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Preface

In classical logic, we formalize deductive arguments. The conclusion of a
deductive argument is known with certainty, provided its premises are true.
Inductive arguments, on the other hand, are those whose conclusions are known
only with some degree of plausibility. An argument in a courtroom, for example,
is inductive. Its conclusion, at best, is only known “beyond a reasonable doubt.”

We present herein a formal system of inductive logic. The system contains
deductive logic as a special case. It also uses a language that allows for countable
conjunctions. When we restrict our attention to deductive arguments using
only finite conjunctions, we obtain ordinary first-order logic. That is, first-order
logic is embedded within this system. In particular, the system is capable of
expressing the usual set theory of Zermelo and Fraenkel, and as such, can express
any statement of modern mathematics.

This system of inductive logic gives rise to a probability calculus that
is in complete agreement with modern, mathematical probability theory. In
particular, the inductive statements in the formal language of this system can
be interpreted in probability spaces. Moreover, any probability space, together
with any collection of random variables, can be mapped in a natural way to
such an interpretive model.

Inductive logic, however, is more expressive than ordinary probability theory.
There are probabilistic ideas that are expressible in this system which cannot be
formulated using only probability spaces and random variables. An example of
such an idea is the principle of indifference, a heuristic notion originating with
Laplace. Roughly speaking, it says that if we are “equally ignorant” about two
possibilities, then we should assign them the same probability. The principle
of indifference has no rigorous formulation in ordinary probability theory. It
exists only as a heuristic. Moreover, its use has a history of being problematic
and prone to apparent paradoxes. In our system of inductive logic, however, we
provide a rigorous formulation of this principle, and illustrate its use through a
number of typical examples.

The material herein makes use of (mostly) basic facts from mathematical
logic and measure theory. We assume the reader is already familiar with the
fundamentals of measure-theoretic probability theory. On the other hand, an
effort has been made to accommodate readers with no familiarity in logic. The
logical notions that we use are presented in a way that is mostly self-contained.
Where this is not possible, explicit references to the literature are provided.

xi
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Chapter 1

Introduction

Strictly speaking, all our knowledge outside mathematics and
demonstrative logic (which is, in fact, a branch of mathematics)
consists of conjectures.

—George Polya, 1954 [26]

1.1 Deductive vs. inductive reasoning

Newton’s laws of motion were conjectures that Einstein showed us were false.
But Einstein’s theory of relativity is also a conjecture that may one day be
overturned. Physical laws, in general, are all conjecture. Each experimental
confirmation makes them more plausible, but they can never be established
with complete certainty.

In the courtroom, the prosecuting attorney must prove the guilt of the
defendant, not with complete certainty, but only beyond a reasonable doubt.
If the law required the prosecutor to achieve complete certainty, then everyone
would be acquitted, because this would be impossible. Strictly speaking, then,
we imprison people on the basis of conjecture.

Likewise, the conclusions of the historian, the economist, the chemist, and
the medical researcher are all conjecture. None of them can establish their
results with complete certainty.

And yet, many of these results have been shown to be so plausible that no
one seriously doubts them. To borrow an example from Laplace [22], the sun
will rise tomorrow. I cannot say this with complete certainty, but the degree of
plausibility of this fact is so high, that my human mind cannot even perceive
the sliver of doubt that is there.

The process by which these conjectures obtain varying degrees of plausibility
is not the logic of the mathematician. A mathematical proof either establishes
complete certainty, or it fails to say anything at all. The logic of mathematics
is deductive reasoning. The logic of everything else is inductive reasoning, or as
Polya calls it in [26], “plausible reasoning.”

1
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Deductive reasoning is governed by rules. Over the course of human history,
we have uncovered and formalized these rules, and today we have complete
systems of deductive logic that codify this form of argumentation. The study of
deductive logic, or mathematical logic, is presently a mature and sophisticated
subdiscipline of mathematics that has had profound impacts in areas ranging
from computer science to philosophy to mathematics itself.

Inductive reasoning also has rules. For example, if Hypotheses A implies
Hypothesis B, and Hypothesis B is found to be true, then the plausibility of
Hypothesis A increases. This rule is the basis for empirical science. If the theory
of relativity predicts something about Mercury, and the prediction is confirmed
by experiment, then the theory of relativity is made more plausible by this
discovery. In [27], Polya calls this the “fundamental inductive pattern.”

But unlike its deductive counterpart, inductive reasoning has not been
formalized in any universally accepted way. Since the time of Laplace,
probability theory has seemed like the most promising candidate to formalize
inductive reasoning. For example, in probability theory it is a provable fact that
if A implies B, and if P (A) and P (B) are neither 0 nor 1, then P (A | B) > P (A).
This is a formalization of Polya’s fundamental inductive pattern.

Attempts to formalize inductive reasoning with probability can be traced at
least back to Boole in 1854 [4]. But the recognition that we need some kind of
probabilistic logic goes all the way back to Leibniz in the 17th century. Since
then, mathematicians, philosophers, and physicists have all contributed to this
endeavor. See, for instance, [19, 33, 29, 5, 21, 25, 13]. For a survey of the history
of these efforts, see [11].

In the meantime, over the last 90 years, modern probability—by which
we mean measure-theoretic probability theory—has grown into a powerful and
hugely successful discipline. It started with Kolmogorov in 1933 [20] and, today,
enjoys phenomenal success in all its areas of applications. Advances have been
made in physics, finance, engineering, meteorology, telecommunications, biology,
astronomy, artificial intelligence, and more. Time has shown us that if we
want to do quantified inductive reasoning, there is no better tool than modern
probability.

Perhaps, then, we should turn the effort on its head. As presented above,
we have been regarding inductive reasoning as the fundamental concept, and
probability as a tool by which to formalize it. Instead, we might consider modern
probability to be the fundamental concept, and seek out the inductive logic that
it represents. To clarify what this might mean, let us look to its analogue in
deductive logic, or more specifically, first-order logic.

1.2 The two sides of logic

First-order logic is the usual logic of sentences that involve quantifiers and
predicates. We may approach first-order logic in one of two ways. We may
consider it through a syntactic calculus, or we may consider it through semantics
and meaning. When viewed as a calculus, the central idea is the “proof.” A
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proof is a sequence of sentences whose construction follows a given set of rules,
and which terminates in the sentence that is being proved. A sentence φ is
derivable from X, written X ⊢ φ, if there exists a proof of φ from X.

When viewed via semantics, the central idea is the “structure.” A structure
is a set with distinguished constants, functions, and relations. A group is a
structure with an identity and a group operation. A tree is a structure with
a root and an edge relation. Even a committee of senators with a chair and
two subcommittees is a structure. Formal sentences can be interpreted in a
structure, and once interpreted, the sentence is either true or false. We say that
φ is a consequence of X, written X ⊨ φ if φ is true in every structure where X
is true.

A priori, these two approaches to first-order logic have nothing to do with
one another. And yet, thanks to Gödel’s completeness theorem, we know that
they exactly coincide. That is, X ⊢ φ if and only if X ⊨ φ. In other words,
first-order logic is the logic of structures. By analogy, if we want an inductive
logic that is the logic of probability, then we should build a complete inductive
logic that has modern, measure-theoretic probability as its semantics.

That is exactly what we will do in this manuscript. We will construct
inductive logic so that, like first-order logic, it has a calculus and a semantics.
The calculus will be based on nine rules of inductive inference. It will allow us
to derive probabilities without any sample spaces or measure theory. All that
matters in the calculus are the logical relations between the sentences, and the
rules of inductive inference. On the semantic side, statements are interpreted
in what we call an “inductive model,” which is a probability measure on a set
of structures. We will establish completeness, showing that the calculus and
the semantics coincide. And we will show that the whole of measure-theoretic
probability theory is properly embedded in the semantic side of inductive logic.
That is, any probability space, together with a set of its random variables, can
be mapped to an inductive model in a way that gives each outcome, event, and
random variable a logical interpretation.

1.3 The nature of probability

What, then, is probability? Or more precisely, what body of ideas should
the word “probability” refer to? As a mathematician, it is tempting to
say that probability is simply measure-theoretic probability, the branch of
mathematics built on Kolmogorov’s formalism. But to paraphrase Terence Tao
[31], probability spaces are used to model probabilistic concepts. They are not
the concepts themselves. As such, and in light of the work done here, we might
say that probability is the logic of inductive reasoning. It is an abstract mode of
logical reasoning that is reflected in two parallel systems: a calculus of inductive
inference, and a semantic system of interpretation. It is within this semantic
system that measure-theoretic probability resides.

Another way to assess the nature of probability is to look at the people who
study it and ask what they actually do. In other words, what is a probabilist?
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The traditional view is simple. Probability is a branch of mathematics, and a
probabilist is a mathematician who specializes in it. A probabilist is just one
of many mathematical specialists, each of whom is classified according to the
kinds of structures they study. A group theorist, for example, studies structures
satisfying the axioms of group theory, that is, groups. A probabilist, therefore,
studies structures satisfying Kolmogorov’s axioms, that is, probability spaces.

This view, however, misses something important. A probabilist typically
specializes in a particular class of random variables and stochastic processes.
They do not simply study probability spaces. A person who studies pure
probability spaces, without any random variables, would be better described
as a measure theorist. A probabilist, on the other hand, studies what we might
call “modern probability models,” which are probability spaces equipped with
a collection of random variables. As noted above, every modern probability
model is an inductive model. Hence, probabilists study inductive models, and
any given probabilist will study a particular class of inductive models.

To clarify the situation, let us note that probability spaces are to sets as
inductive models are to structures. That is, we have four kinds of object (sets,
structures, probability spaces, and inductive models) that all stand in relation
to one another. The simplest object is the set. We may extend the notion of the
set in two directions. On the one hand, if we add a probability measure to it, we
obtain a probability space. On the other hand, if we add constants, functions,
and relations, we obtain a structure, which we use to interpret deductive logic.
An inductive model, which we use to interpret inductive logic, can be obtained
from either a structure or a probability space. By definition, if we take a set
of structures and add a probability measure, we have an inductive model. Or
we can start with a probability space and add a particular collection of random
variables. In doing so, we obtain a modern probability model, which is embedded
in the collection of inductive models.

These four kinds of objects are studied by different kinds of mathematicians.
Sets are studied by set theorists. Probability spaces, without any random
variables, are studied by measure theorists. Structures come in many varieties.
For example, graphs are studied by graph theorists. Likewise, inductive models
come in many varieties. An example is random graphs. A person who studies
random graphs would be called a probabilist.

But a probabilist who studies random graphs is as much a graph theorist
as they are a probabilist. Just as mathematicians are categorized according
to the kinds of structures they study, probabilists are categorized according to
the kinds of inductive models they study. There are probabilists who study
stochastic PDEs, random matrices, stochastic control theory, and so on. And
like their deterministic counterparts, any given probabilist will typically only
specialize in one such area. The word “mathematician” is an umbrella term
that includes many different areas. Likewise, the word “probabilist” is also an
umbrella term that includes all these same areas, but seen through the lens of
probability and inductive reasoning. The picture that emerges from this view
is that probability is not just a branch of mathematics. It is a different logical
paradigm with which to study other branches of mathematics.
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1.4 Potential areas of application

As an extension of formal deductive logic, inductive logic has many potential
areas of application. Computer science, for instance, is rooted in mathematical
logic. Hence, any probabilistic extension of computer science is, in some
way, connected to a probabilistic extension of logic. It follows that inductive
logic could be relevant to any such areas. Examples might include quantum
computing and artificial intelligence.

Inductive logic could also be applicable to philosophy. It is connected to the
philosophy of science through Polya’s fundamental inductive pattern. It is also
highly relevant to the philosophical interpretations of probability, and through
these, to epistemology. For instance, we can use inductive logic to formalize the
principle of indifference. This principle is the heuristic notion that we ought
to assign equal probabilities to sentences about which we are equally ignorant.
This principle is intuitively self-evident, but historically problematic. It leads
to apparent paradoxes and is without any mathematically rigorous formulation.
We will have more to say about the principle of indifference later.

Formal deductive logic can also be used to analyze philosophical arguments.
As such, inductive logic can be used to analyze philosophical arguments that
are probabilistic in nature. Examples include the doomsday argument, the
simulation hypothesis, responses to the so-called Sleeping Beauty problem, and
arguments surrounding superintelligence and the technological singularity.

Inductive logic can be applied to mathematics itself, as well as statistics.
Its relevance to probability and Bayesian statistics is obvious. Outside of
probability, it is relevant wherever probabilistic methods are used. For example,
in graph theory and combinatorics, probabilistic methods are often used to
establish existence theorems and asymptotic results. At the foundations of
mathematics, it offers us a new tool for working with undecidable sentences.
Given a set of axioms and an undecidable sentence which they can neither
prove nor disprove, deductive logic allow us to explore the theories obtained by
either including or excluding that sentence from our axioms. With inductive
logic, we may choose to postulate a probability for the undecidable sentence,
and explore the probabilistic statements that follow from this assumption.

There are many potential areas of applications in physics. One obvious
candidate is quantum mechanics, particularly its interpretations. The
interpretations of quantum mechanics, such as the many-worlds and the
Bohmian interpretations, cannot be decided upon through experiment, since
all of their predictions are based on the common mathematical framework of
quantum mechanics. The problem of deciding which one is correct or most useful
is a philosophical problem. Inductive logic gives us a framework for axiomatizing
these interpretations, and thereby more thoroughly analyzing their structure
and consequences.

Besides quantum mechanics, inductive logic might also be applicable to
statistical mechanics. This is particularly true since statistical mechanics is
rooted in the principle of indifference. Its fundamental postulate is that,
a priori, the microstates of an isolated system occur with equal probability.
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Inductive logic, therefore, through the principle of indifference, touches upon
the foundations of statistical mechanics.

The study of noisy dynamical systems is an area of physics where modern
probability has found great success. In applications, the use of stochastic
ordinary and partial differential equations is widespread. On the other hand, we
can axiomatize classical (deterministic) mechanics in an extension of first-order
logic that allows countable conjunctions. This extended language is exactly the
one in which we will build inductive logic. We can therefore add probability
and uncertainty directly into such an axiomatization. Does doing so lead us to
the modern theory of stochastic dynamical systems? If not, how is it related to
that theory? Determining this could provide insight into both inductive logic
and the modern usage of stochastic differential equations.

1.5 The principle of indifference

The principle of indifference is the heuristic idea that if we are equally ignorant
about two propositions, then we ought to assign them the same probability.
This idea originated with Laplace, and is at the heart of what is now called the
classical interpretation of probability.

The theory of chance consists in reducing all the events of the same
kind to a certain number of cases equally possible, that is to say,
to such as we may be equally undecided about in regard to their
existence, and in determining the number of cases favorable to the
event whose probability is sought. The ratio of this number to that
of all the cases possible is the measure of this probability.

—Pierre-Simon Laplace, 1814 [22]

One of the most famous descriptions of the principle is due to Keynes.

The Principle of Indifference asserts that if there is no known reason
for predicating of our subject one rather than another of several
alternatives, then relatively to such knowledge the assertions of
each of these alternatives have an equal probability. Thus equal
probabilities must be assigned to each of several arguments, if there
is an absence of positive ground for assigning unequal ones.

This rule, as it stands, may lead to paradoxical and even
contradictory conclusions.

—John Maynard Keynes, 1921 [19]

It is difficult to overstate the importance of the principle of indifference. Not
only is it at the heart of major areas of science, such as statistical mechanics.
It is also central to our understanding of what probability is. Philosophically,
it forms the basis of the classical interpretation of probability. But beyond
philosophy, it is the everyday intuition of the common person as to why a



1.6. A PHILOSOPHICAL ASIDE 7

balanced die is fair or why it is important to thoroughly shuffle a deck of cards.
And yet, as Keynes rightly points out, it has a problematic history. Even rather
elementary applications of this principle can quickly lead to nonsensical results
and apparent paradoxes. This is due, in no small part, to the fact that, for
centuries, the principle of indifference has eluded attempts to make it rigorous.
Without rigor, there are no precise conditions that can tell us whether our
attempts to use it are legitimate. A notable formulation of the principle is given
by Edwin T. Jaynes’s [13], in a book posthumously published in 2003. He used
this formulation as the basis of his maximum entropy principle, which plays a
key role in statistical mechanics. But even Jaynes’s formulation is non-rigorous.
Moreover, there is no formulation of this principle in modern, measure-theoretic
probability theory.

Within inductive logic, however, we will be able to formulate the principle
of indifference. We will show that our formulation is a faithful representation of
the principle. It is not simply an ad hoc condition to which we affix the name.
Being mathematically rigorous, our formulation is as free from paradoxes as any
proven mathematical theorem.

Moreover, we will see that the principle of indifference cannot be formulated
using only the axioms of Kolmogorov. Its formulation requires the structure
of inductive logic, both its syntactic structure and the semantic structures
embedded in its models. As such, it exemplifies the fact that inductive logic is
strictly broader than any theory of probability that is based on measure theory
alone.

1.6 A philosophical aside

This book is, without question, a work of mathematics. It consists primarily
of definitions, theorems, and proofs, with occasional intuitive prose to tie it
together. On the other hand, it is hard not to see it as a work of philosophy,
having something to say about the interpretation of probability.

According to [12], interpretations of probability generally address the
questions:

(1) What kinds of things, metaphysically, are probabilities?

(2) What makes probability statements true or false?

To use inductive logic to answer these questions, we must first look to the
definition of an inductive statement. An inductive statement is a triple,
(X,φ, p), where X is a set of sentences (in a formal language) called the
“antecedent,” φ is a sentence that we call the “consequent,” and p is a real
number satisfying 0 ⩽ p ⩽ 1 which we call the “probability.” Intuitively, we can
think of (X,φ, p) as asserting that X partially entails φ, and that p is the degree
of this partial entailment. To answer the first question, then, a probability is
a relationship between X and φ. We might interpret this relationship as being
logical, evidential, or purely subjective. Any such interpretation has no bearing
on the inductive logical properties of (X,φ, p).
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Inductive logic is mostly unconcerned with the second question. Probabilities
express relative likelihoods, given a set of sentences. We take it for granted
that the sense of these likelihoods is understood. Our primary concern is the
logical relationships between inductive statements. That is, how can we reason
from hypotheses, which are themselves inductive statements, to an inductive
conclusion.

It seems, then, that inductive logic hardly qualifies as an interpretation
of probability. It does, however, make assumptions that rule out certain
interpretations. It assumes that probabilities are relationships between
sentences and that all probabilities are conditional. Inductive logic, therefore,
is incompatible with any physical interpretations of probability, such as those
based on frequencies or propensities. Beyond that, though, it appears to leave
room for a range of evidential interpretations.

1.7 Constructing inductive logic

In this section, we give a big-picture overview of how inductive logic is
constructed. It is assumed that the reader is already familiar with the basics of
measure-theoretic probability theory.

The set of sentences and formulas that we consider is one that allows for
countable conjunctions and disjunctions. This set is usually denoted in the
literature by Lω1,ω, though we denote it simply by L. In the language L, there
is a well-understood deductive calculus (see, for instance, [16, 18]). That is,
there is a well-established derivability relation ⊢, where X ⊢ φ indicates that
φ ∈ L can be derived from X ⊆ L. Our first task is to extend ⊢ to inductive
statements. We do this by defining a set of rules for inductive inference, and
writing P ⊢ (X,φ, p) to mean that we can use these rules of inference to derive
(X,φ, p) from the set of inductive statements P . We also define an inductive
theory, which is a set that is closed under inductive inference. Finally, we adopt
familiar shorthand, writing P (φ | X) = p to mean that (X,φ, p) ∈ P . We say
that P (φ | X) exists if (X,φ, p) ∈ P for some p.

