 6.66. Let pΩ,F , P q be a probability space and pS,Sq a measurable
space. Let X be an S-valued random variable, G Ă F a σ-algebra, and suppose
X | G „ µ. Let pT, T q be a measurable space and Y a T -valued random variable.
Let f : S ˆ T Ñ R be pS ˆ T ,Rq-measurable with E|fpX,Y q| ă 8. If Y P G,
then

ErfpX,Y q | Gs “

ż

S

fpx, Y qµp¨, dxq a.s.

Proof. If f “ 1AˆB , where A P S and B P T , then

Er1AˆBpX,Y q | Gs “ 1BpY qP pX P A | Gq

“ 1BpY qµp¨, Aq “

ż

S

1AˆBpx, Y qµp¨, dxq a.s.

By the π-λ theorem, this proves the result for f “ 1C , where C P S ˆT . By lin-
earity (Theorem 6.49), the result holds for all simple functions f . By monotone
convergence (Theorem 6.55), the result holds for all nonnegative functions f sat-
isfying E|fpX,Y q| ă 8. And finally, by considering the positive and negative
parts, the result holds for all measurable functions f satisfying E|fpX,Y q| ă 8.
l

Corollary 6.67. Let pΩ,F , P q be a probability space and pS,Sq a measurable
space. Let X be an S-valued random variable, G Ă F a σ-algebra, and suppose
X | G „ µ. If f : S Ñ R is pS,Rq-measurable with E|fpXq| ă 8, then

ErfpXq | Gs “

ż

S

fpxqµp¨, dxq a.s.

Proof. Apply Theorem 6.66 with Y a constant random variable. l

For our second example, we give a simple proof of Theorem 6.60 (Hölder’s
inequality).

Proof of Theorem 6.60. Since pR2,R2q is a standard Borel space, there exists a
random measure µ on R2 such that pX,Y q | G „ µ. Since |X|p and |Y |q are
integrable, the ordinary Hölder’s inequality implies |XY | is integrable. Thus,
by Corollary 6.67,

Er|XY | | Gs “

ż

R2

|xy|µp¨, dx dyq a.s.

For P -a.e. ω P Ω, we may apply the ordinary Hölder’s inequality to the measure
µpω, ¨q, yielding

Er|XY | | Gs ď

ˆ
ż

R2

|x|p µp¨, dx dyq

˙1{pˆ
ż

R2

|y|q µp¨, dx dyq

˙1{q

a.s.

Applying Theorem 6.66 once again finishes the proof. l
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For our final example, let us first consider a property of unconditioned expec-
tations. If X is a real-valued random variable, and h : R Ñ r0,8q is absolutely
continuous with h1 ě 0 a.e. and hpxq Ó 0 as x Ñ ´8, then

ErhpXqs “

ż

R
h1ptqP pX ą tq dt. (6.9)

This is the content of [2, Exercise 2.2.7], and one way to see it is to use Fubini’s
theorem:

ErhpXqs “

ż

Ω

hpXq dP “

ż

Ω

ż X

´8

h1ptq dt dP “

ż

Ω

ż

R
1tXątuh

1ptq dt dP

“

ż

R
h1ptq

ż

Ω

1tXątu dP dt “

ż

R
h1ptqP pX ą tq dt.

It is then natural to ask whether a similar thing is true for conditional expec-
tations, and whether a similar proof can demonstrate it. We will answer both
questions in the affirmative by using regular conditional probabilities.

Theorem 6.68. Let X be a real-valued random variable on a probability space
pΩ,F , P q and G Ă F a σ-algebra. Let h : R Ñ r0,8q be absolutely continuous
with h1 ě 0 a.e. and hpxq Ó 0 as x Ñ ´8. Suppose that E|hpXq| ă 8. Then
it is possible to choose, for each t P R, a version of P pX ą t | Gq so that the
function t ÞÑ h1ptqP pX ą t | Gq is almost surely Lebesgue integrable on R, and
satisfies

ErhpXq | Gs “

ż

R
h1ptqP pX ą t | Gq dt a.s.

Proof. Since pR,Rq is a standard Borel space, there exists a random measure µ
such that X | G „ µ. For each t P R, let us choose the version of P pX ą t | Gq

determined by µ, that is, P pX ą t | Gqpωq “ µpω, pt,8qq. Then for P -a.e.
ω P Ω, we have

ż

R

ż

R
1txątuh

1ptq dt µpω, dxq “

ż

R
hpxqµpω, dxq “ ErhpXq | Gspωq ă 8.

By Fubini’s theorem, the function

t ÞÑ

ż

R
1txątuh

1ptqµpω, dxq “ h1ptqµpω, pt,8qq “ h1ptqP pX ą t | Gqpωq

is Lebesgue integrable on R and

ż

R
h1ptqP pX ą t | Gqpωq dt “

ż

R

ż

R
1txątuh

1ptqµpω, dxq dt

“

ż

R

ż

R
1txątuh

1ptq dt µpω, dxq “ ErhpXq | Gspωq,

which proves the theorem. l
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Exercises

6.24. Prove Theorem 6.63.

6.25. [2, Exercise 5.1.13] Let X and Y have joint density function fpx, yq. For
y P R and A P R, define

µpy,Aq “

ş

A
fpx, yq dx

ş

R fpx, yq dx
,

if
ş

R fpx, yq dx P p0,8q, and µpy,Aq “ 1Ap0q otherwise. Prove that µ is a
probability kernel from R to R and that X | Y „ µpY q.

6.4 A preview of stochastic processes

A stochastic process is a collection of random variable tXptq : t P T u indexed
by some set T , defined on a common probability space, pΩ,F , P q, and taking
values in a common measurable space, pS,Sq. We usually think of T as time. A
discrete time stochastic process is where T “ N, in which case the process
is just a sequence of random variables.

Let tXn : n P Nu be a discrete time stochastic process. Define Fn “

σpX1, . . . , Xnq. The σ-algebra Fn represents all the information at time n that
we would have from observing the values X1, . . . , Xn. Note that Fn Ă Fn`1 Ă

F .
More generally, a filtration is a sequence of σ-algebras tFnu8

n“1 such that
Fn Ă Fn`1 Ă F . A stochastic process tXn : n P Nu is said to be adapted
to the filtration tFnu8

n“1 if Xn is Fn-measurable for all n. The special case
Fn “ σpX1, . . . , Xnq is called the filtration generated by X, and is denoted
by tFX

n u8
n“1.

An important class of discrete time stochastic processes is the martingales.
A real-valued stochastic process tXn : n P Nu is a martingale with respect to
the filtration tFnu8

n“1 if

(i) Xn is integrable for all n,

(ii) tXn : n P Nu is adapted to tFnu8
n“1, and

(iii) ErXn`1 | Fns “ Xn for all n.

The critical item is (iii). Imagine that Xn models our cumulative wealth as
we play a sequence of gambling games. Condition (iii) says that, given all the
information up to time n, our expected wealth at time n` 1 is the same as our
wealth at time n. In other words, a martingale models a “fair” game.

Another important class of discrete time stochastic processes is the Markov
chains. A stochastic process tXn : n P Nu is a Markov chain with respect to
the filtration tFnu8

n“1 if

(i) tXn : n P Nu is adapted to tFnu8
n“1, and
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(ii) P pXn`1 P B | Fnq “ P pXn`1 P B | Xnq for all B P S.

Here, the critical item is (ii). It is called the Markov property. In words,
it says that the conditional distribution of Xn`1 given all the information up
to time n is the same as if we were only given Xn. In other words, the future
behavior of a Markov chain depends only on the present location of the chain,
and not on how it got there.

The canonical example of a Markov chain is a random walk. If tξju8
j“1 are

i.i.d., Rd-valued random variables, and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, then tXn : n P Nu

is a random walk. The random walk is a Markov chain with respect to the
filtration generated by X. Moreover, if each ξj is real-valued and integrable
with mean zero, then the random walk is also a martingale.

A continuous time stochastic process has the form tXptq : t P r0,8qu. Ex-
amples include the Poisson process and Brownian motion. Concepts such as
filtrations, adaptedness, martingales, and the Markov property can all be ex-
tended to continuous time. Care is needed however, because (for one thing) the
time domain is uncountable. Brownian motion is the continuous time analog
of a random walk. It is the canonical example in continuous time of both a
martingale and a Markov process. It can be realized as the limit of a sequence
of random walks, where the step sizes are becoming smaller and the steps are
occurring more frequently.

More specifically, let tXn : n P Nu be a mean zero random walk. Let
Xptq “ Xttu, where t¨u denotes the greatest integer function. Then the sequence
of processes

"

Xpntq
?
n

: t P r0,8q

*

converges (in a certain sense) as n Ñ 8 to a continuous time stochastic process
called Brownian motion. This is the conclusion of Donsker’s theorem, which is
a kind of central limit theorem for stochastic processes.

Differential equations involving Brownian motion are referred to as stochastic
differential equations (SDEs). SDEs are used to model dynamical systems that
involve randomness, and are very common in scientific applications. In order
to understand SDEs, one must first understand the stochastic integral (with
respect to Brownian motion), which behaves quite differently from the ordinary
Lebesgue-Stieltjes integral. In particular, the classical fundamental theorem of
calculus no longer applies when one is working with stochastic integrals. It must
be replaced by a new rule called Itô’s rule. Itô’s rule gives rise to a whole new
calculus called stochastic calculus.



Chapter 7

Modes of Convergence

7.1 Convergence in probability

This section corresponds to [2, pp. 53–54, 65–66].
Let tXnu8

n“1 and X be random variables on a probability space pΩ,F , P q.
Then Xn Ñ X in probability if Xn Ñ X in measure. In other words, Xn Ñ X
in probability if and only if, for all ε ą 0, we have

P p|Xn ´X| ě εq Ñ 0,

as n Ñ 8.

Lemma 7.1. If p ą 0 and E|Xn ´ X|p Ñ 0 as n Ñ 8, then Xn Ñ X in
probability.

Proof. By Chebyshev’s inequality,

P p|Xn ´X| ě εq ď
E|Xn ´X|p

εp
,

which tends to 0. l

Also recall the following from Section 2.4. If Xn Ñ X a.s., then Xn Ñ

X in probability. Conversely, if Xn Ñ X in probability, then there exists a
subsequence such that Xnk

Ñ X a.s.
Also recall Exercise 2.13, which shows that convergence in probability is

metrizable. That is, there exists a metric ρ on L0pΩ,F , P q such that Xn Ñ X
in probability if and only if ρpXn, Xq Ñ 0. In fact, in can be shown that this
metric space is complete. (See [2, Exercise 2.3.9].)

Recall the following fact about metric spaces ([2, Theorem 2.3.3]).

Theorem 7.2. Let txnu be a sequence in a metric space pM,ρq and let x P M .
Then xn Ñ x as n Ñ 8 if and only if every subsequence txnpmqu has a further
subsequence txnpmkqu such that xnpmkq Ñ x as k Ñ 8.

119
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We can use this to prove the following result about convergence in probabil-
ity.

Theorem 7.3. Let tXnu8
n“1 and X be random variables on a probability space,

pΩ,F , P q. Then Xn Ñ X in probability as n Ñ 8 if and only if every subse-
quence tXnpmqu has a further subsequence tXnpmkqu such that Xnpmkq Ñ X a.s.
as k Ñ 8.

Proof. The “only if” part follows from the results in Section 2.4. For the “if”
part, fix ε ą 0 and define xn :“ P p|Xn ´ X| ě εq. Then txnu is a sequence in
the metric space R with the Euclidean metric. Let txnpmqu be a subsequence.
By hypothesis, the subsequence tXnpmqu has a further subsequence tXnpmkqu

such that Xnpmkq Ñ X a.s. This implies that Xnpmkq Ñ X in probability. By
the definition of convergence in probability, this gives xnpmkq Ñ 0. By Theorem
7.2, therefore, we have xn Ñ 0, and so Xn Ñ X in probability. l

Remark 7.4. Since convergence in probability does not imply almost sure
convergence, this theorem shows that almost sure convergence is not metrizable.

Theorem 7.5. Let Xn Ñ X in probability and let f : R Ñ R. If f is contin-
uous, then fpXnq Ñ fpXq in probability. If f is continuous and bounded, then
ErfpXnqs Ñ ErfpXqs.

Proof. First suppose f is continuous. Let tnpmqu be a strictly increasing se-
quence of natural numbers. Choose a subsequence tXnpmkqu such thatXnpmkq Ñ

X a.s. Since f is continuous, we have fpXnpmkqq Ñ fpXq a.s. By Theorem 7.3,
this implies fpXnq Ñ fpXq in probability.

Now assume f is continuous and bounded. Define xn “ ErfpXnqs. Let
tnpmqu be a strictly increasing sequence of natural numbers. Choose a subse-
quence tXnpmkqu such that Xnpmkq Ñ X a.s. Since f is continuous, we have
fpXnpmkqq Ñ fpXq a.s. Since f is bounded, by dominated convergence, we have
xnpmkq Ñ ErfpXqs. Therefore, by Theorem 7.2, we have xn Ñ ErfpXqs. l

Theorem 7.6. Let Xn, X be nonnegative random variables with Xn Ñ X in
probability. Then lim infnÑ8 EXn ě EX.

Proof. Exercise 7.1. l

Theorem 7.7. Let Xn, X be real-valued random variables with Xn Ñ X in
probability. If there exists an integrable random variable Y such that |Xn| ď Y
a.s. for all n, then EXn Ñ EX.

Proof. Exercise 7.2. l

Theorem 7.8. Let Xn, X be real-valued random variables with Xn Ñ X in
probability. Let g : R Ñ r0,8q and h : R Ñ R be continuous. Assume that

(i) gpxq Ñ 8 as |x| Ñ 8,

(ii) |hpxq|{gpxq Ñ 0 as |x| Ñ 8, and



7.2. THE BOREL-CANTELLI LEMMAS 121

(iii) supnEgpXnq ă 8.

Then EhpXnq Ñ EhpXq as n Ñ 8.

Proof. Exercise 7.3. l

Exercises

7.1. [2, Exercise 2.3.6] Prove Theorem 7.6.

7.2. [2, Exercise 2.3.7(a)] Prove Theorem 7.7.

7.3. [2, Exercise 2.3.7(b)] Prove Theorem 7.8.

7.2 The Borel-Cantelli lemmas

This section corresponds to [2, Section 2.3].
Let Ω be a set and for each n P N, let An Ă Ω. Define Bn “

Ť8

k“nAk. Note
that Bn Ą Bn`1 for all n. We then define

lim sup
nÑ8

An “

8
č

n“1

Bn “

8
č

n“1

8
ď

k“n

Ak.

We may similarly define

lim inf
nÑ8

An “

8
ď

n“1

8
č

k“n

Ak.

It can be shown that if A “ lim supnÑ8 An, then

lim sup
nÑ8

1An
pωq “ 1Apωq,

for all ω P Ω, and similarly for lim inf.
Also note that

lim sup
nÑ8

An “

8
č

n“1

8
ď

k“n

Ak “ tω P Ω : @n P N, Dk ě n, ω P Aku

“ tω P Ω : ω P Ak for infinitely many k P Nu.

We therefore adopt the notation tAn i.o.u :“ lim supnÑ8 An, where i.o. stands
for “infinitely often”.

Theorem 7.9. Let tXnu be a sequence of random variables on a probability
space pΩ,F , P q. Then Xn Ñ 0 a.s. if and only if, for every ε ą 0 we have

P p|Xn| ě ε i.o.q “ 0.
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Proof. First assume Xn Ñ 0 a.s. and fix ε ą 0. Let An “ t|Xn| ě εu. Then

tAn i.o.uc “

8
ď

n“1

8
č

j“n

Ac
j “ tω P Ω : Dn P N,@j ě n, |Xjpωq| ă εu

It follows that tXn Ñ 0u Ă tAn i.o.uc, and so P pAn i.o.q “ 0.
For the converse, let

Ω˚ “
č

εPt1{k:kPNu

t|Xn| ě ε i.o.uc.

By hypothesis, we have P pΩ˚q “ 1. As above, Xnpωq Ñ 0 for each ω P Ω˚.
Thus, Xn Ñ 0 a.s. l

Theorem 7.10 (Borel-Cantelli lemma). Let pΩ,F , P q be a probability space
and tAnu8

n“1 Ă F . If
ř8

n“1 P pAnq ă 8, then P pAn i.o.q “ 0.

Proof. Let N “
ř8

n“1 1An
. Then ErN s “

ř8

n“1 P pAnq ă 8. Thus, N ă 8 a.s.
But tN “ 8u “ tAn i.o.u. Thus, P pAn i.o.q “ 0. l

Theorem 7.11 (the second Borel-Cantelli lemma). Let pΩ,F , P q be a probabil-
ity space and tAnu8

n“1 Ă F . Suppose tAnu are independent. If
ř8

n“1 P pAnq “

8, then P pAn i.o.q “ 1.

Proof. Let Bn “
Ť8

k“nAk so that Bn Ó tAn i.o.u. Thus, P pBnq Ñ P pAn i.o.q.
Fix n P N. Fix ε ą 0. Since

ř8

k“n P pAnq “ 8, we may choose N ě n such that
řN

k“n P pAnq ą logp1{εq. Using independence and the inequality, 1 ´ x ď e´x,
we have

P pBnq ě P

ˆ N
ď

k“n

Ak

˙

“ 1 ´ P

ˆ N
č

k“n

Ac
k

˙

“ 1 ´

N
ź

k“n

p1 ´ P pAkqq

ě 1 ´

N
ź

k“n

e´P pAkq “ 1 ´ e´
řN

k“n P pAnq ą 1 ´ e´ logp1{εq “ 1 ´ ε.

Since ε ą 0 was arbitrary, this shows P pBnq “ 1. Thus, P pAn i.o.q “ 1. l

Exercises

7.4. [2, Exercise 2.3.2 (modified)] Recall that an „ bn means that an{bn Ñ 1
as n Ñ 8. Let Xn be random variables and assume EXn „ anα, where a ą 0
and α ą 0. Also assume varpXnq ď Bnβ for some β ă 2α ´ 1. Prove that
n´αXn Ñ a a.s.

7.5. [2, Exercise 2.3.10] Let tXnu8
n“1 be a sequence of real-valued random vari-

ables on a probability space, pΩ,F , P q. Prove that there exist real constants cn
such that Xn{cn Ñ 0 a.s.

7.6. [2, Exercise 2.3.12] Let pΩ,F , P q be a probability space and tAnu8
n“1 Ă F

a sequence of independent events. Assume that P pAnq ă 1 for all n, and that
P p

Ť

nAnq “ 1. Prove that P pAn i.o.q “ 1.
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7.3 Weak convergence

This section corresponds to [2, Section 3.2].
Let pM,ρq be a metric space. For each n P N Y t8u, let µn be a proba-

bility measure on pM,BM q, where BM is the Borel σ-algebra. We say that µn

converges weakly to µ8, written µn ñ µ8, if

ż

M

f dµn Ñ

ż

M

f dµ8,

as n Ñ 8, for every bounded, continuous f :M Ñ R.
For each n P N Y t8u, let pΩn,Fn, Pnq be a probability space and let Xn :

Ωn Ñ M be an M -valued random variable. We say that Xn converges in
distribution (or converges in law) to X8, written Xn ñ X8, if µn ñ µ8,
where Xn „ µn. In other words, Xn ñ X8 if and only if

EnrfpXnqs Ñ E8rfpX8qs,

as n Ñ 8, for every bounded, continuous f :M Ñ R.

Remark 7.12. Let CpMq denote the set of all bounded, continuous f :M Ñ R
and let µ be a probability measure on pM,BM q. Then CpMq is a vector space
over the reals and the map f ÞÑ

ş

M
f dµ is a linear functional on CpMq. For this

reason, one often sees alternative notation such as µpfq or xµ, fy for the integral
ş

M
f dµ. Thought of in this way, weak convergence of probability measures is

just pointwise convergence as functions on CpMq.

Remark 7.13. For the remainder of this section, unless otherwise indicated,
we will focus on the case M “ R with the Euclidean metric.

Lemma 7.14. For each n P N Y t8u, let Xn be a real-valued random variable
on some probability space pΩn,Fn, Pnq. Let Fn be the distribution function of
Xn. If Xn ñ X8, then Fnpxq Ñ F8pxq for all x such that F8 is continuous at
x.

Proof. Suppose Xn ñ X8 and fix x P R such that F8 is continuous at x. Fix
ε ą 0. Define fx,ε : R Ñ R by

fx,εptq “ 1p´8,xsptq ´

ˆ

t´ x

ε

˙

1px,x`εsptq.

Then fx,ε is bounded and continuous, so Enrfx,εpXnqs Ñ E8rfx,εpX8qs. Note
that 1p´8,xs ď fx,ε ď 1p´8,x`εs. Thus,

lim sup
nÑ8

Fnpxq “ lim sup
nÑ8

Enr1p´8,xspXnqs ď lim sup
nÑ8

Enrfx,εpXnqs

“ E8rfx,εpX8qs ď E8r1p´8,x`εspX8qs “ F8px` εq.

Letting ε Ñ 0 gives lim supnÑ8 Fnpxq ď F8pxq.
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Similarly, 1p´8,x´εs ď fx´ε,ε ď 1p´8,xs. Thus,

lim inf
nÑ8

Fnpxq “ lim inf
nÑ8

Enr1p8,xspXnqs ě lim inf
nÑ8

Enrfx´ε,εpXnqs

“ E8rfx´ε,εpX8qs ě E8r1p´8,x´εspX8qs “ F8px´ εq.

Since F8 is continuous at x, letting ε Ñ 0 gives lim infnÑ8 Fnpxq ě F8pxq. l

Theorem 7.15 (Skorohod representation theorem). For each n P N Y t8u, let
Xn be a real-valued random variable on some probability space pΩn,Fn, Pnq. If
Xn ñ X8, then there exists a probability space pΩ,F , P q and a sequence tYnu

of random variables on pΩ,F , P q such that Xn “d Yn for all n, and Yn Ñ Y8

a.s.

Proof sketch. Suppose Xn ñ X8. Let Fn be the distribution function of Xn.
By Lemma 7.14, we have Fnpxq Ñ F8pxq for all x such that F8 is continuous
at x. For a proof that this implies the conclusion of the theorem, see the proof
of [2, Theorem 3.2.2]. l

Remark 7.16. The Skorohod representation theorem does not require the Xn’s
to be real-valued. In fact, it is still true when all we assume is that the Xn’s
take values in a separable metric space (see [3, Theorem 3.1.8]). Moreover, by
Exercise 7.9, the converse of the Skorohod representation theorem is also true.

Theorem 7.17. For each n P NY t8u, let Xn be a real-valued random variable
on some probability space pΩn,Fn, Pnq. Let Fn be the distribution function of
Xn. Then Xn ñ X8 if and only if Fnpxq Ñ F8pxq for all x such that F8 is
continuous at x.

Proof. By Lemma 7.14, we need only prove the “if” part. Assume Fnpxq Ñ

F8pxq for all x such that F8 is continuous at x. As mentioned in the proof sketch
for Theorem 7.15, this is sufficient for us to infer the conclusion of the Skorohod
representation theorem. Thus, there exists a probability space pΩ,F , P q and a
sequence tYnu of random variables on pΩ,F , P q such that Xn “d Yn for all n,
and Yn Ñ Y8 a.s.

Let f : R Ñ R be bounded and continuous. Then fpYnq Ñ fpY8q a.s. and,
by dominated convergence, ErfpYnqs Ñ ErfpY8qs. But Xn “d Yn for all n.
Thus, EnrfpXnqs “ ErfpYnqs for all n. Therefore, EnrfpXnqs Ñ E8rfpX8qs

and Xn ñ X8. l

It is an exercise to prove the following version of Fatou’s lemma. This exercise
provides practice using the technique in the previous proof.

Theorem 7.18. Let Xn, X be real-valued random variables with Xn ñ X, and
g : R Ñ r0,8q continuous. Then lim infnÑ8 EgpXnq ě EgpXq.

Proof. Exercise 7.7. l
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Theorem 7.19 (Continuous mapping theorem). Let g : R Ñ R be measurable
and Dg Ă R the set of its discontinuities. Suppose Xn ñ X8 and X8 P Dc

g a.s.
Then gpXnq ñ gpX8q. Moreover, if g is bounded, then EgpXnq Ñ ErgpX8qs.

Proof. By the Skorohod representation theorem, choose Yn such that Xn “d Yn
for all n and Yn Ñ Y a.s. Let f : R Ñ R be bounded and continuous. Since
Y8 P Dc

g a.s. and f is continuous, it follows that fpgpYnqq Ñ fpgpY8qq a.s.
Since f is bounded, dominated convergence implies

ErfpgpXnqqs “ ErfpgpYnqqs Ñ ErfpgpY8qqs “ ErfpgpX8qqs.

Since f was arbitrary, this implies gpXnq ñ gpX8q.

Now suppose g is bounded. Then, as above, gpYnq Ñ gpY8q a.s. and domi-
nated convergence give ErfpgpXnqqs Ñ ErfpgpX8qqs. l

Remark 7.20. By Remark 7.16, we see that the proof of the continuous map-
ping theorem is still valid when we only assume the Xn’s take values in a sepa-
rable metric space.

For a general metric space, pM,ρq, a function f : M Ñ R is Lipschitz
continuous if there exists C ą 0 such that |fpxq ´ fpyq| ď Cρpx, yq for all
x, y P M . The following theorem is valid in a general metric space.

Theorem 7.21 (Portmanteau theorem). The following are equivalent:

(i) Xn ñ X8,

(ii) ErfpXnqs Ñ ErfpX8qs for all bounded, Lipschitz continuous f :M Ñ R.

(iii) lim infnÑ8 P pXn P Gq ě P pX8 P Gq for all open G,

(iv) lim supnÑ8 P pXn P Kq ď P pX8 P Kq for all closed K, and

(v) P pXn P Aq Ñ P pX8 P Aq whenever P pX8 P BAq “ 0.

Proof. Uses Skorohod representation theorem. See [2, Theorems 3.2.5 and 3.9.1]
for the full proof. l

Remark 7.22. To remember the order of the inequalities, keep in mind the
following example. Let Xn “ 1{n and X8 “ 0. With G “ p0,8q, we have
P pXn P Gq “ 1 for all n ă 8 and P pX8 P Gq “ 0.

The following lemma is sometimes useful.

Lemma 7.23. Let Xn ñ X and xn Ñ x. Let Fn and F be the distribution
functions of Xn and X, respectively. If F is continuous at x, then Fnpxnq Ñ

F pxq as n Ñ 8.
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Proof. Fix ε ą 0. Choose N P N such that |xn ´ x| ă ε for all n ě N . Thus,
for any n ě N , we have

Fnpxnq “ P pXn ď xnq ď P pXn ď x` εq.

By Theorem 7.21(iii),

lim sup
nÑ8

Fnpxnq ď P pX ď x` εq “ F px` εq.

Similarly, for any such n, we have

Fnpxnq ě P pXn ă x´ εq.

By Theorem 7.21(ii),

lim inf
nÑ8

Fnpxnq ě P pX ă x´ εq ě F px´ 2εq.

Since F is continuous at x, letting ε Ñ 0 finishes the proof. l

Theorem 7.24. Let M1pRq be the set of probability measures on pR,Rq. For
µ, ν P M1pRq, let

ρpµ, νq “ inftε : Fµpx´ εq ´ ε ď Fνpxq ď Fµpx` εq ` ε for all xu,

where Fµpxq “ µpp´8, xsq. Then ρ is a metric on M1pRq and µn ñ µ8 if and
only if ρpµn, µ8q Ñ 0.

Proof. Exercise 7.8. l

Remark 7.25. The metric ρ is called the Lévy metric.

Remark 7.26. Weak convergence of probability measures on pM,BM q, where
M is an arbitrary metric space, is also metrizable. See [3, Section 3.1] for details.

Let tµnu8
n“1 be a sequence of probability measures on pR,Rq. We say that

tµnu8
n“1 is tight if, for all ε ą 0, there exists M ą 0 such that

lim sup
nÑ8

µnpp´M,M scq ď ε.

A sequence of random variables, tXnu8
n“1, is tight if tµnu8

n“1 is tight, where
Xn „ µn. That is, if, for all ε ą 0, there exists M ą 0 such that

lim sup
nÑ8

P p|Xn| ą Mq ď ε.

In a tight sequence, mass cannot “escape” to ˘8.
The following theorem is a combination of [2, Theorems 3.2.6 and 3.2.7]. See

the book for the proofs.

Theorem 7.27. A sequence of random variables, tXnu8
n“1, is tight if and only

if it is relatively compact, that is, every subsequence has a further subsequence
that converges in distribution.
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Remark 7.28. Suppose we wish to prove that Xn ñ X. Since convergence
in distribution is metrizable, we could take an arbitrary subsequence, tXnpmqu,
and try to prove that there exists a further subsequence tXnpmkqu such that
Xnpmkq ñ X as k Ñ 8. Typically, one first proves that tXnu is tight. Then,
when trying to prove that Xnpmkq ñ X, we may assume that Xnpmkq ñ Y for
some Y , and reduce our task to showing that Y “ X.

The proof method described above is a two-step procedure: first prove tight-
ness, and then prove that every subsequential limit has the same distribution.
Soon, we will learn to use characteristic functions to prove convergence in dis-
tribution. This amounts to a kind of “shortcut” that subsumes both steps of
this procedure. As such, you will not have much opportunity to use it. But
later, when studying stochastic processes, this two-step proof method will be
very important.

Theorem 7.29. Suppose supnErφpXnqs ă 8, where φ ě 0 and φ Ñ 8 as
|x| Ñ 8. Then tXnu is tight.

Proof. Let ε ą 0. Since φ Ñ 8 as |x| Ñ 8, we may choose M ą 0 such that

inf
|x|ěM

φpxq ě
1

ε
sup
n
ErφpXnqs.

Thus,

P p|Xn| ą Mq “ Er1t|Xn|ąMus ď
ErφpXnq1t|Xn|ąMus

inf |x|ěM φpxq
ď

ErφpXnqs

inf |x|ěM φpxq
ď ε,

which shows tXnu is tight. l

Exercises

7.7. [2, Exercise 3.2.4] Prove Theorem 7.18.

7.8. [2, Exercise 3.2.6] Prove Theorem 7.24.

7.9. [2, Exercise 3.2.12] Let Xn, X be real-valued random variables defined on
a common probability space, pΩ,F , P q.

(a) Prove that if Xn Ñ X in probability, then Xn ñ X.

(b) Prove that if Xn ñ c, where c is a constant, then Xn Ñ c in probability.

7.10. [2, Exercise 3.2.13] Let Xn, Yn, X be real-valued random variables defined
on a common probability space, pΩ,F , P q. Prove that if Xn ñ X and Yn ñ c,
where c is a constant, then Xn ` Yn ñ X ` c.
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7.4 Characteristic functions

This section corresponds to [2, Sections 3.3.1-3.3.3].
The characteristic function (ch.f.) of a random variable X is the function

φX : R Ñ C given by

φXptq “ EreitX s “ ErcosptXqs ` iErsinptXqs.

(Note that this is well-defined for all t P R.)

Theorem 7.30. If φ is the ch.f. of X, then

(a) φp0q “ 1,

(b) φp´tq “ φptq,

(c) |φptq| “ |EreitX s| ď E|eitX | “ 1,

(d) |φpt ` hq ´ φptq| ď E|eihX ´ 1|, so that φ is uniformly continuous on R,
and

(e) φaX`bptq “ eitbφXpatq.

Proof. Straightforward. See book for details. l

Theorem 7.31. If X and Y are independent, then φX`Y ptq “ φXptqφY ptq.

Proof. For all t P R, we have

EreitpX`Y qs “ EreitXeitY s “ EreitX sEreitY s,

since eitX and eitY are independent. l

Example 7.32. If P pX “ 1q “ P pX “ ´1q “ 1{2, then

φXptq “ EreitX s “
eit ` e´it

2
“ cos t.

Example 7.33. If X „ Poissonpλq, then

φXptq “ EreitX s “

8
ÿ

k“0

eitkP pX “ kq

“

8
ÿ

k“0

eitke´λλ
k

k!
“ e´λ

8
ÿ

k“0

pλeitqk

k!
“ exppλpeit ´ 1qq.

Theorem 7.34. If X „ Npµ, σ2q, then φXptq “ exppiµt ´ σ2t2{2q. In partic-

ular, the ch.f. of a standard normal is e´t2{2.
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Proof. First assume X is a standard normal and let φ “ φX . Since x ÞÑ sinpxq

is an odd function,
ż

sinptxqe´x2
{2 dx “ 0.

Thus,

φptq “
1

?
2π

ż 8

´8

cosptxqe´x2
{2 dx.

By Theorem 2.31,

φ1ptq “ ´
1

?
2π

ż 8

´8

x sinptxqe´x2
{2 dx

“ ´
1

?
2π

ˆ

´ sinptxqe´x2
{2

ˇ

ˇ

ˇ

ˇ

8

´8

`

ż 8

´8

t cosptxqe´x2
{2 dx

˙

“ ´tφptq.

Thus,
d

dt
pφptqet

2
{2q “ pφ1ptq ` tφptqqet

2
{2 “ 0,

which implies φptqet
2

{2 “ φp0q “ 1.
Now assume X „ Npµ, σ2q. Then X “ µ ` σZ, where Z „ Np0, 1q, so

φXptq “ eiµtφZpσtq “ exppiµt´ σ2t2{2q. l

Theorem 7.35. If X „ µ, then

lim
TÑ8

1

2π

ż T

´T

e´ita ´ e´itb

it
φXptq dt “ µppa, bqq `

1

2
µpta, buq,

for all a ă b.

Proof. See [2, Theorem 3.3.4]. l

Proposition 7.36. If X „ µ, then

lim
TÑ8

1

2T

ż T

´T

e´itaφXptq dt “ µptauq,

for all a P R.

Proof. See [2, Exercise 3.3.2]. l

Corollary 7.37. If φX “ φY , then X
d
“ Y .

Proof. Let X „ µ and Y „ ν. By the two preceding results, µppa, bsq “ νppa, bsq
for all a ă b, which implies µ “ ν. l

Theorem 7.38. If φX P L1pRq, then X has a density function f which is
bounded and continuous, and satisfies

fpxq “
1

2π

ż

R
e´itxφXptq dt.
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Proof. See [2, Theorem 3.3.5]. l

Example 7.39. Let X “ pX1, . . . , Xnq be an Rn-valued random variable and
N a t1, . . . , nu valued random variable. Assume X and N are independent. Let
Xj „ µj and pj “ P pN “ jq. We claim that

XN „ p1µ1 ` ¨ ¨ ¨ ` pnµn.

To see this, we calculate

P pXN P Aq “ ErP pXN P A | Nqs “ ErhpNqs,

where hpjq “ P pXj P Aq “ µjpAq. Thus,

ErhpNqs “ p1hp1q ` ¨ ¨ ¨ ` pnhpnq “ p1µ1pAq ` ¨ ¨ ¨ ` pnµnpAq,

which proves the claim.
Similarly,

φXN
ptq “ EreitXN s “ ErEreitXN | N ss “

n
ÿ

j“1

pjEreitXj s “

n
ÿ

j“1

pjφXj
ptq.

Example 7.40. Let X „ Expp1q. Then

φXptq “ EreitX s “

ż 8

0

eitxe´x dx “
eitxe´x

it´ 1

ˇ

ˇ

ˇ

ˇ

8

0

“
1

1 ´ it
.

Example 7.41. Let X1, X2, N be independent with X1 „ Expp1q, ´X2 „

Expp1q, and P pN “ 1q “ P pN “ 2q “ 1{2. Let X “ XN . Then X has density
1
2e

´|x| (check). By Example 7.39, we have

φXptq “
1

2
φX1ptq `

1

2
φX2ptq

“
1

2
φX1ptq `

1

2
φX1p´tq

“
1

2

ˆ

1

1 ´ it
`

1

1 ` it

˙

“
1

1 ` t2
.

Example 7.42. Let X have the Cauchy distribution, that is, suppose X has
density

fpxq “
1

π

1

1 ` x2
.

This density is “bell”-shaped and symmetric about the origin, but is not inte-
grable, so X does not have a mean. The Cauchy distribution is a source of many
counterexamples to things that might otherwise seem intuitively true. Here, we
present it simply to illustrate the use of the inversion theorem.

Note that

φXptq “ EreitX s “
1

π

ż 8

´8

eitx

1 ` x2
dx “

1

π

ż 8

´8

e´ity

1 ` y2
dy.
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Using the previous example, we then have

φXptq “
1

π

ż 8

´8

e´ityφY pyq dy,

where Y has density gpyq “ 1
2e

´|y|. But by Theorem 7.38,

gptq “
1

2π

ż 8

´8

e´ityφY pyq dy,

from which we obtain φXptq “ e´|t|.

Lemma 7.43. Let X be a random variable. Then

P

ˆ

|X| ą
2

u

˙

ď
1

u

ż u

´u

p1 ´ φXptqq dt,

for all u ą 0.

Proof. Fix u ą 0. Note that

E

„
ż

R
|1p´u,uqptqp1 ´ eitXq| dt

ȷ

ď E

„
ż u

´u

2 dt

ȷ

“ 4u ă 8.

Hence, by Fubini’s theorem,

E

„
ż

R
1p´u,uqptqp1 ´ eitXq dt

ȷ

“

ż

R
Er1p´u,uqptqp1 ´ eitXqs dt

“

ż u

´u

p1 ´ EreitX sq dt “

ż u

´u

p1 ´ φXptqq dt.

On the other hand,

E

„
ż

R
1p´u,uqptqp1 ´ eitXq dt

ȷ

“ E

„
ż u

´u

p1 ´ eitXq dt

ȷ

“ E

„

2u´
eiuX ´ e´iuX

iX

ȷ

“ E

„

2u´
2 sinpuXq

X

ȷ

.

Thus,
1

u

ż u

´u

p1 ´ φXptqq dt “ 2E

„

1 ´
sinpuXq

uX

ȷ

.

Since psin yq{y ď 1 for all y, we have

1

u

ż u

´u

p1 ´ φXptqq dt ě 2E

„ˆ

1 ´
sinpuXq

uX

˙

1t|uX|ě2u

ȷ

ě 2E

„ˆ

1 ´
1

|uX|

˙

1t|uX|ě2u

ȷ

ě 2E

„

1

2
1t|uX|ě2u

ȷ

“ P p|uX| ě 2q,

which is equivalent to what we wanted to prove. l
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Theorem 7.44 (Continuity theorem). Let tXnu be a sequence of random vari-
ables. Let φn be the ch.f. of Xn.

(i) If Xn ñ X8, then φn Ñ φ8 pointwise.

(ii) Suppose there exists φ : R Ñ R such that φn Ñ φ pointwise. If φ is
continuous at 0, then there exists a random variable X such that Xn ñ X
and φX “ φ.

