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ABSTRACT

This note establishes stationarity of a number of stochastic pro-
cesses of interest in the study of Transport Protocols. For many of
the processes studied in this note stationarity had been established
before, but for one class the result is new. For that class, it was
counterintuitive that stationarity was hard to prove. This note also
explains why that class offered such stiff resistance.

The stationarity is proven using Liapunov functions, without first
proving tightness by proving boundedness of moments. After the
2006 MAMA workshop simple conditions for existence of such
moments were obtained and were added to this note.

1. INTRODUCTION

The paper [3] proposes a class of “TCP-like” Internet Transport
Protocols and uses a class of stochastic processes to analyze the
performance of these protocols. That class of stochastic processes
is defined by:

Let (Un)nro be independent, identically distributed random vari-
ables, each distributed uniformly [0,1]. Let p be a probability,
0 < p < 1. Define the i.i.d. random variables xp,n by

Xpm = {

Further, let the discrete time, continuous state space process
W;,p,c‘,n (n = 0, l» 27 ) 0< W;,p,C,n < 00, 0< p< 1)
be defined by

iU > p
iU, <p

success
failure

1.1

apCn T €1 (Wap,omn)®
if xp,n = success,
max (Wé,p,C‘,n - 62(Wt:,p,c,n)ﬁv C)
if xp,n = failure,
(1.2)

*
Wa,p,C,n+1 =

wherea<8<1,¢1>0,c2>0,C>0.

The specialcasewith =1, a=—1, e = 1,c0 = % and (for
example) C' = 1 models “classical TCP”.

The special case with 3 = 1, o = 0 models Tom Kelly’s “Scal-
able TCP”, see [10, 11].

The paper [3] shows that the more general case, even the case
0 < @ < B < 1, is of interest in the study of transport protocols.

In [6] it is proven that for all values @ < 3 < 1, ¢ > 0, ¢c2 >
0, C >0, 0<p<l(and0 < c2 < lifg3 = 1) the pro-
cess W, p,c,» has a unique stationary distribution. The uniqueness
of that stationary distribution (independent of W, , ¢ o) is derived
from the fact that eventually W , o, = C for some (possibly
large) n.
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The paper [4] mainly studies thecasea < 8 =1, ¢; >0, 0 <
¢2 < 1. In that case we write 1 — c2 = b. In that case we can
drop the “max (..., C)” in (1.2) (or choose C' = 0). [4] also draws
some conclusions, from the case “C = 0”, for the case “C > 0”.

The process of main interest in that paper therefore is defined by

W, _ | Wapn+ca(Wapn)® if xp,n = success,
Pt T bW i if Xp,n = failure.
(1.3)
but it also draws some conclusions for the process (Wy , ¢, )0
defined by

Wt;,'p,C,n +ca (W;,p,c,n)a
W _ if Xp,n = success,
apCndt = max (bW, ¢n» C)
if xp,n = failure.
(1.4)

By an abuse of notation we will often denote W , ¢ as Wy,
and Wy, p.n as W, etc, and when the parameter n is dropped we
assume the random variable has the stationary distribution.

As mentioned before, the paper [6] proves existence and unique-
ness of the stationary distribution of the process (W, ,)a=o in the
case C' > 0. In addition, the paper [4] proves existence and unique-
ness of stationary distributionsincase (0 < a<g8=1, C =0,
0 < ¢o < 1). The results in the latter paper can also be used (us-
ing the tightness proven in that paper) to prove existence, but not
uniqueness, of a stationary distribution in the case (a < 0, 8 = 1,
C =0,0<c2<1and0 < p < 1sufficiently small).

The latter extra requirement, that p is sufficiently small, is counter—
intuitive: It “should” be easier to prove stationarity for p close to
one (therefore fewer successes, therefore (?) Wy, more likely to
be small (?)) than for p close to zero. More on this topic later in
this paper.

The papers [3], [4], [6] study rescaled versions of the processes
described above. The paper [6] proves weak convergence, for p |
0, of these rescaled processes to interesting limit processes, and
in many cases proves weak convergence of the stationary distribu-
tions of the rescaled processes to the stationary distributions of the
limit processes. In the situation with 3 = 1 [4] even gives rate of
convergence results and stochastic dominance results for that weak
convergence of stationary distributions. If 3 = 1, it seems easiest
to first study the case C' = 0 and then apply the results to the case
C >0

This note fills the the gap in the analysis of stationarity: By an
alternative method it proves stationarity in all cases. However, the
greater generality comes at a cost: for the time being, the results in
this note do not give tightness of the family of stationary distribu-
tions for the rescaled processes for p | 0.