Let us refer to the left-hand side of the turnstile symbol, ⊢, as the premises
of the derivation P ⊢ (X,φ, p). From what we have described so far, our
premises can only include statements of the form P (φ | X) = p. We may
wish, however, to include premises of the form P (φ | X) > 0 or P (φ ∧ ψ |
X) = P (φ | X)P (ψ | X). To this end, we generalize inductive derivability by
defining inductive conditions, typically denoted by calligraphic letters such as
C. Inductive conditions formalize generic assumptions we might make about
an inductive theory. After defining inductive conditions, we extend inductive
derivability from P ⊢ (X,φ, p) to C ⊢ (X,φ, p).

We then turn our attention to the semantics of inductive logic. More
specifically, we define a relation, ⊨, called the consequence relation. The
derivability relation, ⊢, is concerned only with the syntax of sentences, formulas,
and inductive statements. The consequence relation, on the other hand, is
concerned with their interpretations.



1.8. INDUCTIVE LOGIC IS NATURAL 9

To give interpretations to sentences, we must introduce models. For us, a
model, or an inductive model, is a probability space, (Ω,Σ,P), where Ω is a set
of structures. A structure is a set, together with some distinguished constants,
functions, and relations. For example, (N, 1,+, <) is a structure. Structures
are used to interpret the sentences in L. We write ω |≡ φ to mean that, in
the structure ω, the interpretation of φ is a true statement. We can think of
an inductive model as a weighted collection of structures, where the weights
represent relative likelihoods.

Suppose P = (Ω,Σ,P) is a model and φ is a sentence. Then we define
the set φΩ = {ω ∈ Ω | ω |≡ φ}. We say that P satisfies φ, written P ⊨ φ,
if PφΩ = 1, where P is the measure-theoretic completion of P. For sets of
sentences, we take P ⊨ X to mean that P ⊨ φ for all φ ∈ X. We say that X
and X ′ are semantically equivalent if, for every model P, we have P ⊨ X if
and only if P ⊨ X ′.

More generally, we write P ⊨ (X,φ, p) to mean there exists a set of sentences
Y and a sentence ψ such that P ⊨ Y , the sets Y ∪ {ψ} and X are semantically
equivalent, and

PφΩ ∩ ψΩ

PψΩ

= p.

For sets of inductive statements, we take P ⊨ P to mean P ⊨ (X,φ, p) for all
(X,φ, p) ∈ P . A set P is called satisfiable if P ⊨ P for some model P.

Having defined satisfiability, we turn to the consequence relation. We define
X ⊨ φ to mean that P ⊨ φ whenever P ⊨ X, and we define P ⊨ (X,φ, p) to
mean that P and (X,φ, p) satisfy certain connectivity requirements and that
P ⊨ (X,φ, p) whenever P ⊨ P . We then proceed to prove soundness and
completeness, meaning that the two relations, ⊢ and ⊨, are identical. In other
words, we prove that X ⊢ φ if and only if X ⊨ φ, and also that P ⊢ (X,φ, p) if
and only if P ⊨ (X,φ, p).

1.8 Inductive logic is natural

In mathematics, a definition is neither correct nor incorrect. It simply is.
Nevertheless, we understand that there is a metamathematical sense in which
a definition can be “right” or “wrong.” Does it capture the intuitive idea it
alleges to capture? Does it “fit” well with existing notions? Does it provide a
sense of mathematical “unity” or “elegance?”

In constructing inductive logic, we have made several choices. We chose
to work in the infinitary language, Lω1,ω. We chose the rules of inductive
inference that characterize the derivability relation, ⊢. And we chose a particular
semantic interpretation in order to arrive at the consequence relation, ⊨. Were
these the “right” choices? Are they natural? Or are they ad hoc choices
whose only purpose is to force the conclusions we are aiming for? These are
metamathematical questions, and so, for the most part, their answers are left
to the judgment of the reader. But we certainly believe they are natural, and
present here two comments which are related to this question.
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The first comment concerns the rules of inductive inference used in defining
⊢. There are rules that govern probabilities 0 and 1, and relate them to deductive
inference. There is a continuity rule, needed only in infinite systems. Otherwise,
the two main operative rules are the familiar ones from elementary probability:
the addition rule and the multiplication rule. We make no effort in this work
to justify their adoption. Inductive logic may be seen as simply investigating
their consequences, or as implying that they are self-evident. That said, in the
paragraph after next, we will make one comment in their defense. Beyond that,
the interested reader can consult [8] for an attempt to justify these elementary
principles.

The second comment concerns ⊨. We essentially have four interconnected
relations: deductive ⊢, inductive ⊢, deductive ⊨, and inductive ⊨. For deductive
⊨, we prove both completeness (X ⊨ φ implies X ⊢ φ) and σ-compactness
(X ⊨ φ implies X0 ⊨ φ for some countable X0 ⊆ X). As mentioned earlier,
deductive ⊢ is the usual relation used in Lω1,ω. Deductive ⊨, however, is not.
The usual consequence relation in Lω1,ω is the more straightforward X |≡ φ,
meaning ω |≡ X implies ω |≡ φ. It is well-known that |≡ is neither complete, nor
σ-compact. For this reason, one might regard Lω1,ω as being deficient in some
important ways. Our primary purpose for introducing ⊨ is to model inductive
reasoning. As an unintended but welcome consequence, we find that ⊨ corrects
these deficiencies. In this sense, then, we might view ⊨ as the “right” semantic
notion for Lω1,ω, and also see Lω1,ω as the “right” language in which to build
a probabilistic logic.

Turning this argument on its head, if deductive ⊨ is the “right” semantic
relation to pair with deductive ⊢, and inductive ⊨ follows from deductive ⊨,
then our definition of inductive ⊢ is forced on us, if we want P ⊨ (X,φ, p) and
P ⊢ (X,φ, p) to be equivalent. In other words, we are compelled to adopt the
addition and multiplication rules, as well as all the other rules in the definition
of ⊢.

1.9 Outline of the book

After presenting background material in Chapter 2, we proceed to the
construction of inductive logic. In Chapters 3 and 4, we follow the sketch
presented in Section 1.7 to construct a trimmed-down version of inductive logic
in a propositional language without quantifiers or variables. The propositional
version is capable of representing any probability space, but it does not explicitly
represent any random variables.

In Chapter 5, we repeat the construction for the predicate language L. Here,
we are able to establish the connection between inductive logic and random
variables. In the formal language L, constants, functions, and relations are
represented by what are called extralogical symbols. If s is an extralogical
symbol and ω is a structure, then we can identify s with an actual constant,
function, or relation in ω, which we denote by sω. The map ω 7→ sω is the
starting point for connecting inductive logic to random variables.
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Almost immediately, though, we face an obstacle. In probability theory, we
are accustomed to having two very distinct kinds of objects: random variables
and constants. In P{X > 0}, for example, we can be quite certain that
only thing random is X. In the formal language, L, however, X, >, and 0
are just symbols. When we interpret them in a structure, we are faced with
P{Xω >ω 0ω}. Hence, not only might 0 be random, the inequality relation
itself could be random!

These considerations lead us to an idea we call the relativity of randomness.
To illustrate this, consider a simple system representing a coin flip. We might
have just three extralogical symbols, h, t, and c, where we think of h and t
as the sides of the coin, and c as the result. To be sure, there are models that
match our intuition. That is, there are models in which hω and tω are fixed, and
cω is random. But there are also models in which hω and tω are random, while
cω is fixed. There are even models in which all three are random. In general,
using model isomorphisms, we can force certain sets of extralogical symbols to
be nonrandom. There are limits though. In the coin-flip example, there are no
models in which all three symbols are fixed.

We show that in any inductive theory rich enough to contain the natural
numbers, we can use model isomorphisms to force the natural numbers to be
nonrandom. We call this the natural frame of reference.

Chapter 6 is concerned with constructing inductive theories that make
statements about real numbers. We do this by constructing the real numbers,
in the usual way, in axiomatic set theory. We are then able to make formal
inductive statements about not only real numbers, but about any mathematical
objects whatsoever. In this context, we illustrate how all the usual results of
probability theory can be formulated in inductive logic. This includes the law
of large numbers, the central limit theorem, and conditional expectation.

The principle of indifference is the topic of Chapter 7. We formulate it as
an inductive condition. To describe it, let L be the set of extralogical symbols
in our language and consider a bijection π : L→ L that preserves the type and
arity of the symbols. For instance, if r is a binary relation symbol, then so is
rπ. Given a sentence φ, let φπ be the sentence obtained from φ by replacing
every instance of s with sπ. Similarly, let Xπ = {φπ | φ ∈ X}. We say that X
is invariant under π if X and Xπ are logically equivalent.

In the deductive calculus, if we take a proof of φ from X and transform
each step of that proof by π, then we obtain a proof of φπ from Xπ. In other
words, X ⊢ φ if and only if Xπ ⊢ φπ. The principle of indifference is the natural
extension of this to the inductive calculus.

Let P be an inductive theory. Then P satisfies the principle of indifference
if P (φπ | Xπ) = P (φ | X). In particular, if X is invariant under π, then, given
X, the sentences φ and φπ should be assigned the same probability.

After formulating the principle of indifference, we present several examples,
beginning with simple discrete examples and continuing to examples involving
intervals and circles. Our final example is an analysis of Bertrand’s paradox, a
famous counterintuitive illustration of the principle of indifference.
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Chapter 2

Background

It is assumed that the reader is familiar with the basics of measure-theoretic
probability theory. In Section 2.3, we introduce some basic concepts from
measure theory. The reader should already be familiar with almost everything
in that section. We introduce them only to establish notation, cite some lesser
known results, and establish new definitions that we will need later.

Familiarity with mathematical logic would be helpful but is not required.
The concepts from logic that we use are all presented as we need them, in a
mostly self-contained way.

We will adopt the convention that 0 is a natural number. However, we will
use the notation N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .}. In other words, N is
the set of positive integers, and N0 is the set of natural numbers.

2.1 Ordinal and cardinal numbers

2.1.1 Ordinal numbers

For further details about ordinal and cardinal numbers, see any basic text on
set theory, such as [6] or [9].

An ordinal (number) is a well-ordered set, (α,<), such that if x ∈ α, then
x = {y ∈ α : y < x}. If α is an ordinal and x, y ∈ α, then x < y if and only if
x ∈ y if and only if x ⊂ y. (Here, we use ⊆ for subset and ⊂ for proper subset.)
Moreover, every x ∈ α is itself an ordinal. Thus, an ordinal is a set of ordinals
that is well-ordered by ∈.

The collection of all ordinals is not a set. (If it were, then it would be an
ordinal that is an element of itself, which, as we note below, is impossible.) It
is, nonetheless, “well-ordered” in a certain sense. More specifically, if α and β
are ordinals, then α ∈ β if and only if α ⊂ β, so that ∈ has the properties of
a strict partial order. Also, for any two ordinals, α and β, exactly one of the
following is true: α ∈ β, α = β, or β ∈ α. If α and β are ordinals, we will
write α < β for α ∈ β. Finally, every nonempty collection of ordinals has a
smallest element. This last fact can be made rigorous in axiomatic set theory

13
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as a so-called “theorem schema,” but for our present purposes, we do not need
such a formalization.

From these facts, it follows that there is a smallest ordinal. The smallest
ordinal is ∅, since there is no ordinal with α ∈ ∅. The collection of nonempty
ordinals has a smallest element, meaning there is a second smallest ordinal. The
second smallest ordinal is {∅}, since there is no ordinal with ∅ ⊂ α ⊂ {∅}.

If α is an ordinal, let s(α) denote the ordinal α ∪ {α}. We call s(α)
the successor of α. Note that there is no β with α ⊂ β ⊂ s(α). Also
note that s(∅) = {∅}. From here, we see that the third smallest ordinal is
s({∅}) = {∅, {∅}}, the fourth smallest ordinal is {∅, {∅}, {∅, {∅}}}, and so on.

For each n ∈ N0, define the ordinal n
′ by setting 0′ = ∅ and (n+1)′ = s(n′).

Let N′
0 = {n′ | n ∈ N0}. The map n 7→ n′ is a bijection from N0 to N′

0 which
preserves the natural ordering on N0. That is, m < n if and only if m′ < n′.

It is straightforward to verify that N′
0 itself is an ordinal. Since N′

0 is an
infinite set and every α ∈ N′

0 is a finite set, it follows that N′
0 is the smallest

infinite ordinal. The usual notation for N′
0 is ω. We will use this notation

sparingly, since it conflicts with the usual usage of ω in probability theory. The
reader must generally rely on context to see the distinction, although to make
things easier, we will use bold font when using ω to denote N′

0. As we will
discuss further in Section 2.4.2, we will sometimes find it useful to identify n
with n′, giving us a representation of each natural number as a set.

Every well-ordered set is order isomorphic to a unique ordinal. In particular,
no two distinct ordinals are order isomorphic. If α = s(β) for some ordinal β,
then α is called a successor ordinal. Otherwise, α is called a limit ordinal. An
ordinal α is a limit ordinal if and only if α =

⋃
ξ<α ξ, and it is a successor

ordinal if and only if α = s(
⋃
ξ<α ξ). The smallest limit ordinal is 0′ and the

second smallest limit ordinal is ω.

If α is an ordinal, then an α-sequence is a function whose domain is α,
typically denoted by ⟨xξ | ξ < α⟩. Such a sequence is said to have length α. If
α = n′, then these are n-tuples. If α = ω, then these are ordinary sequences
indexed by N0.

2.1.2 Transfinite induction and recursion

Let α be an ordinal and let S be a set. The principle of transfinite induction says
that if 0′ ∈ S, and β ⊂ S implies β ∈ S for all β < α, then α ⊆ S. The principle
of transfinite recursion states that if G :

⋃
ξ<α S

ξ → S, then there exists a
unique sequence ⟨xξ | ξ < α⟩ such that xβ = G(⟨xξ | ξ < β⟩) for all β < α. In
proofs that use transfinite induction or recursion, the inductive/recursive step
is typically broken into cases according to whether α is a successor ordinal or a
limit ordinal.
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2.1.3 Ordinal arithmetic

We define ordinal addition recursively by

α+ 0′ = α,

α+ s(β) = s(α+ β), and

α+ β =
⋃
ξ<β(α+ ξ), if β > 0′ is a limit ordinal.

Note that α+ 1′ = s(α). Ordinal addition is associative, but not commutative.
For instance, 1′ + ω = ω, but ω + 1′ > ω. Ordinal subtraction on the left is
always possible. That is, if α ⩽ β, then there exists a unique ordinal γ such
that α + γ = β. Consequently, ordinal addition is left-cancellative, meaning
that α+β = α+γ implies β = γ. Moreover, it is strictly increasing in the right
argument, meaning that α + β < α + γ if and only if β < γ. These facts can
be used, for instance, to prove that the function f : γ → (β + γ) \ β given by
f(ξ) = β + ξ is a bijection.

We define ordinal multiplication recursively by

α · 0′ = 0′,

α · s(β) = (α · β) + α, and

α · β =
⋃
ξ<β(α · ξ), if β > 0′ is a limit ordinal.

Ordinal multiplication is associative, but not commutative. For instance,
2′ · ω = ω, but ω · 2′ = ω + ω > ω. Multiplication is left distributive over
addition, but not right distributive. For instance, 1′ · ω + 1′ · ω = ω + ω > ω.

When restricted to N′
0, ordinal addition and multiplication agree with

ordinary addition and multiplication. That is, (m + n)′ = m′ + n′ and
(m · n)′ = m′ · n′.

2.1.4 Cardinal numbers

If X and Y are sets, we write X ∼ Y to mean there exists a bijection f : X → Y .
Every set can be well-ordered, and every well-ordered set is isomorphic to a
unique ordinal. Thus, for every set X, there exists an ordinal α such that
X ∼ α. This α, however, is not unique, since a set can be well-ordered in
multiple ways.

We define the cardinality of a set X to be the smallest ordinal α such that
X ∼ α, and we write |X| = α or card(X) = α. A cardinal (number) is an
ordinal α that is the cardinality of some set. Since |α+ 1| = |α| whenever α is
infinite, it follows that every infinite cardinal number is a limit ordinal.

Every finite ordinal is a cardinal, and ω is a cardinal. No other countably
infinite ordinal besides ω is a cardinal. Since uncountable sets exist, we know
that uncountable cardinals exist. Let ω1 be the first uncountable cardinal, which
is also the first uncountable ordinal.

For any set X, we have |PX| > |X|, where PX is the power set of X.
Hence, for any cardinal number κ, we have |Pκ| > κ, which means that the
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collection of cardinal numbers greater than κ is nonempty. Let κ+ be the
smallest cardinal greater than κ. In particular, ω1 = ω+. Any cardinal that is
of the form κ+ for some κ is called a successor cardinal. Otherwise, it is called
a limit cardinal.

Note that ω1 is the set of all countable ordinals. Every countable sequence
of countable ordinals has a countable upper bound. More specifically, if α is an
ordinal with α < ω1, and ⟨βξ | ξ < α⟩ is an α-sequence of ordinals with βξ < ω1

for all ξ, then there exists an ordinal γ < ω1 such that βξ ⩽ γ for all ξ. In
fact, we may take γ =

⋃
ξ<α βξ. Since a countable union of countable sets is

countable, it follows that γ < ω1.
More generally, a cardinal κ is called regular if, whenever α < κ and

⟨βξ | ξ < α⟩ is an α-sequence of ordinals with βξ < κ for all ξ, we have⋃
ξ<α βξ < κ. Since a finite union of finite sets is finite, ω is regular. Since

a countable union of countable sets is countable, ω1 is regular.
A cardinal number κ is called a strong limit cardinal if, for all cardinals

λ < κ, we have |Pλ| < κ. Since |Pκ| ⩾ κ+, a strong limit cardinal is always
a limit cardinal. Since the power set of a finite set is finite, ω is a strong limit
cardinal. However, the power set of a countable set can be uncountable, so ω1

is not a strong limit cardinal.
The cardinal ω is both regular and a strong limit cardinal. We cannot

“reach” or “access” ω from the finite sets that lie below it, using the operations
of union and power set. A cardinal κ is called strongly inaccessible if it
uncountable, regular, and a strong limit cardinal.

2.2 Boolean algebras

A Boolean algebra is a partially ordered set (B,⩽) such that

(i) x ∨ y := sup{x, y} exists for all x, y ∈ B,

(ii) x ∧ y := inf{x, y} exists for all x, y ∈ B,

(iii) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ B,

(iv) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ B,

(v) there exists 0, 1 ∈ B such that 0 ⩽ x ⩽ 1 for all x ∈ B, and

(vi) for all x ∈ B, there exists ¬x ∈ B such that x ∧ ¬x = 0 and x ∨ ¬x = 1.

It can be shown that in a Boolean algebra, ¬x is unique. If

(vii)
∨
x∈C x := supC exists for all countable C ⊆ B, and

(viii)
∧
x∈C x := inf C exists for all countable C ⊆ B,

then B is a Boolean σ-algebra. The smallest Boolean algebra is the degenerate
Boolean algebra with only one element, in which 0 = 1. The smallest
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nondegenerate Boolean algebra is B = {0, 1} with the usual meaning of ⩽.
The Boolean algebra B is also clearly a Boolean σ-algebra.