Remark 7.45. The condition of continuity at 0 cannot be omitted. If Xn „

Np0, nq, then φn Ñ 1t0u pointwise, but tXnu is not even tight (check).

Proof of Theorem 7.44. Suppose Xn ñ X8. Fix t P R. Let fpxq “ eitx. Then
f is bounded and continuous, so

φnptq “ ErfpXnqs Ñ ErfpX8qs “ φ8ptq,

and this proves (i).

Now suppose φn Ñ φ pointwise and φ is continuous at 0. Since φnp0q “ 1
for all n, we have φp0q “ 1. Since φ is continuous at 0, it follows that

1

u

ż u

´u

p1 ´ φptqq dt Ñ 0

as u Ñ 0. Let ε ą 0. Choose u so that u´1
şu

´u
p1 ´ φptqq dt ă ε, and let

M “ 2{u. By Lemma 7.43,

lim sup
nÑ8

P p|Xn| ą Mq ď lim sup
nÑ8

1

u

ż u

´u

p1 ´ φnptqq dt.

Since 1´φn Ñ 1´φ pointwise and |1´φn| ď 2 for all n, it follows by dominated
convergence that

lim sup
nÑ8

P p|Xn| ą Mq ď
1

u

ż u

´u

p1 ´ φptqq dt ă ε.

Since ε was arbitrary, tXnu is tight.

Since tXnu is tight, there exists a subsequence, tX
rnpmqu, and a random

variable X such that X
rnpmq ñ X as m Ñ 8. By (i), this implies φ

rnpmq Ñ φX

pointwise. But by hypothesis, φ
rnpmq Ñ φ pointwise. Thus, φX “ φ. It remains

only to show that Xn ñ X as n Ñ 8.

Let tXnpmqu be an arbitrary subsequence. Since tXnu is tight, there exists a
further subsequence, tXnpmkqu, and a random variable Y such that Xnpmkq ñ Y
as k Ñ 8. By (i), this implies φnpmkq Ñ φY pointwise. But by hypothesis,
φnpmkq Ñ φ pointwise. Thus, φY “ φ. Combined with the above, this gives
φY “ φX , which implies Y “d X. Hence, Xnpmkq ñ X. Since the subsequence
tXnpmqu was arbitrary, this shows Xn ñ X. l
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Remark 7.46. When dealing with real-valued random variables, this theorem
will be our main tool for proving convergence in distribution. As you can see
from the proof, when we use this theorem, we are implicitly using the proof
method described in the comments following Theorem 7.27. We will not explic-
itly use that proof method again until we must deal with the convergence of
function-valued random variables (that is, stochastic processes).

Theorem 7.47. If E|X|n ă 8, then φX has a continuous derivative of order

n given by φ
pnq

X ptq “ ErpiXqneitX s.

Proof. Exercise 7.16. l

Lemma 7.48. Let n be a nonnegative integer. Then

ˇ

ˇ

ˇ

ˇ

eix ´

n
ÿ

m“0

pixqm

m!

ˇ

ˇ

ˇ

ˇ

ď
|x|n`1

pn` 1q!
^

2|x|n

n!

for all x P R.

Proof. See [2, Lemma 3.3.7]. l

Theorem 7.49. If E|X|2 ă 8, then

φXptq “ 1 ` itErXs ´
t2

2
ErX2s ` opt2q.

Proof. Let

rptq “ φXptq ´ 1 ´ itErXs `
t2

2
ErX2s “ E

„

eitX ´

2
ÿ

m“0

pitXqm

m!

ȷ

.

By the lemma,

t´2|rptq| ď t´2E

„

|tX|3

6
^ |tX|2

ȷ

ď Er|tX| ^ |X|2s.

We have |tX| ^ |X|2 Ñ 0 a.s. as t Ñ 0. Also, |tX| ^ |X|2 ď |X|2 for all t, and
|X|2 is integrable. Thus, by dominated convergence, t´2|rptq| Ñ 0 as t Ñ 0. l

Exercises

7.11. [2, Exercise 3.3.1] Let X be a real-valued random variable. Prove that
there exist real-valued random variables, Y and Z, such that φY “ ReφX and
φZ “ |φX |2.

7.12. [2, Exercise 3.3.3] LetX be a random variable such that φX is real-valued.
Prove that ´X “d X.
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7.13. [2, Exercise 3.3.8] Let X1, . . . , Xn be independent real-valued random
variables. Assume that each Xj has a Cauchy distribution with density

fpxq “
1

πp1 ` x2q
.

Prove that
X1 ` ¨ ¨ ¨ `Xn

n
d
“ X1.

7.14. [2, Exercise 3.3.9] Let Xn, X be real-valued random variables. Assume
Xn „ Np0, σ2

nq and Xn ñ X. Prove that there exists σ P r0,8q such that
σ2
n Ñ σ.

7.15. [2, Exercise 3.3.10] For each n P N Y t8u, let pXn, Ynq be an R2-valued
random variable defined on a probability space, pΩn,Fn, Pnq. Suppose that Xn

and Yn are independent, for each n. Prove that if Xn ñ X8 and Yn ñ Y8,
then Xn ` Yn ñ X8 ` Y8.

7.16. [2, Exercise 3.3.14] Prove Theorem 7.47.



Part III

Discrete-time Stochastic
Processes I:
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Chapter 8

Introduction

As discussed in Section 6.4, a discrete-time stochastic process is a sequence of
random variables, tXn : n P Nu, all defined on the same common probability
space, pΩ,F , P q, and all taking values in the same common measurable space,
pS,Sq.

Recall that a random walk is an Rd-valued, discrete-time stochastic process
such that Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, where tξju is an i.i.d. sequence. In Chapters 9
and 10, we will only be concerned with the asymptotic behavior of the random
walk as n Ñ 8, primarily when d “ 1.

We will first show that, under suitable conditions, Xn « nµ, where µ is the
common mean of the ξj ’s. This result is known as the law of large numbers
(LLN), and we will look at multiple incarnations of this theorem. The LLN
gives us a crude, first-order approximation of Xn when n is large, and it so
happens that this approximation is deterministic. (There is nothing random
about the quantity nµ.)

For a finer approximation, we turn to the central limit theorem (CLT), which
shows that Xn « nµ`n1{2σZ, where σ2 is the common variance of the ξj ’s and
Z is a standard normal. Here, the approximation is not deterministic, so we
must be careful about the meaning of “«”. In fact, it is only the distributions
that are close when n is large. As with the LLN, we will look at multiple
incarnations of the CLT. Some of the versions of the LLN and CLT that we
consider will be quite general and even apply to certain discrete-time stochastic
processes that are not random walks.

In the final chapter of this part of the notes, we will address the issue of
recurrence. That is, does the random walk return infinitely often to (or close
to) the origin?

137
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Chapter 9

Laws of Large Numbers

9.1 Weak laws of large numbers

This section corresponds to [2, Section 2.2].

Theorem 9.1 (L2 weak law). Let tξju8
j“1 be uncorrelated, with µ “ Eξj and

supj varpξjq ă 8. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then Xn{n Ñ µ in probability and
in L2.

Proof. Since EXn “ nµ, we have

E

ˇ

ˇ

ˇ

ˇ

Xn

n
´ µ

ˇ

ˇ

ˇ

ˇ

2

“ var

ˆ

Xn

n

˙

“
1

n2
varpXnq “

1

n2
var

ˆ n
ÿ

j“1

ξj

˙

“
1

n2

n
ÿ

j“1

varpξjq,

where the last equality follows from the fact that tξju are uncorrelated. Let
C “ supj varpξjq ă 8. Then E|Xn{n ´ µ|2 ď C{n Ñ 0 as n Ñ 8. Hence
Xn{n Ñ µ in L2. Finally, L2 convergence implies convergence in probability. l

Theorem 9.2. Let tXnu8
n“1 Ă L2pΩq. Let µn “ EXn, σ

2
n “ varpXnq, and let

tbnu8
n“1 Ă R. If σ2

n{b2n Ñ 0 as n Ñ 8, then

Xn ´ µn

bn
Ñ 0

in probability and in L2 as n Ñ 8.

Proof. The result follows immediately since E|b´1
n pXn ´ µnq|2 “ σ2

n{b2n. l

Example 9.3 (Coupon collector’s problem). Suppose we have a sequence of
independent trials, and on them-th trial we collect a random object from among
n different possible objects. Let tξm : m P Nu be i.i.d. and uniform on t1, . . . , nu,
so that ξm represents our collected object on the m-th trial. Let

τk “ τnk “ inftm : |tξ1, . . . , ξmu| “ ku.

139
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Then τk represents the first time at which we have collected k distinct objects.
Note that τ1 “ 1 and let us adopt the convention that τ0 “ 0. Let Xn “ τnn ,
which represents the time it takes us to obtain a complete collection of all n
objects. We wish to understand the asymptotic behavior of Xn as n Ñ 8. In
fact, we will show that

Xn

n log n
Ñ 1 (9.1)

in probability as n Ñ 8, so that Xn « n log n for large n.
For 1 ď k ď n, let ξn,k “ τnk ´ τnk´1. In words, after we have collected

k ´ 1 objects, ξn,k represents the number of additional trials we need in order
to collect a new object, distinct from the ones we already have. We should
therefore have ξn,k „ Geomppn,kq, where

pn,k “ 1 ´
k ´ 1

n
,

and ξn,1, . . . , ξn,n are independent. Note that Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n.
Let µn “ EXn, σ

2
n “ varpXnq, and let bn “ n log n. Then

σ2
n

b2n
“

1

pn log nq2

n
ÿ

k“1

varpξn,kq “
1

pn log nq2

n
ÿ

k“1

1 ´ pn,k
p2n,k

ď
1

pn log nq2

n
ÿ

k“1

1

p2n,k
.

Thus,

σ2
n

b2n
ď

1

pn log nq2

n
ÿ

k“1

ˆ

1 ´
k ´ 1

n

˙´2

“
1

pn log nq2

n
ÿ

k“1

ˆ

n

n´ k ` 1

˙2

“
1

plog nq2

n
ÿ

m“1

1

m2
ď

1

plog nq2

8
ÿ

m“1

1

m2
Ñ 0,

as n Ñ 8. By Theorem 9.2,

Xn ´ µn

n log n
Ñ 0

in probability as n Ñ 8.
Note that, as above,

µn “

n
ÿ

k“1

Eξn,k “

n
ÿ

k“1

1

pn,k
“ n

n
ÿ

m“1

1

m
.

Since

logpn` 1q “

ż n`1

1

1

x
dx ď

n
ÿ

m“1

1

m
ď 1 `

ż n

1

1

x
dx “ 1 ` log n,

it follows that µn{pn log nq Ñ 1. Thus, using Exercise 2.14, we have

Xn

n log n
“
Xn ´ µn

n log n
`

µn

n log n
Ñ 1

in probability as n Ñ 8, proving (9.1).
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Theorem 9.4 (Weak law for triangular arrays). For each n P N, let the random
variables ξn,1, . . . , ξn,n be independent. Let tbnu8

n“1 Ă p0,8q with bn Ñ 8, and
let

an “

n
ÿ

k“1

Erξn,k1t|ξn,k|ďbnus.

Let Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n. Suppose that

(i)
řn

k“1 P p|ξn,k| ą bnq Ñ 0 as n Ñ 8, and

(ii) b´2
n

řn
k“1Erξ2n,k1t|ξn,k|ďbnus Ñ 0 as n Ñ 8.

Then pXn ´ anq{bn Ñ 0 in probability as n Ñ 8.

Proof. Let ξn,k “ ξn,k1t|ξn,k|ďbnu and Xn “ ξn,1 `¨ ¨ ¨`ξn,n, so that an “ EXn.
Fix ε ą 0. We begin by observing that

P

ˆ
ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

˙

“ P

ˆ"
ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

*

X tXn ‰ Xnu

˙

` P

ˆ"
ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

*

X tXn “ Xnu

˙

ď P pXn ‰ Xnq ` P

ˆ"
ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

*

X tXn “ Xnu

˙

ď P pXn ‰ Xnq ` P

ˆ
ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

˙

.

We then have

P pXn ‰ Xnq ď P

ˆ n
ď

k“1

tξn,k ‰ ξn,ku

˙

ď

n
ÿ

k“1

P p|ξn,k| ą bnq Ñ 0

by (i). For the second term, Chebyshev gives

P

ˆˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď ε´2E

ˇ

ˇ

ˇ

ˇ

Xn ´ an
bn

ˇ

ˇ

ˇ

ˇ

2

“ ε´2b´2
n varpXnq

“ ε´2b´2
n

n
ÿ

k“1

varpξn,kq ď ε´2b´2
n

n
ÿ

k“1

E|ξn,k|2 Ñ 0

by (ii). l

Theorem 9.5. Let tξku8
k“1 be i.i.d. and let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. There exist

constant µn such that Xn{n´ µn Ñ 0 in probability if and only if

xP p|ξ1| ą xq Ñ 0 (9.2)

as x Ñ 8. Moreover, we can take these constants to be µn “ Erξ11t|ξ1|ďnus.
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Proof. For the “only if” part see [4, pp. 234-236]. Assume (9.2). We wish to
apply Theorem 9.4. Let ξn,k “ ξk for all n ě k, and let bn “ n. Since tξku are
i.i.d., we have

n
ÿ

k“1

P p|ξn,k| ą bnq “

n
ÿ

k“1

P p|ξk| ą nq “ nP p|ξ1| ą nq Ñ 0

by (9.2), and so Theorem 9.4(i) holds.
For (ii), we consider

b´2
n

n
ÿ

k“1

Erξ2n,k1t|ξn,k|ďbnus “ n´2
n

ÿ

k“1

Erξ2k1t|ξk|ďnus “ n´1Erξ211t|ξ1|ďnus.

By (6.9),

Erξ211t|ξ1|ďnus “

ż 8

0

2tP p|ξ1|1t|ξ1|ďnu ą tq dt ď

ż n

0

2tP p|ξ1| ą tq dt

Let ε ą 0. By (9.2), we may choose t0 ą 0 such that 2tP p|ξ1| ą tq ă ε for all
t ą t0. Thus,

lim sup
nÑ8

n´1Erξ211t|ξ1|ďnus

ď lim sup
nÑ8

1

n

ˆ
ż t0

0

2tP p|ξ1| ą tq dt`

ż n

t0

2tP p|ξ1| ą tq dt

˙

ď lim sup
nÑ8

1

n

ˆ
ż t0

0

2tP p|ξ1| ą tq dt` nε

˙

“ ε.

Letting ε Ñ 0 verifies (ii).
Thus, by Theorem 9.4, we have pXn ´ anq{n Ñ 0 in probability, where

an “

n
ÿ

k“1

Erξn,k1t|ξn,k|ďbnus “

n
ÿ

k“1

Erξk1t|ξk|ďnus “ nµn,

and it follows that Xn{n´ µn Ñ 0 in probability. l

Suppose (9.2) holds. Let 0 ă ε ă 1. By (6.9), we have

E|ξ1|1´ε “

ż 8

0

p1 ´ εqt´εP p|ξ1| ą tq dt ď

ż 1

0

t´ε dt` C

ż 8

1

t´p1`εq dt ă 8.

The following theorem is the familiar form of the weak LLN. It has a somewhat
stronger hypothesis than (9.2), in that it assumes E|ξ1| ă 8.

Theorem 9.6. Let tξku8
k“1 be i.i.d. with E|ξ1| ă 8. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn

and µ “ Eξ1. Then Xn{n Ñ µ in probability.
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Proof. We have
xP p|ξ1| ą xq ď Er|ξ1|1t|ξ1|ąxus,

which goes to 0 by dominated convergence. Thus, by Theorem 9.5, we have
Xn{n´ µn Ñ 0 in probability, where µn “ Er|ξ1|1t|ξn|ďnus.

But µn Ñ µ, also by dominated convergence. Hence, Xn{n “ pXn{n´µnq`

µn Ñ µ in probability. l

Example 9.7. Let tξju8
j“1 be i.i.d. Cauchy distributed random variables. That

is,

P pξ1 P dxq “
1

π

1

1 ` x2
dx.

Then

xP p|ξ1| ą xq “
2

π
x

ż 8

x

1

1 ` t2
dt “

2

π

ş8

x
1

1`t2 dt

x´1
,

so by L’Hôpital,

lim
xÑ8

xP p|ξ1| ą xq “ lim
xÑ8

2

π

x2

1 ` x2
“

2

π
.

By Theorem 9.5, if Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, then there are no constants µn such that
Xn{n´ µn Ñ 0. In fact, by Exercise 7.13, we have Xn{n “d ξ1 for all n.

Example 9.8 (St. Petersburg paradox). Consider a game in which you flip a
fair coin until the first time you get a head. If it takes you j flips, then you will
receive a prize of 2j dollars. You may play this game repeatedly, as many times
as you like. How much would you be willing to pay per trial to play this game?

Let tξku8
k“1 be i.i.d. with P pξ1 “ 2jq “ 2´j for j P N, so that ξj represents

the prize you receive on the j-th time you play the game. Note that

Eξ1 “

8
ÿ

j“1

2jP pξ1 “ 2jq “ 8.

There is a general principle among some gamblers that optimizing your expected
value is always what you want to do. If you have a positive expectation, then
the game is profitable for you, and you should make the most of it. According
to this principle, we should be willing to pay any price to play this game.

But the expected value is just one of many parameters associated with a
random variable. It has no intrinsic “meaning” beyond its mathematical def-
inition. Any meaning it has for gamblers is meaning that it inherits from the
familiar form of the LLN. Hence, if the LLN doesn’t apply, then the expected
value is just another mathematical parameter.

In the example we are considering, the traditional LLN, Theorem 9.6, does
not apply. So we must use something else to understand the asymptotic behavior
of Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. As we did with the coupon collector’s problem, we will
use the weak law for triangular arrays, Theorem 9.4, to prove that

Xn

n log2 n
Ñ 1



144 CHAPTER 9. LAWS OF LARGE NUMBERS

in probability as n Ñ 8.
Let ξn,k “ ξk. Let

Kpnq “ tlog2 n` log2 log2 nu ´ log2 n.

Note that
log2 log2 n´ 1 ď Kpnq ď log2 log2 n, (9.3)

and, if we define mpnq “ log2 n`Kpnq, then mpnq P N. Define bn “ 2mpnq.
We first check that

n
ÿ

k“1

P p|ξn,k| ą bnq “

n
ÿ

k“1

P p|ξk| ą 2mpnqq “ n2´mpnq “ 2´Kpnq Ñ 0,

which verifies Theorem 9.4(i).
We next check that

Erξ2n,k1t|ξn,k|ďbnus “ Erξ2k1t|ξk|ď2mpnqus “

mpnq
ÿ

j“1

22j2´j “ 2mpnq`1 ´ 2 ď 2bn.

Thus,

b´2
n

n
ÿ

k“1

Erξ2n,k1t|ξn,k|ďbnus ď
2n

bn
“

2

2Kpnq
Ñ 0,

and this verifies Theorem 9.4(ii).
It therefore follows that 2´mpnqpXn ´ anq Ñ 0 in probability, where

an “

n
ÿ

k“1

Erξn,k1t|ξn,k|ďbnus “

n
ÿ

k“1

Erξk1t|ξk|ď2mpnqus

“ nErξ11t|ξ1|ď2mpnqus “ n

mpnq
ÿ

j“1

2j2´j “ nmpnq “ n log2 n` nKpnq.

Note that
an

n log2 n
“ 1 `

Kpnq

log2 n
Ñ 1,

by (9.3). Also note that

2mpnq

n log2 n
“ 2Kpnq´log2 log2 n P r1{2, 1s,

for all n. Hence, using Exercises 9.3 and 2.14, we have

Xn

n log2 n
“

2mpnq

n log2 n

Xn ´ an
2mpnq

`
an

n log2 n
Ñ 1

in probability as n Ñ 8.
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So for large n, we have Xn « n log2 n, meaning that after playing this game
n times, our average winnings per game will be about log2 n. For example, if we
plan to play the game 1024 times, our average winnings per game will be about
$10. In this case, we should pay less than $10 per game if it is to be profitable
for us. If the price of each game were $40, we would need to play the game 240,
or about one trillion, times before we start to break even.

Exercises

9.1. [2, Exercise 2.2.4] Let ξ1, ξ2, . . . be i.i.d. random variables with

P pξj “ p´1qkkq “
C

k2 log k
,

for k ě 2, where C “
`
ř8

k“21{pk2 log kq
˘´1

. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn.

(a) Prove that E|ξj | “ 8.

(b) Prove that there exists µ P R such that Xn{n Ñ µ in probability.

9.2. [2, Exercise 2.2.8] For j P N, let

pj “
1

2jjpj ` 1q
.

Note that
ř

jPN pj P p0, 1q. Define p0 “ 1´
ř

jPN pj . Let ξ1, ξ2, . . . be i.i.d. with
P pξ1 “ ´1q “ p0 and

P pξ1 “ 2j ´ 1q “ pj ,

for j ě 1, and let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn.

(a) Prove that ξ1 is integrable and that Eξ1 “ 0. [In other words, by some
people’s standards, this is a model of a fair game.]

(b) For n P N, let mpnq “ mintm P N : n ď 2mm3{2u. Prove that mpnq „

log2 n, i.e. prove that mpnq{ log2 n Ñ 1 as n Ñ 8.

(c) Let bn “ 2mpnq. Let an “ nErξ11t|ξ1|ďbnus. Prove that an „ ´n{plog2 nq.

(d) Prove that bn{pn{plog2 nqq Ñ 0 as n Ñ 8.

(e) Use Theorem 9.4 to prove that

Xn

n{plog2 nq
Ñ ´1

in probability as n Ñ 8. [In other words, if n is large, then after n plays,
with high probability, you will have lost n{plog2 nq units.]

9.3. Suppose Xn Ñ 0 in probability and tcnu is a bounded sequence of real
numbers. Prove that cnXn Ñ 0 in probability. [Hint: Use Theorem 7.3.]
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9.2 Strong law of large numbers

This section corresponds to [2, Section 2.4].

Lemma 9.9. If Xn Ñ X8 a.s., and Npnq Ñ 8 a.s., then XNpnq Ñ X8 a.s.

Proof. Choose Ω1 P F such that P pΩ1q “ 1 and Xnpωq Ñ X8pωq for all
ω P Ω1. Choose Ω2 P F such that P pΩ2q “ 1 and Npn, ωq Ñ 8 for all ω P Ω2.
Let Ω˚ “ Ω1 X Ω2. Then P pΩ˚q “ 1. Fix ω P Ω˚. Then XNpn,ωqpωq Ñ X8pωq,
and so it follows that XNpnq Ñ X8 a.s. l

Remark 9.10. If we only assume that Xn Ñ X8 in probability, then the
result is false. (See Exercise 9.4.) This demonstrates one (mathematical) reason
why convergence in probability may not be sufficient. Whereas the weak LLNs
provide convergence in probability, the strong LLNs provide convergence a.s.

Lemma 9.11. If y ě 0, then

2y
ÿ

tk:kąyu

1

k2
ď 4.

Proof. See [2, Lemma 2.4.4]. l

Theorem 9.12 (Strong law of large numbers). Let tξku8
k“1 be pairwise inde-

pendent and identically distributed, with E|ξ1| ă 8. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn and
µ “ Eξ1. Then Xn{n Ñ µ a.s.

Proof. First assume ξ1 ě 0 a.s. Let ζk “ ξk1t|ξk|ďku and Yn “ ζ1 ` ¨ ¨ ¨ ` ζn. Fix
α ą 1 and let kpnq “ tαnu. We begin by showing that

Ykpnq ´ EYkpnq

kpnq
Ñ 0 a.s. (9.4)

as n Ñ 8. We will use Theorem 7.9.

Fix ε ą 0. Then, by Chebyshev,

8
ÿ

n“1

P

ˆ
ˇ

ˇ

ˇ

ˇ

Ykpnq ´ EYkpnq

kpnq

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď
1

ε2

8
ÿ

n“1

varpYkpnqq

kpnq2

“
1

ε2

8
ÿ

n“1

kpnq
ÿ

m“1

varpζmq

kpnq2
“

1

ε2

8
ÿ

m“1

ÿ

tn:kpnqěmu

varpζmq

kpnq2
. (9.5)

Since tαnu ě αn{2, we have

ÿ

tn:kpnqěmu

1

kpnq2
“

ÿ

tn:kpnqěmu

tαnu
´2

ď 4
ÿ

tn:kpnqěmu

α´2n.
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Note that if kpnq ě m, then m ď tαnu ď αn, which implies α´2n ď m´2. Thus,
the above is a geometric series whose first term is bounded by above by m´2,
so that

ÿ

tn:kpnqěmu

1

kpnq2
ď

4m´2

1 ´ α´2

Substituting this into (9.5), we have

8
ÿ

n“1

P

ˆˇ

ˇ

ˇ

ˇ

Ykpnq ´ EYkpnq

kpnq

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď
4

p1 ´ α´2qε2

8
ÿ

m“1

varpζmq

m2
. (9.6)

We now turn our attention to the sum on the right.
By (6.9), we have

8
ÿ

m“1

varpζmq

m2
ď

8
ÿ

m“1

Eζ2m
m2

“

8
ÿ

m“1

1

m2

ż 8

0

2tP p|ζm| ą tq dt

ď

8
ÿ

m“1

1

m2

ż 8

0

2tP p|ξ1| ą tq1ttămu dt

“

ż 8

0

ˆ

2t
8
ÿ

m“1

1

m2
1ttămu

˙

P p|ξ1| ą tq dt.

By [2, Lemma 2.4.4], we have 2t
ř8

m“1
1

m2 1ttămu ď 4 for all t ě 0. Thus,

8
ÿ

m“1

varpζmq

m2
ď 4

ż 8

0

P p|ξ1| ą tq dt “ 4E|ξ1|.

Substituting this into (9.6), we have

8
ÿ

n“1

P

ˆ
ˇ

ˇ

ˇ

ˇ

Ykpnq ´ EYkpnq

kpnq

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď
16E|ξ1|

p1 ´ α´2qε2
ă 8.

Thus, by Borel-Cantelli,

P

ˆ
ˇ

ˇ

ˇ

ˇ

Ykpnq ´ EYkpnq

kpnq

ˇ

ˇ

ˇ

ˇ

ą ε i.o.

˙

“ 0.

Applying Theorem 7.9 proves (9.4).
Next, note that Eζm Ñ µ as m Ñ 8, by dominated convergence. Therefore,

using the fact that am Ñ L implies 1
n

řn
m“1 am Ñ L, we have

EYkpnq

kpnq
“

1

kpnq

kpnq
ÿ

m“1

Eζm Ñ µ.

Combining this with (9.4), we now have

Ykpnq

kpnq
Ñ µ a.s.
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as n Ñ 8.
Since we assumed ξ1 ě 0 a.s., we can now use monotonicity to extend this

convergence from the subsequence tYkpnqu to the entire sequence. Note that
Ym ď Ym`1 a.s., for all m. Also note that, for each m, there exists nm such
that kpnmq ď m ă kpnm ` 1q. Hence,

Ykpnmq

kpnm ` 1q
ď
Ym
m

ď
Ykpnm`1q

kpnmq
,

which implies

kpnmq

kpnm ` 1q

Ykpnmq

kpnmq
ď
Ym
m

ď
Ykpnm`1q

kpnm ` 1q

kpnm ` 1q

kpnmq
.

Since kpn` 1q{kpnq Ñ α ą 1, we can let m Ñ 8 and obtain

1

α
Eξ1 ď lim inf

mÑ8

Ym
m

ď lim sup
mÑ8

Ym
m

ď αEξ1,

for P -a.e. ω. Since α ą 1 was arbitrary, this shows that Ym{m Ñ µ a.s.
Finally, we need to remove the truncation and show that Xn{n Ñ µ a.s.

Note that

8
ÿ

k“1

P pξk ‰ ζkq ď

8
ÿ

k“1

P p|ξk| ą kq ď

8
ÿ

k“1

ż k

k´1

P p|ξ1| ą tq dt

“

ż 8

0

P p|ξ1| ą tq dt “ E|ξ1| ă 8.

By Borel-Cantelli, P pξk ‰ ζk i.o.q = 0. Thus, there exists Ω˚ P F with P pΩ˚q “

1 such that, for all ω P Ω˚, there exists Npωq such that ξkpωq “ ζkpωq whenever
k ą Npωq. Since Yn{n Ñ µ a.s., we may also assume that Ynpωq{n Ñ µ for all
ω P Ω˚.

Let ω P Ω˚ be arbitrary. Then

Xnpωq

n
“

1

n

n
ÿ

k“1

ξkpωq “
1

n

ˆ Npωq
ÿ

k“1

ξkpωq `

n
ÿ

k“Npωq`1

ζkpωq

˙

“
1

n

ˆ Npωq
ÿ

k“1

ξkpωq ` Ynpωq ´ YNpωqpωq

˙

Ñ µ

as n Ñ 8. Hence, Xn{n Ñ µ a.s. and we have proved the theorem under the
assumption that ξ1 ě 0 a.s.

We now drop the assumption of nonnegativity on ξ1. Since tξ`
k u8

k“1 satisfy
the assumptions of the theorem and are nonnegative, we have

1

n

n
ÿ

k“1

ξ`
k Ñ Eξ`

1 a.s.
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as n Ñ 8. The analogous statement for ξ´
k also holds. Thus,

Xn

n
“

1

n

n
ÿ

k“1

ξ`
k ´

1

n

n
ÿ

k“1

ξ´
k Ñ Eξ`

1 ´ Eξ´
1 “ Eξ1 a.s.

as n Ñ 8. l

Theorem 9.13. Let tξku8
k“1 be i.i.d. and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Suppose Eξ1

exists. Then Xn{n Ñ Eξ1 a.s.

Proof. Theorem 9.12 covers the case where ξ1 is integrable. We may therefore
assume Eξ1 P t´8,8u. First suppose Eξ1 “ 8, so that Eξ`

1 “ 8 and Eξ´
1 ă

8. LetM P N and define ξMk “ ξk ^M . Let XM
n “ ξM1 `¨ ¨ ¨`ξMn . By Theorem

9.12, we have XM
n {n Ñ EξM1 a.s., as n Ñ 8. Thus, there exists Ω˚ P F such

that P pΩ˚q “ 1 and, for all ω P Ω˚, we have limnÑ8 XM
n pωq{n “ EξM1 for all

M P N. Note that Xn ě XM
n . Thus, for all ω P Ω˚ and all M P N, we have

lim inf
nÑ8

Xnpωq

n
ě lim

nÑ8

XM
n pωq

n
“ EξM1 .

Let M Ñ 8. The monotone convergence theorem implies that ErpξM1 q`s Ñ

Erξ`
1 s “ 8 and ErpξM1 q´s Ñ Erξ´

1 s ă 8, as M Ñ 8. Thus, EξM1 Ñ 8 as
M Ñ 8, and it follows that Xnpωq{n Ñ 8 for all ω P Ω˚. In other words,
Xn{n Ñ Eξ1 a.s.

For the case Eξ1 “ ´8, simply apply the previous result to t´ξku8
k“1. l

Example 9.14. Imagine a janitor whose only job is to watch a single light bulb.
The moment it burns out, he replaces it. Let tξku8

k“1 be i.i.d., p0,8q-valued
random variables, so that ξk represents the lifetime of the k-th light bulb. Let
Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, so that Xn represents the time at which the janitor replaces
the n-th light bulb. Let

Nptq “ suptn : Xn ď tu,

so that Nptq represents the number of light bulbs that have burned out by time
t. Note that Nptq ă 8 a.s. This is because tNptq “ 8u Ă tξn Ñ 0u and
P pξn Ñ 0q “ 0 (check; use Theorem 7.11).

We will show that
Nptq

t
Ñ

1

Eξ1
a.s.,

as t Ñ 8, where we interpret 1{8 as 0.
To see this, first observe that from the definition of Nptq, we have

XNptq ď t ă XNptq`1,

which gives
XNptq

Nptq
ď

t

Nptq
ă
XNptq`1

Nptq ` 1
¨
Nptq ` 1

Nptq
.
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Next observe that Xnpωq ď t implies n ď Npt, ωq. Thus, n ą Npt, ωq implies
Xnpωq ą t. Hence, if there exists ω P Ω and n P N such that Npt, ωq ă n for all
t ą 0, then it would follow that Xnpωq “ 8. But this is impossible since each
ξk is a p0,8q-valued random variable. Therefore, Nptq Ñ 8 a.s., as t Ñ 8.
The result now follows from Theorem 9.13 and Lemma 9.9.

Exercises

9.4. [2, Exercise 2.4.1] Give an example of a sequence, tXnu8
n“1, of t0, 1u-valued

random variables, and a sequence tNpnqu8
n“1 of N-valued random variables, such

that Xn Ñ 0 in probability, Npnq Ò 8 a.s., and XNpnq Ñ 1 a.s.

9.5. [2, Exercise 2.4.3] Let U1, U2, . . . be i.i.d., R2-valued random variables such
that U1 is uniformly distributed on the unit disk. Let X0 “ p1, 0q P R2 a.s.,
and for n P N, let Xn “ |Xn´1|Un. Find an explicit constant c such that
n´1 log |Xn| Ñ c a.s.



Chapter 10

Central Limit Theorems

10.1 Limit theorems in R
This section corresponds to [2, Sections 3.4.1–3.4.2].

Lemma 10.1. If cn Ñ c P C, then p1 ` cn{nqn Ñ ec.

Proof. Basic analysis; see book. l

Theorem 10.2 (classical central limit theorem). Let ξ1, ξ2, . . . be i.i.d. with
Eξ1 “ µ and varpξ1q “ σ2 P p0,8q. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then

Xn ´ nµ

σn1{2
ñ Z,

where Z „ Np0, 1q.

Proof. Let ξ1
j “ ξj ´ µ and X 1

n “ ξ1
1 ` ¨ ¨ ¨ ` ξ1

n. Let

Yn “
Xn ´ nµ

σn1{2
“

X 1
n

σn1{2
.

Let φn “ φYn
and φ “ φξ1

1
. By Theorem 7.49,

φptq “ 1 ´
σ2t2

2
` rptq,

where t´2rptq Ñ 0 as t Ñ 0. Thus,

φnptq “ φ

ˆ

t

σn1{2

˙n

“

ˆ

1 ´
t2

2n
` r

ˆ

t

σn1{2

˙˙n

.

Fix t P R and let

cn “ ´
t2

2
` nr

ˆ

t

σn1{2

˙

,

151
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so that φnptq “ p1 ` cn{nqn. Note that

nr

ˆ

t

σn1{2

˙

“
σ2

t2

ˆ

t

σn1{2

˙´2

r

ˆ

t

σn1{2

˙

Ñ 0,

as n Ñ 8. Thus, by Lemma 10.1, φnptq Ñ e´t2{2, which implies Yn ñ Z. l

Example 10.3. Let ξ1, ξ2, . . . be i.i.d. with P pξ1 “ 1q “ 18{28 and P pξ1 “

´1q “ 20{28, and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then Xn represents your total winnings
after playing n games of roulette, if in each game you bet $1 on black. We are
interested in the probability that your winnings are positive after n “ 361 “ 192

plays.
First note that µ “ Eξ1 “ ´1{19 and

σ2 “ varpξ1q “ Eξ21 ´ µ2 “ 1 ´ p1{19q2 “
360

361
.

By the central limit theorem,

Xn ´ nµ

σn1{2
ñ Z,

where Z „ Np0, 1q. Thus, for any fixed x P R,

P

ˆ

Xn ´ nµ

σn1{2
ą x

˙

Ñ 1 ´ Φpxq (10.1)

as n Ñ 8. Let us take x “ 19{p6
?
10q. Then, for large n,

P

ˆ

Xn ´ nµ

σn1{2
ą

19

6
?
10

˙

« 1 ´ Φ

ˆ

19

6
?
10

˙

.

Taking n “ 361 and noting that x “ σ´1, this gives

P

ˆ

X361 ` 19

19
ą 1

˙

“ P pX361 ą 0q « 1 ´ Φ

ˆ

19

6
?
10

˙

« 0.1583196.

Thus, the probability that your winnings are positive after 361 plays is about
16%.

One thing to be careful of is the following. In the book, they begin their
analysis with

P pXn ą 0q “ P

ˆ

Xn ´ nµ

σn1{2
ą ´

nµ

σn1{2

˙

. (10.2)

However, the central limit theorem only tells us (10.1) for a fixed x. It does not
say anything about the asymptotic relationship between (10.2) and

1 ´ Φ
´

´
nµ

σn1{2

¯

.
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On the other hand, if you are in the mood to not be careful, there is another
approach. Heuristically, the central limit theorem tells us that

Xn
d
« nµ` n1{2σZ.

Thus,
P pXn ą 0q « P pnµ` n1{2σZ ą 0q “ P pZ ą ´n1{2µ{σq,

and the computations proceed as before.

Example 10.4. Let ξ1, ξ2, . . . be i.i.d. with P pξ1 “ 1q “ P pξ1 “ 0q “ 1{2, and
Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then Xn represents the number of heads in n tosses of a
fair coin.

We have µ “ Eξ1 “ 1{2 and σ2 “ varpξ1q “ Eξ2 ´ 1{4 “ 1{2 ´ 1{4 “ 1{4.
Thus, the central limit theorem gives

Xn
d
«
n

2
`

?
n

2
Z.

Taking n “ 10000, we have

X :“ X10000 « 5000 ` 5
?
50Z.

Let a P p0, 5000q. Then

P pX P r5000 ´ a, 5000 ` asq « P p5000 ` 5
?
50Z P r5000 ´ a, 5000 ` asq

“ P

ˆ

|Z| ď
a

5
?
50

˙

“ 2Φ

ˆ

a

5
?
50

˙

´ 1

Suppose we want this probability to be 95%. Then we need

Φ

ˆ

a

5
?
50

˙

“
1.95

2
“ 0.975,

which gives
a

5
?
50

“ 1.959964,

or a « 69.29519. In other words, in 10000 flips of a fair coin, the chance of
getting between 4931 and 5069 heads is about 95%.

Example 10.5. Let tXnu be as in the previous example, and let us try to

approximate P pX16 “ 8q. If we proceed as before, we have X16
d
« 8 ` 2Z, so

that
P pX16 “ 8q « P p8 ` 2Z “ 8q “ P pZ “ 0q “ 0.

Of course, this is a terrible approximation, and it results from using a continuous
random variable to approximate a discrete random variable. To deal with this
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situation, we use something called the histogram correction. Note that since
X16 P Z, we have

P pX16 “ 8q “ P pX16 P r7.5, 8.5sq.

Thus, we have

P pX16 “ 8q « P p8 ` 2Z P r7.5, 8.5sq

“ P p|Z| ď 1{4q “ 2Φp1{4q ´ 1 « 0.1974127.