The results in this note are formulated for the original processes



W, ¢, and Wy, ,, not for the rescaled processes.

The method of proof in this paper is to find a compact set [v1, v2]
and 1o prove that the “expected first return time” from W leaving
that set to returning to that set is bounded. One of the results used
is Theorem 12.3.4 on page 296 of [9].

In the case C > 0 we will choose v1 = C < w2 < 0o. In the
case (B =1, C=0, 0 <ca <1)wewillchoose 0 < v1 < v2 <
00. In the old “holdout situation” o < 0 this is necessary to make
the proof work.

2. THECASEpg<1, ¢>0

Throughout this section we have 3 < 1, C > 0 and we choose
vy = C and vy “large”, to be described later. Among others we
require that v is large enough to ensure that w—caw® is increasing
in w for w > va, that C + ¢1C® < vg, and that w — cow® > C
for all w > vs.

We will find a function (Liapunov function) V : [C,00) —
[0, o0) with the following properties:

V(w)=0 for C <w <L va,

V(w) 2 14+ (1-p)V(w+caw®)+pV(w—cow®) for w > va,

2.1
and such that there is an upper bound B < oo with the property
that

V(w+caw*)< B forall C<w< va. 2.2)

(2.1) shows that V' (w) is an upper bound for the Expected First
Passage Time from W = w > v2 to W < wva. This is The-
orem 11.3.4 on page 265 of [9]. (2.2) then shows that the process
(W c,n)neo has (at least one) stationary distribution. That is The-
orem 12.3.4 on page 296 of [9].

Once we have the results above, it is obvious that the expected
first passage time from “anywhere” to W = C is finite. This then
proves the uniqueness of the stationary distribution.

We find we > w2 such, that wa — cwa = wvg. In fact, see
below, one could say we choose ws large enough and then define
V2 = W2 — 02wg . Then we choose the function V' of the form

V(w) = v+ pw'™" for w> v,. 2.3)

Clearly, it now is sufficient to choose i and v such, that

pw' =8 > 14+ (1-p)u(w+ew®) P +pp(1-c2uw’) ~F (24)

for w > we and

vz L sup (1 + (1 —p)p(w + cw®) =P — uwl_ﬁ) .
P va<w<wa
2.5)
For (2.4) to hold we choose
1
> 2.6
Ty @0

By a simple Binomial expansion we see that for (2.4) to hold,
wo must be chosen at least equal to, or larger than, wy,;n, where

(roughly)

o ((_1—_1’)11_:@)__)_ @7

p(l~Bez ~

The approach used has the disadvantage that it requires a spe-
cial choice of vz, namely, vo quite large. With more work smaller
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choices of v2 can be obtained, but that extra work thus far has not
led to sufficiently interesting results.
It now is obvious that there is a B < oo for which (2.2) holds.

3. THECASEg=1,C>0

Throughout this section we have 8 = 1, therefore 0 < ¢2 <
1, and we still have C > 0. We also have b = 1 — ¢5. The
development in this section parallels that in the previous section.
We choose v1 = C, vy sufficiently large, w2 as in the previous
section. In this section that means that v = bwa. We choose the
function V' to be of the form

V(w)=v+plogw for w > va.
For (2.1) to hold we now need that
plog (w) > 1+ (1 — p)plog (w + crw®) + pulog (bw) (3.2)
for w > wo and that

(3.1)

1
v>= sup (1+(1-p)ulog(w+eciw®)— plog(w)).
D vo<w<wy
(3.3)
For (3.2) to hold we choose
1
> ——— 34
"> liog B G9

and a simple expansion shows that for (3.2) to hold we must choose
w2 > Wmin, Where (toughly)

.

l-pa ™

Winin ~ | ——L—— .
" (pl log (b)] — &

4. THECASEg=1,Cc=0

In this section we study the case § = 1 with C = 0. We also
have 0 < c2 < 1and b =1 — c2. In this case different approaches
are necessary for the cases o < 0, = 0,and 0 < o < 1. The
only interesting situation, however, is & < 0 because it illustrates
why the original approach could not be extended to values of p
close to one.

Thus, in most of this section we have o < 0. In that case, w +
cyw® is minimal for w = (c1]a]) &1 = w*. It is decreasing in
w for 0 < w < w* and increasing in w for w > w*. It goes to
infinity both for w | 0 and w T oo.