Let B be a Boolean σ-algebra and N ⊆ B. Then N is a σ-ideal of B if
0 ∈ N ,

∨
x∈C x ∈ N whenever C ⊆ N is countable, and x ∈ N implies y ∈ N

for all y ⩽ x.
If N is a σ-ideal of B and x, y ∈ B, we say x ≡ y mod N if (x∧¬y)∨ (¬x∧

y) ∈ N . The Boolean operations of B determine Boolean operations on the set
of equivalence classes, B/N , making B/N into a Boolean σ-algebra.

A Boolean measure on a Boolean σ-algebra B is a function m : B → [0,∞]
such that m(x) = 0 if and only if x = 0, and m(

∨
n xn) =

∑
nm(xn) whenever

i ̸= j implies xi ∧ xj = 0. A Boolean measure space is a pair (B,m) where B is
a Boolean σ-algebra and m is a Boolean measure on B.

Let (B,m) and (B′,m′) be Boolean measure spaces. A homomorphism
from (B,m) to (B′,m′) is a function g : B → B′ such that x ⩽ y implies
g(x) ⩽ g(y), and m′(g(x)) = m(x). The function g is an isomorphism if it is
a bijection. In that case, g−1 is an isomorphism from (B′,m′) to (B,m). If
an isomorphism from (B,m) to (B′,m′) exists, then we say that (B,m) and
(B′,m′) are isomorphic.

2.3 Measure spaces

Let Ω be a nonempty set and Σ a collection of subsets of Ω. Then Σ is a
σ-algebra (of sets) on Ω if Σ is nonempty and closed under complements and
countable unions. In this case, we call (Ω,Σ) a measurable space. A set A ∈ Σ
is called a measurable set. Note that a σ-algebra is a Boolean σ-algebra when
it is equipped with the partial order ⊆.

The intersection of any family of σ-algebras is a σ-algebra. If E is any
collection of subsets of Ω, then σ(E) denotes the smallest σ-algebra containing
E , and is called the σ-algebra generated by E . A measure on (Ω,Σ) is a function
µ : Σ → [0,∞] such that µ ∅ = 0 and µ

⋃∞
1 An =

∑∞
1 µAn whenever {An} ⊆ Σ

is a pairwise disjoint sequence of measurable sets. In this case, (Ω,Σ, µ) is a
measure space. A measure subspace of (Ω,Σ, µ) is a measure space (Ω,Σ′, ν),
where Σ′ ⊆ Σ and ν = µ|Σ′ . If µΩ <∞, then µ is a finite measure. If µΩ = 1,
then µ is a probability measure and (Ω,Σ, µ) is a probability space. Any measure
subspace of a probability one is also a probability space. In a probability space,
it is customary to call the elements ω ∈ Ω outcomes, and the measurable sets
A ∈ Σ events.

Let (Ω,Σ, µ) be a measure space. A µ-null set (or just a null set) is a set
A ∈ Σ with µA = 0. The collection of all null sets is denoted by Nµ. If A and
B are subsets of Ω, then we write A = B µ-almost everywhere, if A△ B is a
subset of a null set, where

A△B = (A ∩Bc) ∪ (Ac ∩B)

is the symmetric difference. We will usually abbreviate this as A = B µ-a.e., or
if the measure is understood, as just A = B a.e. If µ is a probability measure,
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then we instead write A = B µ-almost surely, abbreviated as A = B µ-a.s. or
A = B a.s. We also write A ⊆ B a.e. if A ∩ Bc is a subset of a null set. More
generally, if f and g are functions with domain Ω, then we write f = g a.e. if
there exists N ∈ Nµ such that f(ω) = g(ω) for all ω ∈ N c.

2.3.1 Generating σ-algebras

Let Ω be a nonempty set and E a collection of subsets of Ω. Then σ(E) can
be constructed from E in an iterative fashion using transfinite recursion. Let
E0 = E . For an ordinal α < ω1, let

E ′
α = Eα ∪ {V c | V ∈ Eα},

and

Eα+1 = E ′
α ∪ {

⋂
D | D ⊆ E ′

α is nonempty and countable}.

Here, countable means finite or countably infinite. If α is a limit ordinal, define
Eα =

⋃
ξ<α Eξ.

By transfinite induction, Eα ⊆ σ(E) for all α < ω1, so that
⋃
α<ω1

Eα ⊆ σ(E).
Clearly,

⋃
α<ω1

Eα is nonempty and closed under complements. Since every
countable sequence of countable ordinals has a countable upper bound, it is
also closed under countable intersections. Therefore,

⋃
α<ω1

Eα is a σ-algebra
containing E , which gives σ(E) ⊆

⋃
α<ω1

Eα. This shows that σ(E) =
⋃
α<ω1

Eα.
For each V ∈ σ(E), we define the rank of V (with respect to E), which we

denote by rkV , to be the smallest α < ω1 such that V ∈ Eα. Note that rkV is
always a successor ordinal.

2.3.2 Complete measure spaces

Given a measure µ on (Ω,Σ), we define the associated outer measure by

µ∗A = inf{µB : A ⊆ B and B ∈ Σ}.

Note that µ∗A is defined for every A ⊆ Ω. Similarly, we define the inner measure
by

µ∗A = sup{µB : B ⊆ A and B ∈ Σ}.

For any A ⊆ Ω, we have µ∗A ⩽ µ∗A.
A negligible set is a (not necessarily measurable) subset of a null set. A

negligible set that is also measurable is necessarily a null set. A measure space
is called complete if every negligible set is measurable. A probability space
is complete if and only if every superset of a set of measure 1 is measurable.
In a complete measure space, if A is measurable and A = B a.e., then B is
measurable.

If (Ω,Σ, µ) is a measure space, then

Σ = {A ∪B : A ∈ Σ and B is negligible}
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is a σ-algebra called the completion of Σ with respect to µ. There is a unique
measure µ on (Ω,Σ) that agrees with µ on Σ and makes (Ω,Σ, µ) into a complete
measure space. The measure µ is called the completion of µ. Note that a set is
µ-null if and only if it is a subset of a µ-null set. Also, if A ⊆ Ω and µ∗A <∞,
then A ∈ Σ if and only if µ∗A = µ∗A (see, for instance, [7, Proposition 1.5.5]).

Let (Ω,Σ, µ) be a measure space and let A ⊆ Ω. Then

σ(Σ ∪ {A}) = {(B ∩A) ∪ (C ∩Ac) : B,C ∈ Σ}.

Suppose µ is a finite measure and let α ⩾ 0 satisfy µ∗A ⩽ α ⩽ µ∗A. Then there
exists a measure ν on (Ω, σ(Σ ∪ {A})) such that ν|Σ = µ and ν A = α (see, for
instance, [7, Exercise 1.5.12] or [3, Theorem 1.12.14]).

2.3.3 Dynkin systems

Let Ω be a nonempty set and ∆ a collection of subsets of Ω. Then ∆ is a Dynkin
system, or λ-system, if

(i) Ω ∈ ∆,

(ii) if A,B ∈ ∆ with A ⊆ B, then B \A ∈ ∆, and

(iii) If {An} ⊆ ∆ with An ⊆ An+1, then
⋃
nAn ∈ ∆.

Equivalently, one can define ∆ to be a Dynkin system if it is nonempty and
satisfies

(i)′ if A ∈ ∆, then Ac ∈ ∆

(ii)′ if {An} ⊆ ∆ are pairwise disjoint, then
⋃
nAn ∈ ∆.

Every σ-algebra is a Dynkin system. Conversely, a Dynkin system that is closed
under (finite) intersections is a σ-algebra.

The intersection of any family of Dynkin systems is a Dynkin system. If E is
any collection of subsets of Ω, then there is a smallest Dynkin system containing
E , called the Dynkin system generated by E .

If E is a collection of subsets of Ω, then E is a π-system if A,B ∈ E implies
A ∩ B ∈ E . Dynkin’s π-λ theorem states that if ∆ is a Dynkin system, E is a
π-system, and E ⊆ ∆, then σ(E) ⊆ ∆.

Let ∆ be a Dynkin system on Ω and let B ∈ ∆. Define ∆|B = {A ⊆ Ω :
A ∩B ∈ ∆}. Then ∆|B is a Dynkin system on Ω called the restriction of ∆ to
B. If ∆ is a σ-algebra, then ∆|B is a σ-algebra.

2.3.4 Measurable functions and pushforwards

Let (Ω,Σ, µ) be a measure space and (S,Γ) a measurable space. A function
f : Ω → S is measurable, or (Σ,Γ)-measurable, if U ∈ Γ implies f−1(U) ∈ Σ.
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If A ⊆ Ω, then 1A denotes the indicator function of A, and is defined by

1A(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

The function 1A can be regarded as taking values in the measurable space (S,Γ),
where S = {0, 1} and Γ = PS. In that case, if A ⊆ Ω, then A is measurable if
and only if 1A is measurable.

Suppose f is a measurable function from a measure space (Ω,Σ, µ) to
a measurable space (S,Γ). Since f−1(∅) = ∅, f−1(U c) = f−1(U)c, and
f−1(

⋃
n Un) =

⋃
n f

−1(Un), it follows that µ ◦ f−1 is a measure on (S,Γ),
called the pushforward of µ.

2.3.5 Measure space isomorphisms

Let (Ω,Σ, µ) be a measure space and Nµ the collection of null sets. The set Nµ

is a σ-ideal of Σ, and A = B a.e. if and only if A = B mod Nµ. The equivalence
classes modulo Nµ are [A]µ = {B ∈ Σ : A = B a.e.}, and the set of equivalence
classes, Σ/Nµ, is a Boolean σ-algebra. If we define mµ : Σ/Nµ → [0,∞] by
mµ([A]µ) = µ(A), then mµ is well-defined and is a Boolean measure on Σ/Nµ.
We call (Σ/Nµ,mµ) the Boolean measure space corresponding to (Ω,Σ, µ). We
say that two measure spaces are isomorphic if their corresponding Boolean
measure spaces are isomorphic.

Let (Ω,Σ, µ) and (S,Γ, ν) be measure spaces, let f : Ω → S be measurable,
and assume ν = µ ◦ f−1. Note that µ f−1(U) △ f−1(V ) = ν U △ V . Hence,
U = V ν-a.e. if and only if f−1(U) = f−1(V ) µ-a.e. It follows, therefore,
that f determines an injective function g : Γ/Nν → Σ/Nµ given by g([U ]ν) =
[f−1(U)]µ. This function is, in fact, a homomorphism from (Γ/Nν ,mν) to
(Σ/Nµ,mµ). Hence, g is an isomorphism if and only if it is surjective, that is,
if and only if

[A]µ ∈ Σ/Nµ implies g([U ]ν) = [A]µ for some [U ]ν ∈ Γ/Nν .

We can rewrite this in terms of f to state the following. For two measure
spaces, (Ω,Σ, µ) and (S,Γ, ν), to be isomorphic, it suffices that there exists a
measurable function f : Ω → S such that ν = µ ◦ f−1, and

for all A ∈ Σ, there exists U ∈ Γ such that f−1(U) = A µ-a.e.

If such an f exists, we say that f induces an isomorphism from (Ω,Σ, µ) to
(S,Γ, ν). Note that in this case, f also induces an isomorphism from (Ω,Σ, µ)
to (S,Γ, ν).

Two measure spaces, (Ω,Σ, µ) and (S,Γ, ν), are pointwise isomorphic if
there exists a measurable bijection f : Ω → S such that f−1 is measurable
and ν = µ ◦ f−1. In that case, f is called a pointwise isomorphism. It is
straightforward to verify that if f is a pointwise isomorphism from (Ω,Σ, µ) to
(S,Γ, ν), then it is also a pointwise isomorphism from (Ω,Σ, µ) to (S,Γ, ν). In
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other words, if two measure spaces are pointwise isomorphic, then so are their
completions.

Note that pointwise isomorphic measure spaces are isomorphic, and a
pointwise isomorphism induces an isomorphism. The pointwise isomorphism
class of (Ω,Σ, µ) is the collection of all measure spaces that are pointwise
isomorphic to (Ω,Σ, µ).

Let (Ω,Σ, µ) be a measure space and let S be a set. Let h : Ω → S be a
function. Define Γ = {A ⊆ S | h−1(A) ∈ Σ} and define ν = µ ◦ h−1. Then
(S,Γ, ν) is a measure space and h is a measurable function from Ω to S. We
call (S,Γ, ν) the measure space image of (Ω,Σ, µ) under h. If h is a bijection,
then h is a pointwise isomorphism from (Ω,Σ, µ) to (S,Γ, ν).

2.4 Structures

Let A be a set. If f is a function with domain A and a ∈ A, then the value of f
at a will be denoted variously by f(a), fa or af . Note that ∅ is a function. In
fact, ∅ is the unique function with domain ∅.

If n ∈ N, then An is the set of n-tuples, a⃗ = ⟨a1, . . . , an⟩. We let A0 = {∅}.
If f is a function with domain An, we write fa⃗ = f(a1, . . . , an).

For n ⩾ 1, an n-ary relation (or predicate) is a subset of R ⊆ An. We
write Ra⃗ for a⃗ ∈ R and ¬Ra⃗ for a⃗ /∈ R. For n ⩾ 0, an n-ary operation is a
function f : An → A. A 0-ary operation is a function f : {∅} → A, and is
uniquely determined by c = f(∅) ∈ A. In this case, we identify f with c. A
0-ary operation is also called a constant.

An extralogical signature is a set L of symbols. Each symbol in L is called
an extralogical symbol, and has both a type and an arity. The possible types are
relation symbols and function (or operation) symbols. The arity is a nonnegative
integer. Relation symbols may have an arity n ⩾ 1. Function symbols may have
an arity n ⩾ 0. A 0-ary function symbol is also called a constant symbol.

When referring to symbols in L, we will adopt the convention that, unless
otherwise stated, c will denote a constant symbol, r a relation symbol, and f a
function symbol with arity n ⩾ 1.

Let L be an extralogical signature and let A be a set. For each symbol s ∈ L,
let sω be a relation such that

(i) if s is an n-ary relation symbol, then sω ⊆ An is an n-ary relation on A,
and

(ii) if s is an n-ary function symbol, then sω : An → A is an n-ary function.

Let Lω = {sω | s ∈ L} and ω = (A,Lω). Then ω is an L-structure. The set A is
called the domain of ω. The structure ω is called finite or infinite if A is finite
or infinite, respectively.

Let L be an extralogical signature, ν = (B,Lν) an L-structure, and A ⊆ B.
Suppose that for all functions fν ∈ Lν , the subset A is closed under fν ,
meaning that a⃗ ∈ An implies fν a⃗ ∈ A. Let fω = fν |An , rω = rν ∩ An, and
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Lω = {sω | s ∈ L}. The ω = (A,Lω) is a structure. We call ω a substructure of
ν, and write ω ⊆ ν.

Let L be an extralogical signature, ω = (A,Lω) an L-structure, and L0 ⊆ L.
Define Lω0 = {sω | s ∈ L0} and ω0 = (A,Lω0). Then ω0 is an L0-structure. We
call ω0 the L0-reduct of ω, and we call ω an L-expansion of ω0.

2.4.1 Structure homomorphisms

Let ω = (A,Lω) and ν = (B,Lν) be L-structures and let g : A → B. We
will abuse notation and also write g : ω → ν. For a⃗ ∈ An, we write ga⃗ for
⟨ga1, . . . , gan⟩. Assume that

(i) gfωa⃗ = fνga⃗ for all function symbols f ∈ L,

(ii) gcω = cν for all constant symbols c ∈ L, and

(iii) rωa⃗ implies rνga⃗ for all relation symbols r ∈ L.

Then g is a homomorphism. A strong homomorphism is a homomorphism such
that rνga⃗ implies rω b⃗ for some b⃗ ∈ g−1ga⃗. An embedding is an injective strong
homomorphism, an isomorphism is a bijective strong homomorphism, and an
automorphism is an isomorphism from ω to ω. If g is an isomorphism, then rωa⃗
if and only if rνga⃗. We say that ω and ν are isomorphic, written ω ≃ ν, if there
is an isomorphism g : ω → ν.

Let ω = (A,Lω) be a structure, let B be a set with the same cardinality as
A, and let g : A → B be any bijection. Define the L-structure ν with domain
B by

(i)′ fν b⃗ = gfωg−1⃗b for all function symbols f ∈ L,

(ii)′ cν = gcω for all constant symbols c ∈ L, and

(iii)′ rν b⃗ if and only if rωg−1⃗b for all relation symbols r ∈ L.

Then g is an isomorphism from ω to ν, and we call ν the isomorphic image of
ω under g.

2.4.2 The standard structure of arithmetic

Consider the extralogical signature L = {0, S,+, ·, <}, where 0 is a constant
symbol, S is a unary function symbol, + and · are binary function symbols, and
< is a binary relation symbol.

We can define the structure N = (N0, L
N ) as follows. Let 0N = 0, and let

SN be the successor function, n 7→ n + 1. Define +N and ·N to be ordinary
addition and multiplication in N0, and <

N to be the ordinary less–than relation
on N0. For +, ·, and <, we will need to rely on context to distinguish between
the extralogical symbols and their ordinary meanings. To make matters worse,
we will also sometimes use S to denote the function n 7→ n+ 1, so that context
is also required to determine whether S denotes a symbol or a function.
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The structure N = (N0, 0, S,+, ·, <) is called the standard structure of
arithmetic. Sometimes, we will use this phrase to refer to the same structure,
but with < omitted.

Now consider a different structure N ′ = (N′
0, L

N ′
), defined as follows. Let

0N
′
= ∅. Let SN

′
= s, where s(α) = α ∪ {α} is the successor function on

ordinals. Define +N and ·N to be ordinal addition and ordinal multiplication,
and let <N ′

= ∈. It can be shown that the function n 7→ n′, defined in Section
2.1.1, is an isomorphism from N to N ′. We may therefore sometimes identify N
and N ′, thinking of the natural numbers as being identical to the finite ordinals.

2.4.3 Factor structures

Let ω = (A,Lω) be a structure and let ≈ be an equivalence relation on A. We

write a⃗ ≈ b⃗ to mean that ai ≈ bi for all i. Suppose that for all function symbols
f ∈ L, we have a⃗ ≈ b⃗ implies fωa⃗ = fω b⃗. Then ≈ is a congruence (relation) in
ω.

Let ω and ν be structures and g : ω → ν a homomorphism. Define ≈g ⊆ A2

by a ≈g b if and only if ga = gb. Then ≈g is a congruence in ω called the kernel
of g. Let A′ = A/≈ be the set of equivalence classes under ≈. Let a/≈ denote
the equivalence class of a and write a⃗/≈ = ⟨a1/≈, . . . , an/≈⟩.

If f ∈ L is a function symbol, define fω
′
: (A′)n → A′ by fω

′
(⃗a/≈) =

(fωa⃗)/≈. If r ∈ L is a relation symbol, define rω
′ ⊆ (A′)n by rω

′
(⃗a/≈) if and

only if rω b⃗ for some b⃗ ≈ a⃗. It can be shown that both fω
′
and rω

′
are well-

defined. We also define cω
′
= cω/≈. Then ω′ = (A′, Lω

′
) is a structure, denoted

by ω/≈, and called the factor structure of ω modulo ≈.

Let ≈ be a congruence in an L-structure ω. According to the homomorphism
theorem (see, for example, [28, Section 2.1]), the map a 7→ a/≈ is a strong
homomorphism from ω onto ω/≈, which we call the canonical homomorphism.