The exact probability is
ˆ

16

8

˙

2´16 « 0.1963806.

More generally, if A Ă Z, then the histogram correction asks us to use the
identity

P pXn P Aq “ P

ˆ

Xn P
ď

kPA

rk ´ 1{2, k ` 1{2s

˙

.

For example, P pXn ď 11q “ P pXn ď 11.5q and P pXn ă 11q “ P pXn ď 10.5q.

In the preceding examples we approximated the exact probabilities with
probabilities from a normal distribution, and used the central limit theorem to
justify this approximation. If we need to quantify the error we make when using
such an approximation, the following theorem is helpful.

Theorem 10.6 (Berry-Esseen theorem). Let ξ1, ξ2, . . . be i.i.d. with Eξ1 “ 0,
Eξ21 “ σ2, and E|ξ1|3 “ ρ ă 8. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then

ˇ

ˇ

ˇ

ˇ

P

ˆ

Xn

σn1{2
ď x

˙

´ Φpxq

ˇ

ˇ

ˇ

ˇ

ď
3ρ

σ3n1{2
,

for all x P R.

Proof. See [2, Theorem 3.4.9]. l

The following theorem is our final example of using the classical central limit
theorem.

Theorem 10.7. For each λ ą 0, let Nλ „ Poissonpλq. Then

Nλ ´ λ

λ1{2
ñ Z,

as λ Ñ 8, where Z „ Np0, 1q.

Proof. Let ξ1, ξ2, . . . be i.i.d. with ξ1 „ Poissonp1q. Let Xn “ ξ1`¨ ¨ ¨`ξn. Then

Xn „ Poissonpnq. Since Xn
d
“ Nn, it follows from the central limit theorem that

Nn ´ n

n1{2
ñ Z. (10.3)

Now let tλnu8
n“1 Ă p0,8q satisfy λn Ñ 8 as n Ñ 8. Let tUnu and tVnu be

i.i.d. sequences such that
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(i) tXnu, tUnu, and tVnu are independent,

(ii) Un „ Poissonpλn ´ tλnuq, and

(iii) Vn „ Poissonptλnu ` 1 ´ λnq.

Then

Xtλnu ď Xtλnu ` Un ď Xtλnu ` Un ` Vn.

Also,

Xtλnu ` Un
d
“ Nλn

,

and

Xtλnu ` Un ` Vn
d
“ Xtλnu`1.

Fix x P R. Then

P

ˆ

Nλn ´ λn

λ
1{2
n

ď x

˙

“ P

ˆ

Xtλnu ` Un ´ λn

λ
1{2
n

ď x

˙

ď P

ˆ

Xtλnu ´ λn

λ
1{2
n

ď x

˙

“ P

˜

tλnu
1{2

λ
1{2
n

˜

Xtλnu ´ tλnu

tλnu
1{2

`
tλnu ´ λn

tλnu
1{2

¸

ď x

¸

“ P

˜

Xtλnu ´ tλnu

tλnu
1{2

ď
λ
1{2
n x

tλnu
1{2

´
tλnu ´ λn

tλnu
1{2

¸

.

By (10.3) and Lemma 7.23, we have

lim sup
nÑ8

P

ˆ

Nλn
´ λn

λ
1{2
n

ď x

˙

ď P pZ ď xq.

Conversely,

P

ˆ

Nλn
´ λn

λ
1{2
n

ď x

˙

“ P

ˆ

Xtλnu ` Un ´ λn

λ
1{2
n

ď x

˙

ě P

ˆ

Xtλnu ` Un ` Vn ´ λn

λ
1{2
n

ď x

˙

“ P

ˆ

Xtλnu`1 ´ λn

λ
1{2
n

ď x

˙

,

and a similar argument gives

lim inf
nÑ8

P

ˆ

Nλn ´ λn

λ
1{2
n

ď x

˙

ě P pZ ď xq,

which finishes the proof. l
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The following generalization of the classical central limit theorem is much
more versatile and allows us to analyze sequences whose rate of convergence
differs from

?
n.

Theorem 10.8 (Lindeberg-Feller theorem). For n P N, let ξn,1, ξn,2 . . . , ξn,n be
independent with Eξn,m “ 0, and let Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n. Suppose

(i)
řn

m“1Eξ
2
n,m Ñ σ2 ą 0, and

(ii) for all ε ą 0, we have
řn

m“1Erξ2n,m1t|ξn,m|ąεus Ñ 0.

Then Xn ñ σZ.

Proof. Uses characteristic functions. See the book for details. l

Example 10.9. Let ξ1, ξ2, . . . be i.i.d. with ξ1
d
“ ´ξ1 and P p|ξ1| ą xq “ x´2

for all x ě 1. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Notice that

E|ξ1| “

ż 8

0

P p|ξ1| ą xq dx “ 1 `

ż 8

1

1

x2
dx ă 8,

and Eξ1 “ 0. However,

E|ξ1|2 “

ż 8

0

2xP p|ξ1| ą xq dx “

ż 1

0

2x dx`

ż 8

1

2

x
dx “ 8.

Thus, the classical central limit theorem does not apply. We will use the
Lindeberg-Feller theorem to show that

Xn
?
n log n

ñ Z, (10.4)

as n Ñ 8, where Z „ Np0, 1q.
Let ζn,m “ ξm1t|ξm|ďcnu, where cn “ n1{2 log log n, and Yn “ ζn,1`¨ ¨ ¨`ζn,n.

Define

ξn,m “
ζn,m

?
n log n

.

To verify Theorem 10.8(i), observe that

Eζ2n,m “

ż 8

0

2xP p|ζn,m| ą xq dx

“

ż cn

0

2xP p|ζn,m| ą xq dx

ď

ż cn

0

2xP p|ξm| ą xq dx

“

ż 1

0

2x dx`

ż cn

1

2

x
dx

“ 1 ` 2 log cn

“ 1 ` log n` 2 log log log n.
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On the other hand,

Eζ2n,m ě

ż

?
n

1

2xP p|ζn,m| ą xq dx

“

ż

?
n

1

2xpP p|ξm| ą xq ´ P p|ξm| ą cnqq dx.

For x ď
?
n, we have

P p|ξm| ą cnq “
x2

c2n
P p|ξm| ą xq ď

1

plog log nq2
P p|ξm| ą xq.

Thus,

Eζ2n,m ě

ˆ

1 ´
1

plog log nq2

˙
ż

?
n

1

2xP p|ξm| ą xq dx “

ˆ

1 ´
1

plog log nq2

˙

log n.

It follows that

1 ´
1

plog log nq2
ď

n
ÿ

m“1

Eξ2n,m ď
1

log n
` 1 `

2 log log log n

log n
,

and Theorem 10.8(i) follows immediately with σ “ 1.
Now fix ε ą 0. Since |ζn,m| ď cn a.s. and cn{

?
n log n Ñ 0, we may choose

N P N such that for all n ě N , we have |ξn,m| ď ε a.s. For any such n, we have
ξ2n,m1t|ξn,m|ąεu “ 0 a.s., which verifies Theorem 10.8(ii).

By Theorem 10.8,

Y n :“
Yn

?
n log n

“ ξn,1 ` ¨ ¨ ¨ ` ξn,n ñ Z,

where Z „ Np0, 1q. Fix x P R. Then

P

ˆ

Xn
?
n log n

ď x

˙

ď P pXn ‰ Ynq ` P

ˆ

Yn
?
n log n

ď x.

˙

Since

P pXn ‰ Ynq ď

n
ÿ

m“1

P p|ξm| ą cnq “
2n

c2n
“

2

plog lognq2
Ñ 0,

it follows that

lim sup
nÑ8

P

ˆ

Xn
?
n log n

ď x

˙

ď Φpxq.

Similarly,

P

ˆ

Xn
?
n log n

ď x

˙

ě P

ˆ

Yn
?
n log n

ď x

˙

´ P pXn ‰ Ynq,

and so

lim inf
nÑ8

P

ˆ

Xn
?
n log n

ď x

˙

ě Φpxq.

Putting them together proves (10.4).
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Exercises

10.1. [2, Exercise 3.4.4] Let ξ1, ξ2, . . . be i.i.d., r0,8q-valued random variables
with Eξ1 “ 1 and varpξ1q “ σ2 P p0,8q. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Prove that
2p

?
Xn ´

?
nq ñ σZ, where Z „ Np0, 1q.

10.2. [2, Exercise 3.4.13(ii)] Let β P p0, 1q. Let ξ1, ξ2, . . . be independent with

P pξk “ ´kq “
1

2
k´β ,

P pξk “ 0q “ 1 ´ k´β ,

P pξk “ kq “
1

2
k´β .

Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Find an explicit constant c (in terms of β) such that

Xn

np3´βq{2
ñ cZ,

where Z „ Np0, 1q.

10.2 Poisson convergence

This section corresponds to [2, Section 3.6].

10.2.1 Convergence to a Poisson distribution

The following is the basic Poisson limit theorem, which includes a bound on the
rate of convergence.

Theorem 10.10. For each n P N, let ξn,1 . . . , ξn,n be independent t0, 1u-valued
random variables with P pξn,m “ 1q “ pn,m. Let λn “

řn
m“1 pn,m. Define

Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n and let Nn „ Poissonpλnq. Then

sup
AĂNYt0u

|P pXn P Aq ´ P pNn P Aq| ď

n
ÿ

m“1

p2n,m.

Suppose that

(i) λn Ñ λ P p0,8q and

(ii) max1ďmďn pn,m Ñ 0.

Then Xn ñ N , where N „ Poissonpλq.

Proof. In the textbook, see the second proof of [2, Theorem 3.6.1], which be-
gins on p. 150. The proof uses [2, Lemmas 3.6.2-3.6.4] and involves only basic
calculations with discrete measures. l
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The following is a slight generalization, but without the rate of convergence.

Theorem 10.11. For each n P N, let ξn,1 . . . , ξn,n be independent, nonnegative
integer valued random variables with P pξn,m “ 1q “ pn,m and P pξn,m ě 2q “

εn,m. Suppose that

(i)
řn

m“1 pn,m Ñ λ P p0,8q,

(ii) max1ďmďn pn,m Ñ 0, and

(iii)
řn

m“1 εn,m Ñ 0.

Let Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n. Then Xn ñ N , where N „ Poissonpλq.

Proof. Let ξ1
n,m “ 1tξn,m“1u and X 1

n “ ξ1
n,1 ` ¨ ¨ ¨ ` ξ1

n,n. By Theorem 10.10, we
have X 1

n ñ N . Fix ε ą 0. Then

P p|Xn ´X 1
n| ą εq ď P pXn ‰ X 1

nq ď

n
ÿ

m“1

P p|ξn,m| ě 2q Ñ 0,

by (iii). Thus, Xn ´ X 1
n Ñ 0 in probability, and it follows from Exercise 7.10

that Xn “ X 1
n ` pXn ´X 1

nq ñ N . l

Example 10.12. Let n “ 400. For 1 ď m ď 400, let ξn,1, . . . , ξn,n be in-
dependent with P pξn,m “ 1q “ 1{365 and P pξn,m “ 0q “ 364{365. Then
Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n represents the number of students in a class of 400
that have their birthday on the day of the final. By Theorem 10.10, we have
Xn «d N , where N „ Poissonp400{365q. Thus, the probability that no one has
their birthday on the day of the final is

P pXn “ 0q « P pN “ 0q “ e´400{365 « 0.3342419.

In general, when there are many chances for something rare to happen, the
number of occurrences is approximately Poisson distributed.

Theorem 10.10 also gives us a bound on the error:

|P pXn “ 0q ´ P pN “ 0q| ď

400
ÿ

m“1

1

3652
“

400

3652
« 0.003002439.

Example 10.13. Let ζn,1, . . . , ζn,n be independent Up´n{2, n{2q. That is, we
place n points randomly on the interval of length n centered at the origin. Fix
a ă b and let ξn,m “ 1tζn,mPpa,bqu. Then Xn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n represents the
number of points which land in pa, bq.

Then, in Theorem 10.10, we have pn,m “ pb ´ aq{n and λn “ b ´ a. Thus,
Xn «d N , where N „ Poissonpb´ aq.

Example 10.14 (occupancy problem). Let Y1, . . . , Yr be independent and uni-
form on t1, . . . , nu. We are modeling here the random placement of r balls into
n boxes. For 1 ď i ď n, let ζi “

řr
ℓ“1 1tYℓ“iu, which represents the number of

balls in the ith box.
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Let ξn,r,i “ 1tζi“0u, so that Xn,r “ ξn,r,1 ` ¨ ¨ ¨ `ξn,r,n represents the number

of empty boxes. We will show in Proposition 10.20 that if ne´rpnq{n Ñ λ P

p0,8q, then Xn,rpnq ñ N , where N „ Poissonpλq.

Lemma 10.15. Let pmpr, nq “ P pXn,r “ mq. Then

p0pr, nq “

n
ÿ

k“0

p´1qk
ˆ

n

k

˙ ˆ

1 ´
k

n

˙r

.

Proof. Note that

P pζi1 “ 0, ζi2 “ 0, . . . , ζik “ 0q “

ˆ

1 ´
k

n

˙r

.

Then, using inclusion-exclusion,

p0pr, nq “ 1 ´ P pXn,r ą 0q

“ 1 ´ P

ˆ n
ď

k“1

tζk “ 0u

˙

“ 1 ´ n

ˆ

1 ´
1

n

˙r

`

ˆ

n

2

˙ ˆ

1 ´
2

n

˙r

´ ¨ ¨ ¨ ` p´1qn
ˆ

n

n

˙

´

1 ´
n

n

¯r

“

n
ÿ

k“0

p´1qk
ˆ

n

k

˙ ˆ

1 ´
k

n

˙r

,

and we are done. l

Lemma 10.16. We also have

pmpr, nq “

ˆ

n

m

˙

´

1 ´
m

n

¯r

p0pr, n´mq.

Proof. Let

A “ tζ1 ą 0, ζ2 ą 0, . . . , ζn´m ą 0u,

B “ tζn´m`1 “ 0, ζn´m`2 “ 0, . . . , ζn “ 0u.

Conditioned on B, the random variables Y1, . . . , Yr are independent and uniform
on t1, . . . , n´mu. Thus, P pA | Bq “ p0pr, n´mq and it follows that

P pAXBq “ P pBqP pA | Bq “

´

1 ´
m

n

¯r

p0pr, n´mq.

Therefore,

pmpr, nq “

ˆ

n

m

˙

´

1 ´
m

n

¯r

p0pr, n´mq,

and we are done. l
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Now suppose trpnqu8
n“1 is a sequence satisfying ne´rpnq{n Ñ λ P p0,8q. For

notational simplicity, we will suppress the dependence of rpnq on n and simply
write r.

Lemma 10.17. There exists C ą 0 such that
ˆ

n

m

˙

´

1 ´
m

n

¯r

ď
Cm

m!

for all m and n. Moreover,

lim sup
nÑ8

ˆ

n

m

˙

´

1 ´
m

n

¯r

ď
λm

m!
.

Proof. Choose C ą 0 such that ne´r{n ď C for all n. Using 1 ´ x ď e´x and
n!{pn´mq! ď nm, we have

ˆ

n

m

˙

´

1 ´
m

n

¯r

ď
nm

m!
e´mr{n ď

Cm

m!
.

Moreover,

lim sup
nÑ8

ˆ

n

m

˙

´

1 ´
m

n

¯r

ď lim
nÑ8

nm

m!
e´mr{n “

λm

m!
,

and we are done. l

Lemma 10.18. For each fixed m,

lim
nÑ8

ˆ

n

m

˙

´

1 ´
m

n

¯r

“
λm

m!
.

Proof. First note that n!{pn´mq! ě pn´mqm. Also, for t P r0, 1{2s,

logp1 ´ tq “ ´

8
ÿ

j“1

tj

j
ě ´t´

1

2

8
ÿ

j“2

tj “ ´t´
t2

2

8
ÿ

j“0

tj

ě ´t´
t2

2

8
ÿ

j“0

ˆ

1

2

˙j

“ ´t´ t2.

It follows that
ˆ

n

m

˙

´

1 ´
m

n

¯r

ě
pn´mqm

m!

´

1 ´
m

n

¯r

“
1

m!

´

1 ´
m

n

¯m

nm
´

1 ´
m

n

¯r

, (10.5)

and

log
´

nm
´

1 ´
m

n

¯r¯

“ m log n` r log
´

1 ´
m

n

¯

ě m log n´
rm

n
´
rm2

n2

“ m
´

log n´
r

n

¯

`
m2

n

´

log n´
r

n

¯

´
m2 log n

n
.
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Note that log n´ r{n “ logpne´r{nq Ñ log λ. Thus,

lim inf
nÑ8

log
´

nm
´

1 ´
m

n

¯r¯

ě m log λ,

which implies

lim inf
nÑ8

´

nm
´

1 ´
m

n

¯r¯

ě λm.

Applying this to (10.5) gives

lim inf
nÑ8

ˆ

n

m

˙

´

1 ´
m

n

¯r

ě
λm

m!
.

Combining this with Lemma 10.17 finishes the proof. l

Lemma 10.19. For each fixed m, we have p0pr, n´mq Ñ e´λ.

Proof. First assume m “ 0. By Lemma 10.15, we can write

p0pr, nq “

8
ÿ

k“0

fnpkq,

where

fnpkq “ p´1qk
ˆ

n

k

˙ ˆ

1 ´
k

n

˙r

1r0,nspkq.

By Lemma 10.18, for each fixed k, we have fnpkq Ñ p´1qkλk{k! as n Ñ 8.
By Lemma 10.17 and the fact that

ř8

k“0 C
k{k! ă 8, we may apply dominated

convergence to conclude that

lim
nÑ8

p0pr, nq “

8
ÿ

k“0

p´1qk
λk

k!
“ e´λ,

proving the case m “ 0.
Now supposem is arbitrary. In the previous case, we proved that ne´r{n Ñ λ

implies p0pr, nq Ñ e´λ. Thus, it will suffice to prove that pn´mqe´r{pn´mq Ñ λ.
First, note that

´
r

n2
“

1

n

´

log n´
r

n

¯

´
log n

n
Ñ 0,

since log n´ r{n Ñ log λ. Therefore,

pn´mqe´r{pn´mq “

´

1 ´
m

n

¯

pne´r{nq exp

ˆ

´
rm

npn´mq

˙

Ñ λ,

and we are done. l

Proposition 10.20. For each fixed m, we have P pXn,rpnq “ mq Ñ e´λλm{m!
as n Ñ 8. That is, Xn,rpnq ñ N , where N „ Poissonpλq.
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Proof. By Lemmas 10.16, 10.18, and 10.19,

P pXn,r “ mq “ pmpr, nq “

ˆ

n

m

˙

´

1 ´
m

n

¯r

p0pr, n´mq Ñ
λm

m!
e´λ.

Thus, for any x ą 0,

P pXn,r ď xq “

txu
ÿ

m“0

P pXn,r “ mq Ñ

txu
ÿ

m“0

λm

m!
e´λ “ P pN ď xq,

and we are done. l

Example 10.21 (coupon collector’s problem). Let tYm : m P Nu be i.i.d. and
uniform on t1, . . . , nu and Tn “ inftm : |tY1, . . . , Ymu| “ nu. Recall from Ex-
ample 9.3 that Tn{pn log nq Ñ 1 in probability. In this example, we will show
that

Tn ´ n log n

n
ñ X,

where P pX ď xq “ expp´e´xq for all x P R.
With the notation of Example 10.14, we have tTn ď ru “ tXn,r “ 0u. Fix

x P R. Then

P

ˆ

Tn ´ n log n

n
ď x

˙

“ P pTn ď rpnqq “ P pXn,rpnq “ 0q,

where rpnq “ tn log n` nxu. Note that

logpne´rpnq{nq “ log n´
tn log n` nxu

n

“ ´x`
n log n` nx´ tn log n` nxu

n
Ñ ´x,

as n Ñ 8. Thus, ne´rpnq{n Ñ λ :“ e´x, so by Proposition 10.20, we have

P

ˆ

Tn ´ n log n

n
ď x

˙

Ñ e´λ “ expp´e´xq,

which is what we wanted to show.

10.2.2 The Poisson process

Let N “ tNptq : t ě 0u be a nonnegative integer valued stochastic process with
Np0q “ 0 a.s. Suppose that N is increasing, that is, for P -a.e. ω P Ω, the
function t ÞÑ Npt, ωq is increasing. As an application, Nptq could represent the
number of occurrences of a certain type of event during the time interval p0, ts.
In this case, Nptq ´Npsq is the number occurrences in ps, ts.

Theorem 10.22. Let λ ą 0. Suppose that
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(i) for all 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn, the random variables tNptkq ´Nptk´1qunk“1

are independent,

(ii) Npt1q ´Nps1q “d Npt2q ´Nps2q whenever t1 ´ s1 “ t2 ´ s2,

(iii) P pNphq “ 1q “ λh` ophq, and

(iv) P pNphq ě 2q “ ophq.

Then Nptq „ Poissonpλtq for all t ą 0.

Proof. Fix t ą 0. For n P N and m P t1, . . . , nu, define

ξm,n “ N

ˆ

pm´ 1qt

n

˙

´N

ˆ

mt

n

˙

.

Then Xn :“ ξn,1 ` ¨ ¨ ¨ ` ξn,n “ Nptq for all n.
Note that

pn,m :“ P pξn,m “ 1q “ P pNpt{nq “ 1q “ λt{n` r1pt{nq,

where r1phq{h Ñ 0 as h Ñ 0. Thus,

n
ÿ

m“1

pn,m “ λt` nr1pt{nq Ñ λt

as n Ñ 8, and
max

1ďmďn
pn,m “ pn,1 Ñ 0

as n Ñ 8. Similarly,

εn,m “ P pξn,m ě 2q “ P pNpt{nq ě 2q “ r2pt{nq,

where r2phq{h Ñ 0. Thus,

n
ÿ

m“1

εn,m “ nr2pt{nq Ñ 0

as n Ñ 8. Therefore, by Theorem 10.11, we have Xn ñ N , where N „

Poissonpλtq. But Xn “ Nptq for all n. So Nptq „ Poissonpλtq. l

If N satisfies the hypotheses of Theorem 10.22 and t ÞÑ Npt, ωq is right-
continuous for P -a.e. ω P Ω, then N is a Poisson process with rate λ.

A constructive characterization of the Poisson process is given by the follow-
ing theorem.

Theorem 10.23. Let λ ą 0. Let ξ1, ξ2, . . . be i.i.d. with ξ1 „ Exppλq. Let
T0 “ 0 and, for n P N, let Tn “ ξ1 ` ¨ ¨ ¨ ` ξn. For t ě 0, define

Nptq “ suptn : Tn ď tu.

Then N “ tNptq : t ě 0u is a Poisson process with rate λ.
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Proof. See [2, Section 3.6.3]. l

In the preceding theorem, the ξj ’s are often called the interarrival times, Tn
is the time of the nth arrival, and Nptq is the number of arrivals by time t.

Lemma 10.24. Let λ ą 0 and N „ Poissonpλq. Let ζ1, ζ2, . . . be i.i.d.,
t0, 1, . . . , ku-valued random variables, with N, ζ1, ζ2, . . . independent. For 0 ď

j ď k, let

Nj “ |tm ď N : ζm “ ju| “

N
ÿ

m“1

1tζm“ju,

so that N0 ` N1 ` ¨ ¨ ¨ ` Nk “ N . Then N0, N1, . . . , Nk are independent and
Nj „ Poissonpλpjq, where pj “ P pζ1 “ jq.

Proof. Exercise 10.3. l

Example 10.25 (compound Poisson process). Let λ ą 0 and let N be a Poisson
process with rate λ. Let ζ “ tζju8

j“1 be an i.i.d. sequence of random variables.
Assume N and ζ are independent. Let

Xptq “

Nptq
ÿ

m“1

ζm.

Then X “ tXptq : t ě 0u is called a compound Poisson process.
Suppose ζ1 P t0, 1, . . . , ku a.s. and pj “ P pζ1 “ jq. For 0 ď j ď k, define

N jptq “

Nptq
ÿ

m“1

1tζm“ju.

Then N0, N1, . . . , Nk are independent Poisson processes and

Xptq “

k
ÿ

j“1

jN jptq,

for all t ě 0 (check, use Lemma 10.24).

Example 10.26 (a Poisson process on a measure space). Let pS,Sq be a mea-
surable space. Recall thatMpSq is the set of all σ-finite measures on pS,Sq, and
that MpSq is the smallest σ-algebra on MpSq such that ν ÞÑ νpAq is measur-
able for all A P S. Also recall that a random measure on S is an MpSq-valued
random variable.

Let α P MpSq. A Poisson process on S with mean measure α is a
random measure µ such that, for all disjoint A1, . . . , An P S with αpAjq ă 8,
we have that

µpA1q, . . . , µpAnq

are independent with µpAjq „ PoissonpαpAjqq.
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Suppose αpSq ă 8. Let N „ PoissonpαpSqq. Let ζ1, ζ2, . . . be i.i.d. S-valued
random variables with ζ1 „ α{αpSq. Suppose N, ζ1, ζ2, . . . are independent.
Define

µ “

N
ÿ

m“1

δζm .

Then µ is a Poisson process on S with mean measure α (check, use Lemma
10.24).

Suppose αpSq “ 8. Let tSiu
8
i“1 be a disjoint sequence in S with

Ť8

i“1 Si “ S
and αpSiq ă 8. Let Si “ tA P S : A Ă Siu and αi “ α|Si

. Let µ1, µ2, . . . be
independent, where µi is a Poisson process on Si with mean measure αi. For
A P S and ω P Ω, define

µpA,ωq “

8
ÿ

i“1

µipAX Si, ωq.

Then µ is a Poisson process on S with mean measure α (check).
Finally, let λ ą 0 and let N` and N´ be independent Poisson processes

with rate λ. Let rN´ptq “ N´pt´q. For t P R, define

Nptq “ N`ptq1p0,8qptq ´ rN´p´tq1p´8,0qptq.

The process N “ tNptq : t P Ru is sometimes called a two-sided Poisson process.
Fix ω P Ω. Note that t ÞÑ Npt, ωq is an increasing, right-continuous function
from R to R. Let µpωq be the Lebesgue-Stieltjes measure on R associated with
Np¨, ωq. That is, µppa, bsq “ Npbq ´ Npaq. Then µ is a Poisson process on R
with mean measure λm, where m is Lebesgue measure (check).

Exercises

10.3. [2, Exercise 3.6.12] Prove Lemma 10.24.

10.4. [2, Exercise 3.6.3] Let tYm : m P Nu be i.i.d. and uniform on t1, . . . , nu.
For k ď n, let

τnk “ inftm : |tY1, . . . , Ymu| “ ku.

Recall that τn1 “ 1 and, for 2 ď k ď n, the random variables

τnk ´ τnk´1 „ Geomppkq

are independent. Here, pk “ 1 ´ pk ´ 1q{n. Suppose kpnq{n1{2 Ñ λ P p0,8q.
Prove that τnkpnq

´ kpnq ñ N , where N „ Poissonpλ2{2q.

10.5. [2, Exercise 3.6.5] Let T be a p0,8q-valued random variable. Suppose
that

P pT ą t` s | T ą tq “ P pT ą sq,

for all s, t ą 0. Prove that there exists λ ą 0 such that T „ Exppλq.



10.3. LIMIT THEOREMS IN RD 167

10.3 Limit theorems in Rd

This section corresponds to [2, Section 3.9].
Let X “ pX1, . . . , XdqT be a random vector. In this section, we shall be

careful about indicating whether or vectors are row vectors or column vectors,
since we will be making use of matrix multiplication. In general, all vectors will
be column vectors unless stated otherwise. The distribution function of X
is the function FX : Rd Ñ R given by

FXpxq “ P pX ď xq “ P pX1 ď x1, . . . , Xd ď xdq.

It is a consequence of [2, Theorem 3.9.1] that Xn ñ X if and only if FXn
pxq Ñ

FXpxq whenever FX is continuous at x.
A sequence, tµnu, of Borel probability measures on Rd is tight if, for any

ε ą 0, there exists an M ą 0 such that

lim inf
nÑ8

µnpr´M,M sdq ě 1 ´ ε.

A sequence, tXnu, of random vectors is tight if their corresponding distributions
are tight. Theorem 7.27 is still valid in Rd, so that tXnu is tight if an only if
every subsequence has a further subsequence that converges in distribution. (See
[2, Theorem 3.9.2] for the proof.)

The characteristic function (ch.f.) of a random (row) vector X in Rd

is the function φX : Rd Ñ C given by φXptq “ Ereixt,Xys, where x¨, ¨y is the
Euclidean inner product on Rd, or dot product. Theorem 7.44 is still valid in
Rd, so that convergence in distribution is equivalent to pointwise convergence
of characteristic functions. (See [2, Theorem 3.9.4] for the proof.)

Theorem 10.27 (Cramér-Wold device). If xθ,Xny ñ xθ,X8y for all fixed
θ P Rd, then Xn ñ X8.

Proof. Let φn “ φXn
. Fix t P Rd. Since xt,Xny ñ xt,X8y and x ÞÑ eix is

bounded and continuous, it follows that Ereixt,Xnys Ñ Ereixt,X8ys. That is,
φnptq Ñ φ8ptq. l

Given (row) vectors x, y P Rd, note that xT y “ xx, yy and xyT is the d ˆ d
matrix whose ijth entry is xiyj . The mean of a random (row) vector X in Rd

is ErXs “ µ, where µj “ EXj . The covariance of X is

Γ “ ΓX “ ErpX ´ µqpX ´ µqT s “ pΓijq,

where Γij “ covpXi, Xjq. The matrix Γ is symmetric. It is also nonnegative
definite, that is, xx,Γxy ě 0 for all x P Rd. To see this, note that

xx,Γxy “ xTΓx “ xTErpX ´ µqpX ´ µqT sx “ ErxT pX ´ µqpX ´ µqTxs

“ Er
@

pX ´ µqTx, pX ´ µqTx
D

s “ Er}pX ´ µqTx}2s ě 0,

and this shows that Γ is nonnegative definite.
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A random vector X is said to have a multivariate (or joint) normal (or
Gaussian) distribution if there exists µ P Rd and Γ P Rdˆd such that

φXptq “ exp

ˆ

i xt, µy ´
1

2
xt,Γty .

˙

In this case, it necessarily follows that µ and Γ are the mean and covariance of
X, respectively, and we write X „ Npµ,Γq. In other words, the distribution of
a jointly normal random variable is determined by its mean and covariance.

Let us adopt the convention that the real-valued random variable which is
identically zero has a normal distribution, so that in d “ 1, the multivariate
normal distribution and the (previously defined) normal distribution are the
same. In general, ifX „ Npµ,Γq and Γ is invertible, then we say the distribution
of X is nondegenerate, and otherwise it is degenerate.

Theorem 10.28. The random vector X is jointly Gaussian if and only if every
linear combination of X1, . . . , Xd is Gaussian.

Proof. Exercise 10.6. l

Let Z1, . . . , Zd be i.i.d. standard normals, and let Z “ pZ1, . . . , Zdq. By
Theorems 6.24 and 10.28, it follows that Z is jointly normal. Since E “ 0 and
ΓZ “ I, we have Z „ Np0, Iq. This distribution is called the standard normal
distribution in Rd.

Let µ P Rd and let Γ P Rdˆd be symmetric and nonnegative definite. Then
there exists an orthogonal matrix U (that is, UTU “ I) and a diagonal matrix
V with Vij ě 0 for all i, j such that Γ “ UTV U . Choose diagonal W such that
W 2 “ V and let A “ WU . Then ATA “ Γ.

Suppose Z „ Np0, Iq, and let X “ µ ` ATZ. For any θ P Rd, the random
variable θTX “ θTµ` pAθqTZ is normal, since pAθqTZ is a linear combination
of Z1, . . . , Zd. Thus, X is jointly normal. Moreover, EX “ µ and the covariance
of X is

ΓX “ ErpX ´ µqpX ´ µqT s “ ErATZZTAs “ ATA “ Γ.

Thus, X „ Npµ,Γq.
The preceding idea is used to prove the following.

Theorem 10.29. Let X „ Npµ,Γq. Then X has a density if and only if its
distribution is nondegenerate, and in this case, its density is

fXpxq “
1

p2πqd{2pdet Γq1{2
exp

ˆ

´
1

2

@

x´ µ,Γ´1px´ µq
D

.

˙

Proof. See [6, Corollary 16.2]. l

Theorem 10.30 (central limit theorem in Rd). Let ξ1, ξ2, . . . be i.i.d. random
vectors in Rd with mean µ and covariance Γ. Let Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then

n´1{2pXn ´ nµq ñ ZΓ,

where Z „ Np0,Γq.
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Proof. Let Yn “ n´1{2pXn ´ nµq and θ P Rd. By the central limit theorem,
θTYn ñ Zθ „ Np0, σ2

θq, where

σ2
θ “ varpθT ξ1q “ ErθT pξ1 ´ µqpξ1 ´ µqT θs “ θTΓθ.

Note that θTZΓ is normal with mean zero and variance

ErθTZΓZ
T
Γ θs “ θTΓθ “ σ2

θ .

Thus, θTYn ñ θTZΓ. It follows that Yn ñ ZΓ. l

Exercises

10.6. [2, Exercise 3.9.8] Prove Theorem 10.28.

10.7. [2, Exercise 3.9.4] For n P N Y t8u, let Xn “ pXnp1q, . . . , Xnpdqq be a
random vector in Rd. Assume that Xn ñ X8. Prove that Xnpjq ñ X8pjq as
n Ñ 8 for all j.

10.8. [2, Exercise 3.9.7] Let pX1, . . . , Xdq have a multivariate Gaussian distribu-
tion. Prove thatX1, . . . , Xd are independent if and only if they are uncorrelated.
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Chapter 11

Further Properties of
Random Walks

11.1 Stopping times

This section corresponds to [2, Section 4.1].
Let us recall some of the definitions from 6.4. Let pΩ,F , P q be a probability

space, pS,Sq a measurable space, and for each n P N, let Xn : Ω Ñ S be
pF ,Sq-measurable. In other words, X “ tXnu is an indexed collection of S-
valued random variables defined on a common probability space. That is, X is
a stochastic process. Since X is indexed by N, it is a discrete-time stochastic
process.

A filtration is a sequence tFnu of σ-algebras such that Fn Ă Fn`1 Ă F for
all n. We say that X is adapted to the filtration if Xn P Fn for all n. The
filtration generated by X is tFX

n u, where FX
n “ σpX1, . . . , Xnq. The process X

is adapted to tFX
n u. Moreover, if X is adapted to tFnu, then FX

n Ă Fn for all
n.

A random time, N , is an N Y t8u-valued random variable. If X “ tXn :
n P N Y t8uu is a stochastic process indexed by N Y t8u and N is a random
time, then XN is a well-defined random variable given by pXN qpωq “ XNpωqpωq.
On the other hand, if X “ tXn : n ě 1u is indexed by N, then the most we can
say is that

XN : tN ă 8u Ñ S

is pF |tNă8u,Sq-measurable. If N ă 8 a.s., then after modification on a null
set, XN is again a well-defined random variable.

In the case that X is indexed by N and P pN “ 8q ą 0, the notation σpXN q

technically refers to a σ-algebra on tN ă 8u. But we will abuse notation and,
in this case, define

σpXN q “ ttXN P Bu : B P Su Y ttXN P Bu Y tN “ 8u : B P Su.

The reader should verify that, in this case, σpXN q is a sub-σ-algebra of F .

171
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If X is indexed by N and N represents the time at which something happens
with the process X, then the event tN “ 8u typically indicates that the event
never occurs.

A stopping time with respect to the filtration tFnu is a random time
such that tN “ nu P Fn for all n. Note that constant random variables are
stopping time. A stopping time for a stochastic process X is a stopping
time with respect to FX

n . If N is a stopping time for X and X is adapted to
tFnu, then N is a stopping time with respect to tFnu.

The hitting time of A P S is N “ inftn P N : Xn P Au. Since

tN “ nu “

ˆ n“1
č

j“1

tXj R Au

˙

X tXn P Au P FX
n ,

it follows that N is a stopping time for X.
Intuitively, the defining condition of a stopping time, tN “ nu P Fn, means

that the occurrence or nonoccurrence of the event tN “ nu can be determined
from the information at time n. That is, you can always tell whether or not the
random time N has occurred (giving you the option to act in that moment or
to stop some ongoing procedure).

Proposition 11.1. Let S and T be stopping times with respect to a filtration
tFnu, and let n P N. Then S ^ T , S _ T , S ^ n, and S _ n are stopping times.

Proof. Exercise 11.4. l

Given a stopping time N with respect to a filtration tFnu, we define

FN “ tA P F : AX tN “ nu P Fn for all nu.

The set FN is a σ-algebra (check). The σ-algebra FN is interpreted as the
information known at time N .

Proposition 11.2. If M and N are stopping times with Mpωq ď Npωq for all
ω P Ω, then FM Ă FN .

Proof. Exercise 11.7. l

Proposition 11.3. Let M and N be stopping times with Mpωq ď Npωq for all
ω P Ω. If A P FM and T “ M1A `N1Ac , then T is a stopping time.

Proof. Exercise 11.8. l

In the remainder of this section, we assume pS,Sq is a standard Borel space,
let ξ1, ξ2, . . . be i.i.d. S-valued random variables, and consider the process ξ “

tξju.
We will frequently consider the special case of a random walk X on Rd,

which is the case where S “ Rd, S “ Rd, X0 “ 0, Xn “ ξ1 ` . . . ` ξn, and
X “ tXnu.
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If S “ Rd and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, then tXnu is a random walk. Note that
in this case FX

n “ Fξ
n.

We also assume that the sequence tξju has been constructed in the canonical
way, using Kolmogorov’s extension theorem. That is, if ξ1 „ µ, then

Ω “ SN “

8
ź

j“1

S, F “

8
â

j“1

S, P “

8
ź

j“1

µ,

and ξjpωq “ ωj is the projection onto the jth component.

A finite permutation of N is a surjection π : N Ñ N such that πpjq ‰ j
for only finitely many j. A finite permutation is necessarily bijective. A finite
permutation π induces a map πΩ : Ω Ñ Ω, where pπΩωqj “ ωπpjq. Note that
ξj ˝ πΩ “ ξπpjq.

An event A P F is permutable if π´1
Ω A “ A for all finite permutations π.

Let

E “ tA P F : A is permutableu.

Then E is a σ-algebra (check), which is called the exchangeable σ-algebra.

Lemma 11.4. Let X be a random walk on R. Then

(i) tXn P B i.o.u P E,

(ii)

"

lim sup
nÑ8

Xn

cn
ě 1

*

P E, and

(iii) T Ă E, where T “

8
č

n“1

σpξn, ξn`1, . . .q.