We now choose v1 and vs such, that 0 < v1 < w* < v2 < 00,
such that also buz > v1 and v1 + c19F > w2, and such that also
v1 < 1 < wo, and with some additional constraints, see below.

Thus, we insure that in order for the process W to move from the
set (v2, 00) to the set (0, v1) it must pass through the set [v1, v2],
and in order for the process to pass from the set (0,v1) to the set
[v1, v2] it must first jump over the set [v1, vo] into the set (v2, 00)
and then, as in Section 3, drift down to the set [v1, v2).

We choose the function V'(.) as

v + wi|log (w)| for0 < w < s,

Viw)=< 0 forvi < w < v,
vy + iy log (w)  forvz < w < oo.

(3.5)

.1

(! and u stand for “lower” and “upper™). vy, and p,, are chosen as
in Section 3, and an additional lower bound for v2 is obtained as in
that same section. The critical inequality now becomes

vy + | log (w)} >

1+ (1 —p) (vu + pulog (w + c1w®)) + p (v + | log (bw)|)
42



for all 0 < w < wx. This can be re-written as

(1=p) (v —vu) —pp| log ()| +(1—p) (1 — pulad) [log (w)] >

14+|al ))

forall 0 < w < wy. For given v, and j.,, itis easy to choose v, 1
and w; such, that this holds. For example, we can take p; = py |,
etc.

In the situation of this section we can leave the set [v1, v2] in two
ways: by jumping up past v2 and by jumping down past v1. It re-
mains easy to prove that the expected return time remains bounded.
That would not have been the case had we chosen v; = 0.

The approach in [4] in the case (o < 0, 8 = 1, C = 0) proves
existence of a stationary distribution only in the case p sufficiently
small, but in that case also proves that every such stationary dis-
tribution has a finite first moment. The approach in the first four
sections of this note works for all 0 < p < 1 but does not prove
existence of moments.

After the 2006 MAMA workshop it was found exactly for what
values of v, o and p (etc) E[W[ ] is finite for the stationary dis-
tribution of Wy, p»n. The result is stated in the next section. The
proof can be found in [7].

The cases o = 0 and 0 < a < 1 in the situation of this section
are easy to handle. In that situation the process W can not “jump
over” the set [v1, 2] (as long as v1 is reasonably small and v is
reasonably large) and the analysis of V(.) is split into two inde-
pendent sub-problems: one for w > wvg, one for w < v1. The
subproblem for w > v2 remains as before.

In the case 0 < o < 1 we obtain for the subproblem w < v
that

w

14+ (1—p)iu (log (e1) +log (1+ 4.3)

C1

V{(w) = v + pui log (| log (w)])
satisfies for w close to zero.
In the case & = 0 we can even choose the function V' (.} bounded
on0 < w< .
In the case 0 < o < 1 the next two sections of this note will

show that E[W,] is infinite for v < — ||, fnite for al

“4.4)

larger values of v.

The possible non-uniqueness of the stationary distributions (in
the situation o < 0, 8 = 1, C = 0) is an intriguing question. Do
there exist combinations of &, b = 1 — ¢a, ¢1 and p for which
the process W), , has multiple stationary distributions (on sets not
reachable from one another)? If such combinations exist, they must
have weird number—theoretic properties.

5. EXISTENCE OF MOMENTS OF w.. »

For the stationary distribution of W, p, if oo < 0 then (still 0 <
co<landb=1—c2):

=00 ifv2 o:‘;gg(l()l)z) )
EWy,1{ <oo if—|EB <y <| 980 (5)
=00 ifr<-|iE@
while if 0 < a < 1 then
E[Wg,p]{ <o ff" >~ |iog | (5.2)
=00 ifr<— i%i—% .

The proof of this statement can be found in [7].
We see that if p is close enough to 1 then Wo 5, gets close
enough to zero often enough to make E[W}, ] infinite if v/ is close
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enough to —co. As long as o > 0 this has no impact on the ex-
istence of E{W ] for v > 0. However, if & < 0, Wa p,n being
close to zero often implies that also Wy, p,» is close to +0o often
enough to cause E{W; ;] to be infinite for v close enough to +co.

This observation, while mathematically of some interest, almost
certainly has no consequences for protocol analysis: In real Trans-
port Protocols the congestion window (apart from during time—
outs) is bounded away from zero.
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