Conversely, let ω and ν be L-structures and g : ω → ν a surjective strong
homomorphism. Let ≈ be the kernel of g. Let k be the canonical homomorphism
from ω → ω/≈ and let ι denote the map a/≈ 7→ ga. Also according to the
homomorphism theorem, the map ι is an isomorphism from ω/≈ to ν, and
g = ι ◦ k.

2.4.4 Direct products of structures

Let L be an extralogical signature and let ⟨ωi | i ∈ I⟩ be an indexed collection of
L-structures. We let B =

∏
i∈I Ai and adopt the notation a = ⟨ai | i ∈ I⟩ ∈ B,

a⃗ =
〈
a1, . . . , an

〉
∈ Bn, and a⃗i =

〈
a1i , . . . , a

n
i

〉
∈ Ani . For symbols in L, we

define relations and operations on B by rν a⃗ if and only if rωi a⃗i for all i ∈ I,
fν a⃗ = ⟨fωi a⃗i | i ∈ I⟩, and cν = ⟨cωi | i ∈ I⟩. Then ν = (B,Lν) is a structure
called the direct product of ⟨ωi | i ∈ I⟩, and denoted by

∏
i∈I ωi.

If ωi = ω for all i ∈ I, then ν is called the direct power and is denoted by
ωI . If I = {1, . . . , n}, then we denote

∏
i∈I ωi by ω1 × · · · × ωn, and we denote

ωI by ωn. Note that a 7→ ⟨a | i ∈ I⟩ is an embedding from ω to ωI .
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2.5 Strings

Let A be a nonempty set, which we will call an alphabet. Formally, it does
not matter what the elements of A are, but in this context, we will refer to
the elements of A as symbols. The set of (finite) strings over A is the set,
S =

⋃∞
n=0 A

n. A string in An is said to have length n. The unique string of
length 0 is ∅, and we call this the empty string. A string of length 1 is called an
atomic string.

Strings are written without brackets or commas, so that we write s1 · · · sn,
rather than ⟨s1, . . . , sn⟩. Let ξ = s1 · · · sn and η = sn+1 · · · sn+m be strings of
lengths n and m, respectively. The concatenation of ξ and η, denoted by ξη, is
the string s1 · · · sn+m.

If ξ = ξ1ηξ2, where η ̸= ∅, then η is called a segment (or substring) of ξ. If
η ̸= ξ, then η is a proper segment (or substring) of ξ. If ξ1 = ∅, then η is an
initial segment (or substring) of ξ. If ξ2 = ∅, then η is a terminal segment (or
substring) of ξ.



Chapter 3

Propositional Calculus

In this chapter, we develop a calculus of inductive inference for sentences
in a formal logical language. The language we focus on, denoted by F ,
is propositional. The sentences (or formulas) of F consist of primitive
propositional variables connected by negation and conjunction. Using negation
and conjunction, we can define other logical connectives, such as disjunction and
material implication. Our language F , however, is not the usual propositional
language one finds in basic logic textbooks. Our language is infinitary, in the
sense that we allow countable conjunctions. That is, if φn is a formula of F for
every n, then so is

∧∞
1 φn.

The calculus of deductive inference in F is well understood. The study of
infinitary languages dates back to the papers of Scott and Tarski [30, 32] and
to the dissertation [17] and book [16] of Carol Karp. Deductive calculus in F is
represented by a derivability relation, ⊢. If φ is a formula of F and X is a set of
formulas, then X ⊢ φ denotes the fact that φ can be derived from X using the
rules of deductive inference. In Section 3.1, we define F and ⊢, and establish
important facts about them. We then present the notion of a deductive theory,
which is a set of formulas that is closed under deductive inference. An important
point, noted in Remark 3.1.21, is that one can define deductive theories without
any reference to derivability, and then define derivability in terms of theories.
This is the approach we take in the development of our inductive calculus.

An inductive statement is a triple, (X,φ, p), where X is a set of formulas, φ
is a formula, and p ∈ [0, 1]. Intuitively, an inductive statement can be thought
of as asserting that φ is partially entailed by X with degree p. In an inductive
statement, X is called the antecedent, φ is called the consequent, and p is called
the probability. We typically use a letter such as P to denote sets of inductive
statements. We write P (φ | X) = p to mean that (X,φ, p) ∈ P and refer to p as
the probability of φ given X. The ultimate goal of this chapter is to develop a
calculus by which we can take a given set of inductive statements P , and infer a
new inductive statement (X,φ, p). When such an inference is possible, we will
write P ⊢ (X,φ, p), thereby extending the use of the turnstile symbol ⊢ from
formulas to inductive statements.

25
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As mentioned above, we take an indirect route to defining ⊢. We first define
an inductive theory. Intuitively, if P is an inductive theory, and if it is possible
to infer (X,φ, p) from P , then (X,φ, p) is already an element of P . The bulk of
this chapter is devoted to defining the notion of an inductive theory. Once this
is done, we define ⊢ in terms of inductive theories.

In Sections 3.2 and 3.3, we present our rules of inductive inference. There
are nine of them altogether, which we denote by (R1)–(R9). Rules (R1)–(R4)
describe the connection between inductive and deductive inference. Rules (R5)–
(R7) are the core rules of inductive inference: the addition, multiplication, and
continuity rules. Rule (R8) says that we can use uniqueness to make inferences:
if there is a unique way to assign a probability without violating (R1)–(R7),
then we may infer that probability. Rule (R9) says that we may freely add
formulas of probability one to our antecedents.

To define an inductive theory, we must first define what it means for a set
of inductive statements to be closed under the rules of inference. We do this in
tiers. An admissible set is one that is closed under (R1), an entire set is closed
under (R1)–(R7), a semi-closed set is closed under (R1)–(R8), and a closed set
is closed under (R1)–(R9).

In Section 3.2, we define admissible and entire sets. We then prove several
theorems about entire sets, such as inclusion-exclusion, Bayes’ theorem, and
countable additivity. Section 3.3 begins with the definition of semi-closed and
closed sets. We then turn our attention to a notion that has no analogue in
the deductive calculus. The set of inductive statements is much larger than
the set of formulas. As such, it is possible to have inductive statements that
are so far apart, in a certain sense, that they can never be related to one
another via the rules of inductive inference. That is, no chain of inductive
reasoning could possibly include both statements. Such statements would be
trivially incapable of producing a contradiction. Yet they are also incapable
of meaningfully contributing to a common argument. Because of this, a closed
set could potentially contain components that bear no logical connection to one
another. In Section 3.3, we make this notion of connectivity precise. We then
define an inductive theory to be a closed set that is also connected. Section 3.3
concludes by using the definition of an inductive theory to define the inductive
derivability relation, P ⊢ (X,φ, p).

The theorems in Section 3.3 are presented without proof, so that the reader
can see a complete overview of the development. Their proofs are presented
in Sections 3.4 and 3.5. In Section 3.4, we prove that inductive theories exist
and are well-defined. The proof is primarily constructive, showing how to build
up an inductive theory from more basic elements. We then say that a set of
inductive statements is consistent if it can be extended to an inductive theory.
In Section 3.5, we prove that every consistent set can be uniquely extended to
an inductive theory.

Section 3.5 concludes with an important generalization of inductive
derivability. So far we have only discussed a process of inference whereby we
take a set of inductive statements, P , and use them to derive a new inductive
statement, (X,φ, p). In an inferential argument such as this, the inductive
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statements in P are our hypotheses. Since every inductive statement has the
form P (φ | X) = p, it follows that every one of our hypotheses must have this
form as well. In Section 3.5, we allow for a broader class of hypotheses. By
introducing what we call inductive conditions, we are able to use hypotheses
such as P (φ | X) > p or P (φ ∧ ψ | X,ψ) = P (φ | X).

3.1 Formulas and deductive inference

3.1.1 Propositional formulas

Let PV be a nonempty set whose elements we call propositional variables. We
define an alphabet, A = PV ∪{¬,

∧
}. We will define the set of formulas so that

a formula is a finite tuple, where each element in the tuple is either a symbol
from our alphabet, a formula, or a countable set of formulas.

Let S0 = {⟨p⟩ | p ∈ PV }. For an ordinal α < ω1, let

S′
α = Sα ∪ {⟨¬, φ⟩ | φ ∈ Sα}.

When writing tuples such as these, we will typically omit the commas and
angled brackets, so that, for instance, ¬φ = ⟨¬, φ⟩. In particular, for r ∈ PV ,
we identify ⟨r⟩ and r so that we may write S0 = PV .

We then define

Sα+1 = S′
α ∪ {⟨

∧
,Φ⟩ | Φ ⊆ S′

α is nonempty and countable}.

Here, countable means finite or countably infinite. As above, we will typically
write

∧
Φ as shorthand for ordered pairs of this type.

In the case that α is a limit ordinal, we define Sα =
⋃
ξ<α Sξ. Finally, we

define F = Fω1
=

⋃
α<ω1

Sα. Note that Sα ⊆ Sβ whenever α < β. An element
φ ∈ F is called a (propositional) formula or sentence. A formula may also be
called a deductive statement, in contrast to inductive statements, to be defined
later. The set F depends on the choice of PV . We will rarely need to emphasize
this fact, but when we do, we will write F(PV ) instead of F .

Let Ffin denote the smallest subset of F that satisfies

(i) PV ⊆ Ffin,

(ii) if φ ∈ Ffin, then ¬φ ∈ Ffin, and

(iii) if Φ ⊆ Ffin is nonempty and finite, then
∧

Φ ∈ Ffin.

Formulas in Ffin are said to be finitary. The set Ffin is, in fact, the set of
formulas used in finitary propositional logic. Or rather, it is one of several
equivalent definitions of the finitary propositional language. The reader can
consult any introductory text on mathematical logic for the basic properties of
Ffin and its corresponding syntax and semantics. When necessary, we will cite
[28] for this purpose.
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Theorem 3.1.1 (The principle of formula induction). The set of formulas,
F , is the smallest set that satisfies the following:

(i) PV ⊆ F ,

(ii) if φ ∈ F , then ¬φ ∈ F , and

(iii) if Φ ⊆ F is nonempty and countable, then
∧
Φ ∈ F .

Proof. Property (i) follows since PV = S0 ⊆ F . Suppose φ ∈ F . Then there
exists α < ω1 such that φ ∈ Sα. Thus, ¬φ ∈ S′

α ⊆ F , proving property
(ii). Finally, suppose Φ ⊆ F is nonempty and countable. Enumerate Φ as
Φ = {φn}n<α, where 0 < α ⩽ ω. For each n < α, choose αn < ω1 such that
φn ∈ Sαn

. Choose β < ω1 such that αn ⩽ β for all n < α. It follows that Φ is a
nonempty, countable subset of Sβ ⊆ S′

β , and so
∧

Φ ∈ Sβ+1 ⊆ F , proving (iii).
Now let S be any set that satisfies these three properties. Using transfinite

induction, it is easy to verify that Sα ⊆ S for all ordinals α. Thus, F =⋃
α<ω1

Sα ⊆ S.

We may sometimes write
∧
φ∈Φ φ for

∧
Φ. If Φ = {φn}n∈N, we may write∧∞

n=1 φn for
∧
Φ. If Φ ⊆ F , then we use the notation ¬Φ = {¬φ : φ ∈ Φ}. As

shorthand, we define∨
Φ = ¬

∧
¬Φ for Φ nonempty and countable,

(φ ∧ ψ) =
∧
{φ,ψ},

(φ ∨ ψ) =
∨
{φ,ψ},

(φ→ ψ) = (¬φ ∨ ψ), and
(φ↔ ψ) = (φ→ ψ) ∧ (ψ → φ).

We fix an arbitrary r0 ∈ PV and define ⊥ = (r0 ∧ ¬r0) and ⊤ = ¬⊥. The
symbols, ⊥ and ⊤, are called falsum and verum, respectively. We adopt the
convention that

∧
∅ = ⊤ and

∨
∅ = ⊥.

As another form of shorthand, we may also sometimes omit outer parentheses
in formulas, and occasionally inner parentheses with the understanding that →
associates right to left, other symbols associate left to right, and that formulas
obey the order of operations, ¬, ∧, ∨, →, ↔.

Finally, we may occasionally use the notation φx, where x is an element of
the Boolean algebra B = {0, 1}, to mean φ1 = φ and φ0 = ¬φ.

Given φ ∈ F , we define the set of subformulas of φ, denoted by Sf φ, by
formula recursion. Namely, Sf r = {r} for r ∈ PV , Sf ¬φ = {¬φ} ∪ Sf φ,
and Sf

∧
Φ = {

∧
Φ} ∪

⋃
φ∈Φ Sf φ. It follows by formula induction that Sf φ is

countable for every φ ∈ F . Also, the set of propositional variables that appear
in a formula φ is simply PV ∩ Sf φ. In particular, each formula φ makes use of
only countably many propositional variables.

Remark 3.1.2. The construction presented here is analogous to the one
suggested in [18] for formulas in infinitary predicate logic. An alternative



3.1. FORMULAS AND DEDUCTIVE INFERENCE 29

construction builds formulas out of countably long sequences of symbols in an
alphabet. In this case, one must deal precisely with the notion of concatenation
for such strings, such as the concatenation of countably many strings, each of
which may itself be countably long. All of this is detailed in [16].

3.1.2 A calculus of natural deduction

Given a relation ⊢ from PF to F , we write X ⊢ Y to mean X ⊢ φ for all φ ∈ Y .
A comma-separated list on either side of the turnstile, ⊢, refers to a union, and
isolated formulas refer to the singleton set that contains them. For example,
X,Y, φ ⊢ ψ, ζ means X ∪ Y ∪ {φ} ⊢ {ψ, ζ}, which means that X ∪ Y ∪ {φ} ⊢ ψ
and X ∪ Y ∪ {φ} ⊢ ψ. Also, ⊢ φ is shorthand for ∅ ⊢ φ.

We wish to define a relation ⊢ from PF to F such that X ⊢ φ captures
what it means to say that φ can be logically deduced from the formulas in X.

Definition 3.1.3. The derivability relation is the smallest relation ⊢ from PF
to F such that, for all φ,ψ ∈ F and all countable Φ ⊆ F , the following conditions
hold:

(i) φ ⊢ φ,

(ii) if X ⊢ φ and X ⊆ X ′, then X ′ ⊢ φ,

(iii) if X ⊢
∧
Φ, then X ⊢ θ for all θ ∈ Φ,

(iv) if X ⊢ θ for all θ ∈ Φ, then X ⊢
∧

Φ,

(v) if X ⊢ φ and X ⊢ ¬φ, then X ⊢ ψ, and

(vi) if X,φ ⊢ ψ and X,¬φ ⊢ ψ, then X ⊢ ψ.

When X ⊢ φ, we say that φ is (deductively) derivable from X, or that X
proves φ. If X ⊬ φ and X ⊬ ¬φ, then φ is undetermined by (or deductively
independent of ) X. We say that φ is determined by X if φ is not undetermined
by X.

Remark 3.1.4. Note that the intersection of any family of relations that satisfy
(i)–(vi) also satisfies (i)–(vi). Also note that F itself satisfies (i)–(vi). Thus, the
derivability relation is well-defined and is equal to the intersection of all subsets
of PF × F satisfying (i)–(vi).

Remark 3.1.5. An alternative but equivalent definition of the derivability
relation involves the notion of a derivation. A derivation of φ from X
is a countable sequence ⟨(Xβ , φβ) : β ⩽ α⟩, where α is a countable ordinal,
(Xα, φα) = (X,φ), and for each β ⩽ α, the term (Xβ , φβ) is obtained from
⟨(Xξ, φξ) : ξ < β⟩ by an application of one of the six rules in Definition 3.1.3.
In this case, X ⊢ φ if and only if there exists a derivation of φ from X.

Definition 3.1.6. The finitary derivability relation is the smallest relation ⊢fin

from PFfin to Ffin such that, for all φ,ψ ∈ Ffin and all finite Φ ⊆ F , conditions
(i)–(vi) from Definition 3.1.3 hold.
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Remark 3.1.7. The finitary derivability relation is a typical natural-deduction
calculus for finitary propositional logic. Clearly, ⊢fin ⊆ ⊢. As we will see in
Proposition 4.1.15, if X ⊆ Ffin, φ ∈ Ffin, and X ⊢ φ, then X ⊢fin φ. In
other words, when restricted to finitary formulas, our infinitary calculus cannot
produce any new inferences beyond those already available with the finitary
calculus.

The proofs of the structural rules in the following proposition are exactly
the same as in finitary propositional logic (see, for instance, [28, Section 1.4]).

Proposition 3.1.8. The derivability relation satisfies the following:

(a) X ⊢ (φ→ ψ) if and only if X,φ ⊢ ψ,

(b) if X ⊢ φ and X,φ ⊢ ψ, then X ⊢ ψ,

(c) if X,¬φ ⊢ φ, then X ⊢ φ, and

(d) if X,φ ⊢ ¬φ, then X ⊢ ¬φ.

In the remainder of this section, unless otherwise specified, lowercase Roman
numerals refer to Definition 3.1.3 and letters refer to Proposition 3.1.8.

Lemma 3.1.9. Let Φ,Φ′ ⊆ F be countable and ψ ∈ F . If Φ ⊆ Φ′ and
∧
Φ ⊢ ψ,

then
∧
Φ′ ⊢ ψ.

Proof. Suppose Φ ⊆ Φ′ and
∧
Φ ⊢ ψ. By (i) and (iii), we have

∧
Φ′ ⊢ θ for all

θ ∈ Φ. Thus, by (iv), we have
∧

Φ′ ⊢
∧

Φ. The result now follows from (b).

Theorem 3.1.10 (σ-compactness). Let X ⊆ F and φ ∈ F . Then X ⊢ φ if
and only if there exists a countable subset X0 ⊆ X such that X0 ⊢ φ.

Proof. We will actually prove that the following are equivalent:

X ⊢ φ, (3.1.1)

there exists countable X0 ⊆ X such that
∧
X0 ⊢ φ, and (3.1.2)

there exists countable X0 ⊆ X such that X0 ⊢ φ. (3.1.3)

By (i), (ii), (iv), and (b), we have that (3.1.2) implies (3.1.3), and by (ii), we
have (3.1.3) implies (3.1.1).

To prove that (3.1.1) implies (3.1.2), we define ⊢′ so that X ⊢′ φ if and
only if X ⊢ φ and (3.1.2) holds. The proof will be complete once we show that
(i)–(vi) still hold when ⊢ is replaced by ⊢′.

Clearly, (i)–(iii) hold for ⊢′. To see that (iv)–(vi) hold for ⊢′, use Lemma
3.1.9 and the fact that a countable union of countable sets is countable.

Proposition 3.1.11. Let Φ ⊆ F be countable and ψ ∈ F . Then Φ ⊢ ψ if and
only if

∧
Φ ⊢ ψ.
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Proof. By (i), (ii), and (iv), we have Φ ⊢
∧

Φ. Thus, by (b), it follows that∧
Φ ⊢ ψ implies Φ ⊢ ψ.
Now suppose Φ ⊢ ψ. By (3.1.2), there exists countable Φ′ ⊆ Φ such that∧
Φ′ ⊢ ψ. By Lemma 3.1.9, we have

∧
Φ ⊢ ψ.

Proposition 3.1.12. If X ⊢ Y and Y ⊢ φ, then X ⊢ φ.