Proof. Exercise 11.1. l

Theorem 11.5 (Hewitt-Savage 0-1 law). If A P E, then P pAq P t0, 1u.

Proof. See [2, Theorem 4.1.1]. The idea of the proof is to show that A is
independent of itself, so that P pAq “ P pAXAq “ P pAq2. l

Theorem 11.6. Let X be a random walk on R. Then exactly one of the fol-
lowing is true.

(i) Xn “ 0 a.s. for all n.

(ii) Xn Ñ 8 a.s.

(iii) Xn Ñ ´8 a.s.

(iv) lim inf
nÑ8

Xn “ ´8 a.s. and lim sup
nÑ8

Xn “ 8 a.s.
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Proof. Let X “ lim supnÑ8 Xn. Then tX ď xu P E for all x P R. By the 0-1
law, P pX ď xq P t0, 1u for all x P R. Let c “ inftx P R : P pX ď xq “ 1u. Then
X “ c a.s. (check).

Let X 1
n “ Xn`1 ´ ξ1. Since tXnu and tX 1

nu have the same distribution, it
follows that

c “ lim sup
nÑ8

Xn
d
“ lim sup

nÑ8

X 1
n “ c´ ξ1,

from which it follows that c “ c´ ξ1 a.s.
Suppose (i) is false. Then it is not the case that ξ1 “ 0 a.s. Thus, c “ c´ ξ1

a.s. implies that c P t´8,8u. In other words, one of the following is true:

(a) lim sup
nÑ8

Xn “ ´8 a.s.

(b) lim sup
nÑ8

Xn “ 8 a.s.

A similar argument shows that one of the following is true:

(a1) lim inf
nÑ8

Xn “ ´8 a.s.

(b1) lim inf
nÑ8

Xn “ 8 a.s.

Since (a) and (b1) is impossible, there are three possibilities: (a) and (a1), which
is (iii); (b) and (a1), which is (iv); and (b) and (b1), which is (ii). l

A symmetric random walk on R is a random walk on R in which ξ1 “d

´ξ1 and P pξ1 “ 0q ă 1. A simple random walk on R is a symmetric random
walk on R with ξ1 P t´1, 1u a.s. An asymmetric simple random walk is a
random walk with P pξ1 “ 1q “ p and P pξ1 “ ´1q “ 1 ´ p, where p ‰ 1{2. In
this context, q is typically defined as q :“ 1´ p, so that p ‰ 1{2 is equivalent to
p ‰ q.

The following proposition implies that a simple random walk visits every
integer infinitely many times.

Proposition 11.7. If X is a symmetric random walk on R, then Theorem
11.6(iv) holds.

Proof. Exercise 11.2. l

Theorem 11.8. Let N be a stopping time for the stochastic process tξj : j P Nu

with P pN ă 8q ą 0. Conditional on tN ă 8u, the process tξN`j : j P Nu is
independent of FN and has the same distribution as tξj : j P Nu.

More specifically, if n P N, Aj P S, and A P FN , then

P ptξN`1 P A1u X . . .X tξN`n P Anu XA | N ă 8q

“ P ptξN`1 P A1u X . . .X tξN`n P Anu | N ă 8qP pA | N ă 8q,

and

P ptξN`1 P A1u X . . .X tξN`n P Anu | N ă 8q

“ P ptξ1 P A1u X . . .X tξn P Anuq.
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Proof. Since Ω P FN and ξ1, ξ2, . . . are i.i.d. with distribution µ, it suffices to
prove

P ptξN`1 P A1u X . . .X tξN`n P Anu XA | N ă 8q

“ P pA | N ă 8q

n
ź

j“1

µpAjq.

Multiplying both sides by P pN ă 8q, this is equivalent to proving

P ptξN`1 P A1u X . . .X tξN`n P Anu XAX tN ă 8uq

“ P pAX tN ă 8uq

n
ź

j“1

µpAjq.

Fix k P N. Then

P ptξN`1 P A1u X . . .X tξN`n P Anu XAX tN “ kuq

“ P ptξk`1 P A1u X . . .X tξk`n P Anu XAX tN “ kuq.

Since A P FN , it follows that

AX tN “ ku P Fξ
k “ σpξ1, . . . , ξkq.

Thus, ξk`1, . . . , ξk`n and AX tN “ ku are independent, and we have

P ptξN`1 P A1u X . . .X tξN`n P Anu XAX tN “ kuq

“ P ptξk`1 P A1u X . . .X tξk`n P AnuqP pAX tN “ kuq

“ P pAX tN “ kuq

n
ź

j“1

µpAjq.

Finally, summing over k, we obtain

P ptξN`1 P A1u X . . .X tξN`n P Anu XAX tN ă 8uq

“

8
ÿ

k“1

P ptξN`1 P A1u X . . .X tξN`n P Anu XAX tN “ kuq

“

8
ÿ

k“1

P pAX tN “ kuq

n
ź

j“1

µpAjq

“ P pAX tN ă 8uq

n
ź

j“1

µpAjq,

and we are done. l

Recall that Ω “ SN. We define the shift operator θ : Ω Ñ Ω by pθωqn “

ωn`1. Let θ0 be the identity, θ1 “ θ, and θk`1 “ θ ˝ θk for k P N. That is,
pθkωqn “ ωn`k
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Let ∆ be any element such that ∆ R Ω. (Such a ∆ is sometimes referred to
as a “cemetery point”.) Given a stopping time N , we define θN : Ω Ñ Ω Y t∆u

by

θNω “

ˆ 8
ÿ

n“1

pθnωq1tN“nupωq

˙

` ∆1tN“8upωq.

(Although addition and multiplication are not necessarily defined for the objects
x P Ω Y t∆u, we shall assume that x1 “ x and x ` 0 “ 0 ` x “ x, so that the
above definition makes sense.)

Example 11.9. Let S “ Rd and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn, so that X “ tXn : n P Nu

is a random walk. Let τ “ inftn P N : Xn “ 0u be the hitting time of t0u. If
we let X0 “ 0, then τ is the first time that X returns to the origin. As noted
earlier, τ is a stopping time for the process X.

Note that τ : Ω Ñ N Y t8u. We will extend the domain of τ to Ω Y t∆u by
setting τp∆q “ 8.

Let τ2 “ τ ` τ ˝ θτ . Suppose τpωq “ 8. Then

τ2pωq “ τpωq ` τpθτωq “ τpωq ` τp∆q “ 8.

Suppose τpωq “ m P N. Then

τ2pωq “ m` τpθmωq

“ m` inftn P N : Xnpθmωq “ 0u

“ m` inftn P N : pθmωq1 ` ¨ ¨ ¨ ` pθmωqn “ 0u

“ m` inftn P N : ωm`1 ` ¨ ¨ ¨ ` ωm`n “ 0u

“ m` inftn P N : Xm`n ´Xm “ 0u

“ m` inftn P N : Xm`n “ 0u

“ inftk ą m : Xk “ 0u.

In other words, τ2 is the time of the second return to the origin. In general, if
τn`1 “ τn ` τ ˝ θτn , then τn is the time of the nth return to the origin.

Proposition 11.10. Let T be a stopping time for the process tξju. Let T0 “ 0
and Tn “ Tn´1 ` T ˝ θTn´1 for n P N. Then P pTn ă 8q “ P pT ă 8qn.

Proof. Since T0 “ 0 and θ0 is the identity, the result follows for n “ 1. Sup-
pose it is true for some n. By Theorem 11.8, conditional on tTn ă 8u, the
process tξTn`1, ξTn`2, . . .u is independent of FTn

and has the same distribution
as tξ1, ξ2, . . .u. Note that on tTn ă 8u, we have

T ˝ θTnpωq “ T pωTnpωq`1, ωTnpωq`2, . . .q

“ T pξTnpωq`1pωq, ξTnpωq`2pωq, . . .q.

Suppressing the ω’s, we have

T ˝ θTn “ T pξTn`1, ξTn`2, . . .q.
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Thus,

P pTn`1 ă 8q “ P pTn ă 8, T ˝ θTn ă 8q

“ P pTn ă 8qP pT ˝ θTn ă 8 | Tn ă 8q

“ P pTn ă 8qP pT pξTn`1, ξTn`2, . . .q ă 8 | Tn ă 8q

“ P pTn ă 8qP pT pξ1, ξ2, . . .q ă 8q

“ P pTn ă 8qP pT ă 8q

“ P pT ă 8qn`1,

where the last equality comes from the inductive hypothesis. l

Theorem 11.11 (Wald’s equation). Let X “ tXnu be a random walk on R
with E|ξ1| ă 8. Let N be a stopping time for X with EN ă 8. Then EXN “

pENqpEξ1q.

Proof. First note that EN ă 8 implies N ă 8 a.s. In particular, this implies
that XN is well-defined.

Next, we observe that

8
ÿ

m“1

8
ÿ

n“1

Er|ξm|1tN“nus1tněmu “

8
ÿ

m“1

Er|ξm|1tNěmus.

Since N is a stopping time, we have tN ě mu “ tN ď m ´ 1uc P Fm´1. Also,
ξm is independent of Fm´1. Thus,

8
ÿ

m“1

8
ÿ

n“1

Er|ξm|1tN“nus1tněmu “

8
ÿ

m“1

E|ξm|P pN ě mq

“

8
ÿ

m“1

E|ξ1|P pN ě mq

“ pE|ξ1|qpENq ă 8.

By Tonelli’s theorem, ξm1tN“nu1tněmu is integrable on N2 ˆ Ω with respect to
µˆ P , where µ is counting measure on N2. Therefore, by Fubini’s theorem,

EXN “ E
8
ÿ

n“1

Xn1tN“nu “ E
8
ÿ

n“1

n
ÿ

m“1

ξm1tN“nu

“ E
8
ÿ

n“1

8
ÿ

m“1

ξm1tN“nu1tněmu “

8
ÿ

m“1

8
ÿ

n“1

Erξm1tN“nus1tněmu

“ pEξ1qpENq,

where the last equality is calculated as above. l

Example 11.12. Let X “ tXnu be a simple random walk on R. Let a, b P Z
with a ă 0 ă b. Let N “ inftn : Xn R pa, bqu. Since N is the hitting time of
ta, bu, it follows that N is a stopping time. We will first show that EN ă 8.



178 CHAPTER 11. FURTHER PROPERTIES OF RANDOM WALKS

First note that for any x P pa, bq, we have

P px`Xb´a R pa, bqq ě P pξ1 “ 1, ξ2 “ 1, . . . , ξb´a “ 1q “ 2´pb´aq. (11.1)

We will prove by induction that, for any n P N, we have

P pXb´a P pa, bq, X2pb´aq P pa, bq, . . . , Xnpb´aq P pa, bqq ď p1 ´ 2´pb´aqqn. (11.2)

For n “ 1, taking x “ 0 in (11.1) gives (11.2). Now assume (11.2) is true for
some n. Then

P pXb´a P pa, bq, . . . , Xpn`1qpb´aq P pa, bqq

“ ErP pXb´a P pa, bq, . . . , Xpn`1qpb´aq P pa, bq | Fnpb´aqqs

“ Er1tXb´aPpa,bqu ¨ ¨ ¨ 1tXnpb´aqPpa,bquP pXpn`1qpb´aq P pa, bq | Fnpb´aqqs.

In general, if m ą n, then using Theorem 6.52 (or more precisely, its more
general form, Theorem 6.66), we have

ErfpXmq | Fns “ ErfpXn ` ξn`1 ` ¨ ¨ ¨ ` ξmq | Fns

“ Erfpx` ξn`1 ` ¨ ¨ ¨ ` ξmqs|x“Xn
“ Erfpx`Xm´nqs|x“Xn

Thus, by (11.1) and the inductive hypothesis,

P pXb´a P pa, bq, . . . , Xpn`1qpb´aq P pa, bqq

“ Er1tXb´aPpa,bqu ¨ ¨ ¨ 1tXnpb´aqPpa,bquP px`Xb´a P pa, bqq|x“Xnpb´aq
s

ď P pXb´a P pa, bq, . . . , Xnpb´aq P pa, bqqp1 ´ 2´pb´aqq

ď p1 ´ 2´pb´aqqn`1,

and this proves (11.2).
It now follows that

P pN ą npb´ aqq ď P pXb´a P pa, bq, . . . , Xnpb´aq P pa, bqq ď p1 ´ 2´pb´aqqn.

From this we have

P pN “ 8q “ lim
nÑ8

P pN ą npb´ aqq “ 0.

Thus, since N ă 8 a.s., we have

EN “

8
ÿ

m“0

P pN ą mq “

8
ÿ

n“0

pn`1qpb´aq´1
ÿ

m“npb´aq

P pN ą mq

ď pb´ aq

8
ÿ

n“0

P pN ą npb´ aqq ď pb´ aq

ˆ

1 `

8
ÿ

n“1

p1 ´ 2´pb´aqqn
˙

ă 8,

and we can therefore apply Wald’s equation.
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By Wald’s equation, we have EXN “ pENqpEξ1q “ 0. On the other hand,
XN P ta, bu, so

0 “ EXN “ aP pXN “ aq ` bP pXN “ bq

“ ap1 ´ P pXN “ bqq ` bP pXN “ bq

“ a` pb´ aqP pXN “ bq,

from which we obtain

P pXN “ bq “ ´
a

b´ a
“

|a|

b´ a

and

P pXN “ aq “ 1 `
a

b´ a
“

b

b´ a
.

For x P Z, let Tx “ inftn P N : Xn “ xu be the hitting time of txu, so that
N “ Ta ^ Tb. Then tXN “ au “ tTa ă Tbu. Also, tTa ă Tbu Ò tTa ă 8u as
b Ò 8. Thus,

P pTa ă 8q “ lim
bÑ8

P pTa ă Tbq “ lim
bÑ8

b

b´ a
“ 1,

so that Ta ă 8 a.s. In particular, this implies that XTa
is well-defined, and of

course XTa “ a a.s.
Finally, we claim that ETa “ 8. To see this, suppose that ETa ă 8. Then

by Wald’s equation,
a “ EXTa

“ pETaqpEξ1q “ 0,

a contradiction.

Theorem 11.13 (Wald’s second equation). Let X “ tXnu be a random walk
on R with Eξ1 “ 0 and Eξ21 “ σ2 ă 8. Let N be a stopping time for X with
EN ă 8. Then EX2

N “ pENqσ2.

Proof. Fix m P N Y t0u. Define Y “ tYnu8
n“m by Yn “ XN^n ´ XN^m. Let

n ě m ` 1. If N ă n, then N ^ n “ N ^ pn ´ 1q “ N , so that Yn “ Yn´1. On
the other hand, if N ě n ą m, then Yn “ Xn ´ Xm and Yn´1 “ Xn´1 ´ Xm.
Thus,

Y 2
n “ Y 2

n´1 ` ppXn ´Xmq2 ´ pXn´1 ´Xmq2q1tNěnu

“ Y 2
n´1 ` ppXn´1 ´Xm ` ξnq2 ´ pXn´1 ´Xmq2q1tNěnu

“ Y 2
n´1 ` p2ξnpXn´1 ´Xmq ` ξ2nq1tNěnu.

Since ξn and Xn´1´Xm are both square-integrable, it follows that p2ξnpXn´1´

Xmq`ξ2nq1tNěnu P L1pΩq, and so we may take its conditional expectation. Since
tN ě nu “ tN ď n´1uc P Fn´1 and Xn´1 ´Xm P Fn´1 and ξn is independent
of Fn´1, we have

Erp2ξnpXn´1 ´Xmq ` ξ2nq1tNěnu | Fn´1s

“ 1tNěnup2pXn´1 ´XmqErξns ` Erξ2nsq “ σ21tNěnu,
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which gives
EY 2

n “ EY 2
n´1 ` σ2P pN ě nq.

Since Ym “ 0, it follows by induction on n that for every n ě m` 1, we have

EY 2
n “ σ2

n
ÿ

k“m`1

P pN ě kq.

In other words,

}XN^n ´XN^m}2L2pΩq “ σ2
n

ÿ

k“m`1

P pN ě kq ď σ2P pN ą mq Ñ 0,

as n,m Ñ 8. Hence, tXN^nu8
n“0 is a Cauchy sequence in L2pΩq, and so there

exists Z P L2pΩq such that XN^n Ñ Z in L2 as n Ñ 8. It follows that there
is a subsequence with XN^npjq Ñ Z a.s. as j Ñ 8. But XN^n Ñ XN a.s.
Therefore, Z “ XN , and so XN^n Ñ XN in L2. Consequently,

EX2
N “ lim

nÑ8
EX2

N^n “ lim
nÑ8

σ2
n

ÿ

k“1

P pN ě kq “ σ2
8
ÿ

k“1

P pN ě kq “ σ2EN.

l

Example 11.14. Let X “ tXnu be a simple random walk on R, let a, b P Z
with a ă 0 ă b, and let N “ inftn : Xn R pa, bqu. In Example 11.12, we
showed that EN ă 8. Thus, by Theorem 11.13, we have EX2

N “ σ2EN ,
where σ2 “ Eξ21 “ 1. Thus,

EN “ EX2
N “ a2P pXN “ aq ` b2P pXN “ bq

“ a2
b

b´ a
` b2

|a|

b´ a
“ |a|b.

In particular, if a “ ´L and b “ L, then EN “ L2.

Exercises

11.1. Prove Lemma 11.4.

11.2. [2, Exercise 4.1.1] Prove Proposition 11.7.

11.3. [2, Exercise 4.1.2] Let tXnu be a random walk on R with Eξ1 “ 0 and
varpξ1q P p0,8q. Prove that Theorem 11.6(iv) holds.

11.4. [2, Exercise 4.1.3] Prove Proposition 11.1.

11.5. [2, Exercise 4.1.4] Let S and T be stopping times with respect to a filtra-
tion tFnu. Prove or disprove: S ` T is a stopping time.

11.6. [2, Exercise 4.1.5] Suppose Y “ tYnu is adapted to a filtration tFnu and
N is an tFnu stopping time. Prove that YN1tNă8u P FN .

11.7. [2, Exercise 4.1.6] Prove Proposition 11.2.

11.8. [2, Exercise 4.1.7] Prove Proposition 11.3.
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11.2 Recurrence

This section corresponds to [2, Section 4.2].
Throughout this section, X “ tXnu is a random walk in Rd. The point

x P Rd is a recurrent value for X if, for all ε ą 0, we have

P p}Xn ´ x} ă ε i.o.q “ 1,

where }x} “ maxt|x1|, . . . , |xd|u. Note that by the Hewitt-Savage 0-1 law, for
any x P Rd, we have P p}Xn ´ x} ă ε i.o.q P t0, 1u.

A point x P Rd is a possible value of X if, for all ε ą 0, there exists n P N
such that P p}Xn ´ x} ă εq ą 0.

Let V be the set of recurrent values and U the set of possible values.

Theorem 11.15. The set V is either empty or a closed subgroup of pRd,`q

(that is, closed under addition and additive inverses). In the latter case, V “ U .

Proof. See [2, Theorem 4.2.1]. l

If V “ H, then X is transient. Otherwise, X is recurrent. As in Example
11.9, let τn be the nth return to 0.

Theorem 11.16. The following are equivalent:

(i) τ1 ă 8 a.s.,

(ii) P pXn “ 0 i.o.q “ 1, and

(iii)
ř8

m“0 P pXm “ 0q “ 8.

Proof. By Proposition 11.10, we have that (i) implies τn ă 8 a.s. for all n,
which is equivalent to (ii). Let

N “

8
ÿ

m“0

1tXm“0u “

8
ÿ

n“0

1tτnă8u,

so that

EN “

8
ÿ

m“0

P pXm “ 0q “

8
ÿ

n“0

P pτn ă 8q,

which shows that (ii) implies (iii). Moreover, if P pτ1 ă 8q ă 1, then

8
ÿ

m“0

P pXm “ 0q “

8
ÿ

n“0

P pτ1 ă 8qn ă 8,

so by contraposition, (iii) implies (i). l

Lemma 11.17. For all n P N, we have

n
ÿ

m“0

ˆ

n

m

˙ˆ

n

n´m

˙

“

ˆ

2n

n

˙

.
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Proof. Heuristically, consider an urn containing n black marbles and n white
marbles. There are

`

2n
n

˘

ways to select n marbles from the urn. One way to
make this selection is to first select an integer 0 ď m ď n, and then select m
black balls and n´m white balls.

For an analytic proof, consider that px` 1q2n “ px` 1qnpx` 1qn implies

2n
ÿ

j“0

ˆ

2n

j

˙

xj “

ˆ n
ÿ

j“0

ˆ

n

j

˙

xj
˙2

“

n
ÿ

i“0

n
ÿ

j“0

ˆ

n

i

˙ˆ

n

j

˙

xi`j .

Equating the coefficient of xn, we have

ˆ

2n

n

˙

“
ÿ

0ďi,jďn
i`j“n

ˆ

n

i

˙ˆ

n

j

˙

“

n
ÿ

m“0

ˆ

n

m

˙ˆ

n

n´m

˙

,

which proves the identity. l

Theorem 11.18. A simple random walk in Rd is recurrent if d ď 2 and tran-
sient if d ě 3.

Proof. In this proof, let te1, . . . , edu be the standard basis in Rd.
First assume d “ 1. For n P N, we have P pX2n´1 “ 0q “ 0 and

P pX2n “ 0q “

ˆ

2n

n

˙

2´2n “
p2nq!2´2n

pn!q2
.

By Stirling’s formula,
n! „ nne´n

?
2πn,

as n Ñ 8. Thus,

P pX2n “ 0q „
p2nq2ne´2n

?
4πn 2´2n

n2ne´2np2πnq
“

1
?
πn

,

giving

8
ÿ

m“0

P pXm “ 0q “ 1 `

8
ÿ

n“1

P pX2n “ 0q ě 1 ` C
8
ÿ

n“1

1
?
πn

“ 8.

By Theorem 11.16, we have that 0 is a recurrent value for X, and so X is
recurrent.

Now suppose d “ 2. Again, for all n P N, we have P pX2n´1 “ 0q “ 0. Fix
n P N. Let

M “ |t1 ď j ď 2n : ξj “ e1u|,

and note that

tX2n “ 0u “

n
ě

m“0

tX2n “ 0u X tM “ mu.
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Thus,

P pX2n “ 0q “

n
ÿ

m“0

P pX2n “ 0,M “ mq

“

n
ÿ

m“0

p2nq!

m!m!pn´mq!pn´mq!
4´2n

“

n
ÿ

m“0

p2nq!

pn!q2

ˆ

n!

m!pn´mq!

˙2

4´2n

“ 4´2n

ˆ

2n

n

˙ n
ÿ

m“0

ˆ

n

m

˙ˆ

n

n´m

˙

.

By Lemma 11.17,

P pX2n “ 0q “ 4´2n

ˆ

2n

n

˙2

.

Again, by Stirling’s formula, this gives

P pX2n “ 0q „
1

πn
,

which implies

8
ÿ

m“0

P pXm “ 0q “ 1 `

8
ÿ

n“1

P pX2n “ 0q ě 1 ` C
8
ÿ

n“1

1

πn
“ 8.

And again, by Theorem 11.16, we have that 0 is a recurrent value for X, and
so X is recurrent.

Next, suppose d “ 3. Again, for all n P N, we have P pX2n´1 “ 0q “ 0. As
in the case d “ 2, if

J “ |t1 ď j ď 2n : ξj “ e1u|,

K “ |t1 ď k ď 2n : ξk “ e2u|,

then

P pX2n “ 0q “
ÿ

0ďj,kďn
j`kďn

P pX2n “ 0, J “ j,K “ kq

“
ÿ

0ďj,kďn
j`kďn

p2nq!

j!j!k!k!pn´ j ´ kq!pn´ j ´ kq!
6´2n

“ 2´2n

ˆ

2n

n

˙

ÿ

0ďj,kďn
j`kďn

ˆ

n!

j!k!pn´ j ´ kq!
3´n

˙2

ď Cn2
´2n

ˆ

2n

n

˙

ÿ

0ďj,kďn
j`kďn

n!

j!k!pn´ j ´ kq!
3´n,
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where

Cn “ max
0ďj,kďn
j`kďn

n!

j!k!pn´ j ´ kq!
3´n.

Let

rJ “ |t0 ď j ď n : ξj “ ˘e1u|,

rK “ |t0 ď k ď n : ξk “ ˘e2u|,

and note that

ÿ

0ďj,kďn
j`kďn

n!

j!k!pn´ j ´ kq!
3´n “

ÿ

0ďj,kďn
j`kďn

P p rJ “ j, rK “ kq “ 1,

so that

P pX2n “ 0q ď Cn2
´2n

ˆ

2n

n

˙

.

Lastly, it can be shown that Cn “ Opn´1q (see the proof of [2, Theorem 4.2.3]
for details), so that P pX2n “ 0q “ Opn´3{2q, and this implies

ř8

m“0 P pXm “

0q ă 8. By Theorem 11.16, we have P pXm “ 0 i.o.q ă 1, so that 0 is not
a recurrent value for X. By Theorem 11.15, we have V “ H, and so X is
transient.

Finally, assume d ą 3. As described in the proof of [2, Theorem 4.2.3], a
3-dimensional simple random walk can be created from the first 3 coordinates
of X, and the transience of this embedded random walk implies the transience
of X. l

The remainder of [2, Section 4.2] is devoted to showing that Theorem 11.18
is still true, in some sense, for random walks that are not necessarily simple.
We state the relevant theorems here and refer the reader to the text for more
details.

Theorem 11.19 (Chung-Fuchs theorem). Let X be a random walk on R. If
n´1Xn Ñ 0 in probability as n Ñ 8, then X is recurrent.

Theorem 11.20. Let X be a random walk in R2. If n´1{2Xn converges in
distribution to a nonconstant, normally distributed R2-valued random variable
as n Ñ 8, then X is recurrent.

Theorem 11.21. Let X be a random walk in R3. Suppose that for all θ P R3,
we have P pxξ1, θy ‰ 0q ą 0. Then X is transient.
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Chapter 12

Martingales

12.1 Definitions and basic properties

This section corresponds to [2, Section 5.2].
Recall from Section 6.4 that a real-valued stochastic process X “ tXnu is a

martingale with respect a filtration tFnu if X is adapted to tFnu, each Xn is
integrable, and X satisfies the martingale property:

ErXn`1 | Fns “ Xn,

for all n. More generally, X is a supermartingale if X is adapted, integrable,
and ErXn`1 | Fns ď Xn. And X is a submartingale if X is adapted, inte-
grable, and ErXn`1 | Fns ě Xn.

If X represents your changing wealth as you play a game, then X is a
martingale if the game is fair, X is a supermartingale if the game is weighted
against you, and X is a submartingale if the game is weighted in your favor.

If we say that X is a martingale, supermartingale, or submartingale with-
out reference to a filtration, then the implied filtration is tFX

n u, the filtration
generated by X.

Suppose X is a martingale with respect to tFnu and FX
n Ă Gn Ă Fn. Then

ErXn`1 | Gns “ ErErXn`1 | Fns | Gns “ ErXn | Gns “ Xn,

and it follows that X is a martingale with respect to Gn. The same is true for
supermartingales and submartingales.

Example 12.1. Let X be a simple random walk on R. Since Xn is integrable
and

ErXn`1 | Fns “ ErXn ` ξn`1 | Fns “ Xn ` Erξn`1s “ Xn,

it follows that X is martingale.

Theorem 12.2. Let X be adapted to tFnu. Then

187
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(i) If X is a supermartingale with respect to tFnu, then for all n ą m, we
have ErXn | Fms ď Xm.

(ii) If X is a submartingale with respect to tFnu, then for all n ą m, we have
ErXn | Fms ě Xm.

(iii) If X is a martingale with respect to tFnu, then for all n ą m, we have
ErXn | Fms “ Xm.

Proof. To prove (i), we will show that ErXm`k | Fms ď Xm for all k P N. By
definition, it is true for k “ 1. Suppose it is true for some k. Then

ErXm`k`1 | Fms “ ErErXm`k`1 | Fm`ks | Fms ď ErXm`k | Fms ď Xm,

and induction completes the proof.
Note that if tXnu is a submartingale, then t´Xnu is a supermartingale. Also

note that a martingale is both a supermartingale and a submartingale. Thus,
applying (i) to t´Xnu proves (ii), and (i) and (ii) together imply (iii). l

Remark 12.3. Many of the upcoming results will be stated only for super-
martingales, leaving it to the reader to prove them (when applicable) for sub-
martingales and martingales.

Proposition 12.4. If X is a supermartingale and n ą m, then EXn ď EXm.

Proof. This follows since EXn “ ErErXn | Fmss ď ErXms. l

Theorem 12.5. Let X be a martingale with respect to tFnu and φ a convex
function. Suppose that E|φpXnq| ă 8 for all n. Then tφpXnqu is a submartin-
gale with respect to tFnu.

Proof. Adaptedness is immediate and integrability is by hypothesis. By Jensen’s
inequality and the martingale property for X, we have

ErφpXn`1q | Fns ě φpErXn`1 | Fnsq “ φpXnq,

and tφpXnqu is a submartingale. l

Corollary 12.6. If X is a martingale, p ě 1, and E|Xn|p ă 8 for all n, then
t|Xn|pu is a submartingale.

Proof. This follows since x ÞÑ |x|p is a convex function. l

Theorem 12.7. Let X be a submartingale with respect to tFnu and φ an in-
creasing convex function. Suppose that E|φpXnq| ă 8 for all n. Then tφpXnqu

is a submartingale with respect to tFnu.

Proof. Adaptedness is immediate and integrability is by hypothesis. By Jensen’s
inequality, the submartingale property for X, and the fact that φ is increasing,
we have

ErφpXn`1q | Fns ě φpErXn`1 | Fnsq ě φpXnq,

and tφpXnqu is a submartingale. l
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Corollary 12.8. Let X be adapted to tFnu and a P R. Then

(i) If X is a submartingale with respect to tFnu, then tpXn ´ aq`u is a sub-
martingale with respect to tFnu.

(ii) If X is a supermartingale with respect to tFnu, then tXn ^ au is a super-
martingale with respect to tFnu.

Proof. In both cases, measurability is immediate. Integrability follows, since
both |pXn ´ aq`| and |Xn ^ a| are bounded above by |Xn| ` |a|.

The submartingale property in (i) follows from the fact that x ÞÑ px ´ aq`

is an increasing, convex function. For (ii), since t´Xnu is a submartingale, and
x ÞÑ ´pp´xq ^ aq “ x _ p´aq is an increasing, convex function, it follows that
t´pXn ^ aqu is a submartingale, and so tXn ^ au is a supermartingale. l

Let H “ tHn : n P Nu be a stochastic process and tFnu8
n“0 a filtration.

Then H is predictable with respect to tFnu if Hn P Fn´1 for all n. Let
X “ tXn : n ě 0u be adapted to tFnu and define the process H ¨X “ tpH ¨Xqnu

by

pH ¨Xqn “

n
ÿ

m“1

HmpXm ´Xm´1q.

Note that H ¨ X is adapted to tFnu. Also note that pH ¨ Xqn is a discrete

analogue of
şt

0
Hpsq dXpsq.

Suppose we are playing a sequence of gambling games. Let ξn “ 1 if we win
the nth game and ξn “ ´1 if we lose. Let X0 “ 0 and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. If Hn

denotes the amount we plan to wager on the nth game, then pH ¨ Xqn denotes
our wealth after the nth game. Note that since H is predictable, the amount we
plan to wager on the nth game depends only on the information we have after
the pn´ 1qth game, as it should.

For example, suppose H1 “ 1 and, for n P N, we have

Hn`1 “ 2Hn1tξn“´1u ` 1tξn“1u.

Then H is predictable and represents the strategy wherein we double our wa-
ger every time we lose. This strategy is a famous gambling system called the
“martingale”.

Theorem 12.9. Let X “ tXn : n ě 0u be a supermartingale with respect to a
filtration tFnu. Let H be predictable with respect to tFnu. Suppose each Hn is
nonnegative and bounded, that is, for all n P N, there exists Cn ą 0 such that
0 ď Hn ď Cn a.s. Then H ¨X is a supermartingale with respect to tFnu.

Proof. As noted earlier, H ¨ X is adapted to tFnu. Since each Hn is bounded
and each Xn is integrable, it follows that each pH ¨Xqn is integrable. Finally,

ErpH ¨Xqn`1 | Fns “ ErpH ¨Xqn `Hn`1pXn`1 ´Xnq | Fns

“ pH ¨Xqn `Hn`1ErXn`1 ´Xn | Fns.
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Since Hn`1 ě 0 and

ErXn`1 ´Xn | Fns “ ErXn`1 | Fns ´Xn ď 0,

it follows that ErpH ¨Xqn`1 | Fns ď pH ¨Xqn, and H ¨X is a supermartingale.
l

Remark 12.10. Theorem 12.9 is also true for submartingales. For martin-
gales, Theorem 12.9 is true without the restriction that each H is nonnegative.
Moreover, the assumption that H is bounded is needed only to ensure the inte-
grability of pH ¨Xqn. Assuming the boundedness of X would also suffice.

Theorem 12.11. Let X be a supermartingale and N a stopping time, both with
respect to tFnu. Then tXN^nu is a supermartingale with respect to tFnu.

Proof. Let Hn “ 1tNěnu. Since tN ě nu “ tN ď n´1uc P Fn´1, it follows that
H “ tHnu is nonnegative and predictable, and so H ¨ X is a supermartingale.
Note that

pH ¨Xqn “

n
ÿ

m“1

HmpXm ´Xm´1q

“

n
ÿ

m“1

pXm ´Xm´1q1tNěmu

“

N^n
ÿ

m“1

pXm ´Xm´1q

“ XN^n ´X0.

Thus, XN^n “ pH ¨Xqn `X0. Since the random variable X0 is integrable and
F0-measurable, it follows that the constant process Y “ tYnu, where Yn “ X0

for all n, is a martingale (and therefore a supermartingale). Therefore, since
the sum of supermartingales is a supermartingale, it follows that tXN^nu is a
supermartingale. l

Theorem 12.12 (martingale convergence theorem). Let X be a submartingale
with supnErX`

n s ă 8. Then there exists an integrable random variable X8

such that Xn Ñ X8 a.s.

Proof. Uses “upcrossings”. See [2, Theorem 5.2.8]. l

Remark 12.13. The above martingale convergence theorem is analogous to
the law of large numbers, at least insofar as the mode of convergence is almost
sure. There is also a martingale central limit. See, for example, [3, Section 7.1].

Theorem 12.14. Let X be a nonnegative supermartingale (that is, Xn ě 0
a.s. for all n). Then there exists an integrable, nonnegative random variable
X8 such that Xn Ñ X8 a.s. Moreover, EX8 ď EX0.
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Proof. Applying the martingale convergence theorem to t´Xnu implies there
exists an integrable random variable X8 such that Xn Ñ X8 a.s. Since each
Xn is nonnegative, it follows that X8 is nonnegative. Moreover, EXn ď EX0

for all n, so
EX8 ď lim inf

nÑ8
EXn ď EX0,

by Fatou’s lemma. l

Example 12.15. Let X be a simple random walk on R. Let Yn “ 1 ` Xn.
Let N “ inftn ě 0 : Yn “ 0u, so that tYN^nu is a nonnegative martingale
(and hence, a nonnegative supermartingale). Therefore, there exists an inte-
grable, nonnegative random variable Y such that YN^n Ñ Y a.s. But, as shown
previously, N ă 8 a.s., which implies YN^n Ñ YN “ 0 a.s. Therefore, Y “ 0.

Since tYN^nu is a martingale, we have EYN^n “ EYN^0 “ EY0 “ 1 for all
n, whereas EY “ 0. It follows that YN^n does not converge to Y in L1pΩq.

Theorem 12.16 (Doob’s decomposition). Let X “ tXn : n ě 0u be a sub-
martingale with respect to a filtration tFnu. Then there exist processes M “

tMnu and A “ tAnu such that

(i) Xn “ Mn `An for all n,

(ii) M “ tMnu is a martingale with respect to tFnu,

(iii) A “ tAnu is predictable with respect to tFnu,

(iv) A is increasing, that is, An ď An`1 a.s. for all n, and

(v) A0 “ 0 a.s.

Moreover, if M 1 and A1 are another pair of processes satisfying (i)-(v), then
M 1 “ M and A1 “ A.

Proof. Define

An “

n
ÿ

m“1

pErXm | Fm´1s ´Xm´1q

andMn “ Xn´An. Then (i), (iii), and (v) are immediate. By the submartingale
property,

An`1 ´An “ ErXn`1 | Fns ´Xn ě 0,

and this gives (iv). Lastly,

ErMn`1 | Fns “ ErXn`1 | Fns ´An`1

“ ErXn`1 | Fns ´ pAn ` ErXn`1 | Fns ´Xnq

“ Xn ´An

“ Mn,

which gives (ii).
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Now supposeM 1 and A1 are another pair of processes satisfying (i)-(v). Then

ErXn | Fn´1s “ ErM 1
n | Fn´1s ` ErA1

n | Fn´1s

“ M 1
n´1 `A1

n

“ Xn´1 ´A1
n´1 `A1

n,

which implies A1
n ´ A1

n´1 “ ErXn | Fn´1s ´ Xn´1. Since A
1
0 “ 0, it follows by

induction that A1 “ A, and therefore M 1 “ X ´A1 “ X ´A “ M . l

Exercises

12.1. [2, Exercise 5.2.3] Give an example of a submartingale X “ tXnu such
that tX2

nu is a supermartingale.

12.2. [2, Exercise 5.2.4] Give an example of a martingale X “ tXnu such that
Xn Ñ ´8 a.s.

12.3. [2, Exercise 5.2.5] Let tFnu be a filtration and let Bn P Fn for each n.
Define X “ tXnu by Xn “

řn
m“0 1Bm . Prove that X is an tFnu-submartingale

and identify the Doob decomposition for X.

12.4. [2, Exercise 5.2.11] Let tFnu be a filtration. Let X “ tXnu and Y “ tYnu

be integrable, positive, and adapted to tFnu. Assume that

ErXn`1 | Fns ď p1 ` YnqXn

for all n. Also assume that
ř

n Yn ă 8 a.s. Prove that there exists a real-valued
random variable, X8, such that Xn Ñ X8 a.s.

12.5. [2, Exercise 5.2.6] Let ξ1, ξ2, . . . be independent with Eξj “ 0 and σ2
j :“

varpξjq ă 8. Define Xn “ ξ1`¨ ¨ ¨`ξn and s2n “
řn

j“1 σ
2
j . Prove that tX2

n´s2nu

is a martingale.

12.2 Branching processes

This section corresponds to [2, Section 5.3.4].
Let tξn,j : j, n P Nu be i.i.d., N Y t0u-valued random variables. Define the

stochastic process Z “ tZn : n ě 0u by Z0 “ 1 and

Zn “

Zn´1
ÿ

j“1

ξn,j “

8
ÿ

j“1

ξn,j1tZn´1ěju.

The process Z is called the Galton-Watson process, or Galton-Watson
branching process.

The Galton-Watson process can be used to model the size of a population
evolving in discrete-time. In this case, Zn represent the size of the population
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(in number of individuals) in the nth generation. The jth individual in the
pn´ 1qth generation has ξn,j offspring and then dies (i.e., is not part of the nth
generation). Thus, the number of individuals in the nth generation is ξn,1 `

¨ ¨ ¨ ` ξn,Zn´1
, unless Zn´1 “ 0, in which case Zn “ 0 also.

The random variable ξn,j represents the number of offspring that the jth
member of the pn ´ 1qth generation contributes to the nth generation. Its dis-
tribution, which does not depend on j or n, is called the offspring distribution
of the branching process Z, and is denoted by pk “ P pξ1,1 “ kq for k P NY t0u.

Let us assume that ξ1,1 is integrable and not identically zero. Let µ “

Eξ1,1 P p0,8q be the mean number of offspring per individual per generation.
Let F0 “ tH,Ωu and, for n P N, let Fn “ σptξm,j : j P N, 1 ď m ď nuq. Define
M “ tMn : n ě 0u by Mn “ µ´nZn.

Lemma 12.17. The process M is an tFnu-martingale.

Proof. Since Z0 “ 1 is constant, we have Z0 P F0.
Suppose Zn´1 P Fn´1 for some n P N. Then 1tZn´1ěju P Fn´1 Ă Fn and

ξn,j P Fn, for all j P N. Thus, ξn,j1tZn´1ěju P Fn, and it follows that Zn P Fn.
By induction, Z is adapted to tFnu, and consequently, M is adapted to Fn.
Since

0 ď ξn,j1tZn´1ěju ď ξn,j ,

it follows that ξn,j1tZn´1ěju is integrable, and so we have

Erξn,j1tZn´1ějus “ ErErξn,j1tZn´1ěju | Fn´1ss

“ Er1tZn´1ějuErξn,jss “ µP pZn´1 ě jq.

Thus,

EZn “

8
ÿ

n“1

µP pZn´1 ě jq “ µEZn´1.

Since EZ0 “ 1, we have EZn “ µn for all n. In particular, each Zn is integrable,
and hence, each Mn in integrable.

Finally, as above, we have

ErMn | Fn´1s “ µ´nErZn | Fn´1s

“ µ´nE

„ 8
ÿ

j“1

ξn,j1tZn´1ěju

ˇ

ˇ

ˇ

ˇ

Fn´1

ȷ

“ µ´n
8
ÿ

j“1

Erξn,j1tZn´1ěju | Fn´1s

“ µ´n`1
8
ÿ

j“1

1tZn´1ěju

“ µ´n`1Zn´1

“ Mn´1,
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where we have used the monotone convergence theorem for conditional expec-
tations to reverse the sum and expectation. This shows that M is an tFnu-
martingale. l

Since M is a nonnegative martingale, it follows from Theorem 12.14 that
there exists an integrable, nonnegative random variable Y with EY ď EM0 “ 1
and Mn Ñ Y a.s.

Theorem 12.18. If µ ă 1, then Y “ 0 a.s., so that Zn “ opµnq. In fact,
P pZn ą 0 i.o.q “ 0.

Proof. Since Zn ě 1 on tZn ą 0u, we have

P pZn ą 0q “ Er1tZną0us ď ErZn1tZną0us “ EZn “ µn.

Thus,
8
ÿ

n“0

P pZn ą 0q ď

8
ÿ

n“0

µn ă 8.

By the Borel-Cantelli lemma, P pZn ą 0 i.o.q “ 0. l

Theorem 12.19. If µ “ 1 and p1 “ P pξ1,1 “ 1q ă 1, then Y “ 0 a.s., so that
Zn “ opµnq. In fact, P pZn ą 0 i.o.q “ 0.

Proof. Since p1 ă 1, we may choose ℓ P N Y t0u such that ℓ ‰ 1 and pℓ “

P pξ1,1 “ ℓq ą 0. Using Theorem 6.66, for any k P N, we have P pZn ‰ k |

Fn´1q “ hnpZn´1q, where

hnpiq “ P

ˆ i
ÿ

j“1

ξn,j ‰ k

˙

.

Note that

hnpkq “ P

ˆ k
ÿ

j“1

ξn,j ‰ k

˙

ě P

ˆ k
č

j“1

tξn,j “ ℓu

˙

“ pkℓ .

We will now prove that for N ď n and k P N,

P pZN “ ZN`1 “ ¨ ¨ ¨ “ Zn “ kq ď P pZN “ kqp1 ´ pkℓ qn´N . (12.1)

The result is trivial if n “ N . Suppose it is true for some n ě N . Then

P pZN “ZN`1 “ ¨ ¨ ¨ “ Zn “ Zn`1 “ kq

“ ErP pZN “ ZN`1 “ ¨ ¨ ¨ “ Zn “ k, Zn`1 “ k | Fnqs

“ Er1tZN“ZN`1“¨¨¨“Zn“kuP pZn`1 “ k | Fnqs

“ Er1tZN“ZN`1“¨¨¨“Zn“kup1 ´ hn`1pZnqqs

“ p1 ´ hn`1pkqqP pZN “ ZN`1 “ ¨ ¨ ¨ “ Zn “ kq

ď p1 ´ pkℓ qP pZN “ ZN`1 “ ¨ ¨ ¨ “ Zn “ kq

ď P pZN “ kqp1 ´ pkℓ qn`1´N ,
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and (12.1) follows by induction.
Now, since µ “ 1, it follows that Zn Ñ Y a.s. But Zn is N Y t0u-valued,

so Zn Ñ Y a.s. implies that for P -a.e. ω, there exists Npωq such that for all
n ě Npωq, we have Znpωq “ Y pωq. Therefore, Y is N Y t0u-valued,

P

ˆ 8
ď

N“1

8
č

n“N

tZn “ Y u

˙

“ 1,

and it will suffice to show that Y “ 0 a.s.
Let k P N. Then

P pY “ kq “ P

ˆ

tY “ ku X

8
ď

N“1

8
č

n“N

tZn “ Y u

˙

“ P

ˆ 8
ď

N“1

8
č

n“N

tY “ k, Zn “ Y u

˙

“ P

ˆ 8
ď

N“1

8
č

n“N

tY “ k, Zn “ ku

˙

ď P

ˆ 8
ď

N“1

8
č

n“N

tZn “ ku

˙

ď

8
ÿ

N“1

P

ˆ 8
č

n“N

tZn “ ku

˙

.

Using (12.1), we obtain

P

ˆ 8
č

n“N

tZn “ ku

˙

“ lim
nÑ8

P pZN “ ZN`1 “ ¨ ¨ ¨ “ Zn “ kq

ď lim
nÑ8

P pZN “ kqp1 ´ pkℓ qn´N “ 0.

Thus, P pY “ kq “ 0 for all k P N, and so Y “ 0 a.s. l

For s P r0, 1s, let φpsq “ Ersξ1,1s “
ř8

k“0 pks
k. The function φ is called

the generating function of ξ1,1 (or the generating function of the offspring
distribution).

Theorem 12.20. Let µ ą 1. Then φ has a unique fixed point ρ P r0, 1q which
satisfies P pZn “ 0 for some nq “ ρ.

Proof. Note that

φ1psq “

8
ÿ

k“1

kpks
k´1,

and

φ2psq “

8
ÿ

k“2

kpk ´ 1qpks
k´2.
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Also,

φ1p1q “ lim
sÑ1´

φ1psq “

8
ÿ

k“1

kpk “ Erξ1,1s “ µ.

Let ψpxq “ φpxq ´ x, so that ψp0q “ φp0q “ p0 ě 0 and ψp1q “ 0. Since
ψ1p1q “ µ´1 ą 0, it follows that for ε ą 0 sufficiently small, we have ψp1´εq ă 0.
Thus, by the intermediate value theorem, there exists ρ P r0, 1 ´ εq such that
ψpρq “ 0.

Suppose there exists 0 ď ρ1 ă ρ2 ă 1 such that ψpρ1q “ ψpρ2q “ 0. Since
ψp1q “ 0 also, the mean value theorem implies that there exists x1 P pρ1, ρ2q

and x2 P pρ2, 1q such that ψ1px1q “ ψ1px2q “ 0. But ψ2 “ φ2 is strictly positive,
so ψ1 is strictly increasing, which is a contradiction. Hence, there exists a unique
ρ P r0, 1q such that ψpρq “ 0, that is φ has a unique fixed point ρ P r0, 1q.

Note that φ1 ą 0, so φ is strictly increasing. In particular, if x ď ρ, then
φpxq ď φpρq “ ρ.

Now let An “ tZn “ 0u. Note that An Ă An`1 and
ď

An “ tZn “ 0 for some nu.

For each ℓ P N, let Zpℓq be a branching process with the same offspring distribu-
tion as Z, constructed so that Zp1q, Zp2q, . . . are independent, and independent
of Z1 “ ξ1,1. Define rZ0 “ 1 and

rZn “

Z1
ÿ

ℓ“1

Z
pℓq

n´1,

for n P N. It can be shown that rZ “ t rZnu and Z have the same distribution.

Note that rZ1 “ Z1. Thus, for n, k P N, we have

P p rZn “ 0 | Z1 “ kq “ P pZ
p1q

n´1 “ 0, . . . , Z
pkq

n´1 “ 0q “ P pZn´1 “ 0qk.

Note that this also holds for k “ 0. Hence, for n P N,

P pAnq “ P p rZn “ 0q

“

8
ÿ

k“0

P pZ1 “ kqP p rZn “ 0 | Z1 “ kq

“

8
ÿ

k“0

pkP pAn´1qk

“ φpP pAn´1qq.

Since φ is strictly increasing, it follows that tP pAnqu8
n“1 is a strictly increasing

sequence. Also, since x ď ρ implies φpxq ď ρ, and P pA0q “ 0 ď ρ, it follows
that P pAnq ď ρ for all n. Thus, there exists rρ ď ρ such that P pAnq Ò rρ as
n Ñ 8. Finally,

P pZn “ 0 for some nq “ P

ˆ 8
ď

n“0

An

˙

“ lim
nÑ8

P pAnq “ rρ.
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On the other hand, since φ is continuous,

P pZn “ 0 for some nq “ lim
nÑ8

P pAnq “ lim
nÑ8

φpP pAn´1qq “ φprρq.

Therefore rρ “ φprρq. Since rρ ď ρ ă 1, it follows that rρ “ ρ. l

Exercises

12.6. [2, Exercise 5.3.12] Let Z “ tZnu be a branching process whose offspring
distribution has mean µ ą 1. Let ρ be the unique fixed point in r0, 1q of the
generating function, φpsq “ ErsZ1s. Prove that

P
´

lim
nÑ8

µ´nZn “ 0
¯

P tρ, 1u.

Show that if the probability is ρ, then

P
´!

lim
nÑ8

µ´nZn ą 0
)

△ tZn ą 0 for all nu

¯

“ 0.

In other words, modulo a set of measure zero, µ´nZn Ñ 0 if and only if the
population goes extinct in finite time.

12.3 Doob’s inequality, convergence in Lp

This section corresponds to [2, Section 5.4].

Let X “ tXnu be a submartingale. Recall that EX0 ď EXn for all n. The
same is not true, in general, when n is replaced by a stopping time. For example,
as we saw previously, if Yn “ 1 ` Xn, where X is a simple random walk, and
N “ inftn : Yn “ 0u, then Y is a martingale (and therefore a submartingale, but
EY0 “ 1 and EYN “ 0. In order to retain the inequality under a stopping time,
we must add hypotheses. We will discuss this more when we cover optional
stopping theorems. For now, here is a simple variant of such a result.

Theorem 12.21. Let X “ tXnu be an tFnu-submartingale and N an tFnu-
stopping time. Suppose there exists k P N such that N ď k a.s. Then

EX0 ď EXN ď EXk.

Proof. Since tXN^nu is a submartingale, it follows that

EX0 “ EXN^0 ď EXN^k “ EXN .

Let Hn “ 1tNănu. Then H “ tHnu is tFnu-predictable. By Remark 12.10,
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pH ¨Xqn is a submartingale. Note that

pH ¨Xqn “

n
ÿ

m“1

1tNămupXm ´Xm´1q

“

n
ÿ

m“pN^nq`1

pXm ´Xm´1q

“ Xn ´XN^n.

Thus

0 “ EpH ¨Xq0 ď EpH ¨Xqk “ EXk ´ EXN^k “ EXk ´ EXN ,

so that EXN ď EXk. l

Theorem 12.22 (Doob’s inequality). Let X “ tXnu be a submartingale. De-
fine

Xn “ max
0ďmďn

X`
m.

Then

λP pXn ě λq ď ErXn1tXněλu
s ď EX`

n ,

for all λ ą 0 and all n P N.

Proof. Let N “ inftm : Xm ě λu. If Xnpωq ě λ ą 0, then there exists
m P t0, . . . , nu such that X`

mpωq “ Xmpωq ě λ, which implies Npωq ď n, so
that

XNpωq^npωq “ XNpωqpωq ě λ.

In other words, XN^n ě λ on tXn ě λu. Therefore,

λP pXn ě λq “ Erλ1
tXněλu

s ď ErXN^n1tXněλu
s. (12.2)

Next, if Xnpωq ă λ, then for all m ď n, we

Xmpωq ď X`
mpωq ď Xnpωq ă λ,

which implies Npωq ą n. Thus, XN^n “ Xn on tXn ă λu. Since X is a
submartingale and N^n is a stopping time with N^n ď n a.s., Theorem 12.21
implies EXN^n ď EXn. Together, this gives

ErXN^n1tXněλu
s “ EXN^n ´ ErXN^n1tXnăλu

s

ď EXn ´ ErXn1tXnăλu
s “ ErXn1tXněλu

s.

Combined with (12.2), this gives the first inequality of the theorem. The second
inequality follows from the fact that Y 1A ď Y `1A ď Y ` a.s., for any random
variable Y and any event A. l
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Example 12.23. Let ξ1, ξ2, . . . be independent with Eξm “ 0 and Eξ2m “ σ2
m P

p0,8q. Let X0 “ 0 and Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Then tX2
nu is a submartingale.

(Why?)
Let x ą 0. By Doob’s inequality,

x2P

ˆ

max
0ďmďn

X2
m ě x2

˙

ď EX2
n,

from which we obtain Kolmogorov’s maximal inequality:

P

ˆ

max
0ďmďn

|Xm| ě x

˙

ď
varpXnq

x2
.

Theorem 12.24 (Lp maximal inequality). Let X “ tXnu be a submartingale.
Define

Xn “ max
0ďmďn

X`
m.

Let p P p1,8q. Then

EX
p

n ď

ˆ

p

p´ 1

˙p

EpX`
n qp.

Proof. Fix M ą 0. If 0 ă λ ď M , then tXn ^ M ě λu “ tXn ě λu, so by
Doob’s inequality, we have

P pXn ^M ě λq ď λ´1ErX`
n 1

tXn^Měλu
s.

If λ ą M , then P pXn ^M ě λq “ 0, and the above is still true. Thus

EpXn ^Mqp “

ż 8

0

pλp´1P pXn ^M ě λq dλ

ď

ż 8

0

pλp´2ErX`
n 1

tXn^Měλu
s dλ

“ E

„
ż 8

0

pλp´2X`
n 1

tXn^Měλu
dλ

ȷ

“ E

«

pX`
n

ż Xn^M

0

λp´2 dλ

ff

“ qErX`
n pXn ^Mqp´1s,

where q “ p{pp´1q. Since p and q are conjugate exponents, Hölder’s inequality
gives

EpXn ^Mqp ď qpEpX`
n qpq1{ppEpXn ^Mqpq1{q.

Since Xn ^ M ď M a.s., it follows that EpXn ^ Mqp ď Mp ă 8, so we may
divide both sides by pEpXn ^Mqpq1{q, obtaining

pEpXn ^Mqpq1{p ď qpEpX`
n qpq1{p.
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Note that this is still true even if EpXn ^ Mqp “ 0. Raising both sides to the
p, it follows that

EpXn ^Mqp ď

ˆ

p

p´ 1

˙p

EpX`
n qp.

Letting M Ñ 8 and applying the monotone convergence theorem finishes the
proof. l

Corollary 12.25. Let X “ tXnu be a martingale. Define

X˚
n “ max

0ďmďn
|Xm|.

Then

EpX˚
n qp ď

ˆ

p

p´ 1

˙p

E|Xn|p.

Proof. By Theorem 12.5, t|Xn|u is a submartingale and the result follows im-
mediately by Theorem 12.24. l

Theorem 12.26 (Lp convergence theorem). Let X “ tXnu be a martingale.
Suppose there exists p ą 1 such that supnE|Xn|p ă 8. Then there exists
X8 P LppΩq such that Xn Ñ X8 a.s. and in Lp.

Proof. Since EX`
n ď E|Xn| ď pE|Xn|pq1{p, it follows that supnEX

`
n ă 8. By

the martingale convergence theorem (Theorem 12.12), there exists X8 P L1pΩq

such that Xn Ñ X8 a.s. Let C “ supnE|Xn|p ă 8. By Corollary 12.25,

EpX˚
n qp ď

ˆ

p

p´ 1

˙p

C.

Letting n Ñ 8 and applying the monotone convergence theorem, we have that
supn |Xn| P LppΩq. Since |X8| ď supn |Xn|, it follows that X8 P LppΩq. More-
over, using |Xn ´X8|p ď p2 sup |Xn|qp, it follows by the dominated convergence
theorem that Xn Ñ X8 in Lp. l

Theorem 12.27 (orthogonality of martingale increments). Let X be an L2

martingale. That is, X “ tXnu is a martingale and Xn P L2pΩ,F , P q for all n.
Let m ă n. Then Xn ´ Xm is orthogonal to the subspace L2pΩ,Fm, P q. That
is, if Y P L2 is Fm-measurable, then ErY pXn ´Xmqs “ 0.

Proof. Since

ErY pXn ´Xmqs “ ErErY pXn ´Xmq | Fmss “ ErY ErXn ´Xm | Fmss,

and
ErXn ´Xm | Fms “ ErXn | Fms ´Xm “ Xm ´Xm “ 0,

it follows that ErY pXn ´Xmqs “ 0. l

The following result is the conditional analogue of the formula used to cal-
culate variance: E|X ´ EX|2 “ EX2 ´ pEXq2.
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Theorem 12.28. Let X be an L2 martingale. Then

ErpXn ´Xmq2 | Fms “ ErX2
n | Fms ´X2

m,

for all m ă n.

Proof. By the orthogonality of martingale increments, we have

ErX2
n | Fms “ ErpXn ´Xm `Xmq2 | Fms

“ ErpXn ´Xmq2 ` 2XmpXn ´Xmq `X2
m | Fms

“ ErpXn ´Xmq2 | Fms ` 2XmErXn ´Xm | Fms `X2
m

“ ErpXn ´Xmq2 | Fms `X2
m,

and we are done. l

Exercises

12.7. [2, Exercise 5.4.4] Let ξ1, ξ2, . . . be independent with Eξj “ 0 and |ξj | ď K
a.s. for all j. Define Xn “ ξ1 ` ¨ ¨ ¨ ` ξn. Prove that

P

ˆ

max
1ďmďn

|Xm| ď x

˙

ď
px`Kq2

varpXnq
,

for all x ą 0.

12.8. [2, Exercise 5.4.5] Let X be an L2 martingale with X0 “ 0 a.s. Prove
that

P

ˆ

max
1ďmďn

Xm ě λ

˙

ď
EX2

n

EX2
n ` λ2

,

for all λ ą 0.

12.9. [2, Exercise 5.4.7] Let X and Y be L2 martingales with respect to a
common filtration tFnu. Prove that

EXnYn ´ EX0Y0 “

n
ÿ

j“1

ErpXj ´Xj´1qpYj ´ Yj´1qs.

12.4 Uniform integrability, convergence in L1

This section corresponds to [2, Section 5.5].

Lemma 12.29. Let X be a real-valued random variable. Then X is integrable
if and only if

lim
MÑ8

Er|X|1t|X|ąMus “ 0.
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Proof. First, suppose X is integrable. Since |X|1t|X|ąMu ď |X| for all M and
|X|1t|X|ąMu Ñ 0 a.s. as M Ñ 8, it follows from the dominated convergence
theorem that Er|X|1t|X|ąMus Ñ 0 as M Ñ 8.

Now suppose Er|X|1t|X|ąMus Ñ 0 as M Ñ 8. Choose M such that
Er|X|1t|X|ąMus ă 1. Then

E|X| “ Er|X|1t|X|ďMus ` Er|X|1t|X|ąMus ă M ` 1 ă 8,

and so X is integrable. l

A family of random variables, tXαuαPA is uniformly integrable if

lim
MÑ8

sup
αPA

Er|Xα|1t|Xα|ąMus “ 0.

Note that if tXαu is uniformly integrable, then any subset of tXαu is also uni-
formly integrable.

Lemma 12.30. If tXαuαPA is uniformly integrable, then supαPAE|Xα| ă 8.

Proof. Choose M such that Er|Xα|1t|Xα|ąMus ă 1 for all α P A. Thus, as
before, E|Xα| ă M ` 1 for all α P A. l

Lemma 12.31. Let tXαu be a family of real-valued random variables. Suppose
there exists an integrable random variable Y such that |Xα| ď Y a.s. for all α.
Then tXαu is uniformly integrable.

Proof. The result follows from the facts that |Xα|1t|Xα|ąMu ď |Y |1t|Y |ąMu

a.s. and Er|Y |1t|Y |ąMus Ñ 0 as M Ñ 8. l

Theorem 12.32. Let X P L1pΩ,F , P q. Let

F “ tG Ă F : G is a σ-algebrau.

For each G P F, let XG “ ErX | Gs. Then tXGuGPF is uniformly integrable.

Proof. Let ε ą 0 be arbitrary. By Exercise 2.15, we may choose δ ą 0 such
that Er|X|1As ă ε whenever P pAq ă δ. Define M0 “ δ´1E|X|. Let M ą M0

be arbitrary. Fix G P F. Let ZG “ Er|X| | Gs. By Jensen’s inequality for
conditional expectations, |XG | ď ZG a.s. Thus,

Er|XG |1t|XG |ąMus ď ErZG1tZGąMus.

Since tZG ą Mu P G, it follows from the definition of conditional expectation
that

ErZG1tZGąMus “ Er|X|1tZGąMus.

By Chebyshev’s inequality,

P pZG ą Mq ď
EZG

M
“
E|X|

M
ă
E|X|

M0
“ δ,
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and it follows that
Er|X|1tZGąMus ă ε.

Putting it all together, we have Er|XG |1t|XG |ąMus ă ε. Since G was arbitrary,
it follows that

sup
GPF

Er|XG |1t|XG |ąMus ď ε,

for all M ą M0. Since ε was arbitrary, limMÑ8 supGPFEr|XG |1t|XG |ąMus “ 0.
l

Example 12.33. Let Y be an integrable random variable and tFnu a filtration.
Define X “ tXnu by Xn “ ErY | Fns. Then X is an tFnu-martingale (check).
Moreover, by the previous theorem, X is a uniformly integrable martingale. As
we will see in this section, all uniformly integrable martingales can be written
this way.

Proposition 12.34. Let φ : r0,8q Ñ r0,8q satisfy x´1φpxq Ñ 8 as x Ñ 8.
If supαPAEφp|Xα|q ă 8, then tXαuαPA is uniformly integrable.

Proof. Exercise 12.10. l

Remark 12.35. A common choice for φ in Proposition 12.34 is φpxq “ xp,
where p ą 1. Another possible choice is φpxq “ xplog xq`.

Theorem 12.36. Suppose Xn Ñ X in probability. Then the following are
equivalent:

(i) tXnu is uniformly integrable,

(ii) Xn Ñ X in L1,

(iii) E|Xn| Ñ E|X|

Proof. Uses truncation. See [2, Theorem 5.5.2] for details. l

Theorem 12.37. Let X “ tXnu be a submartingale. Then the following are
equivalent:

(i) X is uniformly integrable,

(ii) There exists X8 such that Xn Ñ X8 a.s. and in L1.

(iii) There exists X8 such that Xn Ñ X8 in L1.

Proof. Suppose X is uniformly integrable. Then supnE|Xn| ă 8. Thus, by
the martingale convergence theorem (Theorem 12.12), there exists X8 P L1

such that Xn Ñ X8 a.s. This implies Xn Ñ X8 in probability. Therefore, by
Theorem 12.36, we have Xn Ñ X8 in L1 and we have proven that (i) implies
(ii).

Trivially, (ii) implies (iii).
Now suppose (iii) holds. Since convergence in L1 implies convergence in

probability, we may apply Theorem 12.36, which gives us that X is uniformly
integrable. Hence, (iii) implies (i). l
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Lemma 12.38. If Xn Ñ X in L1 and A P F , then ErXn1As Ñ ErX1As.

Proof. This follows since

|ErXn1As ´ ErX1As| “ |ErpXn ´Xq1As| ď E|Xn ´X| Ñ 0

as n Ñ 8. l

Lemma 12.39. Let X “ tXnu be an tFnu-martingale. Suppose there exists
X8 such that Xn Ñ X8 in L1. Then Xn “ ErX8 | Fns.

Proof. Fix n P N. Note that Xn P Fn. Let A P Fn. By the definition of
conditional expectation, we need only show that ErX81As “ ErXn1As.

By the martingale property, if k P N, then ErXn`k | Fns “ Xn. Thus,
by the definition of conditional expectation, ErXn`k1As “ ErXn1As. Letting
k Ñ 8 and using the previous lemma, we get ErX81As “ ErXn1As. l

Theorem 12.40. Let X “ tXnu be an tFnu-martingale. Then the following
are equivalent:

(i) X is uniformly integrable,

(ii) There exists X8 such that Xn Ñ X8 a.s. and in L1.

(iii) There exists X8 such that Xn Ñ X8 in L1.

(iv) There exists Y P L1 such that Xn “ ErY | Fns for all n.

Proof. Theorem 12.37 gives (i) implies (ii) implies (iii). Lemma 12.39 gives (iii)
implies (iv). And Theorem 12.32 gives (iv) implies (i). l

Given a filtration tFnu, we will define F8 :“ σp
Ť

n Fnq.

Theorem 12.41. Let tFnu be a filtration and Y an integrable random variable.
Then ErY | Fns Ñ ErY | F8s a.s. and in L1 as n Ñ 8.

Proof. Let Xn “ ErY | Fns so that X “ tXnu is a uniformly integrable mar-
tingale and there exists X8 such that Xn Ñ X8 a.s. and in L1. It therefore
suffices to show that X8 “ ErY | F8s.

For each n, we have Xn P F8. Thus, lim supnXn P F8. But lim supnXn “

X8 a.s. So after changing X8 (if necessary) on a set of measure zero, we have
X8 P F8.

Let
L “ tA P F8 : ErY 1As “ ErX81Asu.

It remains only to show that F8 Ă L. By Lemma 12.39, we have Xn “ ErX8 |

Fns. Thus, ErY | Fns “ ErX8 | Fns for all n. It follows from the definition
of conditional expectation that Fn Ă L for all n, and hence,

Ť

n Fn Ă L. Since
Ť

n Fn is a π-system and L is a λ-system, it follows that F8 Ă L. l

Theorem 12.42 (Lévy’s 0-1 law). Let tFnu be a filtration and A P F8. Then
P pA | Fnq Ñ 1A a.s.



12.5. OPTIONAL STOPPING THEOREMS 205

Proof. Take Y “ 1A in Theorem 12.41. l

Theorem 12.43. Let Xn Ñ X8 a.s. Suppose there exists integrable Y such
that |Xn| ď Y a.s. for all n P N. If tFnu is a filtration, then

ErXn | Fns Ñ ErX8 | F8s a.s.

as n Ñ 8.

Proof. Uses Theorem 12.41. See [2, Theorem 5.5.9] for details. l

Exercises

12.10. [2, Exercise 5.5.1] Prove Proposition 12.34.

12.11. [2, Exercise 5.5.2] Let θ be an integrable random variable. Let Z “ tZnu

be an integrable stochastic process, independent of θ. Assume Z1, Z2, ... are i.i.d.
Define Yn “ θ ` Zn. (For example, if Z1 „ Np0, 1q, then, given θ, the sequence
Y1, Y2, . . . is an i.i.d. sequence of Npθ, 1q-distributed random variables.) Prove
that Erθ | Y1, . . . , Yns Ñ θ a.s. as n Ñ 8.

12.12. [2, Exercise 5.5.7] Let X “ tXnu be an tFnu-adapted, r0, 1s valued
process. Let θ P r0, 1s and assume X0 “ θ a.s. Let α, β ą 0 with α` β “ 1 and
suppose

P pXn`1 “ α ` βXn | Fnq “ Xn,

P pXn`1 “ βXn | Fnq “ 1 ´Xn.

Prove that there exists A P F such that Xn Ñ 1A a.s. and P pAq “ θ.

12.13. [2, Exercise 5.5.8] Prove that if tFnu is a filtration and Xn Ñ X8 in
L1, then ErXn | Fns Ñ ErX8 | F8s in L1.

12.5 Optional Stopping Theorems

This section corresponds to [2, Section 5.7].
Our main theorems in this section will use the hypothesis that tXN^nu

is uniformly integrable. Our first two results provide tools for checking this
hypothesis.

Theorem 12.44. Let X “ tXnu be a stochastic process and N an N Y t8u-
valued random variable. If XN1tNă8u is integrable and tXn1tNąnuu is uni-
formly integrable, then tXN^nu is uniformly integrable.

Proof. Fix n P N and M ą 0. Then

Er|XN^n|1t|XN^n|ąMus

“ Er|XN1tNă8u|1t|XN1tNă8u|ąMu1tNďnus ` Er|Xn|1t|Xn|ąMu1tNąnus

ď Er|XN1tNă8u|1t|XN1tNă8u|ąMus ` Er|Xn1tNąnu|1t|Xn1tNąnu|ąMus.

The result follows by taking the supremum and letting M Ñ 8. l
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Theorem 12.45. Let X be a uniformly integrable tFnu-submartingale, and N
an tFnu-stopping time. Then tXN^nu is uniformly integrable.

Proof. See [2, Theorem 5.7.1]. l

Theorem 12.46. Let tXnu be a uniformly integrable tFnu-submartingale and
N an tFnu stopping time. By Theorem 12.37, there exists X8 such that Xn Ñ

X8 a.s. and in L1. Hence, XN is well-defined. We then have

EX0 ď EXN ď EX8.

Proof. By Theorem 12.21,

EX0 ď EXN^n ď EXn.

We have already established that Xn Ñ X8 in L1. By Theorem 12.45, we
have tXN^nu is uniformly integrable. Thus, by Theorem 12.37 and the fact
that XN^n Ñ XN a.s., it follows that XN^n Ñ XN in L1. Hence, the proof is
completed by letting n Ñ 8. l

Remark 12.47. It is instructive to compare this theorem with Theorem 12.21.

Theorem 12.48 (optional stopping theorem). Let tFnu be a filtration. Let
L and M be tFnu-stopping times with Lpωq ď Mpωq for all ω P Ω. Let
tYnu be a stochastic process such that tYM^nu is a uniformly integrable tFnu-
submartingale. Then Yn1tM“8u converges a.s. Define Y8 to be this limit, so
that YL and YM are well-defined. Then EYL ď EYM and YL ď ErYM | FLs a.s.

Proof. Let Xn “ YM^n, so that X “ tXnu is a uniformly integrable submartin-
gale. By Theorem 12.37, there exists X8 such that Xn Ñ X8 a.s. and in L1.
In particular, this implies Yn1tM“8u “ Xn1tM“8u Ñ X81tM“8u “: Y8 a.s.

By Theorem 12.46, EXL ď EX8. But XL “ YL and X8 “ YM , so this
proves the first inequality.

Now fix A P FL. Let N “ L1A `M1Ac . By Proposition 11.3, N is stopping
time. Since N ď M pointwise, we have

ErYL1As ` ErYM1Acs “ EYN ď EYM “ ErYM1As ` ErYM1Acs.

Since YM “ X8 is integrable, we have ErYM1Acs ă 8, so that

ErYL1As ď ErYM1As “ ErErYM1A | FLss “ ErErYM | FLs1As.

This holds for all A P FL. By Exercise 11.6, YL “ YL1tLă8u ` X81tL“8u is
FL-measurable. Also, ErYM | FLs is FL-measurable. Thus, by Lemma 6.50, we
obtain the second inequality. l

For the proofs of the next two results, see [2, Theorems 5.7.5 and 5.7.6],
respectively. The first is a generalization of Wald’s equation.
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Theorem 12.49. Let X be an tFnu-submartingale. Suppose there exists B ą 0
such that Er|Xn`1 ´ Xn| | Fns ď B a.s. for all n. Let N be an tFnu-stopping
time with EN ă 8. Then tXN^nu is uniformly integrable and EXN ě EX0.
If X is a martingale, then EXN “ EX0.

Theorem 12.50. Let X be a nonnegative tFnu-supermartingale and N an
tFnu-stopping time. By Theorem 12.14, there exists X8 P L1 such that Xn Ñ

X8 a.s. and EX8 ď EX0. Hence, XN is well-defined. It then follows that
EXN ď EX0.

Theorem 12.51. Let X be an asymmetric simple random walk with p “ P pξ1 “

1q ą 1{2. Let φpxq “ pq{pqx and Tx “ inftn : Xn “ xu. Fix a ă 0 ă b. Then

(a) tφpXnqu is a martingale,

(b) we have

P pTa ă Tbq “
φpbq ´ φp0q

φpbq ´ φpaq
,

(c) P pinfnXn ď aq “ P pTa ă 8q “ φp´aq, and

(d) P pTb ă 8q “ 1 and ETb “ b{p2p´ 1q.

Proof. Note that

ErφpXn`1q | FX
n s “ ErφpXn ` ξn`1q | FX

n s “ hpXnq,

where

hpxq “ Erφpx` ξn`1qs “ ppq{pqx`1 ` qpq{pqx´1

“ pq ` pqpq{pqx “ pq{pqx “ φpxq.

Thus, ErφpXn`1q | FX
n s “ φpXnq, which proves (a).

Let θ “ P pTa ă Tbq. Let N “ Ta ^ Tb. By the same methods as in
Example 11.12, it can be shown that EN ă 8, and therefore N ă 8 a.s. Since
|φpXN^nq| ď |a|_b for all n, it follows that tφpXN^nqu in uniformly integrable.
By the optional stopping theorem,

φp0q “ EφpX0q “ EφpXN q “ θφpaq ` p1 ´ θqφpbq.

Solving for θ gives (b).
Since tTa ă 8u “

Ť8

b“1tTa ă Tbu, and this is an increasing union, (c)
follows by letting b Ñ 8 in (b).

Similarly, letting a Ñ ´8 gives Tb ă 8 a.s. Note that tXn ´ pp´ qqnu is a
mean zero random walk, and therefore a martingale. Since Tb ^ n is a bounded
stopping time, we may apply Theorem 12.21 to obtain

0 “ ErX0 ´ pp´ qq0s “ ErXTb^n ´ pp´ qqpTb ^ nqs.
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Thus,
ErTb ^ ns “ pp´ qq´1ErXTb^ns. (12.3)

Now,
|XTb^n| ď b` |infmXm|.

By (c),

E|infmXm| “
ÿ

kPN
kP pinfmXm “ ´kq

“
ÿ

kPN
kpφpkq ´ φpk ` 1qq

“
ÿ

kPN
kpq{pqkp1 ´ q{pq ă 8,

since q{p ă 1. Thus, we may apply dominated convergence to the right-hand
side of (12.3). If we also apply monotone convergence to the left-hand side, we
obtain

ETb “ pp´ qq´1ErXTb
s.

Since XTb
“ b a.s., this proves (d). l

Exercises

12.14. Let X be a mean 0 random walk with σ2 “ Eξ21 . Prove that the process
tX2

n ´ σ2nu is a martingale.

12.15. [2, Exercise 5.7.2] Let X be an asymmetric random walk with p ą 1{2.
Prove that varpTbq “ 4bpq{pp´ qq3.

12.16. [2, Exercise 5.7.8] Let Xn be the total bankroll of a poker players after
his nth session, so that ξn :“ Xn ´Xn´1 is his winnings (or losses, if negative)
from the nth session. Assume that ξ1, ξ2, . . . are i.i.d. with ξ1 „ Npµ, σ2q, where
µ ą 0. Let X0 “ b P p0,8q and consider

R “ tXn ď 0 for some n P Nu.

Then R represents the event that the player eventually goes broke. Prove that

P pRq ď e´2µb{σ2

.



Chapter 13

Markov Chains

13.1 Definitions

This section corresponds to [2, Section 6.1].
Let pS,Sq be a measurable space. Recall from Section 6.4 that an S-valued

stochastic process X “ tXnu is a Markov chain with respect to a filtration tFnu

is X is adapted to tFnu and satisfies the Markov property,

P pXn`1 P B | Fnq “ P pXn`1 P B | Xnq, (13.1)

for all n P N and all B P S. The space S is called the state space of the Markov
chain X.

If we say simply that X is a Markov chain, we mean that X is a Markov
chain with respect to tFX

n u.
A transition probability on S is a probability kernel from S to S. Recall

from Section 6.3.2 that a probability kernel from S to S is a function p : S Ñ

M1pSq which is pS,MpSqq-measurable. (Here, M1pSq is the set of probability
measures on S.) Recall also that we write ppx,Aq “ pppxqqpAq, so that we may
think of p as a mapping from S ˆ S to R.

In Section 6.3.2, it was shows that p : SˆS Ñ R is a transition probability if
and only if ppx, ¨q is a probability measure for all x P S and pp¨, Aq is measurable
for all A P S.

Lemma 13.1. Let pS,Sq be a measurable space. Let X be an S-valued stochastic
process, adapted to a filtration tFnu. If, for each n P N, there exists a transition
probability pn such that

P pXn`1 P B | Fnq “ pnpXn, Bq,

for all B P S, then X is an Markov chain with respect to tFnu.

Proof. Suppose there exists such a transition probability for each n. Fix B P S.
Then P pXn`1 P B | Fnq is σpXnq-measurable. Thus,

P pXn`1 P B | Xnq “ ErP pXn`1 P B | Fnq | Xns “ P pXn`1 P B | Fnq,

209
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and X is a Markov chain. l

Lemma 13.2. Let pS,Sq be a measurable space. Let X be an S-valued Markov
chain with respect to tFnu. If S is a standard Borel space, then, for each n P N,
there exists a unique transition probability pn such that

P pXn`1 P B | Fnq “ pnpXn, Bq,

for all B P S. (Uniqueness is in the sense that if, for fixed n, the transition
probabilities pn and rpn both satisfy the theorem, then for P -a.e. ω P Ω, the
measures pnpXnpωq, ¨q and rpnpXnpωq, ¨q are identical.)