Proof. Suppose X ⊢ Y and Y ⊢ φ. By σ-compactness, there exists countable
Y0 ⊆ Y such that Y0 ⊢ φ. By Proposition 3.1.11, we have

∧
Y0 ⊢ φ. By (iv),

we have X ⊢
∧
Y0. Hence, by (b), we have X ⊢ φ.

A set X ⊆ F is inconsistent if X ⊢ φ for all φ ∈ F ; it is otherwise consistent.
If X is inconsistent, then X ⊢ ⊥. Conversely, by the definition of ⊥, and by (iii)
and (v), we have that X ⊢ ⊥ implies X is inconsistent. Thus, X is inconsistent
if and only if X ⊢ ⊥. The derivability relation can, in fact, be characterized in
terms of consistency.

Theorem 3.1.13. Suppose X ⊆ F and φ ∈ F . Then X ⊢ φ if and only if
X,¬φ ⊢ ⊥, and X ⊢ ¬φ if and only if X,φ ⊢ ⊥.

Proof. Suppose X ⊢ φ. By (i) and (ii), we have X,¬φ ⊢ φ and X,¬φ ⊢ ¬φ. By
(v), this implies X,¬φ ⊢ ⊥. Conversely, suppose X,¬φ ⊢ ⊥. Then X ∪ {¬φ}
is inconsistent, so that X,¬φ ⊢ φ. By (c), we have X ⊢ φ. The proof of the
second biconditional is analogous.

Since ⊤ = ¬⊥, the preceding theorem shows that X ⊢ ⊤ if and only if
X,⊥ ⊢ ⊥. Hence, by (i) and (ii), we have X ⊢ ⊤ for all X ⊆ F , which by (ii)
is equivalent to ⊢ ⊤.

A formula φ is a tautology if ⊢ φ; it is a contradiction if {φ} is inconsistent.
By the preceding proposition, we see that φ is a tautology if and only if ¬φ is
a contradiction, and vice versa. The set of tautologies is denoted by Taut, or
TautF .

Proposition 3.1.14. Let X ⊆ F and φ ∈ F . Then X ⊢ φ if and only if there
exists a countable X0 ⊆ X such that

∧
X0 → φ ∈ Taut.

Proof. By σ-compactness, we have X ⊢ φ if and only if there exists countable
X0 ⊆ X such that X0 ⊢ φ. And by Proposition 3.1.11 and (a), we have X0 ⊢ φ
if and only if

∧
X0 → φ ∈ Taut.

3.1.3 A Hilbert-type calculus

Let Λ = ΛF be the smallest subset of F such that if φ,ψ, ζ ∈ F and Φ ⊆ F is
countable with φ ∈ Φ, then the following formulas are in Λ:

(Λ1) (φ→ ψ → ζ) → (φ→ ψ) → φ→ ζ

(Λ2) (φ→ ¬ψ) → ψ → ¬φ

(Λ3)
∧
Φ → φ
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The formulas in Λ are called axioms.
We define a proof of φ ∈ F from X ⊆ F as an (α+1)-sequence of formulas,

⟨φβ | β ⩽ α⟩, where α is a countable ordinal, φα = φ, and for each β ⩽ α,
either φβ ∈ X ∪ Λ, or there exist i, j < β such that φi = (φj → φβ), or there
exists nonempty, countable Φ ⊆ {φξ | ξ < β} such that φβ =

∧
Φ. Note that

if ⟨φβ | β ⩽ α⟩ is a proof of φα from X, then for any β < α, it follows that
⟨φξ | ξ ⩽ β⟩ is a proof of φβ from X. For φ ∈ F and X ⊆ F , define X |∼ φ to
mean there is a proof of φ from X.

Let Λfin be the smallest subset of Ffin such that if φ,ψ, ζ ∈ Ffin and Φ ⊆ Ffin

is finite with φ ∈ Φ, then (Λ1)–(Λ3) are in Λfin. A finitary proof of φ ∈ Ffin

from X ⊆ Ffin is a finite sequence of formulas, ⟨φk | k ⩽ n⟩, where φn = φ,
and for each k ⩽ n, either φk ∈ X ∪ Λfin, or there exist i, j < k such that
φi = (φj → φk), or there exists nonempty, finite Φ ⊆ {φℓ | ℓ < k} such that
φk =

∧
Φ. For φ ∈ Ffin and X ⊆ Ffin, define X |∼fin φ to mean there is a

finitary proof of φ from X.
A finitary proof is the classical notion of proof. It is finitely long, and each

sentence in it has finite length. An infinitary proof, on the other hand, can be
infinitely long. And individual sentences in such a proof can themselves have
infinite length.

Remark 3.1.15. The relation |∼fin is a typical Hilbert-style calculus for finitary
propositional logic. It is well-known that |∼fin = ⊢fin. (See, for example, [28,
Theorem 1.6.6].) In Theorem 3.1.17, we will see that |∼ = ⊢. Hence, according
to Remark 3.1.7, if X ⊆ Ffin, φ ∈ Ffin, and X |∼ φ, then X |∼fin φ. In other
words, if we can find an infinitary proof of φ from X, then a finitary proof
necessarily exists.

Proposition 3.1.16 (Induction principle for |∼). The relation |∼ is the
smallest relation from PF to F such that if X ⊆ F , φ,ψ ∈ F , and Φ ⊆ F is
countable, then

(1) X |∼ θ for all θ ∈ X ∪ Λ,

(2) if X |∼ (φ→ ψ) and X |∼ φ, then X |∼ ψ, and

(3) if X |∼ θ for all θ ∈ Φ, then X |∼
∧
Φ.

Proof. The fact that |∼ satisfies (1)–(3) follows from the fact that a countable
concatenation of proofs is again a proof. (See [16, Chapter 2] for details on
infinitary concatenation.)

Let ▷ be a relation from PF to F satisfying (1)–(3). Let X ⊆ F be
arbitrary. Fix a countable ordinal α, and consider the statement,

for all φ ∈ F , if there exists a proof of φ from X with length α+ 1,
then X ▷ φ.

We will prove this statement is true for all countable α by induction on α, and
this will show that X |∼ φ implies X ▷ φ.
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If φ has a proof from X of length 1, then it must be ⟨φ⟩, implying φ ∈ X∪Λ.
Therefore, X ▷ φ by (1), and the statement is true for α = 0.

Suppose the statement is true for all β < α, and that φ has a proof from X
of length α+1. Let ⟨φβ | β ⩽ α⟩ be such a proof. If φ ∈ X ∪Λ, then X ▷ φ by
(1). Suppose there exists i, j < α such that φi = (φj → φ). Then ⟨φβ | β ⩽ i⟩
and ⟨φβ | β ⩽ j⟩ are proofs of φi and φj , respectively, each with length less than
α+1. By the inductive hypothesis, X ▷ φi and X ▷ φj , so that by (2), we have
X ▷ φ. Finally, suppose there exists Φ ⊆ {φβ : β < α} such that φ =

∧
Φ.

Each φβ ∈ Φ has a proof, ⟨φξ | ξ ⩽ β⟩, of length β + 1 < α + 1, so by the
inductive hypothesis, X ▷ θ for all θ ∈ Φ. Thus, by (3), we have X ▷ φ.

Theorem 3.1.17. Let X ⊆ F and φ ∈ F . Then X |∼ φ if and only if X ⊢ φ.

Proof. In this proof, Arabic numerals will refer to Proposition 3.1.16.
We first prove that X |∼ φ implies X ⊢ φ. By Proposition 3.1.16, it suffices

to show that (1)–(3) hold when |∼ is replaced by ⊢.
By (iv), we have that (3) holds for ⊢. Suppose X ⊢ (φ → ψ) and X ⊢ φ.

By (a), we have X,φ ⊢ ψ, so by (b), it follows that X ⊢ ψ. Thus, (2) holds for
⊢. By (i) and (ii), we have X ⊢ θ for all θ ∈ X. It remains only to show that
X ⊢ φ whenever φ is an axiom. By (ii), it suffices to show that ⊢ φ whenever
φ is an axiom.

Consider first (Λ1). Let Y = {φ → ψ → ζ, φ → ψ,φ}. By (i) and (ii), we
have Y ⊢ (φ → ψ), so that (a) yields Y, φ ⊢ ψ. But Y ∪ {φ} = Y , so Y ⊢ ψ.
We similarly obtain Y ⊢ (ψ → ζ), so that Y, ψ ⊢ ζ. By (b), we obtain Y ⊢ ζ.
Repeated applications of (a) now yield φ → ψ → ζ, φ → ψ ⊢ φ → ζ, followed
by φ → ψ → ζ ⊢ (φ → ψ) → φ → ζ, followed by ⊢ (φ → ψ → ζ) → (φ →
ψ) → φ→ ζ.

For (Λ2), let X = {φ→ ¬ψ,ψ} and Y = X ∪ {φ}. By (i) and (ii), we have
Y ⊢ φ → ¬ψ, so that (a) yields Y, φ ⊢ ¬ψ. But Y ∪ {φ} = Y , so Y ⊢ ¬ψ. On
the other hand, (i) and (ii) imply Y ⊢ ψ, so by (v), we have Y ⊢ ¬φ, or in other
words, X,φ ⊢ ¬φ. By (d), we have X ⊢ ¬φ. Repeated applications of (a) yield
φ→ ¬ψ ⊢ ψ → ¬φ, followed by ⊢ (φ→ ¬ψ) → ψ → ¬φ.

For (Λ3), let Φ ⊆ F be countable and φ ∈ Φ. By (i), we have
∧
Φ ⊢

∧
Φ.

By (iii), we obtain
∧
Φ ⊢ φ. Thus, by (a), it follows that ⊢

∧
Φ → φ.

To prove that X ⊢ φ implies X |∼ φ, it suffices to show that (i)–(vi) hold
when ⊢ is replaced by |∼. The fact that (i), (ii), (v), and (vi) hold for |∼ follows
exactly as in the finitary case (see [28, Section 1.6], for example). We obtain
(iii) and (iv) from (Λ3) and (3), respectively.

3.1.4 Deductive theories and logical equivalence

Definition 3.1.18. A set T ⊆ F is called a (deductive) theory if the following
conditions hold:

(i) Λ ⊆ T ,

(ii) if (φ→ ψ) ∈ T and φ ∈ T , then ψ ∈ T , and
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(iii) if Φ ⊆ T is countable, then
∧
Φ ∈ T .

Note that the intersection of any family of theories is again a theory. Also
note that F itself is a theory. Hence, if X ⊆ F , then we may define the
(deductive) theory generated by X, denoted by T (X) or TX , as the smallest
theory having X as a subset.

Theorem 3.1.19. Let X ⊆ F and φ ∈ F . Then X ⊢ φ if and only if φ ∈ T (X).

Proof. Suppose X ⊢ φ. By Theorem 3.1.17, there exists a proof of φ from X.
As in Proposition 3.1.16, we can use induction on the length of the proof to show
that φ ∈ T (X). For the converse, define T ′ = {φ ∈ F : X ⊢ φ}. By Theorem
3.1.17 and Proposition 3.1.16, it follows that T ′ is a theory with X ⊆ T ′. Thus,
T (X) ⊆ T ′.

Corollary 3.1.20. A set T ⊆ F is a theory if and only if it is deductively
closed, meaning that T ⊢ φ implies φ ∈ T .

Proof. This follows immediately by combining Theorem 3.1.19 with the fact
that T ⊆ F is a theory if and only if T = T (T ).

Remark 3.1.21. Theorem 3.1.19 exhibits an alternative approach to defining
derivability. One can define the theory generated by a set X, as we did above,
without any reference to derivability. Then one can define derivability in terms
of T (X). This is the approach we will take when considering inductive inference.

If T is a theory and S ⊆ F , then T + S denotes the theory generated by
T ∪ S. For φ ∈ F , we write T + φ for T + {φ}. The smallest theory is Taut,
the largest theory is F , and every theory T satisfies Taut ⊆ T ⊆ F . A theory
T is inconsistent if and only if T = F . A theory T is said to be (deductively)
complete if it is consistent and every φ ∈ F is determined by T . That is, for
every φ ∈ F , either φ ∈ T or ¬φ ∈ T .

Formulas φ and ψ are (logically) equivalent, written φ ≡ ψ, if φ ⊢ ψ and
ψ ⊢ φ. By (a), (iii), (iv), and the shorthand definition of ↔, we find that φ ≡ ψ
if and only if φ ↔ ψ ∈ Taut. Note that φ ∈ Taut if and only if φ ≡ ⊤. Also
note that if X ⊢ φ and φ ≡ ψ, then X ⊢ ψ.

More generally, if X ⊆ F , we say that φ and ψ are equivalent given X,
written φ ≡X ψ, if X,φ ⊢ ψ and X,ψ ⊢ φ. As above, we have φ ≡X ψ if and
only if φ↔ ψ ∈ T (X). Also, φ ∈ T (X) if and only if φ ≡X ⊤. Note that ≡∅ is
simply ≡. Also note that ≡X ⊆ ≡X′ whenever X ⊆ X ′.

It can be shown that ≡X is a congruence relation, meaning it is an
equivalence relation on F such that

if φ ≡X φ′, then ¬φ ≡X ¬φ′, and

if C is countable and φn ≡X φ′
n for n ∈ C, then

∧
n∈C φn ≡X

∧
n∈C φ′

n.

For X,Y ⊆ F , we say that X ≡ Y if X ⊢ Y and Y ⊢ X. Note that X ⊢ Y if
and only if Y ⊆ T (X), which holds if and only if T (Y ) ⊆ T (X). Thus, X ≡ Y
if and only if T (X) = T (Y ). Also note that if X ⊢ φ and X ≡ Y , then Y ⊢ φ.
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The operations, ¬, ∧, and ∨, pass in the usual way from F to B(X) = F/≡X ,
making B(X) into a Boolean σ-algebra, called the Lindenbaum-Tarski σ-algebra
of X. If [φ]X ∈ B(X) denotes the equivalence class of φ, then φ ≡X ψ if and
only if [φ]X = [ψ]X . The partial order in B(X) corresponds to the derivability
relation. That is, [φ]X ⩽ [ψ]X if and only if X,φ ⊢ ψ. In B(X), we have
0 = [⊥]X and 1 = [⊤]X .

We end this section with two items that we will need later. The first is a
piece of notation. If T0 and T1 are theories with T0 ⊆ T1, then we write [T0, T1]
to denote the set of theories T that satisfy T0 ⊆ T ⊆ T1. The second is the
following lemma.

Lemma 3.1.22. Let T be a theory, ψ ∈ F , and S ⊆ F . Define S′ = {ψ → θ |
θ ∈ S}. Then T + ψ + S = T + ψ + S′.

Proof. For each θ ∈ S, we have T +ψ+S ⊢ θ ⊢ ψ → θ. Thus, T +ψ+S ⊢ S′, so
that T + ψ + S ⊢ T + ψ + S′. Conversely, for any θ ∈ S, we have ψ → θ, ψ ⊢ θ,
so that S′, ψ ⊢ S. Hence, T + ψ + S′ ⊢ T + ψ + S.

3.2 Inductive statements and entire sets

Let F IS = PF ×F × [0, 1]. The elements, (X,φ, p), of F IS are called inductive
statements. Intuitively, we interpret (X,φ, p) as asserting that X partially
entails φ, and that p is the degree of this partial entailment. In an inductive
statement, X is called the antecedent, φ is called the consequent, and p is called
the probability.

The remainder of this chapter is devoted to extending the derivability
relation, ⊢, to inductive statements. Informally, the assertion, Q ⊢ (X,φ, p),
where Q ⊆ F IS, means that (X,φ, p) can be derived from Q, using the rules of
inductive inference. We will have nine such rules. They are:

(R1) the rule of logical equivalence,

(R2) the rule of logical implication,

(R3) the rule of material implication,

(R4) the rule of deductive transitivity,

(R5) the addition rule,

(R6) the multiplication rule,

(R7) the continuity rule,

(R8) the rule of inductive extension, and

(R9) the rule of deductive extension.
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The first rule, among other things, ensures that our collective inferences form a
function mapping antecedent-consequent pairs, (X,φ), to probabilities p. Rules
(R2)–(R4) describe the relationship between deductive and inductive inference.
Rules (R5)–(R7) are the usual mathematical rules for working with probabilistic
assertions. And the final two rules provide a natural “completeness” to our
inferences.

We follow the approach outlined in Remark 3.1.21. That is, we begin
by defining an inductive theory, which will be a set of inductive statements
that is closed under the nine rules of inductive inference, and satisfies certain
connectivity requirements. This will allow us to speak of the inductive theory
generated by a set Q ⊆ F IS, which we denote by P(Q). We then take
Q ⊢ (X,φ, p) to mean that (X,φ, p) ∈ P(Q).

The notion of being closed under the nine rules of inductive inference will be
built up in tiers. An admissible set is one that is closed under the first rule. An
entire set is closed under the first seven rules. A semi-closed set is closed under
the first eight rules. And a closed set is closed under all nine. In this section,
we focus only on entire sets.

3.2.1 Seven of nine

We now formally state the first seven of the nine rules of inductive inference.
A set P ⊆ F IS is admissible if it satisfies the rule of logical equivalence:

(R1) If (X,φ, p) ∈ P , X ′ ≡ X, and φ′ ≡X φ, then (X ′, φ′, p) ∈ P and there is
no other value p′ such that (X ′, φ′, p′) ∈ P .

If P is admissible, then it is a function from PF × F to [0, 1]. In this case, we
write P (φ | X) = p to mean that (X,φ, p) ∈ P , and read the left-hand side,
P (φ | X), as the probability of φ given X. We also write X,ψ as shorthand for
X ∪ {ψ}, so that P (φ | X,ψ) means P (φ | X ∪ {ψ}). When X = ∅, we will
omit it, leaving only P (φ) or P (φ | ψ). For admissible P , if (X,φ, p) ∈ P , then
we say P (φ | X) exists or is defined.

Note that any subset of an admissible set is also a function from PF × F
to [0, 1]. We will therefore also use the notation P (φ | X) = p for subsets of
admissible sets.

If P ⊆ F IS, we define

anteP = {X ⊆ F : (X,φ, p) ∈ P for some φ ∈ F and p ∈ [0, 1]}.

That is, X ∈ anteP if and only if X is the antecedent of some inductive
statement in P .

The next six rules of inductive inference are encoded in the following
definition.

Definition 3.2.1. A set P ⊆ F IS is entire if it is admissible and satisfies the
following:

(R2) (the rule of logical implication) If X ∈ anteP and X ⊢ φ, then P (φ |
X) = 1.
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(R3) (the rule of material implication) If X ∈ anteP and P (ψ | X,φ) = 1, then
P (φ→ ψ | X) = 1.

(R4) (the rule of deductive transitivity) If P (φ | X) = 1 and φ ⊢ ψ, then
P (ψ | X) = 1. Also, for any X ′ ∈ anteP , if X ′ ⊢ X and P (φ | X) = 1,
then P (φ | X ′) = 1.

(R5) (the addition rule) Let X ⊢ ¬(φ ∧ ψ). Consider the equation,

P (φ ∨ ψ | X) = P (φ | X) + P (ψ | X). (3.2.1)

If two of the above probabilities exist, then so does the third and (3.2.1)
holds.

(R6) (the multiplication rule) Consider the equation,

P (φ ∧ ψ | X) = P (φ | X)P (ψ | X,φ). (3.2.2)

If two of the above probabilities exist and are positive, then the third
exists and (3.2.2) holds.