Proof. This is just a special case of Theorem 6.64. l

For the remainder of this chapter, we shall assume S is a standard Borel
space. In this case, we say that an tFnu-Markov chain is time-homogeneous
if the transition probabilities pn do not depend on n. That is, a Markov chain
is time-homogeneous if there exists a single transition probability p such that

P pXn`1 P B | Fnq “ ppXn, Bq,

for all n P N and all B P S.
For the remainder of this chapter, we shall also assume all Markov chains

are time-homogeneous. As such, we will typically refer to time-homogeneous
Markov chains simply as Markov chains.

If X is a Markov chain on S and X0 „ µ, then we say µ is the initial
distribution of X.

Theorem 13.3. Let p be a transition probability on S and µ a probability mea-
sure on S. Then there exists a Markov chain X on S with transition probability
p and initial distribution µ.

Proof. Let Ω “ SNYt0u and F “ SNYt0u, so that a typical ω P Ω has the form
ω “ pω0, ω1, . . .q. For n ě 0, define Xn : Ω Ñ S by Xnpωq “ ωn.

Let νn be the measure on pSt0,...,nu,St0,...,nuq determined by

νnpB0 ˆ ¨ ¨ ¨ ˆBnq

“

ż

B0

¨ ¨ ¨

ż

Bn´1

ppxn´1, Bnqppxn´2, dxn´1q ¨ ¨ ¨ ppx0, dx1qµpdx0q

As in the proof of Theorem 6.26, we can use Kolmogorov’s extension theorem
(Theorem 2.52) to show that there exists a unique probability measure Pµ on
pΩ,Fq such that

PµpX0 P B0, . . . , Xn P Bnq “ νnpB0 ˆ ¨ ¨ ¨ ˆBnq

for all B0, . . . , Bn P S. The details are left to the reader in Exercise 13.1.
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We first note that

PµpX0 P B0q “ ν0pB0q “

ż

B0

µpdx0q “ µpB0q.

It therefore suffices to show that X is a Markov chain with transition probability
p.

Fix n P N and B P S. We want to show that

PµpXn`1 P B | FX
n q “ ppXn, Bq.

Let

L “ tA P FX
n : Eµr1tXn`1PBu1As “ EµrppXn, Bq1Asu.

Since ppXn, Bq is FX
n -measurable, it suffices to show that FX

n Ă L. Let

P “ ttX0 P B0, . . . , Xn P Bnu : Bj P Su.

Since P is a π-system and σpPq “ FX
n , it suffices by the π-λ theorem to show

that P Ă L.
Let A “ tX0 P B0, . . . , Xn P Bnu P P. We will first show that

ż

B0

¨ ¨ ¨

ż

Bn

fpxnqppxn´1, dxnq ¨ ¨ ¨ ppx0, dx1qµpdx0q “ EµrfpXnq1As, (13.2)

for all bounded, measurable f : S Ñ R. To show this, first assume f “ 1E for
some E P S. Then the left-hand side of (13.2) becomes

ż

B0

¨ ¨ ¨

ż

Bn´1

ppxn´1,E XBnqppxn´2, dxn´1q ¨ ¨ ¨ ppx0, dx1qµpdx0q

“ νnpB0 ˆ ¨ ¨ ¨ ˆBn´1 ˆ pE XBnqq

“ PµpX0 P B0, . . . , Xn´1 P Bn´1, Xn P E XBnq

“ Eµr1EpXnq1As,

and (13.2) is true for indicator functions. By linearity, it is true for simple
functions, so by dominated convergence, it is true for all bounded, measurable
functions.

We now show that A P L. For this, we note that

Eµr1tXn`1PBu1As “ νn`1pB0 ˆ . . .ˆBn ˆBq

“

ż

B0

¨ ¨ ¨

ż

Bn

ppxn, Bqppxn´1, dxnq ¨ ¨ ¨ ppx0, dx1qµpdx0q

“ EµrppXn, Bq1As,

where in the last line we have applied (13.2) to the bounded, measurable function
pp¨, Bq. l
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Remark 13.4. Although the probability measure in the proof of Theorem 13.3
is denoted by Pµ, it actually depends on p as well. If we change p or µ, we will
get a different probability measure.

Often, when we want to construct a variety of different stochastic processes
(or even just a variety of different random variables), we fix one measurable space
pΩ,Fq, one probability measure P , and then consider many different measurable
functions.

Here we are taking a different approach. We fix one measurable space
pΩ,Fq “ pSNYt0u,SNYt0uq, one measurable function Xpωq “ ω, and then con-
sider many different probability measures. We don’t construct our Markov pro-
cess by constructing X on top of a given probability space. Rather, we construct
Pµ on top of the identity process on the canonical sequence space.

If x P S, we will use Px to denote Pδx . It can be show that

PµpAq “

ż

S

PxpAqµpdxq,

so that for many purposes it suffices only to consider the measures Px.

The Markov chain in Theorem 13.3 is unique in the following sense. If X and
Y are Markov chains, both with transition probability p and initial distribution
µ, then X and Y have the same finite-dimensional distributions. That is, for
every n P N, we have pX0, . . . , Xnq “d pY0, . . . , Ynq.

Theorem 13.5. If X is a Markov chain on S with transition probability p and
initial distribution µ, then

P pX0 P B0, . . . , Xn P Bnq

“

ż

B0

¨ ¨ ¨

ż

Bn´1

ppxn´1, Bnqppxn´2, dxn´1q ¨ ¨ ¨ ppx0, dx1qµpdx0q,

for all B0, . . . , Bn P S.

Proof. Note that Xn`1 | Fn „ ppXnq, that is, ppXnq is a regular conditional
distribution for Xn`1 given Fn. By Corollary 6.67, we have

ErfpXn`1q | Fns “

ż

S

fpxqppXn, dxq a.s.

for all measurable f : S Ñ R satisfying E|fpXn`1q| ă 8. We will prove that

E

„ n
ź

m“0

fmpXmq

ȷ

“

ż

Sn`1

ˆ n
ź

m“0

fmpxmq

˙

ppxn´1, dxnq ¨ ¨ ¨ ppx0, dx1qµpdx0q,

for all bounded, measurable fm. Taking fm “ 1Bm
will finish the proof.
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The claim is true for n “ 0, since X0 „ µ. Suppose the claim is true for
some n. Then

E

„ n`1
ź

m“0

fmpXmq

ȷ

“ E

„

E

„ n`1
ź

m“0

fmpXmq

ˇ

ˇ

ˇ

ˇ

Fn

ȷȷ

“ E

„ˆ n
ź

m“0

fmpXmq

˙

Erfn`1pXn`1q | Fns

ȷ

“ E

„ˆ n
ź

m“0

fmpXmq

˙
ż

S

fn`1pxqppXn, dxq

ȷ

“ E

„ˆ n´1
ź

m“0

fmpXmq

˙

rfnpXnq

ȷ

,

where

rfnpxnq “ fnpxnq

ż

S

fn`1pxqppxn, dxq

“ fnpxnq

ż

S

fn`1pxn`1qppxn, dxn`1q,

which is a bounded, measurable function. Thus, by the inductive hypothesis,

E

„ n`1
ź

m“0

fmpXmq

ȷ

“

ż

Sn`1

ˆ n´1
ź

m“0

fmpxmq

˙

rfnpxnqppxn´1, dxnq ¨ ¨ ¨ ppx0, dx1qµpdx0q

“

ż

Sn`2

ˆ n`1
ź

m“0

fmpxmq

˙

ppxn, dxn`1qppxn´1, dxnq ¨ ¨ ¨ ppx0, dx1qµpdx0q,

and this completes the proof. l

Exercises

13.1. Fill in the details in the proof of Theorem 13.3.

13.2 Examples

This section corresponds to [2, Section 6.2].

Example 13.6. Let Y “ tYnu be a random walk on Rd, let X0 “ x P Rd, and
define Xn “ X0 ` Yn. Note that since X0 is not random, we have FY

n “ FX
n “

Fξ
n, where ξn “ Yn ´ Yn´1. Define p : Rd ˆ Rd Ñ R by

ppx,Aq “

ż

Rd

1Apx` zqµpdzq “ µpA´ xq,
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where ξ1 „ µ and
A´ x “ ty ´ x P Rd : y P Au.

Note that p is a transition probability (check). Also note that

P pXn`1 P A | Fnq “ Er1ApXn ` ξn`1q | Fns “ hpXnq,

where
hpxq “ Er1Apx` ξn`1qs “ ppx,Aq.

Thus, X “ tXnu is a Markov chain with transition probability p and initial
distribution δx.

Henceforth, we will extend our definition of a random walk to include any
Markov chain with the above transition probability.

Let us now consider the special case where S is countable and S “ 2S .
For each i, j P S, let ppi, jq ě 0 and assume

ř

jPS ppi, jq “ 1 for all i P S.
The indexed collection pppi, jqqi,jPS can be thought of as a (possibly infinite)
stochastic matrix. (A so-called “stochastic” matrix is just a matrix whose rows
sum to 1.)

With an abuse of notation, define p : S ˆ S Ñ R by

ppi, Aq “
ÿ

jPA

ppi, jq.

It can be verified that p is a transition probability on S, and that all transition
probabilities on S can be written this way.

Note that a stochastic process X “ tXnu is a Markov chain with transition
probability p is and only if

P pXn`1 “ j | Xn “ i,Xn´1 “ in´1, . . . , X0 “ i0q “ ppi, jq,

for all n, i, j, i0, . . . , in´1.

Theorem 13.7. Let Z “ tZnu be the branching process defined in Section 12.2.
Then Z is a Markov chain with transition probability

ppi, jq “ P

ˆ i
ÿ

m“1

ξ1,m “ j

˙

.

Proof. Exercise 13.2. l

Example 13.8. Consider a queue with one server. At time 0, the 0th customer
is just beginning to receive service, and there are x customers in the queue. Each
customer’s service time is independent of other customers, and has a distribution
ν, supported on p0,8q and with finite moments of all orders. New customers
arrive in the queue according to a Poisson process with rate λ ą 0.

We wish to construct a stochastic process X “ tXnu so that Xn represents
the number of customers in the queue at the moment the nth customer begins
receiving service. (In particular, we must have X0 “ x.)
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We begin with a heuristic discussion. When the nth customer begins receiv-
ing service, there are Xn customers in the queue. The duration of the service
will be T „ ν. During that time, N new customers will arrive. Since new
customers arrive according to a Poisson process with rate λ ą 0, we have

P pN “ k | T “ tq “ e´λ pλtqk

k!

Thus,

P pN “ kq “ ErP pN “ k | T qs “ E

„

e´λ pλT qk

k!

ȷ

“

ż 8

0

e´λ pλtqk

k!
νpdtq “: ak,

for all k P N Y t0u. Note that each ak ą 0. If Xn `N ą 0, then we would have
Xn`1 “ Xn ` N ´ 1, since the customer at the front of the queue would step
out and into service. On the other hand, if Xn ` N “ 0, this means the queue
was empty when the nth customer began service, and no one arrived during
that customer’s service time. Thus, the size of the queue at the beginning of
the pn` 1qth customer’s service would be 0, that is, Xn`1 “ 0.

We turn this reasoning into a formal stochastic process as follows. Let X0 “

x. Let ξ1, ξ2, . . . be i.i.d. t´1, 0, 1, 2, . . .u-valued random variables with P pξ1 “

kq “ ak`1. For n P N, define Xn “ pXn´1 ` ξnq`.

It can be shown (with details left to the reader) that X is a Markov chain
with respect to tFξ

nu with transition probability

ppi, jq “

$

’

&

’

%

a0 ` a1 if i “ 0, j “ 0,

aj`1 if i “ 0, j ě 1,

aj´pi´1q1tjěi´1u if i ě 1.

In fact, the above is a transition probability for any sequence taku8
k“0 with

ak ą 0 for all k and
ř

k ak “ 1.

This process is called an M/G/1 queue. The “M” refers to the fact that it is
a Markov process, which comes from the assumption that the arrivals follow a
Poisson process. The “G” (for “General”) refers to the fact that the distribution
of the service time, ν, is allowed to be any probability distribution. And the
“1” refers to the fact that there is only one server.

Let X be a Markov chain on a countable state space S with transition
probability ppi, jq and initial distribution µ. We claim that

PµpXn “ in, . . . , X0 “ i0q “ µpi0q

n
ź

m“1

ppim´1, imq.

To see this, note that the equation holds for n “ 0 since X0 „ µ. Assume it
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holds for some n. Then

PµpXn`1 “ in`1, . . . , X0 “ i0q “ EµrPµpXn`1 “ in`1, . . . , X0 “ i0 | Fnqs

“ Eµr1tXn“in,...,X0“i0uPµpXn`1 “ in`1 | Fnqs

“ Eµr1tXn“in,...,X0“i0uPµpXn`1 “ in`1 | Xnqs

“ Eµr1tXn“in,...,X0“i0uppXn, in`1qs

“ Eµr1tXn“in,...,X0“i0uppin, in`1qs

“ ppin, in`1qPµpXn “ in, . . . , X0 “ i0q,

and the result then follows from the inductive hypothesis.
Recall that p : S2 Ñ R can be informally regarded as a (possibly infinite)

matrix. Along these lines, let us define p0 “ I, where I : S2 Ñ R is defined by
Ipi, jq “ 1ti“ju. We then define pn : S2 Ñ R by

pnpi, jq “
ÿ

kPS

pn´1pi, kqppk, jq.

The fact that this kind of “matrix” multiplication works more generally follows
from Remark 13.12.

Similarly, µ P M1pSq can be considered a function from S to R where µpjq “

µptjuq. Informally regarding µ as a (possibly infinite) row vector, we define
µpn : S Ñ R by

µpnpjq “
ÿ

kPS

µpkqpnpk, jq.

Note that µp0 “ µ. Also note that δxp
npjq “ pnpx, jq.

With this notation, we claim that

PµpXn “ jq “ µpnpjq.

To see this, note that the equation holds for n “ 0 since X0 „ µ. Assume it
holds for some n. Then

PµpXn`1 “ jq “
ÿ

kPS

PµpXn “ kqPµpXn`1 “ j | Xn “ kq

“
ÿ

kPS

µpnpkqppk, jq

“
ÿ

kPS

ÿ

ℓPS

µpℓqpnpℓ, kqppk, jq

“
ÿ

ℓPS

µpℓq
ÿ

kPS

pnpℓ, kqppk, jq

“
ÿ

ℓPS

µpℓqpn`1pℓ, jq “ µpn`1pjq,

and the claim is proven by induction.
As a special case of this formula, we have

PxpXn “ jq “ pnpx, jq (13.3)

for all x, j P S and all n P N Y t0u.
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Exercises

13.2. Prove Theorem 13.7.

13.3. [2, Exercise 6.2.8] Let Xn be a simple random walk on R and define
Yn “ max0ďmďnXm. Prove that tYnu is not a Markov chain.

13.3 Extensions of the Markov property

This section corresponds to [2, Section 6.3].
Recall that the general Markov property is given by (13.1). However, as

stated previously, we are assuming that all our Markov chains are time homoge-
neous with a state space that is a standard Borel space. We further assume, as
in the proof of Theorem 13.3, that our Markov process is built by constructing
a probability measure Pµ on the canonical space pΩ,Fq “ pSNYt0u,SNYt0uq, so
that the identity process X “ tXnu, where Xnpωq “ ωn, is a Markov process
with transition probability p and initial distribution µ. Because of this, we are
free to use the shift operator θ, defined just prior to Example 11.9.

In this setting, the following theorem gives a useful reformulation of the
Markov property.

Theorem 13.9 (Markov property). If Y is a bounded random variable, then
for all n P N Y t0u,

EµrY ˝ θn | Fns “ EXn
Y,

where EXnY “ φpXnq, with φpxq “ ExY .

Proof. See [2, Theorem 6.3.1] l

Remark 13.10. Since Y is a random variable, we may write

Y “ Y pωq “ Y pω0, ω1, ω2, . . .q.

But Xnpωq “ ωn, so

Y pωq “ Y pX0pωq, X1pωq, X2pωq, . . .q,

which is the same as

Y “ Y pX0, X1, X2 . . .q.

In other words, Y is just a function of the path of our Markov process. Also,

Y ˝ θn “ Y pXn, Xn`1, Xn`2, . . .q

is that same function applied to the part of the path that starts at time n.
Hence, in words, the expected value of Y pXn, Xn`1, Xn`2, ...q given Fn is

equal to the expected value of Y pX0, X1, X2, . . .q starting at Xn.
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Theorem 13.11 (Chapman-Kolmogorov equation). If S is countable, then

PxpXm`n “ zq “
ÿ

yPS

PxpXm “ yqPypXn “ zq,

for all x, z P S and all m,n P N Y t0u.

Proof. We begin with

PxpXm`n “ zq “ ExrPxpXm`n “ z | Fmqs

According to the Markov property,

PxpXm`n “ z | Fmq “ Exr1tXm`n“zu | Fms

“ Exr1tXn“zu ˝ θm | Fms “ EXmr1tXn“zus “ PXmpXn “ zq.

This last quantity is to be understood as φpXmq, where φpxq “ PxpXn “ zq.
Thus,

PxpXm`n “ zq “ ExrφpXmqs

“
ÿ

yPS

PxpXm “ yqφpyq “
ÿ

yPS

PxpXm “ yqPypXn “ zq,

which is what we wanted to prove. l

Remark 13.12. By (13.3), the Chapman-Kolmogorov equation can be rewrit-
ten as

pm`npx, zq “
ÿ

yPS

pmpx, yqpnpy, zq.

Theorem 13.13 (strong Markov property). Let tYnu be a sequence of random
variables. Suppose there exists M ą 0 such that |Yn| ď M a.s. for all n. Let N
be an tFnu-stopping time, where Fn “ FX

n . Then

EµrYN ˝ θN | FN s1tNă8u “ pEXN
YN q 1tNă8u,

where EXN
YN “ φN pXN q, with φnpxq “ ExYn.

Proof. Let A P FN . Then

EµrpYN ˝ θN q1tNă8u1As “

8
ÿ

n“0

EµrpYn ˝ θnq1tN“nu1As

“

8
ÿ

n“0

EµrEµrpYn ˝ θnq1tN“nu1A | Fnss.

By the definition of FN , we have A X tN “ nu P Fn. Thus, by the Markov
property,

EµrpYn ˝ θnq1tN“nu1A | Fns “ EµrYn ˝ θn | Fns1tN“nu1A

“ φnpXnq1tN“nu1A,
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where φnpxq “ ExrYns. Putting these together gives

EµrpYN ˝ θN q1tNă8u1As “

8
ÿ

n“0

EµrφnpXnq1tN“nu1As

“ EµrφN pXN q1tNă8u1As.

Since A P FN was arbitrary and φN pXN q P FN , this shows that

`

EµrYN ˝ θN | FN s
˘

1tNă8u “ EµrpYN ˝ θN q1tNă8u | FN s

“ φN pXN q1tNă8u

“ pEXN
YN q 1tNă8u,

and we are done. l

Theorem 13.14 (reflection principle). Let X be a symmetric random walk on
R. Then

P

ˆ

sup
mďn

Xm ą a

˙

ď 2P pXn ą aq (13.4)

for all a ą 0 and all n P N.

Remark 13.15. Equation (13.4) is equivalent to

P

ˆ

sup
mďn

Xm ě a

˙

ď 2P pXn ě aq. (13.5)

To see this, let ak Ò a in (13.4) and ak Ó a in (13.5).

Remark 13.16. The idea of the proof, and the origin of the name of the
theorem is the following. Let N “ inftn : Xn ě au. Then the left-hand side of
(13.5) is simply P pN ď nq. Let us suppose, for the purposes of this heuristic
discussion, that XN “ a a.s. and P pXn “ aq “ 0.

Let us decompose the event tN ď nu into the two events,

U “ tN ď n,Xn ą au and L “ tN ď n,Xn ă au.

Note that U “ tXn ą au. Consider a particular sample path in U with steps
pξ1, . . . , ξN , ξN`1, . . . , ξnq. From this we can create a corresponding “reflected”
sample paths, with steps pξ1, . . . , ξN ,´ξN`1,´ξN`2, . . . ,´ξnq. The reflected
sample path is in L and, in fact, this process of reflection creates a one-to-
one correspondence between U and L. Moreover, because the random walk is
symmetric, the original path and the reflected path have the same probability.
Thus,

P pLq “ P pUq “ P pXn ą aq “ P pXn ě aq,

which gives

P

ˆ

sup
mďn

Xn ě a

˙

“ P pN ď nq “ P pUq ` P pLq “ 2P pUq “ 2P pXn ě aq.
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Of course, this is not exactly correct, not only because the argument was purely
heuristic, but also because of our simplifying assumption. In particular, we do
not have XN “ a a.s. Rather, the most we can say is that XN ě a a.s.

Proof of Theorem 13.14. Fix n P N. Let N “ inftm : Xm ą au. For m ď n,
define Ym “ 1tXn´mąau. For m ą n, let Ym “ 0. Note that Ym ˝ θm “

1tXnąau1tmďnu, so that

pYN ˝ θN q1tNă8u “ 1tXnąa,Nďnu “ 1tXnąau.

By the strong Markov property,

P pXn ą a | FN q “ ErpYN ˝ θN q1tNă8u | FN s

“ ErYN ˝ θN | FN s1tNă8u

“ φN pXN q1tNă8u,

where φmpxq “ ExYm. Thus, φmpxq “ 0 for m ą n. For m ď n and x ą a, we
have,

φmpxq “ ExYm “ PxpXn´m ą aq ě PxpXn´m ě xq ě 1{2,

where the last inequality comes from the fact that X is a symmetric random
walk. Since XN ą a a.s. on the event tN ă 8u, we have

P pXn ą aq “ ErP pXn ą a | FN qs

“ ErφN pXN q1tNă8us

“ ErφN pXN q1tNďnus

ě
1

2
P pN ď nq

Since tN ď nu “ tsupmďnXm ą au, this completes the proof. l

Exercises

13.4. Prove the following version of the strong Markov property: Let X “ tXnu

be a Markov chain with respect to tFnu taking values in pS,Sq. Let N be an
tFnu-stopping time. Then, for all m P N and all B P S,

P pXN`m P B | FN q “ P pXN`m P B | XN q a.s. on tN ă 8u.

Note: When conditioning on XN above, we are conditioning on the σ-algebra
consisting of sets of the form tN ă 8u X tXN P Au and ptN ă 8u X tXN P

Auq Y tN “ 8u, where A P S.

13.5. [2, Exercise 6.3.1] Let X be a (time-homogeneous) Markov chain on a
(standard Borel) space S. Prove that the past and the future are conditionally
independent given the present. More specifically, let A P σpX0, . . . , Xnq and
B P σpXn, Xn`1, . . .q. Prove that for any initial distribution µ, we have

PµpAXB | Xnq “ PµpA | XnqPµpB | Xnq.
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13.4 Recurrence and transience

This section corresponds to [2, Section 6.4].
For the remainder of this chapter, we shall assume S is countable.
Let X be a Markov chain on S. For y P S and k P N, let T 0

y “ 0 and

T k
y “ inftn ą T k´1

y : Xn “ yu.

For k P N, the stopping time T k
y is the time of the kth return to y. (If it happens

to be the case that X0 “ y, this does not count as a return to y.)
Let Ty “ T 1

y and, for x, y P S, let ρxy “ PxpTy ă 8q be the probability,
starting at x that X eventually visits/returns to y.

Theorem 13.17. If x, y P S and k P N, then PxpT k
y ă 8q “ ρxyρ

k´1
yy .

Proof. The result is trivially true for k “ 1. Suppose it is true for some k P N.
Note that

p1tTyă8u ˝ θT
k
y q1tTk

y ă8u “ 1
tTk`1

y ă8u
.

By the strong Markov property,

PxpT k`1
y ă 8 | FTk

y
q “ Exr1tTyă8u ˝ θT

k
y | FTk

y
s1tTk

y ă8u

“ PX
Tk
y

pTy ă 8q1tTk
y ă8u

“ PypTy ă 8q1tTk
y ă8u

“ ρyy1tTk
y ă8u.

Thus,

PxpT k`1
y ă 8q “ ExrPxpT k`1

y ă 8 | FTk
y

qs “ ρyyPxpT k
y ă 8q “ ρxyρ

k
yy,

by the induction hypothesis. l

A state y P S is recurrent if ρyy “ 1 and transient if ρyy ă 1. If y is
recurrent, then PypT k

y ă 8q “ ρkyy “ 1, which implies PypXn “ y i.o.q “ 1.

Theorem 13.18. Let y P S. Then y is recurrent if and only if EyNpyq “ 8,
where

Npyq “

8
ÿ

n“1

1tXn“yu

is the number of returns to y.

Proof. Note that

ExNpyq “

8
ÿ

k“1

PxpNpyq ě kq “

8
ÿ

k“1

PxpT k
y ă 8q “

8
ÿ

k“1

ρxyρ
k´1
yy .

If x “ y and y is recurrent, so that ρyy “ 1, then this sum is infinite. If y is
transient, then

ExNpyq “
ρxy

1 ´ ρyy
ă 8

for any x P S. l
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Theorem 13.19. Let x, y P S. Suppose x is recurrent and ρxy ą 0. Then y is
recurrent and ρxy “ ρyx “ 1.

Proof. Let x, y P S. Suppose x is recurrent and ρxy ą 0. Assume ρyx ă 1. Note
that

pkpx, yq “ PxpXk “ yq

“
ÿ

y1,...,yk´1PS

PxpX1 “ y1, . . . , Xk´1 “ yk´1, Xk “ yq

“
ÿ

y1,...,yk´1PS

ppx, y1qppy1, y2q ¨ ¨ ¨ ppyk´1, yq.

Let K “ inftk : pkpx, yq ą 0u. Since ρxy ą 0, it follows that K ă 8. By the
above, there exists y1, . . . , yK´1 P S such that

ppx, y1qppy1, y2q ¨ ¨ ¨ ppyK´1, yq ą 0.

Suppose yj “ x for some j P t1, . . . ,K ´ 1u. Then

ppx, yj`1qppyj`2, yj`3q ¨ ¨ ¨ ppyK´1, yq ą 0,

which implies pK´jpx, yq ą 0. But this contradicts the minimality of K. There-
fore yj ‰ x for all j P t1, . . . ,K ´ 1u. Since x is recurrent,

0 “ PxpTx “ 8q ě PxpX1 “ y1, . . . , XK´1 “ yK´1, XK “ y, Tx “ 8q

“ PxpX1 “ y1, . . . , XK´1 “ yK´1, XK “ y, Tx ˝ θK “ 8q

“ Exr1tX1“y1,...,XK´1“yK´1,XK“yuPxpTx ˝ θK “ 8 | FKqs

“ Exr1tX1“y1,...,XK´1“yK´1,XK“yuPXK
pTx “ 8qs

“ Exr1tX1“y1,...,XK´1“yK´1,XK“yuPypTx “ 8qs

“ p1 ´ ρyxqExr1tX1“y1,...,XK´1“yK´1,XK“yus

“ p1 ´ ρyxqppx, y1qppy1, y2q ¨ ¨ ¨ ppyK´1, yq ą 0,

a contradiction. Thus, ρyx “ 1.
Now, since x is recurrent, we have

8 “ ExNpxq “ Ex

8
ÿ

n“1

1tXn“xu “

8
ÿ

n“1

PxpXn “ xq “

8
ÿ

n“1

pnpx, xq.

Since ρyx “ 1, we may choose L P N such that pLpy, xq ą 0. For any n P N, we
have

pL`n`Kpy, yq “ PypXL`n`K “ yq

ě PypXL “ x,XL`n “ x,XL`n`K “ yq

“ pLpy, xqpnpx, xqpKpx, yq.
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Thus,

EyNpyq ě

8
ÿ

n“1

pL`n`Kpy, yq ě pLpy, xqpKpx, yq

8
ÿ

n“1

pnpx, xq.

Since pLpy, xq and pKpx, yq are strictly postive, this implies EyNpyq “ 8. Thus,
y is recurrent.

Finally, applying what we have proven so far to y and ρyx proves that ρxy “

1. l

Let C Ă S. Suppose that whenever x P C and ρxy ą 0, we have y P C. Then
C is closed. Note that if x P C, then PxpXn P Cq “ 1 for all n (check). Let
D Ă S. Suppose that, for all x, y P D, we have ρxy ą 0. Then D is irreducible.

Theorem 13.20. If C is finite and closed, then there exists x P C such that x
is recurrent. If C is also irreducible, then every x P C is recurrent.

Proof. Let C be finite and closed. Suppose that for all y P C, we have that y is
transient. Fix x P C. Then

ÿ

yPC

ExNpyq “
ÿ

yPC

ρxy
1 ´ ρyy

ă 8.

On the other hand,

ÿ

yPC

ExNpyq “
ÿ

yPC

8
ÿ

n“1

PxpXn “ yq “

8
ÿ

n“1

ÿ

yPC

PxpXn “ yq “

8
ÿ

n“1

PxpXn P Cq.

But x P C and C is closed, so PxpXn P Cq “ 1 for all n, which is a contradiction.
Hence, there exists x P C such that x is recurrent.

Suppose C is also irreducible. Let y P C. Then ρxy ą 0, so by Theorem
13.19, y is recurrent. l

Example 13.21. Let X be a Markov chain with state space S “ t1, . . . , 7u and
transition probability

pppi, jqq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.3 0 0 0 0.7 0 0
0.1 0.2 0.3 0.4 0 0 0
0 0 0.5 0.5 0 0 0
0 0 0 0.5 0 0.5 0
0.6 0 0 0 0.4 0 0
0 0 0 0 0 0.2 0.8
0 0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It can help to visualize the dynamics of X by considering a directed graph with
an edge from i to j if ppi, jq ą 0 (ignoring the cases where i “ j). (See [2, Figure
6.4].)
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Note that ρ21 ą 0. If 2 were recurrent, this would imply that 1 is also
recurrent and that ρ12 “ 1. But ρ12 “ 0, so it follows that 2 is transient.
Similarly, ρ34 ą 0, but ρ43 “ 0, and we have that 3 is transient.

Since t1, 5u is an irreducible closed set, both these states are recurrent. Sim-
ilarly for t4, 6, 7u.

Theorem 13.22. Let X be a Markov chain and let R Ă S be the recurrent
states. Then R has a unique decomposition as R “

Ţ

j Rj, where each Rj is
closed and irreducible.

Proof. See [2, Theorem 6.4.5] l

Exercises

13.6. [2, Exercise 6.4.4] Prove that ρxz ě ρxyρyz for all x, y, z P S.

13.5 Stationary and limiting measures

This section corresponds to [2, Sections 6.5 and 6.6].
Let X be a Markov chain on S with transition probability ppi, jq. A measure

µ on S is a stationary measure for X if

ÿ

iPS

µpiqppi, jq “ µpjq,

for all j P S. A measure µ on S is a stationary distribution for X if it is a
stationary measure and a probability distribution.

If µ is a stationary distribution for X, then

PµpXn “ jq “ µpjq,

for all j P S and all n P N (check).

Example 13.23. Let f : Zd Ñ r0, 1s satisfy
ř

zPZd fpzq “ 1. Then ppi, jq “

fpj ´ iq is a transition probability on Zd (check). Let µ be the measure on Zd

such that µpjq “ 1 for all j P Zd. Then

ÿ

iPZd

µpiqfpi´ jq “
ÿ

iPZd

fpi´ jq “ 1 “ µpjq.

Thus, µ is a stationary measure for the Markov chain with transition probability
p.

Example 13.24. Let X be a random walk on Rd with ξ1 P Zd a.s. Hence, X
is actually a random walk on Zd. Let fpzq “ P pξ1 “ zq. Then X has transition
probability ppi, jq “ fpj ´ iq, so that µ ” 1 is a stationary measure for X.
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Example 13.25. Let X be an asymmetric simple random walk on Z. By the
above, µ ” 1 is a stationary measure for X. In this example, we will construct
another.

Let µ be the measure on Z satisfying µpjq “ pp{qqj for all j P Z. Then
ÿ

iPZ
µpiqppi, jq “ µpj ´ 1qppj ´ 1, jq ` µpj ` 1qppj ` 1, jq

“ pp{qqj´1p` pp{qqj`1q

“ pp{qqjpq ` pq

“ pp{qqj

“ µpjq.

Thus, µ is a stationary measure for X.

Example 13.26. Let S be countable. Let a : S ˆ S Ñ t0, 1u satisfy aij “ aji
for all i, j P S, and aii “ 0 for all i P S. Such a choice gives rise to an undirected
graph G “ pS,Eq, where ti, ju P E if and only if aij “ 1. The graph G has no
loops.

Assume that each vertex belongs to only finitely many edges. That is, assume
that

µpiq :“
ÿ

jPS

aij ă 8,

for all i P S. Note that µpiq is the number of edges to which i belongs. Let us
define

ppi, jq “
aij
µpiq

,

for all i, j P S. Then p is a transition probability on S (check). A Markov chain
X with transition probability p is a random walk on G which, at each time n,
selects uniformly from among the edges to which Xn belongs, and then moves
along that edge to the next vertex.

Note that
ÿ

iPS

µpiqppi, jq “
ÿ

iPS

aij “
ÿ

iPS

aji “ µpjq,

so µ is a stationary measure for X.

Theorem 13.27. Let X be a Markov chain on S. Suppose x P S is recurrent.
Let T “ inftn ě 1 : Xn “ xu. For y P S, let

µxpyq “ Ex

„ T´1
ÿ

n“0

1tXn“yu

ȷ

be the expected number of visits to y before the first return to x. Then µx is a
stationary measure for X.

Proof. See [2, Theorem 6.5.2]. l
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Remark 13.28. Note that

µxpyq “ Ex

„ 8
ÿ

n“0

1tXn“yu1tTąnu

ȷ

“

8
ÿ

n“0

PxpXn “ y, T ą nq,

for all x, y P S.

Theorem 13.29. Let X be a Markov chain on S. Suppose that S is irreducible
and every x P S is recurrent. Then the stationary measure is unique up to
constant multiples.

Proof. See [2, Theorem 6.5.3]. l

Theorem 13.30. Let X be a Markov chain on S. Suppose there exists a sta-
tionary distribution π. Then, for all y P S, if πpyq ą 0, then y is recurrent.

Proof. Suppose πpyq ą 0 and y is transient, so that ρyy ă 1. Then

ÿ

xPS

πpxqExNpyq “
ÿ

xPS

πpxqρxy
1 ´ ρyy

ď
ÿ

xPS

πpxq

1 ´ ρyy
“

1

1 ´ ρyy
ă 8.

On the other hand,

ÿ

xPS

πpxqExNpyq “
ÿ

xPS

πpxq

8
ÿ

n“1

PxpXn “ yq

“

8
ÿ

n“1

ÿ

xPS

πpxqpnpx, yq

“

8
ÿ

n“1

πpnpyq.

By the definition of a stationary distribution, πp “ π. By induction, then,
πpn “ π for all n P N. Thus,

ÿ

xPS

πpxqExNpyq “

8
ÿ

n“1

πpyq “ 8,

a contradiction. l

Theorem 13.31. Let X be a Markov chain on S. Suppose that S is irreducible
and that X has a stationary distribution π. Then

πpxq “
1

ExTx

for all x P S, where Tx “ inftn ě 1 : Xn “ xu.
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Proof. Fix x P S. Since π is a probability measure, there exists y P S such that
πpyq ą 0. Since S is irreducible, ρyx ą 0. Thus, there exists n P N such that
pnpy, xq ą 0. We therefore have

πpxq “ πpnpxq “
ÿ

zPS

πpzqpnpz, xq ě πpyqpnpy, xq ą 0.

We have thus proved that πpxq ą 0 for all x P S. It follows that every x P S is
recurrent.

Fix x P S. By Theorem 13.27 and Remark 13.28,

µxpyq “ Ex

„ Tx´1
ÿ

n“0

1tXn“yu

ȷ

“

8
ÿ

n“0

PxpXn “ y, Tx ą nq

is a stationary measure for X with µxpxq “ 1 and

ÿ

yPS

µxpyq “

8
ÿ

n“0

PxpTx ą nq “ ExTx.

Thus, µx{ExTx is a stationary distribution. By Theorem 13.29, the stationary
measure is unique up to constant multiples. Thus, π “ µx{ExTx, and it follows
that

πpxq “
µxpxq

ExTx
“

1

ExTx
,

and we are done. l

Let X be a Markov chain on S. Let x P S be recurrent and define Ix “

tn ě 1 : pnpx, xq ą 0u. Let dx be the greatest common divisor of Ix. Then dx
is called the period of x.

For example, let X be a simple random walk on Z and x “ 0. Then I0 “

t2, 4, 6, . . .u and the period of 0 is d0 “ 2.
By [2, Lemma 6.6.2], if ρxy ą 0, then dx “ dy. Thus, if S is irreducible,

then dx “ dy for all x, y P S. If this common value is 1, then X is said to be
aperiodic.

Theorem 13.32. Let X be a Markov chain on S. Assume S is irreducible, X
is aperiodic, and there exists a stationary distribution π. Then pnpx, yq Ñ πpyq

as n Ñ 8 for all x, y P S. More specifically,
ÿ

yPS

|pnpx, yq ´ πpyq| Ñ 0,

as n Ñ 8 for all x P S.

Proof. See [2, Theorem 6.6.4] and its proof. l

Corollary 13.33. Let X be a Markov chain on S. Assume S is irreducible, X
is aperiodic, and there exists a stationary distribution π. Let Y be an S-valued
random variable with distribution π. Then Xn ñ Y as n Ñ 8 under Pµ, for
any initial distribution µ.
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Proof. Let f : S Ñ R be bounded with |f | ď M . Then

|ErfpXnqs ´ ErfpY qs| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPS

fpyqPµpXn “ yq ´
ÿ

yPS

fpyqπpyq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPS

fpyq
ÿ

xPS

µpxqpnpx, yq ´
ÿ

yPS

fpyq
ÿ

xPS

µpxqπpyq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPS

fpyq
ÿ

xPS

µpxqppnpx, yq ´ πpyqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď M
ÿ

xPS

µpxq
ÿ

yPS

|pnpx, yq ´ πpyq|.

Note that

µpxq
ÿ

yPS

|pnpx, yq ´ πpyq| ď µpxq
ÿ

yPS

ppnpx, yq ` πpyqq “ 2µpxq,

and
ř

xPS µpxq “ 1. Also, by Theorem 13.32,

µpxq
ÿ

yPS

|pnpx, yq ´ πpyq| Ñ 0

as n Ñ 8 for each x P S. Thus, by dominated convergence,

|ErfpXnqs ´ ErfpY qs| Ñ 0,

showing that Xn ñ Y . l

Exercises

13.7. [2, Exercise 6.5.8] Compute the expected number of moves it takes a
knight to return to its initial position if it starts in a corner of the chessboard,
assuming there are no other pieces on the board, and each time it chooses a
move uniformly from among its legal moves.
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Chapter 14

Continuous-time
Martingales

14.1 Continuous-time stochastic processes

This section corresponds to [8, Section 1.1].
Recall the following from Section 6.4. A stochastic process is a collection of

random variables tXptq : t P T u indexed by some set T , defined on a common
probability space, pΩ,F , P q, and taking values in a common measurable space,
pS,Sq. We may occasionally use the notation Xt instead of Xptq. Recall also
that we adopt the notation Xpt, ωq “ pXptqqpωq.

For fixed ω P Ω, the function Xp¨, ωq is called a sample path and is an an
element of ST . The set ST coincides with the product space

ś

tPT S. As such,
we can endow it with product σ-algebra,

ST “
â

tPT

S “ σptπ´1
t pEq : E P S, t P T uq,

where πt : ST Ñ S is the projection defined by πtpfq “ fptq. Recall that ST

is the smallest σ-algebra on ST under which all the projections are measurable.
Recall also that, for any σ-algebra G on Ω, a function X : Ω Ñ ST is pG,ST q-
measurable if and only if πt ˝X is pG,Sq-measurable for all t P T .

Lemma 14.1. With notation as above, we have the following.

(i) If tXptq : t P T u is an S-valued stochastic process, and X : Ω Ñ ST is
defined by Xpωq “ Xp¨, ωq, then X is an ST -valued random variable.

(ii) If X : Ω Ñ ST is an ST -valued random variable, and Xptq : Ω Ñ S is
defined by Xptq “ πt ˝ X, then tXptq : t P T u is an S-valued stochastic
process.

(iii) In either case, σpXq “ σptXptq : t P T uq.

231
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Proof. By the definition of ST , for any σ-algebra G on Ω, we have that X is
pG,ST q-measurable if and only if πt ˝ X is pG,Sq-measurable for t P T . Taking
G “ F gives us (i) and (ii). Taking G “ σpXq gives us σpXq Ą σptXptq : t P T uq.
And taking G “ σptXptq : t P T uq gives us σpXq Ă σptXptq : t P T uq. l

From now on, we identify an S-valued stochastic process tXptq : t P T u

with the corresponding ST -valued random variable X, writing X “ tXptq : t P

T u. By Lemma 6.33, if Y is an extended real-valued random variable that is
measurable with respect to σpXq “ σptXptq : t P T uq, then there exists an
ST -measurable function h : ST Ñ R˚ such that Y “ hpXq. The following
proposition gives us a practical way to make use of this fact.

Proposition 14.2. Let Y : Ω Ñ R˚. Then Y is σpXq-measurable if and only
if there exists a sequence ttnu8

n“1 in T and a function h : S8 Ñ R˚ which is
pS8,R˚q-measurable such that

Y “ hpXpt1q, Xpt2q, . . .q.

Proof. See [1, Proposition II.4.6]. l

If X and Y are S-valued stochastic processes, then X and Y are indistin-
guishable if

P pXptq “ Y ptq for all t P T q “ 1.

We say that Y is a modification of X if

P pXptq “ Y ptqq “ 1 for all t P T .

If T is countable, then these concepts coincide.
Let n P N and t “ pt1, . . . , tnq P Tn, where the tj ’s are distinct. Define the

measure Qt on pSn,Snq by

QtpB1 ˆ ¨ ¨ ¨ ˆBnq “ P pXpt1q P B1, . . . , Xptnq P Bnq.

The family of measures tQtu are called the finite-dimensional distributions
of X. Two processes X and Y have the same finite-dimensional distributions if

pXpt1q, . . . , Xptnqq
d
“ pY pt1q, . . . , Y ptnqq,

whenever n P N and t1, . . . , tn P T .
Note that X and Y must be defined on the same probability space in or-

der to be indistinguishable or to be modifications of one another. They may,
however, be defined on different probability spaces and still have the same finite-
dimensional distributions.

A continuous-time stochastic process is one in which T “ I, where I Ă

R is an interval. Typically, we will have I “ r0,8q, although we may sometimes
have I “ r0, 1s or I “ r0, T s for some T ą 0. We may even occasionally take
I “ R, utilizing the notion of “negative time”.
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It has already been remarked that a continuous-time stochastic process,
which is a family of random variables,

Xptq : Ω Ñ S, for all t P r0,8q,

can be regarded as a single function mapping ω to the sample path,

X : Ω Ñ Sr0,8q,

and that X is pF ,Sr0,8qq-measurable if and only if each Xptq is measurable. In
addition to this, though, we could also regard X as a function of two variables,

X : r0,8q ˆ Ω Ñ S,

where Xpt, ωq “ pXptqqpωq. We say that the stochastic process X is measur-
able if X (regarded in this way) is pBr0,8q b F ,Sq-measurable.

By Fubini’s theorem, if X is a measurable stochastic process taking values
in a standard Borel space S, then the sample paths, t ÞÑ Xpt, ωq are measurable
functions from r0,8q to S. As a consequence, it follows that not every stochastic
process is measurable. For example, let f : r0,8q Ñ R be any non-measurable
functions. For each t ě 0, define Xpt, ωq “ fptq for all ω. Then Xpt, ¨q is a
constant, so it is pF ,Rq-measurable. Thus, X “ tXptq : t ě 0u is a stochastic
process. But the sample paths (each of which is f) are non-measurable.

From this point forward, unless otherwise specified, we will take S “ Rd and
S “ Rd.

A (continuous-time) filtration is a collection, tFtutě0, of σ-algebras on
Ω such that Fs Ă Ft Ă F whenever 0 ď s ă t. Given a filtration, we define
F8 “ σp

Ť

tě0 Ftq. The filtration generated by a stochastic process X is tFX
t u,

where
FX

t “ σptXpsq : 0 ď s ď tuq.

We define Ft´ “ σp
Ť

săt Fsq and Ft` “
Ş

sąt Fs. We adopt the convention
that F0´ “ F0. A filtration is right-continuous if Ft` “ Ft for all t ě 0. It
is left-continuous if Ft´ “ Ft for all t ě 0. And it is continuous if it is both
right- and left-continuous.

Lemma 14.3. Let tFtu be a filtration. Then tFt`u is a right-continuous filtra-
tion and tFt´u is a left-continuous filtration.

Proof. Exercise 14.1. l

A stochastic process X is adapted to a filtration tFtu if Xptq P Ft for all
t ě 0. The process X is progressively measurable with respect to tFtu if,
for all T ą 0,

X : r0, T s ˆ Ω Ñ Rd

is pBr0,T s b FT ,Rdq-measurable.

Proposition 14.4. If X is progressively measurable, then X is measurable and
adapted. Conversely, if X is measurable and adapted, then X has a progressively
measurable modification.
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Proof. See [8, Proposition 1.1.12] and the references therein. l

Proposition 14.5. Let X be a right-continuous stochastic process. That is,
each sample path is right-continuous. If X is adapted to tFtu, then X is pro-
gressively measurable with respect to tFtu.

Proof. Fix T ą 0. For n P N, define

Xnptq “ Xp0q1t0uptq `

2n
ÿ

k“1

Xpk2´nT q1ppk´1q2´nT,k2´nT sptq.

Since every sample-path is right-continuous, it follows that Xnpt, ωq Ñ Xpt, ωq

as n Ñ 8, for all t and ω. Since Xn : r0, T s ˆ Ω Ñ Rd is pBr0,T s b FT ,Rdq-

measurable for each n, it follows that X : r0, T s ˆ Ω Ñ Rd is pBr0,T s b FT ,Rdq-
measurable. l

A similar proof establishes the following proposition.

Proposition 14.6. Let X be a right-continuous stochastic process. That is,
each sample path is right-continuous. Then X is measurable.

Both of these propositions also hold if right-continuity is replaced by left-
continuity.

A random time is a r0,8s-valued random variable. If X “ tXptq : t P

r0,8qu is a stochastic process and T is a random time, then XpT q denotes the
function

XpT q : tT ă 8u Ñ Rd

given by pXpT qqpωq “ XpT pωq, ωq.

Lemma 14.7. If X is a measurable stochastic process and T is a random time,
then the function XpT q is pF |tTă8u,Rdq-measurable.

Proof. Exercise 14.2. l

Strictly speaking, σpXpT qq should be a σ-algebra on tT ă 8u. However,
with an abuse of notation, when X is a measurable process, we will define

σpXpT qq “ ttXpT q P Bu : B P Rdu Y ttXpT q P Bu Y tT “ 8u : B P Rdu.

It can be shown (see Exercise 14.6) that, with this definition, σpXpT qq is a
σ-algebra on Ω, and in fact, σpXpT qq Ă F .

Exercises

14.1. Prove Lemma 14.3.

14.2. Prove Lemma 14.7.
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14.3. [8, Problem 1.1.5] Let X and Y be stochastic processes. Suppose that
almost every sample path of X is right-continuous, and almost every sample
path of Y is right-continuous. Prove that if X and Y are modifications of one
another, then they are indistinguishable.

14.4. [8, Exercise 1.1.7] Let X be a cadlag process. That is, every sample path
is cadlag. Let

A “ tω P Ω : Xp¨, ωq is continuous on r0, t0qu. (14.1)

Prove that A P FX
t0 .

14.5. [8, Exercise 1.1.8] Give an example of a process X such that almost every
sample path is cadlag, but the event A in (14.1) is not in FX

t0 .

14.6. [8, Problem 1.1.17] Let X be a measurable process and T a random time.
Prove that σpXpT qq is a sub-σ-algebra of F .

14.2 Stopping times

This section corresponds to [8, Section 1.2].
Let T be a random time and tFtu a filtration. If tT ď tu P Ft for all t ě 0,

then T is a stopping time with respect to tFtu. If tT ă tu P Ft for all t ě 0,
then T is an optional time with respect to tFtu.

Note that if T is a constant, then T is both a stopping time and an optional
time.

If X is a stochastic process and T is a stopping time with respect to tFX
t u,

then the value of T depends only on the values of Xptq for t P r0, T s. The
following proposition makes this notion rigorous.

Proposition 14.8. Let X be a stochastic process and T a stopping time with
respect to tFX

t u. Suppose ω0, ω1 P Ω satisfy

Xpt, ω0q “ Xpt, ω1q for all t P r0, T pω0qs X r0,8q.

Then T pω0q “ T pω1q.

Proof. Exercise 14.7. l

Proposition 14.9. Every stopping time is an optional time.

Proof. Let T be an tFtu-stopping time. Fix t ą 0. Choose n0 such that t ´

1{n0 ą 0. Then

tT ă tu “

8
ď

n“n0

"

T ď t´
1

n

*

.

Since T is a stopping time, we have, for each fixed n,
"

T ď t´
1

n

*

P Ft´1{n Ă Ft.

Thus, tT ă tu P Ft, and T is an optional time. l
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Proposition 14.10. If tFtu is right-continuous, then every tFtu-optional time
is an tFtu-stopping time.

Proof. Let T be an tFtu-optional time. Fix m P N and note that

tT ď tu “

8
č

n“m

"

T ă t`
1

n

*

.

Since T is an optional time, for every n ě m, we have

"

T ă t`
1

n

*

P Ft`1{n Ă Ft`1{m.

It follows that tT ď tu P Ft`1{m for every m P N. Thus,

tT ď tu P

8
č

m“1

Ft`1{m “ Ft` “ Ft,

and so T is an tFtu-stopping time. l

Proposition 14.11. Let tFtu be a filtration and T a random time. Then T is
an tFtu-optional time if and only if T is an tFt`u-stopping time.

Proof. Let T be an tFtu-optional time. Since Ft Ă Ft`, it follows that T is an
tFt`u-optional time. But tFt`u is right-continuous, so T is an tFt`u-stopping
time.

Conversely, suppose T is an tFt`u-stopping time. Then

tT ă tu “

8
ď

n“n0

"

T ď t´
1

n

*

.

Since
"

T ď t´
1

n

*

P Fpt´1{nq` “
č

sąt´1{n

Fs Ă Ft,

it follows that tT ă tu P Ft, and so T is an tFtu-optional time. l

Let X be a right-continuous process and B P Rd. The hitting time of B
is defined as

HB “ inftt ě 0 : Xptq P Bu.

Proposition 14.12. If B is open, then HB is an optional time. If B is closed
and X is a continuous process, then HB is a stopping time.

Proof. Exercise 14.8. l

Lemma 14.13. Let S and T be stopping times. Then S^T , S_T , and S`T
are also stopping times.
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Proof. Since
tS ^ T ď tu “ tS ď tu Y tT ď tu

and
tS _ T ď tu “ tS ď tu X tT ď tu,

it follows that S ^ T and S _ T are stopping time.
For S ` T , first note that tS ` T ď 0u “ tS ď 0u X tT ď 0u P F0. Now fix

t ą 0. Then tS ` T ď tu “ tS ` T ą tuc and

tS`T ą tu “ tS “ 0, T ą tuYt0 ă S ă t, S`T ą tuYtS “ t, T ą 0uYtS ą tu.

We have
tS “ 0, T ą tu “ tS ď 0u X tT ď tuc P Ft

and
tS “ t, T ą 0u “ tS ď tu X tS ă tuc X tT ď 0uc P Ft.

Here, we have used the fact that a stopping time is an optional time, and that
F0 Ă Ft. We also have tS ą tu “ tS ď tuc P Ft. For the final set, observe that
if Spωq ` T pωq ą t, then there exists a positive rational r such that

Spωq ` T pωq ą r ` T pωq ą t.

Thus,
t0 ă S ă t, S ` T ą tu “

ď

rPQXr0,tq

tr ă S ă t, T ą t´ ru.

Since this is a countable union, and

tr ă S ă t, T ą t´ ru “ tS ď ruc X tS ă tu X tT ď t´ ruc P Ft,

we are done. l

Lemma 14.14. If tTnu8
n“1 is a sequence of optional times, then supn Tn,

infn Tn, lim supnÑ8 Tn, and lim infnÑ8 Tn are all optional times. If tTnu8
n“1

is a sequence of stopping times, then supn Tn is a stopping times.

Proof. Exercise 14.9. l

If T is an tFtu-stopping time, we define

FT “ tA P F : AX tT ď tu P Ft for all t ě 0u.

Lemma 14.15. If T is a tFtu-stopping time, then FT is a σ-algebra and T P

FT . Moreover, if T ” t for some t ě 0, then FT “ Ft.

Proof. Exercise 14.10. l

Lemma 14.16. Let S and T be tFtu-stopping times. If A P FS, then AX tS ď

T u P FT . If S ď T pointwise, then FS Ă FT .
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Proof. See [8, Lemma 1.2.15]. l

Lemma 14.17. Let S and T be tFtu-stopping times. Then FS^T “ FS X FT

and
tS ă T u, tT ă Su, tS ď T u, tT ď Su, tS “ T u

are all elements of FS X FT .

Proof. See [8, Lemma 1.2.16]. l

Proposition 14.18. Let S and T be tFtu-stopping times and Z P L1pΩq. Then

(i) ErZ | FSs1tSďT u “ ErZ | FS^T s1tSďT u a.s., and

(ii) ErErZ | FSs | FT s “ ErZ | FS^T s a.s.

Proof. Exercise 14.11. l

Proposition 14.19. Let X be tFtu-progressively measurable and T an tFtu-
stopping time. Then XpT q is FT |tTă8u-measurable and the stopped process
tXpT ^ tqu is tFtu-progressively measurable.

Proof. See [8, Proposition 1.2.18]. l

If T is an tFtu-optional time, we define

FT` “ tA P F : AX tT ď tu P Ft` for all t ě 0u.

Lemma 14.20. If T is an tFtu-optional time, then FT` is a σ-algebra, T P

FT `, and
FT` “ tA P F : AX tT ă tu P Ft for all t ě 0u.

Moreover, if T is an tFtu-stopping time, then FT Ă FT`.

Proof. Exercise 14.12. l

Given a probability space pΩ,F , P q, recall that a null set (or a P -null set) is
an event N P F such that P pNq “ 0. Recall also that A Ă Ω is called negligible
if A Ă N for some null set N .

Lemma 14.21. Let Y be an R˚-valued random variable and G Ă F a σ-algebra
containing all null sets. If N is a null set, then Y 1N P G.

Proof. First assume Y “ 1A for some some A P F . Then Y 1N “ 1AXN . Since
A X N is a null set, we have A X N P G, and so Y 1N P G. By linearity, the
claim is true for simple Y . Since any nonnegative Y is the pointwise limit of
simple functions, Proposition 2.11 implies the claim is true for nonnegative Y .
For general Y , we obtain the result by considering the positive and negative
parts of Y . l

Lemma 14.22. Let X be a G-measurable random variable, where G Ă F is a
σ-algebra containing all null sets. If Y is a random variable with Y “ X a.s.,
then Y P G.
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Proof. Since Y “ X a.s., there exists N P F with P pNq “ 0 such that

Y “ X1Nc ` Y 1N .

Since N is a null set, we have N P G. Since X P G, we also have X1Nc P G. The
preceding lemma shows that Y 1N P G. l

A filtration tFtu satisfies the usual conditions if it is right-continuous and
F0 contains all negligible sets. Note that this implies Ft contains all negligible
sets, for all t ě 0.

Exercises

14.7. [8, Problem 1.2.2] Prove Proposition 14.8.

14.8. [8, Problems 1.2.6] Prove Proposition 14.12 in the case that B is open.

14.9. Prove Lemma 14.14.

14.10. [8, Problem 1.2.13] Prove Lemma 14.15.

14.11. [8, Problem 1.2.17] Prove Proposition 14.18.

14.12. [8, Problem 1.2.21] Prove Lemma 14.20.

14.3 Martingales: definition and properties

This section corresponds to [8, Section 1.3].
Fix a filtration tFtu. In this section, we consider only processes X which are

real-valued, tFtu-adapted, and integrable (that is, E|Xptq| ă 8 for all t ě 0).
The process X is a submartingale with respect to tFtu if ErXptq | Fss ě

Xpsq a.s. whenever s ă t. It is a supermartingale with respect to tFtu if
ErXptq | Fss ď Xpsq a.s. whenever s ă t. It is a martingale with respect to
tFtu if it is both a submartingale and a supermartingale. If the filtration is not
mentioned, then it is taken to be tFX

t u.
A process N is a Poisson process with respect to tFtu is N is a Poisson

process and Nptq ´ Npsq is independent of Fs for all s ă t. Note that an
tFtu-Poisson process is an tFtu-submartingale (check).

Let N be an tFtu-Poisson process with rate λ ą 0. The compensated
Poisson process is the process

Mptq “ Nptq ´ λt.

Lemma 14.23. The compensated Poisson process is an tFtu-martingale.

Proof. Exercise 14.13. l
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If X is an tFtu-submartingale and Xp8q P L1pΩq, then tXptq : t P r0,8su

is an tFtu-submartingale (with last element Xp8q) if Xp8q P F8 and

ErXp8q | Fss ě Xpsq a.s.,

for all s ě 0. We make a similar definition for supermartingales and martingales.
Theorems 12.5 and 12.7 and their respective corollaries are still true in the

continuous-time case, and their proofs are similar.
Doob’s inequality also holds in continuous time and its proof also uses “up-

crossings”. The continuous-time formulation of Doob’s inequality is contained
in the following theorem.

Theorem 14.24. Let X be a right-continuous submartingale. If a ă b and
λ ą 0, then we have the following:

(i) λP

ˆ

sup
tPra,bs

Xptq ě λ

˙

ď ErXpbq`s.

(ii) λP

ˆ

inf
tPra,bs

Xptq ď ´λ

˙

ď ErXpbq`s ´ ErXpaqs.

(iii) If Xptq ě 0 a.s. for all t ě 0 and p ą 1, then

E

ˇ

ˇ

ˇ

ˇ

sup
tPra,bs

Xptq

ˇ

ˇ

ˇ

ˇ

p

ď

ˆ

p

p´ 1

˙p

E|Xpbq|p.

(iv) Almost every sample path of X is cadlag.

Proof. See [8, Theorem 1.3.8]. l

Remark 14.25. For the definition of “cadlag”, refer back to Section 3.5.2.

Theorem 14.26. Let X be an tFtu-submartingale, where tFtu satisfies the
usual conditions. Then X has a right-continuous modification if and only if
t ÞÑ EXptq is right-continuous. Moreover, in this case, the modification can
be chosen so that it is cadlag and tFtu-adapted, and therefore also an tFtu-
submartingale.

Proof. See [8, Theorem 1.3.13]. l

Theorem 14.27 (martingale convergence theorem). Let X “ tXptq : t ě 0u

be a right-continuous submartingale with suptErXptq`s ă 8. Then there exists
an integrable random variable Xp8q such that Xptq Ñ Xp8q a.s. as t Ñ 8.

Proof. Uses “upcrossings”. See [8, Theorem 1.3.15]. l

Theorem 14.28. Let X “ tXptq : t ě 0u be a right-continuous, nonnegative
tFtu-supermartingale (that is, Xptq ě 0 a.s. for all t ě 0). Then there exists
an integrable, nonnegative random variable Xp8q such that Xptq Ñ Xp8q a.s.
Moreover, tXptq : t P r0,8su is an tFtu-supermartingale.
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Proof. Exercise 14.14. l

Theorem 14.29. Let X “ tXptq : t ě 0u be a non-negative, right-continuous
tFtu-submartingale. Then the following are equivalent:

(i) X is uniformly integrable,

(ii) There exists Xp8q P L1pΩq such that Xptq Ñ Xp8q a.s., and tXptq : t P

r0,8su is an tFtu-submartingale.

(iii) There exists Xp8q such that Xptq Ñ Xp8q in L1pΩq.

Moreover, (i) implies (iii) implies (ii) without the assumption of nonnegativity.

Proof. Exercise 14.15. l

Theorem 14.30. Let X be a right-continuous tFtu-martingale. Then the fol-
lowing are equivalent:

(i) X is uniformly integrable,

(ii) There exists Xp8q P L1pΩq such that Xptq Ñ Xp8q a.s., and tXptq : t P

r0,8su is an tFtu-martingale.

(iii) There exists Xp8q such that Xptq Ñ Xp8q in L1pΩq.

(iv) There exists Y P L1pΩq such that Xptq “ ErY | Fts a.s., for all t ě 0.

Moreover, if (iv) holds and Xp8q is the random variable appearing in (ii), then
ErY | F8s “ Xp8q a.s.

Proof. Exercise 14.16. l

Theorem 14.31 (optional sampling theorem). Let X “ tXptq : t P r0,8qu be a
right-continuous tFtu-submartingale. Let S and T be tFtu-optional times with
S ď T pointwise. Assume at least one of the following conditions hold:

(i) T is bounded. That is, there exists a ą 0 such that T ď a pointwise.

(ii) There exists Y P L1pΩq such that Xptq ď ErY | Fts a.s. for all t ě 0.

Then
ErXpT q | FS`s ě XpSq a.s.

If S is a stopping time, then

ErXpT q | FSs ě XpSq a.s.

Consequently, EXpT q ě EXp0q and, if X is a martingale with last element,
then EXpT q “ EXp0q.

Proof. If (ii) holds and Y P F8, then, defining Xp8q “ Y , we have that tXptq :
t P r0,8su is an tFtu-submartingale with last element Xp8q. In this case, the
proof uses “backward” martingales (see [8, Theorem 1.3.22]). The proofs of the
other cases are Exercises 14.17 and 14.18. l
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Exercises

14.13. [8, Problem 1.3.4] Prove Lemma 14.23.

14.14. [8, Problem 1.3.16] Prove Theorem 14.28.

14.15. [8, Problem 1.3.19] Prove Theorem 14.29.

14.16. [8, Problem 1.3.20] Prove Theorem 14.30.

14.17. [8, Problem 3.23(i)] Prove Theorem 14.31 under condition (i). You may
use the fact that it is true under condition (ii) when Y P F8.

14.18. [8, Problem 3.23(ii)] Prove Theorem 14.31 under condition (ii). You
may use the fact that it is true under condition (ii) when Y P F8.

14.4 The Doob-Meyer decomposition

This section corresponds to [8, Section 1.4].

In this section, we extend Doob’s decomposition (Theorem 12.16) to the
cases of continuous-time submartingales. We must first establish an additional
fact in the discrete setting. Let tFnu8

n“0 be a discrete-time filtration, and let
A “ tAnu be an tFnu-adapted, increasing process with A0 “ 0 a.s. and E|An| ă

8 a.s. for all n. Then A is natural if

ErAnMns “ E
n

ÿ

m“1

Mm´1pAm ´Am´1q, (14.2)

for all n ě 1, whenever M “ tMnu is an tFnu-martingale which is bounded.
(Here, “bounded” has the same meaning as in Theorem 12.9. That is, for all
n P N, there exists Cn ą 0 such that |Mn| ď Cn a.s.)

Remark 14.32. Note that

pA ¨Mqn “

n
ÿ

m“0

AmpMm ´Mm´1q

“

n
ÿ

m“0

AmMm ´

n
ÿ

m“0

AmMm´1

“

n`1
ÿ

m“1

Am´1Mm´1 ´

n
ÿ

m“0

AmMm´1

“ AnMn ´

n
ÿ

m“1

Mm´1pAm ´Am´1q

Thus, (14.2) is equivalent to EpA ¨Mqn “ 0.
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Proposition 14.33. Let tFnu8
n“0 be a filtration. Assume that F0 contains all

null sets. Let A “ tAnu be an tFnu-adapted, increasing process with A0 “ 0
a.s. and E|An| ă 8 a.s. for all n. Then A is natural if and only if A is
predictable.

Proof. Assume A is predictable. Let M be a bounded tFnu-martingale. By
Theorem 12.9 and Remark 12.10, we have that A ¨M is an tFnu-martingale, so
that EpA ¨Mqn “ EpA ¨Mq0 “ 0. Thus, by Remark 14.32, A is natural.

Now assume A is natural. We will first show that if M is any bounded
tFnu-martingale, then

ErMnpAn ´ ErAn | Fn´1sqs “ 0,

for all n P N. To see this, note that

ErMnpAn ´ ErAn | Fn´1sqs “ ErpMn ´Mn´1qAns

` ErMn´1pAn ´ ErAn | Fn´1sqs

´ ErpMn ´Mn´1qErAn | Fn´1ss.

For the first term, Remark 14.32 implies

ErpMn ´Mn´1qAns “ ErpA ¨Mqn ´ pA ¨Mqn´1s “ 0.

The second and third terms are both zero, which can be seen by conditioning
on the inside by Fn´1.

Now fix k P N. We wish to show that Ak P Fk´1. Define the random variable
Y “ sgnpAk ´ ErAk | Fk´1sq and then define

Mn “

#

ErY | Fns if 0 ď n ă k,

Y if n ě k.

Then Mn is integrable and M “ tMnu is tFnu-adapted. If n ă k, then

ErMn | Fn´1s “ ErErY | Fns | Fn´1s “ ErY | Fn´1s “ Mn´1.

If n “ k, then

ErMn | Fn´1s “ ErY | Fn´1s “ Mn´1.

And if n ą k, then n´ 1 ě k, which implies Fk Ă Fn´1. Hence,

ErMn | Fn´1s “ ErY | Fn´1s “ Y “ Mn´1.

We have therefore shown that M is a bounded tFnu-martingale. From what we
proved initially, it now follows that

ErMnpAn ´ ErAn | Fn´1sqs “ 0,
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for all n. In particular,

0 “ ErMkpAk ´ ErAk | Fk´1sqs

“ ErY pAk ´ ErAk | Fk´1sqs

“ E|Ak ´ ErAk | Fk´1s|,

from which it follows that Ak “ ErAk | Fk´1s a.s. Or, more specifically, if Z is
a version of ErAk | Fk´1s, then Ak “ Z a.s. Since Z P Fk´1 and Fk´1 contains
all null sets, it follows from Lemma 14.22 that Ak P Fk´1. l

We now turn our attention back to the continuous-time setting.

Definition 14.34. An tFtu-adapted process A “ tAptq : t ě 0u is natural if

(a) Ap0q “ 0 a.s.,

(b) almost every sample path is increasing and right-continuous,

(c) EAptq ă 8 for all t ě 0, and

(d) whenever M is a bounded, right-continuous tFtu-martingale, we have

E

ż

p0,ts

Mpsq dApsq “ E

ż

p0,ts

M´psq dApsq.

Remark 14.35. Recall the notation M´ from Section 3.5.2.

Remark 14.36. The term “bounded” in (d) means there exists C ą 0 such
that P p|Mptq| ď C for all t ě 0q “ 1.

Remark 14.37. If M is a right-continuous tFtu-martingale, then by Theorem
14.24, almost every sample path is cadlag. Therefore, as in Section 3.5.3, the
integrals in (d) are almost surely well-defined Lebesgue-Stieltjes integrals.

Moreover, Lebesgue-Stieltjes integrals involving cadlag function can be writ-
ten as limits of Riemann sums (see Theorem 3.31). This fact can be used to
show that the function

ω ÞÑ

ż

p0,ts

Mps, ωq dAps, ωq

is a random variable.
If M is bounded, then

ˇ

ˇ

ˇ

ˇ

ˇ

ż

p0,ts

Mpsq dApsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CAptq.

Since Aptq is integrable by (c), it follows that the expectation on the left-hand
side in (d) is well-defined. A similar argument shows the same for the right-hand
side.
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Remark 14.38. If an tFtu-adapted process satisfies (a)-(c) and is continuous,
then it automatically satisfies (d). By Theorem 3.26, a cadlag function has
at most countably many discontinuities. Since the Lebesgue-Stieltjes measure
corresponding to a continuous function assigns 0 mass to singletons, it follows
that

ż

p0,ts

pMpsq ´M´psqq dApsq “ 0 a.s.

whenever A is continuous.

Remark 14.39. If tFtu satisfies the usual conditions and A is tFtu-natural,
then A is adapted to tFt´u. See [8, Remark 1.4.6(iii)] and the references therein.

Lemma 14.40. Let A be an tFtu-adapted process with Ap0q “ 0 a.s. Suppose
that almost every sample path of A is cadlag and of bounded variation on com-
pact intervals. Further suppose that ErTAptqs ă 8 for all t ě 0. Let M be a
bounded, right-continuous tFtu-martingale. Then

ErMptqAptqs “ E

ż

p0,ts

Mpsq dApsq,

for all t ě 0.

Remark 14.41. The notation TAptq refers to the total variation of the sample
path on the interval r0, ts, which is defined in Section 3.4.

Remark 14.42. Note that Definition 14.34 implies that almost every sample
path is cadlag and of bounded variation on compact intervals. Thus, Lemma
14.40 shows that Definition 14.34(d) is equivalent to

ErMptqAptqs “ E

ż

p0,ts

M´psq dApsq,

and this is analogous to the definition of natural in the discrete-time setting.

Proof of Lemma 14.40. Choose C ą 0 such that |Mptq| ď C for all t ě 0 a.s.
Fix t ą 0. As in Theorem 3.31, let tPmu be a sequence of partitions of r0, ts
with }Pm} Ñ 0. Let

Mmpsq “

n
ÿ

k“1

Mptkq1ptk´1,tkspsq.

Since tn “ t, t0 “ 0, and Ap0q “ 0, we have

E

ż

p0,ts

Mmpsq dApsq “ E
n

ÿ

k“1

MptkqpAptkq ´Aptk´1qq

“ E
n

ÿ

k“1

MptkqAptkq ´ E
n´1
ÿ

k“0

Mptk`1qAptkq

“ EMptqAptq ´ E
n´1
ÿ

k“1

pMptk`1q ´MptkqqAptkq.
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Note that

ErpMptk`1q ´MptkqqAptkqs “ ErErpMptk`1q ´MptkqqAptkq | Ftk ss

“ ErAptkqErMptk`1q ´Mptkq | Ftk ss “ 0.

Thus,

E

ż

p0,ts

Mmpsq dApsq “ EMptqAptq, (14.3)

for all m. On the other hand, since almost every sample path of M and A are
cadlag, Theorem 3.31 implies

ż

p0,ts

Mmpsq dApsq Ñ

ż

p0,ts

Mpsq dApsq a.s.

Since
ˇ

ˇ

ˇ

ˇ

ˇ

ż

p0,ts

Mmpsq dApsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CTAptq

and TAptq is integrable, it follows by dominated convergence that

E

ż

p0,ts

Mmpsq dApsq Ñ E

ż

p0,ts

Mpsq dApsq.

Letting m Ñ 8 in (14.3) finishes the proof. l

Lemma 14.43. Let tFtu be a filtration satisfying the usual conditions. Let B be
a right-continuous tFtu-martingale with Bp0q “ 0 a.s. Suppose that B “ A´A1,
where A and A1 are natural. Then

P pBptq “ 0 for all t ě 0q “ 1.

Proof. Fix t ě 0. Let Mpsq “ ErsgnpBptqq | Fss, so that M is a bounded
martingale. By Theorem 14.26, M has a cadlag modification which is also an
tFtu-martingale. By Lemma 14.40,

ErMptqBptqs “ E

ż

p0,ts

M´psq dBpsq.

As in Theorem 3.31, let tPmu be a sequence of partitions of r0, ts with }Pm} Ñ 0.
By Theorem 3.31,

n
ÿ

k“1

Mptk´1qpBptkq ´Bptk´1qq Ñ

ż

p0,ts

M´psq dBpsq a.s.

Since
ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Mptk´1qpBptkq ´Bptk´1qq

ˇ

ˇ

ˇ

ˇ

ď Aptq `A1ptq,
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dominated convergence gives

E
n

ÿ

k“1

Mptk´1qpBptkq ´Bptk´1qq Ñ E

ż

p0,ts

M´psq dBpsq.

But M and B are both martingales, ErMptk´1qpBptkq ´ Bptk´1qqs “ 0. It
therefore follows that

0 “ E

ż

p0,ts

M´psq dBpsq “ EMptqBptq “ E|Bptq|.

Hence, Bptq “ 0. Since t was arbitrary, it follows that B is a modification of
the 0 process. By Exercise 14.3, B is indistinguishable from the 0 process. l

Let tFtu be a filtration. Let S be the set of all tFtu-stopping times that are
finite almost surely. For a ą 0, let Sa be the set of all tFtu-stopping times T
such that T ď a a.s.

Let X be a right-continuous tFtu-adapted process. Then X is of class D if
the family of random variables tXpT q : T P Su is uniformly integrable. We say
X is of class DL if tXpT q : T P Sau is uniformly integrable for all a ą 0.

Note that Sa Ă S. Thus, if X is of class D, then X is of class DL.

Proposition 14.44. Let X be a right-continuous tFtu-submartingale. Suppose
that Xptq ě 0 a.s. for all t ě 0. Then X is of class DL.

Proof. Exercise 14.19. l

Proposition 14.45. Let X be a right-continuous tFtu-submartingale. Suppose
X “ M `A, where M is an tFtu-martingale and A is an tFtu-adapted process
satisfying (a)-(c) of Definition 14.34. Then X is of class DL.

Proof. Exercise 14.19. l

Proposition 14.46. If X is a uniformly integrable, right-continuous tFtu-
martingale, then X is of class D.

Proof. Exercise 14.19. l

Theorem 14.47 (Doob-Meyer decomposition). Let X be a right-continuous
tFtu-submartingale, where tFtu satisfies the usual conditions. Suppose X is of
class DL. Then X “ M ` A, where M is a right-continuous tFtu-martingale
and A is tFtu-natural. If X “ M 1 `A1 is another such decomposition, then M
and M 1 are indistinguishable, as are A and A1. Moreover, if X is of class D,
then M is uniformly integrable.

Proof. We prove only uniqueness here. For the rest of the proof, see [8, Theorem
1.4.10].

Suppose X “ M ` A “ M 1 ` A1 are two Doob-Meyer decompositions of
X. Let B “ A ´ A1 “ M 1 ´ M . Then B is the difference of two natural
processes, and is also a martingale. By Lemma 14.43, B is indistinguishable
from the 0 process. Thus, A and A1 are indistinguishable, and M and M 1 are
indistinguishable. l
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Suppose we wish to apply Theorem 14.47 to a submartingale X which is
continuous. The theorem does not guarantee that the resulting processes M
and A are continuous. To ensure this, we need the next result.

Let X be an tFtu-submartingale. Then X is regular if for all a ą 0 and all
sequences tTnu8

n“1 in Sa with Tn ď Tn`1 pointwise, we have EXpTnq Ñ EXpT q,
where T “ limn Tn.

Theorem 14.48. Let X be a right-continuous tFtu-submartingale, where tFtu

satisfies the usual conditions. Suppose X is of class DL. Let A be the natural
process in the Doob-Meyer decomposition. Then A is continuous if and only if
X is regular.

Proof. See [8, Theorem 1.4.14]. l

Exercises

14.19. [8, Problem 1.4.9] Prove Propositions 14.44, 14.45, and 14.46.

14.20. [8, Problem 4.13] Prove that a continuous, nonnegative submartingale
is regular.

14.5 Continuous L2 martingales

This section corresponds to [8, Section 1.5].
Throughout this section, we fix a probability space pΩ,F , P q and a filtration

tFtu that satisfies the usual conditions.
Let X be a right-continuous tFtu-martingale. If EXptq2 ă 8 for all t ě 0,

then X is square-integrable (or an L2 martingale). Let M2 denote the set
of square-integrable tFtu-martingales with Xp0q “ 0 a.s. Let Mc

2 denote the
set of all X P M2 that have continuous sample paths. Note that M2 and Mc

2

are both vectors spaces over the reals.
Suppose X P M2. By the continuous version of Theorem 12.5, we have

that X2 “ tXptq2 : t ě 0u is a submartingale, and so, by Theorem 14.44, is
of class DL. Thus, by the Doob-Meyer decomposition, there exist unique (up
to indistinguishability) processes M and A, such that M is a martingale, A is
natural, and X2 “ M ` A. We define the angle bracket (process) of X to
be xXy :“ A. For the value of the process at a specific time, we will typically
adopt the notation xXyt, but sometimes also xXy ptq.

Suppose X P Mc
2. By Exercise 14.20, we have that X2 is regular. Thus, by

Theorem 14.48, xXy is continuous.
Note that xXy is the unique (up to indistinguishability) tFtu-natural process

such that X2 ´ xXy is an tFtu-martingale. In particular, this implies that, for
all X P M2, we have ErXptq2s “ E xXyt.

Let X,Y P M2. The angle bracket (process) of X and Y is

xX,Y y :“
1

4
pxX ` Y y ´ xX ´ Y yq.
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Theorem 14.49. Let X,Y P M2. There is a unique (up to indistinguishability)
process B which is the difference of two tFtu-natural processes, satisfies Bp0q “

0 a.s., and makes XY ´ B an tFtu-martingale. This process is given by the
angle bracket xX,Y y.