(R7) (the continuity rule) If P (φn | X) exists and X,φn ⊢ φn+1 for all n ∈ N,
then

P (
∨
n φn | X) = limn P (φn | X). (3.2.3)

Remark 3.2.2. If P is entire and X ∈ anteP , then X is consistent. To see
this, suppose X is inconsistent. Choose φ ∈ F such that X ⊢ φ and X ⊢ ¬φ.
By the rule of logical implication P (φ | X) = 1 and P (¬φ | X) = 1. Thus, by
the addition rule, P (φ ∨ ¬φ) = 2, which violates the definition of an inductive
statement.

Remark 3.2.3. The first seven rules of inductive inference leave open the
question of whether P (φ | X) = 1 implies X ⊢ φ. In general, it does not,
but a partial converse to the rule of logical implication will be given in Theorem
3.5.6.

3.2.2 Relative negation and certainty

Given an entire set P and a set X ∈ anteP , the domain of P ( · | X) is not
necessarily closed under conjunctions and disjunctions. It is, however, closed
under relative negation. Also, conjunctions and disjunctions with a formula
whose probability is 0 or 1 are still in the domain of P ( · | X). These and
related facts are described in this subsection.

Example 3.2.4. The possible failure of the domain of P ( · | X) to be closed
under conjunctions and disjunctions can be seen in the following simple example,
using X = ∅. Let PV = {r1, r2}. Fix q ∈ (0, 1) and define Q ⊆ F IS by
Q(r1) = Q(r2) = Q(r1 ↔ r2) = q. In Example 4.3.8, we construct an entire
set P such that Q ⊆ P , but in which P (r1 ∧ r2) is undefined. As we will see in
Theorem 3.2.18 below, this also implies P (r1 ∨ r2) is undefined.



38 CHAPTER 3. PROPOSITIONAL CALCULUS

Proposition 3.2.5. Let P be entire. If P (φ | X) and P (ψ | X) exist and
X,φ ⊢ ψ, then P (ψ ∧ ¬φ | X) exists and

P (ψ ∧ ¬φ | X) = P (ψ | X)− P (φ | X). (3.2.4)

In particular, P (φ | X) ⩽ P (ψ | X).

Proof. Let ψ′ = ψ ∧ ¬φ. Since ψ ≡X φ ∨ ψ′, the rule of logical equivalence
implies P (φ ∨ ψ′ | X) exists. Since φ ∧ ψ′ is a contradiction, the addition rule
implies that P (ψ′ | X) exists and

P (φ ∨ ψ′ | X) = P (φ | X) + P (ψ′ | X),

which gives (3.2.4).

Remark 3.2.6. The final conclusion of Proposition 3.2.5 is referred to as the
monotonicity property of P .

Corollary 3.2.7. Let P be entire. If P (φ | X) exists, then P (¬φ | X) exists
and

P (¬φ | X) = 1− P (φ | X). (3.2.5)

Proof. Suppose P (φ | X) exists. Then X ∈ anteP , so by the rule of logical
implication, P (⊤ | X) = 1. Applying Proposition 3.2.5 with ψ = ⊤, and using
⊤∧¬φ ≡ ¬φ together with the rule of logical equivalence, we obtain (3.2.5).

Remark 3.2.8. Proposition 3.2.5 requires neither the multiplication rule nor
the continuity rule in its proof. Consequently, Corollary 3.2.7 also does not
require them.

Proposition 3.2.9. Let P be entire. If P (ψ | X) = 1 and P (φ∧ψ | X) exists,
then P (φ | X) = P (φ ∧ ψ | X).

Proof. Since ψ ⊢ ¬φ ∨ ψ, the rule of deductive transitivity gives P (¬φ ∨ ψ |
X) = 1. By Corollary 3.2.7 and the rule of logical equivalence, P (φ ∧ ¬ψ |
X) = 0. Hence, the result follows from the addition rule and the rule of logical
equivalence.

Lemma 3.2.10. Let P be entire and suppose P (φ | X) exists. Then X ∪{φ} ∈
anteP if and only if P (φ | X) > 0.

Proof. Suppose P (φ | X) > 0. Applying the multiplication rule with ψ = φ,
and using φ ∧ φ ≡ φ together with the rule of logical equivalence, we get
P (φ | X,φ) = 1, which implies X ∪ {φ} ∈ anteP .

Now suppose P (φ | X) = 0 and X ∪ {φ} ∈ anteP . Then (3.2.5) implies
P (¬φ | X) = 1. Since X,φ ⊢ X, the rule of deductive transitivity gives
P (¬φ | X,φ) = 1. Thus, again by (3.2.5), we have P (φ | X,φ) = 0. But
this contradicts the rule of logical implication.
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Proposition 3.2.11. Let P be entire and suppose both P (φ | X) and P (ψ | X)
exist. If P (φ | X) ∈ {0, 1}, then both P (φ∨ψ | X) and P (φ∧ψ | X) exist, and

P (φ ∨ ψ | X) = max{P (φ | X), P (ψ | X)},
P (φ ∧ ψ | X) = min{P (φ | X), P (ψ | X)},

Proof. By (3.2.5) and the rule of logical equivalence, it suffices to consider the
case φ ∧ ψ. Suppose P (φ | X) = 0. By (3.2.5), we have P (¬φ | X) = 1. Since
¬φ ⊢ ¬φ∨¬ψ, the rule of deductive transitivity gives P (¬φ∨¬ψ | X) = 1. By
(3.2.5) and the rule of logical equivalence, P (φ∧ψ | X) = 0, proving the claim.

Now suppose P (φ | X) = 1. If P (ψ | X) = 0, then we are done by the
previous case. Assume then that P (ψ | X) > 0. By Lemma 3.2.10, we have
X ∪ {ψ} ∈ anteP . Since X,ψ ⊢ X, the rule of deductive transitivity gives
P (φ | X,ψ) = 1. By the multiplication rule, P (ψ ∧ φ | X) = P (ψ | X).

Corollary 3.2.12. Let P be entire and suppose that P (φn | X) = 1 for all
n ∈ N. Then P (

∧
n φn | X) = 1.

Proof. By Proposition 3.2.11 and induction, we have P (
∧n

1 φj | X) = 1 for all
n. By (3.2.5) and the rule of logical equivalence, P (

∨n
1 ¬φj | X) = 0. The

continuity rule then gives P (
∨
n ¬φn | X) = 0, which implies P (

∧
n φn | X) =

1.

For Q ⊆ F IS and X ⊆ anteQ, let

τ(Q;X ) = {θ ∈ F | (X, θ, 1) ∈ Q for all X ∈ X}. (3.2.6)

For X ∈ anteQ, we write τ(Q;X) for τ(Q; {X}). We also write τ(Q), or τQ,
for τ(Q; anteQ). Informally, τ(Q) is the set of all formulas that are true under
Q, regardless of the antecedent used.

Proposition 3.2.13. If P is entire and X ⊆ anteP , then τ(P ;X ) is a deductive
theory.

Proof. Suppose τ(P ;X ) ⊢ φ. By σ-compactness, choose countable Φ ⊆ τ(P ;X )
such that Φ ⊢ φ. By Corollary 3.2.12, we have

∧
Φ ∈ τ(P ;X ). Now let X ∈ X .

Then P (
∧
Φ | X) = 1 and

∧
Φ ⊢ φ. By deductive transitivity, P (φ | X) = 1.

Hence, φ ∈ τ(P ;X ), so τ(P ;X ) is a deductive theory.

3.2.3 Inductive vs. deductive inference

Rules (R1)–(R4), the rules of logical equivalence, logical implication, material
implication, and deductive transitivity, describe the relationship between
inductive and deductive inference. The next three results provide useful
generalizations of these rules.

Proposition 3.2.14. Let P be entire. If P (φ | X) = p and P (φ↔ φ′ | X) = 1,
then P (φ′ | X) = p.
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Proof. Since φ ∧ (φ ↔ φ′) ≡ φ ∧ φ′, the rule of logical equivalence together
with Proposition 3.2.11 imply P (φ ∧ φ′ | X) = p. Also, φ ↔ φ′ ⊢ φ ∨ ¬φ′,
so by the rule of deductive transitivity, P (φ ∨ ¬φ′ | X) = 1. Thus, (3.2.5)
implies P (¬φ ∧ φ′ | X) = 0. Hence, by the addition rule and the rule of logical
equivalence, P (φ′ | X) = p.

Proposition 3.2.15. Let P be entire. If P (φ→ ψ | X) = 1 and P (φ | X) > 0,
then P (ψ | X,φ) = 1.

Proof. Suppose P (φ → ψ | X) = 1 and P (φ | X) > 0. By (3.2.5) and the rule
of logical equivalence, P (φ∧¬ψ | X) = 0. Thus (3.2.4) implies P (φ∧ ψ | X) =
P (φ | X) > 0. Thus, by the multiplication rule, P (ψ | X,φ) = 1.

Proposition 3.2.16. Let P be entire with X ∈ anteP and P (φ | X, ζ) = 1.
Assume at least one of the following holds:

(i) X,φ ⊢ ψ,

(ii) P (ψ | X,φ) = 1,

(iii) P (φ→ ψ | X) = 1.

Then P (ψ | X, ζ) = 1.

Proof. SupposeX ∈ anteP and P (φ | X, ζ) = 1. First note that (i) is equivalent
to X ⊢ φ → ψ. Thus, by the rule of logical implication, (i) implies (iii). Also,
by the rule of material implication, (ii) implies (iii). Hence, we may assume (iii)
holds. In this case, deductive transitivity gives P (φ→ ψ | X, ζ) = 1. By (3.2.5)
and the rule of logical equivalence, P (φ ∧ ¬ψ | X, ζ) = 0. Thus, by (3.2.4), we
have P (φ ∧ ψ | X, ζ) = 1. Finally, since φ ∧ ψ ⊢ ψ, deductive transitivity gives
P (ψ | X, ζ) = 1.

3.2.4 Generalizations of the addition rule

Lemma 3.2.17. Let P be entire and suppose X ⊢ ¬(φi ∧ φj) whenever i ̸= j.
If P (φi | X) exists for 1 ⩽ i ⩽ n, then P (

∨n
i=1 φi) =

∑n
i=1 P (φi | X).

Proof. The case n = 2 is the addition rule. Suppose the lemma holds for
some n = k and consider the case n = k + 1. Note that X ⊢ ¬(φ ∧ ψ) is
equivalent to X,ψ ⊢ ¬φ. Thus, X,φk+1 ⊢ ¬φi for all i ⩽ k. This implies

X,φk+1 ⊢
∧k

1 ¬φi ≡ ¬
∨k

1 φi. Therefore, X ⊢ ¬(
∨k

1 φi ∧ φk+1), so the addition
rule and the inductive hypothesis show that the result holds for n = k + 1.

Theorem 3.2.18 (Inclusion-exclusion). Let P be entire and consider the
equation

P (φ ∨ ψ | X) = P (φ | X) + P (ψ | X)− P (φ ∧ ψ | X). (3.2.7)

If three of the above probabilities exist, then so does the fourth and (3.2.7) holds.
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Proof. Let ζ1 = φ ∧ ¬ψ and ζ2 = ¬φ ∧ ψ. Suppose three of the probabilities in
(3.2.7) exist. There are four possible cases.

The first case is that P (φ | X), P (ψ | X), and P (φ ∧ ψ | X) exist. In
this case, since ζ1 ≡ φ ∧ ¬(φ ∧ ψ), Proposition 3.2.5 implies that P (ζ1 | X)
exists. Similarly, P (ζ2 | X) exists. Thus, by the addition rule and the fact that
φ ∨ ψ ≡ ζ1 ∨ ζ2 ∨ (φ ∧ ψ), we have that P (φ ∨ ψ | X) exists.

The second case is that P (φ∨ψ | X), P (φ | X), and P (ψ | X) exist. In this
case, since ζ1 ≡ (φ ∨ ψ) ∧ ¬ψ, Proposition 3.2.5 implies that P (ζ1 | X) exists.
Similarly, P (ζ2 | X) exists. By the addition rule, Proposition 3.2.5, and the fact
that φ ∧ ψ ≡ (φ ∨ ψ) ∧ ¬(ζ1 ∨ ζ2), we have that P (φ ∧ ψ | X) exists.

By symmetry, the third and fourth cases are covered by the assumption that
P (φ ∨ ψ | X), P (φ | X), and P (φ ∧ ψ | X) exist. The argument from the
second case shows that P (ζ2 | X) exists. By the addition rule and the fact that
ψ ≡ (φ ∧ ψ) ∨ ζ2, we have that P (ψ | X) exists.

Hence, in all cases, all four probabilities in (3.2.7) exist. By Lemma 3.2.17,

P (φ | X) = P (ζ1 | X) + P (φ ∧ ψ | X),

P (ψ | X) = P (ζ2 | X) + P (φ ∧ ψ | X), and

P (φ ∨ ψ | X) = P (ζ1 | X) + P (ζ2 | X) + P (φ ∧ ψ | X).

Putting these together yields (3.2.7).

Remark 3.2.19. By Theorem 3.2.18, if P is entire, then in the addition rule,
it is not necessary that X ⊢ ¬(φ ∧ ψ). It is sufficient that P (φ ∧ ψ | X) = 0.

3.2.5 Generalizations of the multiplication rule

Theorem 3.2.20. If P is entire, then in the multiplication rule, it is not
necessary that the two defined probabilities be positive. It is enough to assume
that solving for the third probability does not result in dividing by zero.

Proof. First suppose P (φ | X) and P (ψ | X,φ) both exist. By Lemma 3.2.10,
we have P (φ | X) > 0. Suppose P (ψ | X,φ) = 0. Then P (¬ψ | X,φ) = 1, by
(3.2.5), so by the multiplication rule, P (φ ∧ ¬ψ | X) = P (φ | X). Therefore,
Proposition 3.2.5 implies P (φ ∧ ψ | X) = 0.

Next, suppose P (φ | X) > 0 and P (φ ∧ ψ | X) = 0. Then Proposition
3.2.5 implies P (φ ∧ ¬ψ | X) = P (φ | X) > 0, so by the multiplication rule,
P (¬ψ | X,φ) = 1. Applying Proposition 3.2.5 again gives P (ψ | X,φ) = 0.

Finally, suppose P (ψ | X,φ) > 0 and P (φ∧ψ | X) exists. By Lemma 3.2.10,
we have X ∪ {φ,ψ} ∈ anteP . But X ∪ {φ,ψ} ≡ X ∪ {φ ∧ ψ}, so by the rule
of logical equivalence, X ∪ {φ ∧ ψ} ∈ anteP . Thus, by Lemma 3.2.10, we have
P (φ ∧ ψ | X) > 0.

Theorem 3.2.21 (Bayes’ theorem). If P is entire, then

P (φ | X)P (ψ | X,φ) = P (ψ | X)P (φ | X,ψ), (3.2.8)

provided that all four of the above probabilities exist.
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Proof. Since φ ∧ ψ ≡ ψ ∧ φ, this follows immediately from the multiplication
rule.

3.2.6 Generalizations of the continuity rule

Proposition 3.2.22. Let P be entire. If P (φn | X) exists and X,φn+1 ⊢ φn
for all n ∈ N, then

P (
∧
n φn | X) = limn P (φn | X).

Proof. Let ψn = ¬φn. By the continuity rule,

P (
∨
n ψn | X) = limn P (ψn | X).

But
∨
n ψn ≡ ¬

∧
n φn, so (3.2.5) gives the desired result.

Theorem 3.2.23. Let P be entire and assume P (φn | X) exists for all n. If
P (φn+1 | X,φn) = 1 for all n, then

P (
∨
n φn | X) = limn P (φn | X). (3.2.9)

Similarly, if P (φn | X,φn+1) = 1 for all n, then

P (
∧
n φn | X) = limn P (φn | X). (3.2.10)

Proof. Suppose P (φn+1 | X,φn) = 1 for all n. By Lemma 3.2.10, we have
P (φn | X) > 0 for all n. Let ψn =

∨n
j=1 φj . We first show that

P (ψn | X) = P (φn | X) > 0, and (3.2.11)

P (φn+1 | X,ψn) = 1, (3.2.12)

for all n.
Since ψ1 = φ1, we have that (3.2.11) and (3.2.12) hold for n = 1. Suppose

it is true for n− 1. Then

ψn ≡ ψn−1 ∨ φn ≡ φn ∨ (ψn−1 ∧ ¬φn).

But P (φn | X,ψn−1) = 1, so it follows from the rule of material implication
and (3.2.5) that P (ψn−1 ∧ ¬φn | X) = 0. Hence, Proposition 3.2.11 gives us
(3.2.11).

By Proposition 3.2.16 and induction, we have P (φn+1 | X,φm) = 1 for all
m ⩽ n, which gives P (φm → φn+1 | X) = 1 for all m ⩽ n by the rule of
material implication. Note that

∧n
m=1(φm → φn+1) ≡ ψn → φn+1. Hence,

by Proposition 3.2.11 and induction, we have P (ψn → φn+1 | X) = 1. Since
P (ψn | X) > 0, Proposition 3.2.15 gives (3.2.12).

Having established (3.2.11) and (3.2.12) for all n, observe that ψn ⊢ ψn+1

for all n. Thus, by the continuity rule,

P (
∨
n ψn | X) = limn P (ψn | X).
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Using (3.2.11) and the fact that
∨
n ψn ≡

∨
n φn, we obtain (3.2.9).

For (3.2.10), assume P (φn | X,φn+1) = 1 for all n. Define ψn = ¬φn. By
the rule of material implication, P (φn+1 → φn | X) = 1 for all n, which gives
P (ψn → ψn+1 | X) = 1 for all n.

We first suppose that P (φn | X) < 1 for all n. Since P (ψn | X) > 0 by
(3.2.5), Proposition 3.2.15 implies P (ψn+1 | X,ψn) = 1 for all n. Applying
(3.2.9) and (3.2.5) gives (3.2.10).

Now suppose that P (φn | X) = 1 for some n. By Proposition 3.2.16, we have
P (φj | X) = 1 for all j ⩽ n. Let n0 = sup{n : P (φn | X) = 1}. If n0 = ∞, then
P (φn | X) = 1 for all n. This implies P (ψn | X) = 0 for all n by Proposition
3.2.11. Hence, by Corollary 3.2.12 and (3.2.5), we have P (

∨
n ψn | X) = 0, and

this establishes (3.2.10). Assume, then, that n0 <∞, so that P (φn | X) = 1 for
all n ⩽ n0 and P (φn | X) < 1 for all n > n0. By what we have already proven,

P (
∧∞
n0+1 φn | X) = limn P (φn | X).

By Proposition 3.2.11 and induction, we have P (
∧
n φn | X) = P (

∧∞
n0+1 φn |

X), and so (3.2.10) holds.

Theorem 3.2.24 (Countable additivity). If P is entire and P (φi ∧ φj |
X) = 0 for all 1 ⩽ i < j <∞, then

P (
∨
n φn | X) =

∑
n P (φn | X).

Proof. Let ψn =
∨n

1 φj , so that ψn ⊢ ψn+1 and
∨
n ψn ≡

∨
n φn. Note that

ψn ∧ φn+1 ≡
∨n

1 (φj ∧ φn+1). By Proposition 3.2.11 and induction, we have
P (ψn ∧ φn+1 | X) = 0. Thus, by Theorem 3.2.18,

P (ψn ∨ φn+1 | X) = P (ψn | X) + P (φn+1 | X).

It follows by induction that P (ψn | X) =
∑n

1 P (φj | X) for all n. Letting
n→ ∞ and applying the continuity rule completes the proof.

3.3 Closed sets and inductive derivability

3.3.1 The rule of inductive extension

The first seven rules of inductive inference encapsulate the core of our inductive
calculus. There are, however, two important and essential supplemental rules
we must define. The first is called the “rule of inductive extension.” To motivate
this rule, recall the situation in Example 3.2.4. As mentioned therein, we will
later construct an entire set P in which P (r1) = P (r2) = P (r1 ↔ r2) = q, but
P (r1∧r2) is undefined (see Example 4.3.8). This situation is entirely satisfactory
and will not violate our rules of inference in any way. It is, in fact, self-evident
that without additional information, there is no way to deduce a probability for
r1 ∧ r2 based solely on the probabilities of r1 and r2.
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We can, however, decide to assign, a priori, a probability to r1∧r2. In other
words, given a value q′, we may wish to consider the set P ′ = P∪{(∅, r1∧r2, q′)}.
Of course, we must choose q′ so that our new, enlarged set P ′ continues to
conform to the seven rules of inference we have already established. The question
naturally arises: which values of q′ are possible?

In a situation such as this, one of three things can occur. The first is
illustrated by the case q = 1/4. In this case, we show in Example 4.3.10 that
there are no possible values of q′. In other words, although P is entire, there is
no way to assign a probability to r1 ∧ r2 without violating one of our first seven
rules. There is, therefore, something defective about P , but this flaw cannot be
seen from our first seven rules alone.

The second possibility is illustrated by the case q = 1/2. In this case, we
show in Proposition 4.3.11 that q′ = 1/4 is the unique value that works. In
other words, the only way to assign a probability to r1 ∧ r2 without violating
one of our first seven rules is to assign it probability 1/4. In this case, it seems
reasonable that the uniqueness of this value ought to let us infer (∅, r1∧r2, 1/4)
from P . But such an inference is not possible with only the first seven rules,
because P is already entire.

The third possibility is that there are multiple values of q′ that work.
Although this case does not arise in Example 3.2.4, it is clear that it can arise
in even simpler examples. In a case such as this, there is nothing necessarily
defective about our entire set P , but at the same time, we cannot make any
inference about the probability of r1 ∧ r2.

To describe the rule that will rectify these situations, we begin by defining
a new kind of set, which we call “complete.” Even after our inductive calculus
is fully developed, the process of inductive inference will not typically produce
complete sets. Rather, they represent a sort of ideal in which all meaningfully
connected probabilities have been logically determined.

Definition 3.3.1. A set P ⊆ F IS is complete if it is entire and satisfies the
following conditions:

(i) If P (φ | X) and P (ψ | X) exist, then P (φ ∧ ψ | X) exists.

(ii) If X ∈ anteP and X ∪ {φ} ∈ anteP , then P (φ | X) exists.

Remark 3.3.2. In general, entire sets obey neither (i) nor (ii) in the definition
above. Example 3.2.4 describes an entire set that violates (i). In Example
4.3.12, we exhibit an entire set P with P (r1) = 1/2 and P (r2 | r3) = 1, but
with P (r3) undefined, thereby violating (ii) with X = ∅ and φ = r3.

Having defined complete sets, we are now in a position to state our eighth
rule of inductive inference. A set which is closed under the first eight rules will
be called “semi-closed.”

If P ⊆ P ⊆ F IS, then P is called an extension of P . A complete extension
will also be called a completion. A set P ⊆ F IS is semi-closed if it is entire and
satisfies the rule of inductive extension:
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(R8) If P (φ | X) = p for every completion P of P , then P (φ | X) = p.

Note that every complete set is semi-closed.
Every semi-closed set has a completion. To see this, suppose P is semi-

closed but has no completion. Then (R8) implies P = F IS. But then P is not
admissible, and therefore not entire, a contradiction.

This means that an entire set can fail to be semi-closed in two ways. On
the one hand, it can simply not have enough probabilities. This happens, for
instance, in Example 3.2.4 when q = 1/2. In this case, our set P will not
be semi-closed until we add more probabilities, including (∅, r1 ∧ r2, 1/4), as
required by (R8).

On the other hand, it can fail to be semi-closed because it has no completion.
This happens, for instance, in Example 3.2.4 when q = 1/4, since in that case
there is no way to assign a probability to r1 ∧ r2 without breaking the entirety
of the set.

The following result is an analogue of Proposition 3.2.14 for antecedents, but
it requires that P be semi-closed.

Proposition 3.3.3. Let P be semi-closed. If P (φ | X,ψ) = p and P (ψ ↔ ψ′ |
X) = 1, then P (φ | X,ψ′) = p.

Proof. Let P be semi-closed with P (φ | X,ψ) = p and P (ψ ↔ ψ′ | X) = 1. Let
P be a completion of P . Then P (φ | X,ψ) = p and P (ψ ↔ ψ′ | X) = 1. By
Definition 3.3.1(ii), we have that P (ψ | X) = q for some q ∈ [0, 1], and Lemma
3.2.10 implies q > 0. By the multiplication rule, P (φ ∧ ψ | X) = pq.

By Proposition 3.2.11, we have P (φ ∧ ψ ∧ (ψ ↔ ψ′) | X) = pq. By the rule
of logical equivalence, P (φ ∧ ψ′ ∧ (ψ ↔ ψ′) | X) = pq. Proposition 3.2.9 then
implies P (φ ∧ ψ′ | X) = pq. By Proposition 3.2.14, we have P (ψ′ | X) = q.
Hence, by the multiplication rule, P (φ | X,ψ′) = p. Since P was arbitrary, the
rule of inductive extension gives P (φ | X,ψ′) = p.

3.3.2 The rule of deductive extension

Our final rule is the “rule of deductive extension.” Informally, it says that any
antecedent can be freely expanded to include any number of formulas already
known to have probability one. A set of inductive statements that is closed under
all nine rules of inference will be called “closed.” More specifically, a semi-closed
set P is said to be closed if it satisfies the rule of deductive extension:

(R9) If S ⊆ F is nonempty and P (θ | X) = 1 for all θ ∈ S, then X ∪S ∈ anteP
and P ( · | X,S) = P ( · | X).

With this final definition, our rules of inductive inference are complete.

3.3.3 Pre-theories

We now wish to use these rules to define inductive derivability. Our aim is to
make sense of the statement Q ⊢ (X,φ, p). Informally, we imagine Q ⊢ (X,φ, p)
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to mean that, starting from the inductive statements in Q, we may use a
sequence of applications of our nine rules of inference to derive the inductive
statement, (X,φ, p). In keeping with the spirit of our infinitary language F , we
will imagine, when necessary, that this sequence is at most countable. We aim
to make this notion precise by using our nine rules of inference and their related
closure properties (admissible, entire, semi-closed, and closed).

As mentioned earlier, we plan to follow the route described in Remark 3.1.21.
That is, by analogy with deductive theories, we want to define an “inductive
theory.” We will then say that Q ⊢ (X,φ, p) if (X,φ, p) is an element of the
smallest inductive theory containing Q. Our first task, of course, is to determine
exactly what ought to constitute an inductive theory. At first glance, the answer
may seem trivially obvious: an inductive theory ought to simply be a closed set.
After all, closed sets, by definition, are those sets that are closed under all nine
rules of inference, so this would be the natural analogue of a deductive theory.
We will see, however, that closed subsets of F IS can be much larger than we
might initially expect, and as such, do not fit our intuitive understanding of
what an inductive theory ought to be.

To see this, let us first focus our attention on semi-closed sets, which are
closed under (R1)–(R8). Imagine we have a starting collection of inductive
statements, Q. Using Q together with rules (R1)–(R8), we begin making
inferences and adding new inductive statements to our collection. When we
have exhausted all inferences that are possible with (R1)–(R8), we arrive at a
finalized collection, P0, which we will call a “pre-theory.” Our pre-theory P0 is
closed under (R1)–(R8), so by definition, P0 is a semi-closed set. But P0 has
another important property that arbitrary semi-closed sets do not share. The
elements of P0 are all “connected” to the elements of Q in a certain sense. They
are connected via (R1)–(R8).

To clarify the nature of this connection, let us consider the effects of (R1)–
(R8) on the antecedents of Q. That is, imagine we use a single application of
one of the rules (R1)–(R8) to infer (X,φ, p) from Q. We wish to know how X
is related to anteQ. If we have used any of the rules (R2), (R3), (R4), (R5),
(R7), or (R8), then we know that X ∈ anteQ. If we used (R1), then X ≡ Y for
some Y ∈ anteQ. And if we used (R6), then either X ∈ anteQ or X = Y ∪{φ}
for some Y ∈ anteQ and some φ ∈ F . Generally speaking, no matter which of
(R1)–(R8) we used, we may conclude that either X ≡ Y or X ≡ Y ∪ {φ} for
some Y ∈ anteQ and φ ∈ F . More generally, if (X,φ, p) is inferred from Q via
a countable sequence of applications of (R1)–(R8), then X ≡ Y ∪ Φ for some
Y ∈ anteQ and some countable Φ ⊆ F .

Motivated by this, we make the following definition. A set Q ⊆ F IS is
strongly connected if there exists X0 ∈ anteQ such that every X ∈ anteQ is
countably axiomatizable over X0. That is, for every X ∈ anteQ, there exists a
countable set Φ ⊆ F such that X ≡ X0 ∪Φ. Note that a strongly connected set
is necessarily nonempty. A set P0 ⊆ F IS is a pre-theory if it is semi-closed and
strongly connected.

Strong connectivity formalizes the notion that the inductive statements in a
set can be related to one another via the calculus of (R1)–(R8). A pre-theory
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represents the results of exhausting all possible inferences using (R1)–(R8). We
require not only that a pre-theory be closed under (R1)–(R8), and therefore a
semi-closed set, but also that it be strongly connected. A set which is semi-
closed but not strongly connected will not violate (R1)–(R8), but it will include
unnecessary parts and statements which can never be related to one another by
the calculus of (R1)–(R8).

3.3.4 Inductive theories

We now turn our attention to (R9). The first issue to address is the interplay
between (R9) and the previous eight rules. Suppose we have exhausted all
inferences from (R1)–(R8) and obtained a pre-theory, P0. We then use (R9) to
infer a new inductive statement, (X,φ, p). Is it possible that P0 ∪ {(X,φ, p)}
can be extended to an even larger pre-theory? Corollary 3.3.5 assures us that
it cannot. In other words, we lose nothing by requiring that all applications of
(R9) take place after all applications of (R1)–(R8).

With this in mind, we aim to say that an “inductive theory” is what we
obtain by first constructing a pre-theory and then “closing it up” with (R9).
Theorem 3.3.4 below shows that this closure operation is well-defined and
produces a unique result. The proof of Theorem 3.3.4, as well as all the other
results in the remainder of this section, will be postponed until Sections 3.4 and
3.5. We present here only the statements of the results, so that we may first see
an overview of the entire construction.

Theorem 3.3.4. Every pre-theory has a unique smallest closed extension.

If P0 ⊆ F IS is a pre-theory, let P(P0) or PP0
denote its smallest closed

extension.

Corollary 3.3.5. Let P0, P
′
0 ⊆ F IS be pre-theories. If P(P0) = P(P ′

0), then
P0 = P ′

0. In particular, if P0 is a pre-theory, then there is no pre-theory P ′
0 such

that P0 ⊂ P ′
0 ⊆ P(P0).

Having established these results, we will be able to say that an “inductive
theory” is a set of the form P(P0) for some pre-theory P0. Before formally
defining it as such, we pause to characterize such sets in a way analogous to our
characterization of pre-theories. For this characterization, we first define a new
connectivity property.

Recall the notation established in (3.2.6). We say that a set Q ⊆ F IS

is connected if there exists a strongly connected Q̂ ⊆ Q such that for all
X ∈ anteQ, there exists an X̂ ∈ ante Q̂ and a set S ⊆ τ(Q̂; X̂) such that

X ≡ X̂∪S. Any such Q̂ will be called a basis for Q. In other words, a connected
set is a “lift” of a strongly connected set, where we lift up the antecedents by
including formulas that have probability one.

Note that if Q is strongly connected, then Q is connected and is its own
basis. Also note the following important difference between connectivity and
strong connectivity. Strong connectivity is a property of anteQ. That is, if
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anteQ = anteQ′, then Q is strongly connected if and only if Q′ is strongly
connected. Connectivity, on the other hand, is not. Connectivity depends not
only on anteQ, but also on {(X, θ) | (X, θ, 1) ∈ Q}.

Theorem 3.3.6. Let P ⊆ F IS. The following are equivalent:

(i) P = P(P0) for some (unique) pre-theory P0.

(ii) P is closed and connected.

With this last result, we can finally state the definition that is the linchpin
of our entire inductive calculus: a set P ⊆ F IS is a inductive theory if it is closed
and connected.

The intuitive interpretation of connectivity is analogous to strong
connectivity, but instead of using only (R1)–(R8), we use the whole of our
inductive calculus. That is, a connected set P is one whose inductive statements
can be related to one another via the calculus. A set which is closed but not
connected will not violate the calculus, but it will have unnecessary parts which
the inductive calculus can never reach.

3.3.5 Inductive derivability

It is now straightforward to define inductive derivability. We begin by defining
a set Q ⊆ F IS to be consistent if it is connected and can be extended to
an inductive theory. The requirement that a consistent set be extendable to
an inductive theory ensures that it does not violate the calculus of inductive
inference. The requirement that it be connected ensures that its statements are
all logically related to one another.

Note that every pre-theory is consistent. Moreover, if P0 is a pre-theory,
then P(P0) is the smallest extension of P0 to an inductive theory.

Theorem 3.3.7. Every consistent set has a unique smallest extension to an
inductive theory.

If Q ⊆ F IS is consistent, let P(Q) or PQ denote its smallest extension to an
inductive theory. We call PQ the inductive theory generated by Q. If Q ⊆ F IS

and (X,φ, p) ∈ F IS, we write Q ⊢ (X,φ, p) to mean that Q is consistent and
PQ(φ | X) = p. When the turnstile symbol, ⊢, is used in this fashion, we
will call it the inductive derivability relation. When Q ⊢ (X,φ, p), we say that
(X,φ, p) is inductively derivable from Q, or that Q proves (X,φ, p). Note that
unlike deductive derivability, our convention is that if Q ⊆ F IS is inconsistent,
then Q does not prove anything.

Remark 3.3.8. If P ⊆ F IS is consistent, then P is an inductive theory if and
only if P = P(P ), which holds if and only if P(P ) ⊆ P . Hence, using the above
definition of inductive derivability, we can say that a consistent set P ⊆ F IS

is an inductive theory if and only if P ⊢ (X,φ, p) implies (X,φ, p) ∈ P for all
(X,φ, p) ∈ F IS.
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3.4 Connectivity, restrictions, and lifts

In this section, we prove the results in Section 3.3.4. We begin with four
subsections on preliminary results needed in the proofs. In the first two
subsections, we establish some basic facts about connected and strongly
connected sets, and how they relate to the rules of inference. The third
subsection looks at restrictions of sets Q ⊆ F IS, and examines which closure
properties are preserved under restriction. Finally, the fourth subsection defines
the “lift” of a pre-theory, which we denote by L(P0). After establishing
these preliminaries, we gives the proofs of Theorem 3.3.4, Corollary 3.3.5, and
Theorem 3.3.6.

3.4.1 Connectivity properties

For X,X0 ⊆ F IS, we write X ↪→ X0 to mean that X is countably axiomatizable
over X0. If X ⊆ PF , we write X ↪→ X to mean X ↪→ X0 for some X0 ∈ X .

Proposition 3.4.1. Let X,X0 ⊆ F . Then X ↪→ X0 if and only if X ≡ X0∪{ψ}
for some ψ ∈ F .

Proof. This follows immediately from the fact that Φ ≡
∧

Φ for any countable
Φ ⊆ F .

Proposition 3.4.2. If Q ⊆ F IS is connected, then there exists X0 ∈ anteQ
such that X ⊢ X0 for all X ∈ anteQ. This X0 is unique in the sense that if X ′

0

is another such antecedent, then X0 ≡ X ′
0.

Proof. Let Q̂ be a basis for Q. Since Q̂ is strongly connected, we may choose
X0 ∈ ante Q̂ such that X̂ ↪→ X0 for all X̂ ∈ ante Q̂. Now let X ∈ anteQ be
given. Choose X̂ ∈ ante Q̂ and S ⊆ τ(Q̂; X̂) such that X ≡ X̂ ∪ S. Since

X̂ ↪→ X0, we have X̂ ⊢ X0, and therefore X ⊢ X0. Uniqueness is immediate
since X0 ⊢ X ′

0 and X ′
0 ⊢ X0 implies X0 ≡ X ′

0.

Let Q ⊆ F IS be connected. Choose X0 as in Proposition 3.4.2 and let
T0 = T (X0). By Proposition 3.4.2, the deductive theory T0 does not depend on
the choice of X0. We call T0 the root of Q. Note that if Q is admissible, then
by the rule of logical equivalence, T0 ∈ anteQ.

Proposition 3.4.3. If Q ⊆ F IS is strongly connected with root T0, then for
each X ∈ anteQ, there exists ψ ∈ F such that T (X) = T0 + ψ.

Proof. Since Q is strongly connected, we may choose X0 ∈ anteQ such that
X ↪→ X0 for all X ∈ anteQ. Hence, X ⊢ X0 for all X ∈ anteQ. By Proposition
3.4.2, we have T0 = T (X0). Now let X ∈ anteQ be given. Then X ↪→ X0, so
by Proposition 3.4.1, we may choose ψ ∈ F such that X ≡ X0 ∪ {ψ}, and this
gives T (X) = T0 + ψ.

Proposition 3.4.4. If Q is connected and Q̂ is a basis for Q, then Q and Q̂
have the same root.
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Proof. Let T0 be the root of Q and T̂0 be the root of Q̂. Then T0 = T (X0) for

some X0 ∈ anteQ and T̂0 = T (X̂0) for some X̂0 ∈ ante Q̂. Since Q̂ ⊆ Q, we

have ante Q̂ ⊆ anteQ. Hence, X̂0 ∈ anteQ, so by the definition of T0, we have
X̂0 ⊢ X0.

On the other hand, since X0 ∈ anteQ and Q̂ is a basis for Q, we may choose
X̂ ∈ ante Q̂ and S ⊆ τ(Q̂; X̂) such that X0 ≡ X̂ ∪ S. Hence, X0 ⊢ X̂. But

X̂ ∈ ante Q̂, so by the definition of T̂0, we get X̂ ⊢ X̂0. Thus, X0 ⊢ X̂0, which
shows that X0 ≡ X̂0, and therefore T0 = T̂0.

3.4.2 Connectivity and inductive inference

If P is admissible and strongly connected with root T0, and ψ ∈ F satisfies
T0 + ψ ∈ anteP , then we call ψ an antecedent formula of P . The set of all
antecedent formulas of P is denoted by AF(P ). Note that

anteP = {X ⊆ F IS | T (X) = T0 + ψ for some ψ ∈ AF(P )}.

This follows from Proposition 3.4.3 and the rule of logical equivalence.
For this next result, recall the notation introduced in (3.2.6).

Proposition 3.4.5. If P is entire and connected with root T0, then τ(P ) =
τ(P ;T0).