Proof. By the definition of the angle bracket, xX,Y y is the difference of two
natural processes, and

M1 “ pX ` Y q2 ´ xX ` Y y

and

M2 “ pX ´ Y q2 ´ xX ´ Y y

are both martingales. Thus,

1

4
pM1 ´M2q “ XY ´ xX,Y y

is also a martingale.

Suppose B is the difference of two natural processes and XY ´B is a mar-
tingale. Then

pXY ´ xX,Y yq ´ pXY ´Bq “ B ´ xX,Y y

is a martingale that is the difference of two natural processes. By Lemma 14.43,
B and xX,Y y are indistinguishable. l

Two martingales X,Y P M2 are orthogonal if xX,Y yt “ 0 a.s. for all t ě 0.
Note that xX,Xy “ xXy.

Recall the total variation function TF from Section 3.4.

Proposition 14.50. For any X,Y, Z P M2 and any α, β P R, we have the
following.

(i) xαX ` βY, Zy “ α xX,Zy ` β xY,Zy.

(ii) xX,Y y “ xY,Xy.

(iii) | xX,Y yt |2 ď xXyt xY yt for all t ě 0 a.s.

(iv) We have

TxX,Y yptq ´ TxX,Y ypsq ď
1

2
pxXyt ´ xXys ` xY yt ´ xY ytq

for all s ă t a.s.

Proof. Exercise 14.21 l
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In the same way that we defined the total variation of a (deterministic) func-
tion in Section 3.4, we could define the quadratic variation of a (deterministic)
function by using the squares of the increments instead of the absolute values
of the increments.

Defining the quadratic variation of a stochastic process is a little more in-
volved. We will not present such a definition here, but the usual notation for
the quadratic variation of X P M2 is rXs. The angle bracket process xXy is
sometimes called the predictable quadratic variation of X. It turns out that
if X is continuous, then rXs “ xXy. Since we will focus primarily on continuous
processes, we will follow the convention in [8] and refer to xXy as the quadratic
variation of X. We will also refer to xX,Y y as the cross-variation (or co-
variation) of X and Y . When reading other sources, however, one should
recognize that this is an abuse of standard terminology and notation.

The following theorem illustrates the connection between the angle bracket
process and the usual notion of quadratic variation. Before stating the theorem,
we need some notation. If X is a stochastic process, P is a partition of r0, ts
and p ą 0, we define

V p
t pPq “

n
ÿ

k“1

|Xptkq ´Xptk´1q|p.

If L is a random variable, we say that V p
t pPq Ñ L in probability (as }P} Ñ 0)

if for all ε ą 0 and all η ą 0, there exists δ ą 0 such that whenever }P} ă δ,
we have P p|L ´ V p

t pPq| ě εq ă η. We say that V p
t pPq Ñ 8 in probability (as

}P} Ñ 0) if for all K ą 0 and all η ą 0, there exists δ ą 0 such that whenever
}P} ă δ, we have P p|V p

t pPq| ď Kq ă η.

Theorem 14.51. Let X P Mc
2. Fix t ą 0. Then V 2

t pPq Ñ xXyt in probability.

Proof. See [8, Theorem 1.5.8] l

Proposition 14.52. Let X be a stochastic process with continuous sample
paths. Let L be a p0,8q-valued stochastic process. Let p ą 0. Suppose that
for all t ą 0, V p

t pPq Ñ Lt in probability. Then V q
t pPq Ñ 0 in probability when-

ever t ą 0 and q ą p, and V q
t pPq Ñ 8 in probability whenever t ą 0 and

q ă p.

Proof. Exercise 14.22. l

Proposition 14.53. Let X P Mc
2 and let T be an tFtu-stopping time. If

xXyT “ 0 a.s., then XpT ^ tq “ 0 for all t ě 0 a.s.

Proof. Exercise 14.23. l

Corollary 14.54. Let X be a continuous tFtu-martingale with Xp0q “ 0 a.s.
Suppose the sample paths of X have bounded variation on compact intervals.
Then Xptq “ 0 for all t ě 0 a.s.
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Proof. Define
Tn “ inftt ě 0 : |Xptq| “ nu.

Let Xnptq “ Xpt ^ Tnq. Then Xn P Mc
2. By Theorem 14.51 and Proposition

14.52, xXnyt “ 0 a.s. for all t ě 0. By Proposition 14.53, it follows that
Xnptq “ 0 for all t ě 0 a.s., which implies that Xptq “ 0 for all t ě 0 a.s. l

Theorem 14.55. Let X,Y P Mc
2. There is a unique (up to indistinguishability)

continuous, tFtu-adapted process B whose sample paths have bounded variation
on compact intervals, satisfies Bp0q “ 0 a.s., and makes XY ´B a continuous
tFtu-martingale. This process is given by the cross-variation xX,Y y.

Proof. The existence of B is given by Theorem 14.49. Suppose B1 is another
such process. Then

pXY ´Bq ´ pXY ´B1q “ B1 ´B

is a continuous tFtu-martingale with sample paths that are of bounded variation
on compact intervals. By Corollary 14.54, B and B1 are indistinguishable. l

Proposition 14.56. If X,Y P Mc
2, then for all t ě 0,

n
ÿ

k“1

pXptkq ´Xptk´1qqpY ptkq ´ Y ptk´1qq Ñ xX,Y yt

in probability as }P} Ñ 0.

Proof. Exercise 14.24. l

Let X be an tFtu-adapted stochastic process. Suppose there exists a se-
quence tTnu of tFtu-stopping times such that

(i) Tn ď Tn`1 pointwise,

(ii) Tn Ò 8 a.s., and

(iii) each Xn is an tFtu-martingale, where Xnptq “ Xpt^ Tnq.

Then X is local martingale with respect to tFtu.
The set of tFtu-local martingales X satisfying Xp0q “ 0 a.s. is denoted by

Mloc. The set of X P Mloc that are continuous is denoted by Mc,loc.

Remark 14.57. Every martingale is a local martingale, but not every local
martingale is a martingale. In [8, Chapter 3], there are examples of uniformly
integrable local martingales that are not martingales.

Theorem 14.58. Let X,Y P Mc,loc. There is a unique (up to indistinguisha-
bility) continuous, tFtu-adapted process B whose sample paths have bounded
variation on compact intervals, satisfies Bp0q “ 0 a.s., and makes XY ´ B a
continuous tFtu-local martingale.
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Proof. This result is [8, Problem 1.5.17]. The text includes a worked solution.
l

The process B in Theorem 14.58 is denoted by xX,Y y and, in keeping with
our established abuse of terminology, is called the cross-variation (or co-
variation) of X and Y . If X P Mc,loc, then xXy “ xX,Xy is the quadratic
variation of X.

Remark 14.59. The proof of Theorem 14.58 shows that a single sequence
of stopping times, tTnu, can be used for both X and Y in the definition of
a local martingale, and in this case, xX,Y yt^Tn

“ xXn, Ynyt. In particular,
xXyt^Tn

“ xXnyt, and this shows that xXy is an increasing process.

Proposition 14.60. A local martingale of class DL is a martingale.

Proof. Exercise 14.25. l

Proposition 14.61. A nonnegative local martingale is a supermartingale.

Proof. Exercise 14.25. l

Proposition 14.62. Let M P Mc,loc and define Mp8q “ lim inftÑ8 Mptq. Let
S be an tFtu-stopping time. Then ErMpSq2s ď E xMyS.

Proof. Exercise 14.25. l

For X P M2, define

}X} :“
8
ÿ

n“1

}Xpnq}L2pΩq ^ 1

2n
.

If we identify processes that are indistinguishable, then } ¨ } is a norm on M2.
Under the induced metric pX,Y q ÞÑ }X´Y }, the space M2 is a complete metric
space. (That is, M2 is a Banach space.) Moreover, Mc

2 is a closed subspace of
M2. See [8, Proposition 1.5.23] for details.

Exercises

14.21. [8, Problem 1.5.7] Prove Proposition 14.50.

14.22. [8, Problem 1.5.11] Prove Proposition 14.52.

14.23. [8, Problem 1.5.12] Prove Proposition 14.53.

14.24. [8, Problem 1.5.14] Prove Proposition 14.56.

14.25. [8, Problem 1.5.19] Prove Propositions 14.60, 14.61, and 14.62.



Chapter 15

Brownian Motion

15.1 Introduction

This section is inspired by the beginning of [11, Section 3.1].

Consider the following simple example. Let Y ptq denote the amount of
money you have invested in a savings account at time t (measured in years).
Let r denote the annual interest rate your receive. Without any further deposits
or withdrawals, the function (or process) Y satisfies

dY

dt
“ rY ptq.

Now suppose that the interest rate changes with time. At any given moment,
the interest rate is random, but with mean r, and the randomness is independent
from moment to moment. Then we might be led to write

dY

dt
“ pr `W ptqqY ptq, (15.1)

where W is a stochastic process that represents this ongoing random perturba-
tion of the interest rate. Such a model is often used as an elementary model for
your wealth if you have invested in a risky asset such as a stock.

The process W is referred to as “white noise”, and ideally, we would like it
to have the following properties:

(i) If s ‰ t, then W psq and W ptq are independent.

(ii) The process W is stationary. That is,

pW pt1q, . . . ,W ptkqq
d
“ pW pt1 ` tq, . . . ,W ptk ` tqq.

(iii) For all t ě 0, EW ptq “ 0.

253
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Unfortunately, no such process exists, at least not in any reasonable sense. For
instance, there is no continuous process with these properties. And there is no
measurable process with these properties which also satisfies ErW ptq2s “ 1 for
all t ě 0. (See [11, Section 3.1] and the references therein.)

Nevertheless, let us proceed heuristically as if a nice white noise process
exists, and let us consider what type of properties its integral would have. That
is, let us “define”

Bptq “

ż t

0

W psq ds.

Then B ought to satisfy the following:

(i) Bp0q “ 0.

(ii) If 0 ď t1 ă ¨ ¨ ¨ ă tk, then

Bpt1q, Bpt2q ´Bpt1q, . . . , Bptkq ´Bptk´1q

are independent.

(iii) Bptq´Bpsq is normally distributed with mean 0 and variance proportional
to t´ s.

(iv) B is continuous.

Condition (iii) follows from a heuristic application of the central limit theorem.
It turns out that there is a stochastic process which satisfies all of these

conditions, and it is Brownian motion, which we will formally define shortly.
White noise, then, ought to be the derivative of Brownian motion. Unfortu-
nately, Brownian motion is almost surely nowhere differentiable. (This fact will
also be established later.)

Returning to our heuristically derived differential equation (15.1), we find
that it now becomes

dY

dt
“

ˆ

r `
dB

dt

˙

Y ptq.

If we write this an integral equation, it becomes

Y ptq “ Y p0q ` r

ż t

0

Y psq ds`

ż t

0

Y psq
dB

ds
ds,

or

Y ptq “ Y p0q ` r

ż t

0

Y psq ds`

ż t

0

Y psq dBpsq.

The nonexistence of white noise manifests itself in this integral equation through
the nonexistence of the final integral. It will later be established that Brownian
motion is of unbounded variation on all intervals. Hence, the final integral above
cannot be understood as an ordinary Lebesgue-Stieltjes integral. A new theory
must be developed in order to make sense of and work with integrals of this
type. This new theory is theory of Itô integration, which is the starting point
in the study of stochastic differential equations.
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Remark 15.1. Although white noise cannot be defined as an ordinary stochas-
tic process, it can be made rigorous as an S 1-valued random variables, where
S 1 is the space of what are called “generalized functions” on r0,8q. In this
sense, white noise is analogous to the delta function. The delta function is not a
function in the ordinary sense, but it can be rigorously defined as a generalized
function. Likewise, white noise is not a stochastic process in the ordinary sense,
but it can be rigorously defined as a random generalized function. All of this,
however, is beyond the scope of these notes. We will not work formally with
white noise in these notes, only with Brownian motion.

15.2 Definition

This section corresponds to [8, Sections 2.1 and 2.2].
Let pΩ,F , P q be a probability space and tFtu a filtration. Let B be a

continuous, tFtu-adapted stochastic process such that

(i) Bp0q “ 0 a.s.,

(ii) If 0 ď s ă t, then Bptq ´Bpsq „ Np0, t´ sq, and

(iii) If 0 ď s ă t, then Bptq ´Bpsq and Fs are independent.

Then B is a (standard, one-dimensional) Brownian motion with respect
to tFtu. The word “standard” refers to the fact that Bp0q “ 0 a.s.

Proposition 15.2. Let B be a continuous stochastic process such that

(i) Bp0q “ 0 a.s., and

(ii) If 0 ď s ă t, then Bptq ´Bpsq „ Np0, t´ sq.

Then B is an tFB
t u-Brownian motion if and only if

(iii)1 Bpt1q, Bpt2q ´Bpt1q, . . . , Bptkq ´Bptk´1q are independent,

for all 0 ď t1 ă ¨ ¨ ¨ ă tk.

Proof. Exercise 15.1. l

In general, if we say that B is a Brownian motion, without reference to a
filtration, then we mean that B is an tFB

t u-Brownian motion.
The first issue that must be resolved is whether or not Brownian motion

exists. That is, does there exist a stochastic process that satisfies the definition
of Brownian motion? The answer, of course, is yes. To prove this, we begin
with the following continuous-time version of Kolmogorov’s extension theorem.

Theorem 15.3. For each n P N and t “ pt1, . . . , tnq P r0,8qn where the tj’s
are distinct, let Qt be a probability measure on pRn,Rnq. Assume that tQtu is
consistent. That is, assume:
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(i) If t “ pt1, . . . , tnq, s “ pt1, . . . , tn´1q, and A P Rn´1, then

QtpAˆ Rq “ QspAq.

(ii) If s “ pti1 , . . . , tinq is a permutation of t “ pt1, . . . , tnq and Ai P R, then

QtpA1 ˆ ¨ ¨ ¨ ˆAnq “ QspAi1 ˆ ¨ ¨ ¨ ˆAinq.

Then there exists a probability measure P on pRr0,8q,Rr0,8qq such that

QtpAq “ P ptω P Rr0,8q : pωpt1q, . . . , ωptnqq P Auq.

Proof. See [8, Theorem 2.2.2]. l

Remark 15.4. The σ-algebra Rr0,8q is just
Â

tPr0,8q R, the same σ-algebra we
reviewed at the beginning of Section 14.1.

For t ą 0 and x, y P R, let p be the Gaussian kernel given by

ppt, x, yq “
1

?
2πt

e´px´yq
2

{2t.

That is, ppt, x, ¨q is the density of the Npx, tq distribution.
Let t “ pt1, . . . , tnq. First assume tj ‰ 0 for all j. Let s “ pti1 , . . . , tinq be

a permutation of t such that 0 ă s1 ă ¨ ¨ ¨ ă sn. Let U “ pU1, . . . , Unq be an
Rn-valued random variable with density

px1, . . . , xnq ÞÑ pps1, 0, x1qpps2 ´ s1, x1, x2q ¨ ¨ ¨ ppsn ´ sn´1, xn´1, xnq,

and define Qt via QtpA1 ˆ ¨ ¨ ¨ ˆAnq “ P pU P Ai1 ˆ ¨ ¨ ¨ ˆAinq.
Now assume tj “ 0 for some j. Let s “ pti1 , . . . , tinq be a permutation of t

such that 0 “ s1 ă s2 ă ¨ ¨ ¨ ă sn. Define Qt via

QtpA1 ˆ ¨ ¨ ¨ ˆAnq “ δ0pAi1qQps2,...,snqpAi2 ˆ ¨ ¨ ¨ ˆAinq.

By showing that tQtu is consistent and using Theorem 15.3, we can obtain the
following.

Corollary 15.5. Let Ω “ Rr0,8q and F “ Rr0,8q. For each t ě 0, define
Bptq : Ω Ñ R by Bpt, ωq “ ωptq. Let B “ tBptq : t ě 0u. Then there exists a
probability measure P on pΩ,Fq such that B is a stochastic process that satisfies
(i), (ii), and (iii)1 of Proposition 15.2.

Proof. Exercise 15.2. l

According to Proposition 15.2, the process B in Corollary 15.5 would be
a Brownian motion if it were continuous. Even if it were continuous almost
surely, that would be enough, since we could change it to the zero process on
the corresponding null set. Unfortunately, the set

C “ tω P Ω : Bp¨, ωq is continuousu
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is not in F . So it is not an event, and P pCq is undefined. In fact, it can be
shown that if A Ă C and A P F , then A “ H. It follows from this fact that
B is not continuous almost surely. To see this, suppose B is continuous almost
surely. Then there exists N P F such that P pNq “ 0 and B is continuous on
N c. That is N c Ă C. But this implies N c “ H, and so N “ Ω. But P pΩq “ 1,
and we have a contradiction.

So the process B in Corollary 15.5 is not a Brownian motion. Our goal is to
create a modification of it which is.

Theorem 15.6 (Kolmogorov-Čentsov theorem). Let X “ tXptq : t P r0, T su be
a stochastic process. Suppose there exists α, β, C ą 0 such that for all ε ą 0,

P p|Xptq ´Xpsq| ě εq ď Cε´α|t´ s|1`β , (15.2)

whenever s, t P r0, T s. Then X has a continuous modification rX which does not
depend on α, β, or C, and which satisfies the following: for all γ P p0, β{αq,
there exists a random variable δ with δ ą 0 a.s. and

sup
0ăt´săδ
s,tPr0,T s

| rXptq ´ rXpsq|

|t´ s|γ
ď

2

1 ´ 2´γ
a.s.

Proof. See [8, Theorem 2.2.8] l

Remark 15.7. Suppose

E|Xptq ´Xpsq|α ď C|t´ s|1`β . (15.3)

Then, by Chebyshev,

P p|Xptq ´Xpsq| ě εq ď
E|Xptq ´Xpsq|α

εα
ď Cε´α|t´ s|1`β .

Thus, (15.2) can be replaced by (15.3). In fact, the version of the Kolmogorov-
Čentsov theorem in [8] uses (15.3), but the first step in the proof is to apply
Chebyshev in order to obtain (15.2).

A continuous function f : r0, T s Ñ R is said to be Hölder-continuous
with exponent γ ą 0 (or γ-Hölder) if

sup
s,tPr0,T s

s‰t

|fptq ´ fpsq|

|t´ s|γ
ă 8.

Lemma 15.8. Let f : r0, T s Ñ R be continuous and γ ą 0. If there exists δ ą 0
such that

sup
s,tPr0,T s

0ăt´săδ

|fptq ´ fpsq|

|t´ s|γ
ă 8,

then f is γ-Hölder.
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Proof. Note that

sup
s,tPr0,T s

t´sąδ

|fptq ´ fpsq|

|t´ s|γ
ď δ´γ sup

s,tPr0,T s

t´sąδ

|fptq ´ fpsq| ď 2δ´γ sup
tPr0,T s

|fptq| ă 8.

Thus,

sup
s,tPr0,T s

s‰t

|fptq ´ fpsq|

|t´ s|γ
ď sup

s,tPr0,T s

0ăt´săδ

|fptq ´ fpsq|

|t´ s|γ
` sup

s,tPr0,T s

t´sąδ

|fptq ´ fpsq|

|t´ s|γ
ă 8,

so f is γ-Hölder. l

Lemma 15.9. If f : r0, T s Ñ R is γ-Hölder and λ ă γ, then f is λ-Hölder.

Proof. This follows from

sup
s,tPr0,T s

s‰t

|fptq ´ fpsq|

|t´ s|λ
ď sup

s,tPr0,T s
0ăt´să1

|fptq ´ fpsq|

|t´ s|λ
` sup

s,tPr0,T s
t´sě1

|fptq ´ fpsq|

|t´ s|λ

ď sup
s,tPr0,T s
0ăt´să1

|fptq ´ fpsq|

|t´ s|γ
` sup

s,tPr0,T s
t´sě1

|fptq ´ fpsq|

ď sup
s,tPr0,T s

s‰t

|fptq ´ fpsq|

|t´ s|γ
` 2 sup

tPr0,T s

|fptq|,

which is finite. l

A continuous function f : r0,8q Ñ R is said to be locally Hölder-
continuous with exponent γ ą 0 (or locally γ-Hölder) if f |r0,T s if γ-Hölder
for all T ą 0.

Theorem 15.10. Let Ω “ Rr0,8q and F “ Rr0,8q. There exists a probability
measure P on pΩ,Fq and a stochastic process W “ tW ptq : t ě 0u defined on
pΩ,F , P q such that W is a Brownian motion. Moreover, almost every sample
path of W is locally Hölder-continuous with exponent γ, for every γ P p0, 1{2q.

Proof. Let B be the process in Corollary 15.5. Since Bptq ´Bpsq „ Np0, t´ sq,
we have

E|Bptq ´Bpsq|2n “ p2n´ 1q!!|t´ s|n.

Taking n “ 2, we may apply Theorem 15.6 with α “ 4 and β “ 1. Doing this
for each T P N, we obtain continuous processes WT “ tWT ptq : t P r0, T su,
which are modifications of B on r0, T s.

Let

Ω1 “

8
č

T“1

č

tPQXr0,T s

tWT ptq “ Bptqu,
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so that P pΩ1q “ 1. Fix ω P Ω1 and T P N. Then for any t P QX r0, T s, we have

WT pt, ωq “ Bpt, ωq “ WT`1pt, ωq.

Since WT and WT`1 are continuous, we have that WT pt, ωq “ WT`1pt, ωq for
all t P r0, T s.

For t ě 0, choose T ě t and define W ptq “ WT ptq1Ω1
. Then W is a

continuous modification of B, and so W is a Brownian motion.
Now fix T P N. Fix j P N. Choose n P N such that

1

2
´

1

j
ă
n´ 1

2n
.

By Theorem 15.6 with α “ 2n, β “ n´ 1, and γj “ 1{2´ 1{j, we may choose a
positive random variable δj and an event Aj,T with P pAj,T q “ 1 such that for
all ω P Aj,T ,

sup
0ăt´săδpωq

s,tPr0,T s

|WT pt, ωq ´WT ps, ωq|

|t´ s|γj
ă 8.

By Lemma 15.8, WT p¨, ωq is γj-Hölder on r0, T s.
Now let

Ω2 “

8
č

T“1

8
č

j“1

Aj,T ,

so that P pΩ2q “ 1. Let ω P Ω2, T P p0,8q, and γ P p0, 1{2q. Choose rT P N with

T ă rT and j P N with γ ă γj . Then ω P Aj, rT implies W p¨, ωq is γj-Hölder on

r0, rT s, and therefore on r0, T s. By Lemma 15.9, W p¨, ωq is γ-Hölder on r0, T s.
Since this is true for all T ą 0, the sample path W p¨, ωq is locally γ-Hölder.
Since γ was arbitrary, this completes the proof. l

Exercises

15.1. [8, Problem 2.1.4] Prove Proposition 15.2.

15.2. [8, Problem 2.2.5] Prove Corollary 15.5.

15.3 Donsker’s invariance principle

Roughly speaking, Donsker’s invariance principle states that a sequence of ran-
dom walks, in which the sizes of the temporal and spatial steps go to zero at
appropriate rates, will converge in distribution to a Brownian motion. This
theorem provides an alternative proof of the existence of Brownian motion. But
it also provides an intuitive understanding of Brownian motion itself. Brownian
motion is the continuous-time analog of a random walk.

Donsker’s invariance principle is a theorem which asserts the convergence
in distribution of a sequence of random variables taking values in the space of
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continuous functions. To properly understand the theorem, we must generalize
some of the notions from Section 7.3. In particular, we will need to generalize
the notion of tightness and use the proof method described in Remark 7.28.

Let Cr0,8q denote the set of continuous functions from r0,8q to R. Note
that Cr0,8q is a vector space over R.

Proposition 15.11. For f, g P Cr0,8q, define

ρpf, gq “

8
ÿ

n“1

2´n sup
tPr0,ns

p|fptq ´ gptq| ^ 1q.

Then ρ is a metric on Cr0,8q which makes Cr0,8q a complete and separable
metric space. Moreover, fn Ñ f in this metric if and only if fn Ñ f uniformly
on compact intervals.

Proof. Exercise 15.3. l

A cylinder set is a set C Ă Cr0,8q of the form

C “ tf P Cr0,8q : pfpt1q, . . . , fptnqq P Au, (15.4)

for some n P N, tj P r0,8q, and A P Rn.

Proposition 15.12. Let C denote the collection of all cylinder sets in Cr0,8q.
Then BCr0,8q “ σpCq.

Proof. Exercise 15.4. l

Lemma 15.13. Let X : Ω Ñ Cr0,8q and let G be a σ-algebra on Ω. Then
X is pG,BCr0,8qq-measurable if and only if πt ˝ X is pG,Rq-measurable for all
t ě 0.

Proof. Suppose X is pG,BCr0,8qq. Since πt : Cr0,8q Ñ R is continuous, it
follows that πt is pBCr0,8q,Rq-measurable. Thus, πt ˝X is pG,Rq-measurable.

Now suppose πt ˝ X is pG,Rq-measurable for all t ě 0. Let C P C be given
by (15.4). Then

X´1pCq “ tpπt1 ˝X, . . . , πtn ˝Xq P Au.

By Corollary 2.7, pπt1 ˝ X, . . . , πtn ˝ Xq is pF ,Rnq-measurable. It therefore
follows that X´1pCq P F . Since BCr0,8q “ σpCq, Proposition 2.2 implies that
X is pG,BCr0,8qq-measurable. l

We can now prove the following variation on Lemma 14.1.

Lemma 15.14. With notation as above, we have the following.

(i) If tXptq : t ě 0u is a real-valued stochastic process with continuous sample
paths, and X : Ω Ñ Cr0,8q is defined by Xpωq “ Xp¨, ωq, then X is a
Cr0,8q-valued random variable.
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(ii) If X : Ω Ñ Cr0,8q is a Cr0,8q-valued random variable, and Xptq :
Ω Ñ R is defined by Xptq “ πt ˝ X, then tXptq : t ě 0u is a real-valued
stochastic process with continuous sample paths.

(iii) In either case, σpXq “ σptXptq : t ě 0uq.

Proof. By Lemma 15.13, for any σ-algebra G on Ω, we have that the function X
is pG,BCr0,8qq-measurable if and only if πt˝X is pG,Rq-measurable for all t ě 0.
Taking G “ F gives us (i) and (ii). Taking G “ σpXq gives us σpXq Ą σptXptq :
t ě 0uq. And taking G “ σptXptq : t ě 0uq gives us σpXq Ă σptXptq : t ě 0uq.
l

We can now identify continuous stochastic processes with Cr0,8q-valued
random variables. If X and Y are continuous stochastic processes, then they
can both be regarded as Cr0,8q-valued random variables. To say that X “d Y
in Cr0,8q is to say that P pX P Aq “ P pY P Aq for all A P BCr0,8q.

Lemma 15.15. Let X and Y be continuous stochastic processes. Then X “d Y
in Cr0,8q if and only if X and Y have the same finite-dimensional distributions.

Proof. Suppose X “d Y in Cr0,8q. Fix d P N and t1, . . . , td P r0,8q. Define

πt1,...,td : Cr0,8q Ñ Rd

by πt1,...,tdpfq “ pfpt1q, . . . , fptdqq. Note that πt1,...,td is continuous and there-
fore measurable. Thus, for any A P Rd,

P ppXpt1q, . . . , Xptdqq P Aq “ P pπt1,...,td ˝X P Aq

“ P pX P π´1
t1,...,td

pAqq

“ P pY P π´1
t1,...,td

pAqq

“ P ppY pt1q, . . . , Y ptdqq P Aq.

Thus, X and Y have the same finite-dimensional distributions.
Now assume X and Y have the same finite-dimensional distributions. Let

L “ tA P BCr0,8q : P pX P Aq “ P pY P Aqu.

Since X and Y have the same finite-dimensional distributions, it follows that
C Ă L, where C is the collection of cylinder sets. Since C is a π-system and L is
a λ-system, it follows that X “d Y in Cr0,8q. l

According to the definition in Section 7.3, to say that Xn ñ X8 in Cr0,8q

is to say that ErGpXnqs Ñ ErGpX8qs for all bounded, continuous functions
G : Cr0,8q Ñ R. The function G is continuous if Gpfnq Ñ Gpf8q whenever
fn Ñ f8 locally uniformly.

Another way to think about Xn ñ X8 in Cr0,8q is given by Remark 7.16.
By the Skorohod representation theorem, Xn ñ X8 in Cr0,8q if and only if
there are continuous stochastic processes Yn such that Xn and Yn have the same
finite-dimensional distributions for each n, and Yn Ñ Y8 locally uniformly, a.s.
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We will say that Xn ñ X8 in the fdd sense if the finite-dimensional
distributions of Xn converge in distribution to those of X8. That is

pXnpt1q, . . . , Xnptdqq ñ pX8pt1q, . . . , X8ptdqq

as n Ñ 8, for any d P N and any tj P r0,8q.

Lemma 15.16. If Xn ñ X8 in Cr0,8q, then Xn ñ X8 in the fdd sense.

Proof. SupposeXn ñ X8 in Cr0,8q. By Remark 7.20 and the fact that πt1,...,td
is continuous, we have

pXnpt1q, . . . , Xnptdqq “ πt1,...,tdpXnq

ñ πt1,...,tdpX8q “ pXnpt8q, . . . , Xnpt8qq.

Thus, Xn ñ X8 in the fdd sense. l

The converse of Lemma 15.16 is not true. Convergence in the fdd sense is
not sufficient to give convergence in Cr0,8q. To obtain convergence in Cr0,8q,
we need both convergence in the fdd sense and the additional property of “tight-
ness”.

In Section 7.3, we defined what it means for a sequence of real-valued random
variables to be tight. Here, we extend that definition to Cr0,8q-valued random
variables. In fact, we will extend it to M -valued random variables, where M is
any metric space.

Let pM,ρq be a metric space. Let tµαuαPA be a family of Borel probability
measures on M . We say that tµαu is tight if, for all ε ą 0, there exists a
compact K Ă M such that

µαpKq ě 1 ´ ε,

for all α P A. A sequence of M -valued random variables, tXnu8
n“1, is tight

if tµnu8
n“1 is tight, where Xn „ µn. That is, if, for all ε ą 0, there exists a

compact K Ă M such that

P pXn P Kq ě 1 ´ ε,

for all n.
The following is a generalization of Theorem 7.27.

Theorem 15.17. LetM be a complete and separable metric space. Let tµαuαPA

be a family of Borel probability measures on M . Then tµαu is tight if and only
if it is relatively compact, that is, every sequence tµαpnqu8

n“1 has a subsequence
that converges weakly.

In particular, a sequence of random variables taking values in a complete
and separable metric space is tight if and only if every subsequence has a further
subsequence that converges in distribution.

Proof. See [8, Theorem 2.4.7] and the references therein. l
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To apply this theorem to M “ Cr0,8q, we must first characterize the com-
pact subsets of Cr0,8q. If f P Cr0,8q, T ą 0, and δ ą 0, define

mT pf, δq “ sup
|s´t|ďδ
0ďs,tďT

|fpsq ´ fptq|,

which we call the modulus of continuity of f on r0, T s.

Proposition 15.18. The function mT p¨, δq is continuous, the function mT pf, ¨q
is increasing, and mT pf, δq Ó 0 as δ Ó 0.

Proof. Exercise 15.5. l

Theorem 15.19 (Arzelà-Ascoli theorem). Let A Ă Cr0,8q. Then the closure
of A is compact if and only if the following conditions hold:

(i) supt|fp0q| : f P Au ă 8, and

(ii) for all T ą 0, we have suptmT pf, δq : f P Au Ñ 0 as δ Ó 0.

Proof. See [8, Theorem 2.4.9]. l

Combining Theorems 15.19 and 15.17, we obtain the following necessary and
sufficient conditions for tightness in Cr0,8q.

Theorem 15.20. Let tXnu be a sequence of Cr0,8q-valued random variables.
Then tXnu is tight if and only if the following conditions hold:

(i) supn P p|Xnp0q| ą Mq Ñ 0 as M Ñ 8, and

(ii) supn P pmT pXn, δq ą εq Ñ 0 as δ Ó 0 for all T ą 0 and all ε ą 0.

Proof. See [8, Theorem 2.4.10]. l

Remark 15.21. Condition (i) in Theorem 15.20 is equivalent to the assertion
that the sequence of real-valued random variables tXnp0qu8

n“1 is tight.

Remark 15.22. For simplicity, Theorem 15.20 is stated under the assumption
that the Xn’s are defined on the same probability space, and so P does not
depend on n. The theorem is still true if eachXn is defined on its own probability
space.

Although Theorem 15.20 provides necessary and sufficient conditions for
tightness, it is often not a very practical tool for verifying tightness in specific
applications. Using methods similar to the proof of the Kolmogorov-Čentsov
theorem (Theorem 15.6), we obtain the following sufficient conditions for tight-
ness.

Proposition 15.23. Let tXnu be a sequence of Cr0,8q-valued random vari-
ables. Suppose that there exists α, β, ν ą 0 and a family of positive constants
tCT uTą0 such that
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(i) supnE|Xnp0q|ν ă 8, and

(ii) supnE|Xnptq ´Xnpsq|α ď CT |t´ s|1`β for all 0 ď s, t ď T .

Then tXnu is tight.

Proof. See [8, Problem 2.4.11]. l

Finally, the proof method described in Remark 7.28, as it applies to the
current situation, is encoded in the following theorem.

Theorem 15.24. Let tXnu be a sequence of continuous stochastic processes.
Suppose tXnu is tight and that the finite-dimensional distributions converge in
distribution. Then there exists a continuous process X8 such that Xn ñ X8 in
Cr0,8q as n Ñ 8.

Remark 15.25. In Theorem 15.24, each Xn might be defined on its own prob-
ability space. In particular, even if tXn : n P Nu are all defined on a common
probability space, the theorem does not guarantee that X8 can be defined on
that space.

Remark 15.26. To say that the finite-dimensional distributions of the sequence
of processes tXnu converge in distribution is to say that for all d P N and all
t1, . . . , td P r0,8q, there exists an Rd-valued random vector U such that

pXnpt1q, . . . , Xnptdqq ñ U,

as n Ñ 8.

Proof of Theorem 15.24. By Remark 7.26, we may employ a subsequential ar-
gument (using Theorem 7.2).

By Theorem 15.17, there exists a subsequence tXnpmqu and a continuous
process X8 such that Xnpmq ñ X8 in Cr0,8q as m Ñ 8.

Let tX
rnpmqu be an arbitrary subsequence. By Theorem 15.17, there ex-

ists a further subsequence tX
rnpmkqu and a continuous process rX8 such that

X
rnpmkq ñ rX8 in Cr0,8q as k Ñ 8. Since the finite-dimensional distributions

of tXnu converge, it follows that X8 and rX8 have the same finite-dimensional

distributions. By Lemma 15.15, X8 “d
rX8 in Cr0,8q. Thus, X

rnpmkq ñ X8

in Cr0,8q as k Ñ 8. Since tX
rnpmqu was arbitrary, it follows from Theorem 7.2

that Xn ñ X8 in Cr0,8q as n Ñ 8. l

Corollary 15.27. Let tXnu and X be continuous stochastic processes. Suppose
tXnu is tight and Xn ñ X in the fdd sense. Then Xn ñ X in Cr0,8q.

Proof. By Theorem 15.24, there exists a continuous process rX such that Xn ñ
rX in Cr0,8q. But thenX and rX have the same finite-dimensional distributions.

By Lemma 15.15, X “d
rX in Cr0,8q. Thus, Xn ñ X in Cr0,8q. l

The following result is a generalization of Exercise 7.10, which is often useful
when working with convergence in distribution in Cr0,8q.
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Proposition 15.28. Let pM,ρq be a separable metric space. Let Xn, Yn, X be
M -valued random variables. Suppose Xn ñ X and ρpXn, Ynq Ñ 0 in probabil-
ity. Then Yn ñ X.

Proof. Exercise 15.6. l

Let tξju be i.i.d. real-valued random variables with mean 0 and variance 1.
Let S0 “ 0 and Sn “ ξ1 ` ¨ ¨ ¨ ` ξn. For t ě 0, define

Y ptq “ Sttu ` pt´ ttuqξttu`1.

Then Y “ tY ptq : t ě 0u is a continuous stochastic process which is a linear
interpolation of a mean 0 random walk. For n P N and t ě 0, let

Xnptq “ n´1{2Y pntq.

Then Xn “ tXnptq : t ě 0u is the same continuous process, but with time and
space scaled by a factor of n´1 and n´1{2, respectively.

Theorem 15.29 (Donsker’s invariance principle). There exists a Brownian mo-
tion W such that Xn ñ W .

Proof idea. The substantial portion of the proof, which requires multiple lem-
mas in the text, is to prove that tXnu is tight. In addition to this, one must use
the central limit theorem to prove that the finite-dimensional distributions of
Xn converge. Theorem 15.24 then implies there exists a continuous process W
such that Xn ñ W . One can then use the earlier calculations from the central
limit theorem to verify thatW has the necessary finite-dimensional distributions
to be a Brownian motion. For details, see [8, Theorem 2.4.20]. l

Remark 15.30. Donsker’s invariance principle can be regarded as a construc-
tive proof of the existence of Brownian motion. It constructs Brownian motion
W as a Cr0,8q-valued random variable. As stated here in these notes, the
underlying probability space on which W is built is left unspecified. However,
it can always be built in the following canonical fashion.

Suppose W is a Cr0,8q-valued random variable defined on the probability

space pΩ,F , P q. Let rΩ “ Cr0,8q, rF “ BCr0,8q, and ĂW pt, ωq “ ωptq. Define
rP on prΩ, rFq by rP pAq “ P pW P Aq. Then ĂW “d W . In particular, if W is a

Brownian motion, then ĂW is a Brownian motion. In this case, the canonical
measure rP is called Wiener measure and the probability space prΩ, rF , rP q is
the canonical probability space for Brownian motion.

Exercises

15.3. [8, Problem 2.4.1] Prove Proposition 15.11.

15.4. [8, Problem 2.4.2] Prove Proposition 15.12.

15.5. [8, Problem 2.4.8] Prove Proposition 15.18.

15.6. [8, Problem 2.4.16] Prove Proposition 15.28.
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15.4 Properties of Brownian motion

Brownian motion is a continuous, square-integrable martingale (see Exercise
15.7). We would like to say that B P Mc

2, so that we can use all the results
of Section 14.5. But to do that, we need to have a filtration that satisfies the
usual conditions. Unfortunately, tFB

t u does not. To this end, we introduce a
new concept.

Let tGtu be a filtration.

Exercises

15.7. Prove that Brownian motion is a continuous, square-integrable martin-
gale.
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