Proof. Let θ ∈ τ(P ). Then P (θ | X) = 1 for all X ∈ anteP . In particular,
P (θ | T0) = 1, so θ ∈ τ(P ;T0). Conversely, suppose P (θ | T0) = 1 and let
X ∈ anteP be given. Since T0 is the root of P , we have X ⊢ T0, so by
deductive transitivity, P (θ | X) = 1. Since X was arbitrary, θ ∈ τ(P ).

For this next result, recall the interval notation introduced just prior to
Lemma 3.1.22.

Proposition 3.4.6. Let P be semi-closed and connected with root T0. If
X ∈ anteP , then X ≡ T + ψ for some T ∈ [T0, τ(P )] and some ψ ∈ F .
Moreover, ψ can be chosen so that T0 + ψ ∈ anteP .

Proof. Let Q̂ be a basis for P . By Proposition 3.4.4, Q̂ also has root T0. Let
X ∈ anteP . Choose X̂ ∈ ante Q̂ and S ⊆ τ(Q̂; X̂) such that X ≡ X̂ ∪ S.

By Proposition 3.4.3, we may choose ψ ∈ F , such that T (X̂) = T0 + ψ. Since

Q̂ ⊆ P , we have X̂ ∈ anteP . By the rule of logical equivalence, T0+ψ ∈ anteP .
Now define S′ = {ψ → θ | θ ∈ S} and T = T0 + S′. Then T0 ⊆ T and, by

Lemma 3.1.22, we have X ≡ T (X̂) + S = T0 + ψ + S = T0 + ψ + S′ = T + ψ.
Hence, it remains only to show that T ⊆ τ(P ). By Proposition 3.4.5 and the
fact that T0 ⊆ τ(P ;T0), we need only show that S′ ⊆ τ(P ;T0).

Let η ∈ S′. Choose θ ∈ S such that η = ψ → θ. Since S ⊆ τ(Q̂; X̂), we

have Q̂(θ | X̂) = 1. Since Q̂ ⊆ P , we have P (θ | X̂) = 1. By the rule of logical
equivalence, P (θ | T0, ψ) = 1. Hence, by the rule of material implication, it
follows that P (η | T0) = P (ψ → θ | T0) = 1, showing that η ∈ τ(P ;T0).
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3.4.3 Restrictions

For Q ⊆ F IS and X ⊆ anteQ, we define

Q⇃X= {(X,φ, p) ∈ Q | X ↪→ X}.

Note that if Q ⊆ Q′, then Q⇃X0
⊆ Q′ ⇃X0

.

Theorem 3.4.7. Let P ⊆ F IS, X ⊆ anteP , and define P ′ = P ⇃X .

(i) If P is admissible, then P ′ is admissible.

(ii) If P is entire, then P ′ is entire.

(iii) If P is complete, then P ′ is complete.

(iv) If P is semi-closed, then P ′ is semi-closed.

Proof. Assume P is admissible. Suppose (X,φ, p) ∈ P ′, so that X ↪→ X
and (X,φ, p) ∈ P . Let X ′ ≡ X and φ′ ≡X φ. Since P is admissible, we
have (X ′, φ′, p) ∈ P , and since X ′ ≡ X, it follows that X ′ ↪→ X . Hence,
(X ′, φ′, p) ∈ P ′. Now suppose (X ′, φ′, p′) ∈ P ′. Then (X ′, φ′, p′) ∈ P , so the
admissibility of P gives p′ = p, and therefore P ′ is admissible.

Note that

(a) X ∈ anteP ′ if and only if X ∈ anteP and X ↪→ X ,

(b) P ′(φ | X) = p if and only if P (φ | X) = p and X ↪→ X , and

(c) X ↪→ X implies X ∪ {φ} ↪→ X .

Assume that P is entire. From (a) and (b), we easily see that P ′ satisfies
(R2)–(R5) and (R7). From (a)–(c) we get that P ′ satisfies (R6), so P ′ is entire.

Assume P is complete. As above, (a) and (b) easily show that P ′ satisfies
Definition 3.3.1, so that P ′ is complete.

Finally, assume P is semi-closed. Assume every completion of P ′ contains
(X,φ, p). Let P be a completion of P . By (iii), P ⇃X is complete. Since
P ⊆ P , we have P ′ = P ⇃X ⊆ P ⇃X , so that P ⇃X is a completion of P ′. Hence,
P ⇃X (φ | X) = p. By (b), we have P (φ | X) = p and X ↪→ X . Since P was
arbitrary and P is semi-closed, it follows that P (φ | X) = p. Since X ↪→ X , we
get P ′(φ | X) = p, and P ′ is semi-closed.

Corollary 3.4.8. If P is complete and X0 ∈ anteP , then P ⇃X0
is complete

and strongly connected with root T (X0).

Proof. This follows immediately from Theorem 3.4.7.

Corollary 3.4.9. If P is entire and P is a completion of P , then P ⇃anteP is
also a completion of P .
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Proof. Let P be entire and let P be a completion of P . Define P ′ = P ⇃anteP .
Theorem 3.4.7 implies that P ′ is also complete. Suppose P (φ | X) = p. Since
P ⊆ P , we have P (φ | X) = p. Since X ∈ anteP , it follows that P ′(φ | X) = p,
showing that P ⊆ P ′.

Corollary 3.4.10. Suppose P is an entire set that has a completion. If
P (φ | X) = p for all completions P of P , then X ↪→ anteP .

Proof. Let P be an entire set that has a completion. Assume P (φ | X) = p for
all completions P of P . Choose a completion P of P . By Corollary 3.4.9, the
set P ′ = P ⇃anteP is also a completion of P . Hence, P ′(φ | X) = p. By (b)
above, we have P (φ | X) = p and X ↪→ anteP .

Corollary 3.4.11. Let P0 be a pre-theory with root T0 and let P 0 be a
completion of P0. Define P ′

0 = P 0 ⇃T0 . Then P ′
0 is a completion of P0 that

is also a pre-theory with root T0.

Proof. By Theorem 3.4.7, the set P ′
0 is complete and strongly connected with

root T0. Since complete sets are semi-closed, it follows that P ′
0 is a pre-theory.

Suppose P0(φ | X) = p. Since P0 ⊆ P 0, we have P 0(φ | X) = p. Since P0 is
strongly connected with root T0, it follows that X ↪→ T0. Thus, P

′
0(φ | X) = p,

showing that P0 ⊆ P ′
0.

3.4.4 The lift of a pre-theory

Let P0 be a pre-theory with root T0. By Proposition 3.2.13, the set τ(P0) is
a deductive theory. Since P0 is admissible, we have T0 ∈ anteP0, so that by
Proposition 3.4.5 and the rule of logical implication, T0 ⊆ τ(P0). Let X ⊆ F .
If T (X) = T + ψ for some T ∈ [T0, τ(P0)] and some ψ ∈ AF(P0), then we call
X a generalized antecedent of P0. The set of all such generalized antecedents is
denoted by GA(P0).

Proposition 3.4.12. Let P0 be a pre-theory with root T0 and let X ∈ GA(P0).
Suppose T (X) = T +ψ = T ′+ψ′, where T, T ′ ∈ [T0, τ(P0)] and ψ,ψ

′ ∈ AF(P0).
Then P0( · | T0, ψ) = P0( · | T0, ψ′).

Proof. By symmetry, it suffices to show that P0(φ | T0, ψ) = p implies
P0(φ | T0, ψ′) = p. Assume P0(φ | T0, ψ) = p. First note that T + ψ = T ′ + ψ′

implies ψ′ ∈ T + ψ ⊆ τ(P0) + ψ, so that τ(P0), ψ ⊢ ψ′. Likewise, τ(P0), ψ
′ ⊢ ψ.

Hence, ψ ↔ ψ′ ∈ τ(P0), giving P0(ψ ↔ ψ′ | T0) = 1. Since ψ′ ∈ AF(P0),
we have T0 + ψ′ ∈ anteP0, so by two applications of deductive transitivity,
P0(ψ

′ → ψ | T0, ψ′) = 1. By the rule of logical implication, P0(ψ
′ | T0, ψ′) = 1.

Applying Proposition 3.2.16(iii) with ζ = ⊤ gives P0(ψ | T0, ψ′) = 1. A similar
argument shows that P0(ψ

′ | T0, ψ) = 1.
Now, by Proposition 3.2.11, we have P0(φ ∧ ψ′ | T0, ψ) = p. By the

multiplication rule, P0(φ | T0, ψ, ψ
′) = p. A second application of the

multiplication rule then gives P0(φ ∧ ψ | T0, ψ′) = p. By Proposition 3.2.9,
it follows that P0(φ | T0, ψ′) = p.
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Let P0 be a pre-theory with root T0. For each X ∈ GA(P0), choose
TX ∈ [T0, τ(P0)] and ψX ∈ AF(P0) such that T (X) = TX + ψX . Define

L(P0) = {(X,φ, p) | X ∈ GA(P0), P0(φ | T0, ψX) = p}.

By Proposition 3.4.12, the definition of L(P0) does not depend on the choices
of TX and ψX . We call L(P0) the lift of P0, and may sometimes denote it by
LP0

.

Proposition 3.4.13. Let P0 be a pre-theory with root T0. If X ∈ anteL(P0)
and T (X) = T + ψ, where T ∈ [T0, τ(P0)] and ψ ∈ F , then ψ ∈ AF(P0).

Proof. Since X ∈ anteL(P0), we may choose φ and p such that (X,φ, p) ∈
L(P0). Then T (X) = TX + ψX and P0(φ | T0, ψX) = p. As in the proof
of Proposition 3.4.12, since T, TX ⊆ τ(P0) and T + ψ = TX + ψX , we have
ψ ↔ ψX ∈ τ(P0). Thus, P0(ψ ↔ ψX | T0) = 1. Since P0 is semi-closed,
Proposition 3.3.3 gives P0(φ | T0, ψ) = p, showing that T0 + ψ ∈ anteP0, and
therefore ψ ∈ AF(P0).

Proposition 3.4.14. If P0 is a pre-theory, then P0 ⊆ L(P0).

Proof. Let T0 be the root of P0. Suppose P0(φ | X) = p. Since P0 is strongly
connected, we may choose φ ∈ F such that T (X) = T0+ψ. By the rule of logical
equivalence, P0(φ | T0, ψ) = p. Thus, ψ ∈ AF(P0) and, since T0 ∈ [T0, τ(P0)],
we have X ∈ GA(P0). Therefore, (X,φ, p) ∈ L(P0).

Proposition 3.4.15. If P0 is a pre-theory with root T0, then L(P0)⇃T0
= P0.

Proof. From Proposition 3.4.14, it follows that P0 = P0 ⇃T0
⊆ L(P0)⇃T0

. For the
reverse, suppose (X,φ, p) ∈ L(P0) ⇃T0

. Then X ∈ GA(P0), T (X) = TX + ψX ,
P0(φ | T0, ψX) = p, and X ↪→ T0. By Proposition 3.4.1, we may write
T (X) = T0 + ψ for some ψ ∈ F . By Proposition 3.4.13, we know that
ψ ∈ AF(P0). Therefore, by Proposition 3.4.12, we have P0(φ | T0, ψ) = p.
By the rule of logical equivalence, P0(φ | X) = p.

Lemma 3.4.16. Let P0 be a pre-theory. If X ∈ anteL(P0) and X ⊢ φ, then
(X,φ, 1) ∈ L(P0).

Proof. Choose λ and p such that (X,λ, p) ∈ L(P0). Then T (X) = TX + ψX
and P0(λ | T0, ψX) = p. In particular, T0 + ψX ∈ anteP0.

Since X ⊢ φ, we have φ ∈ T (X) = TX + ψX , meaning TX , ψX ⊢ φ. Choose
countable Φ ⊆ TX such that Φ, ψX ⊢ φ. Since Φ ⊆ TX ⊆ τ(P0), it follows that
P0(θ | T0) = 1 for all θ ∈ Φ. By Corollary 3.2.12, if ζ =

∧
Φ, then P0(ζ | T0) = 1.

Since T0+ψX ∈ anteP0, deductive transitivity gives P0(ζ | T0, ψX) = 1. By the
rule of logical implication, P0(ψX | T0, ψX) = 1. Hence, by Proposition 3.2.11,
we obtain P0(ζ∧ψX | T0, ψX) = 1. But ζ∧ψX ⊢ φ, so by deductive transitivity,
P0(φ | T0, ψX) = 1, which gives (X,φ, 1) ∈ L(P0).

Proposition 3.4.17. If P0 is a pre-theory, then L(P0) is admissible.
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Proof. Suppose (X,φ, p) ∈ L(P0), X
′ ≡ X, and φ′ ≡X φ. Then T (X) =

TX + ψX and P0(φ | T0, ψX) = p. Since φ′ ≡X φ, we have X ⊢ φ′ ↔ φ.
From Lemma 3.4.16, it follows that (X,φ′ ↔ φ, 1) ∈ L(P0), which gives
P0(φ

′ ↔ φ | T0, ψX) = 1. By Proposition 3.2.14, we have P0(φ
′ | T0, ψX) = p.

But X ′ ≡ X, so T (X ′) = T (X) = TX +ψX . Thus, (X ′, φ′, p) ∈ L(P0). Finally,
if (X ′, φ′, p′) ∈ L(P0), then P0(φ

′ | T0, ψX) = p′. But P0 is admissible, so
p′ = p.

Let P0 be a pre-theory with root T0 and let P = L(P0). By Proposition
3.4.17, we may now use the notation P (φ | X) = p instead of (X,φ, p) ∈ P .
Note that by Proposition 3.4.13, if X ∈ anteP , T ∈ [T0, τ(P0)], ψ ∈ F , and
T (X) = T + ψ, then P ( · | X) = P0( · | T0, ψ).

Proposition 3.4.18. Let P0, P
′
0 be pre-theories with a common root. If

P0 ⊆ P ′
0, then L(P0) ⊆ L(P ′

0).

Proof. Let T0 be the common root of P0 and P ′
0. Assume P0 ⊆ P ′

0. Let
P = L(P0) and P ′ = L(P ′

0). Suppose P (φ | X) = p. Then T (X) = TX + ψX
and P0(φ | T0, ψX) = p. Since P0 ⊆ P ′

0, we have τ(P0) ⊆ τ(P ′
0), and therefore

[T0, τ(P0)] ⊆ [T0, τ(P
′
0)]. From P0 ⊆ P ′

0, it also follows that AF(P0) ⊆ AF(P ′
0).

Hence, TX ∈ [T0, τ(P
′
0)] and ψX ∈ AF(P ′

0). This shows that X ∈ GA(P ′
0) and

P ′(φ | X) = P ′
0(φ | T0, ψX). But P0 ⊆ P ′

0, so P
′
0(φ | T0, ψX) = p.

3.4.5 Identifying lifts with inductive theories

We are now ready to prove Theorem 3.3.4. We will do this by showing that
L(P0) is the smallest closed extension of P0. The proof of Theorem 3.3.4 is
broken into five pieces for greater readability.

Proposition 3.4.19. If P0 is a pre-theory, then L(P0) is entire.

Proof. Let P0 be a pre-theory with root T0 and let P = L(P0). By Proposition
3.4.17, P is admissible, and by Lemma 3.4.16, P satisfies the rule of logical
implication. It therefore remains only to verify (R3)–(R7).

We begin with the rule of material implication. Suppose X ∈ anteP and
P (φ | X,ψ) = 1. Then T (X) = TX + ψX and P ( · | X) = P0( · | T0, ψX).
Thus, T (X ∪ {ψ}) = TX + ψX ∧ ψ, so by Proposition 3.4.13, we have
P0(φ | T0, ψX ∧ψ) = 1. Let T ′ = T0 +ψX , so that T ′ +ψ = T0 +ψX ∧ψ. Then
T ′ ∈ anteP0 and P0(φ | T ′, ψ) = 1. By the rule of material implication for P0,
it follows that P0(ψ → φ | T ′) = 1, which implies P (ψ → φ | X) = P0(ψ → φ |
T0, ψX) = P0(ψ → φ | T ′) = 1.

We next verify deductive transitivity. Suppose P (φ | X) = 1 and φ ⊢ ψ.
Then P0(φ | T0, ψX) = 1. By the deductive transitivity for P0, we have
P0(ψ | T0, ψX) = 1, which gives P (ψ | X) = 1. Now suppose X ′ ∈ anteP ,
X ′ ⊢ X, and P (φ | X) = 1. Then P0(φ | T0, ψX) = 1 and, since X ′ ∈ anteP ,
we get T (X ′) = TX

′
+ ψX′ and P ( · | X ′) = P0( · | T0, ψX′). Since X ′ ⊢ X, we

have TX
′
, ψX′ ⊢ ψX . Choose countable Φ ⊆ TX

′
such that Φ, ψX′ ⊢ ψX and let

ζ =
∧
Φ. Then Φ ⊆ TX

′ ⊆ τ(P0), so Corollary 3.2.12 implies P0(ζ | T0) = 1.
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Since T0+ψX′ ∈ anteP0, deductive transitivity for P0 gives P0(ζ | T0, ψX′) = 1.
By Lemma 3.2.10, we have T0+ψX′+ζ ∈ anteP0. Since T0+ψX′+ζ ⊢ T0, ψX , we
may again apply deductive transitivity for P0 to obtain P0(φ | T0, ψX′ , ζ) = 1.
By the multiplication rule, P0(ζ ∧ φ | T0, ψX′) = 1. By Proposition 3.2.9,
we obtain P0(φ | T0, ψX′) = P0(ζ ∧ φ | T0, ψX′) = 1, and this shows that
P (φ | X ′) = 1.

To show that P satisfies the addition rule, suppose X ⊢ ¬(φ ∧ ψ) and
assume two of the probabilities in (3.2.1) exist. Then X ∈ anteP , so that
T (X) = TX +ψX and P ( · | X) = P0( · | T0, ψX). Thus, two of the probabilities
in the following equation exist:

P0(φ ∨ ψ | T0, ψX) = P0(φ | T0, ψX) + P0(ψ | T0, ψX).

By the addition rule for P0, so does the third, and the above equation holds.
Hence, all three probabilities in (3.2.1) exist and (3.2.1) holds. The proof that
P satisfies the multiplication rule is similar.

Finally, suppose P (φn | X) exists and X,φn ⊢ φn+1 for all n. We want
to show that (3.2.3) holds. Since X ∈ anteP , we have T (X) = TX + ψX and
P ( · | X) = P0( · | T0, ψ). Thus, P0(φn | T0, ψ) exists for all n.

First assume P0(φn | T0, ψ) = 0 for all n. Let ψn =
∨n

1 φj . Then
P0(ψn | T0, ψ) = 0 by Proposition 3.2.11. Therefore, P0(

∨
n ψn | T0, ψ) = 0

by the continuity rule. But
∨
n ψn ≡

∨
n φn, so P0(

∨
n φn | T0, ψ) = 0, which

implies P (
∨
n φn | X) = 0, and (3.2.3) holds in this case.

Now assume there exists n0 such that P0(φn0
| T0, ψ) > 0. By Remark 3.2.8,

we have that P satisfies Proposition 3.2.5. Thus, P (φn | X) ⩽ P (φn+1 | X),
which implies P0(φn | T0, ψ) ⩽ P0(φn+1 | T0, ψ). Hence, P0(φn | T0, ψ) > 0 for
all n ⩾ n0. Since X ⊢ φn → φn+1, we have P (φn → φn+1 | X) = 1, which
gives P0(φn → φn+1 | T0, ψ) = 1. From Proposition 3.2.15, it follows that
P0(φn+1 | T0, ψ, φn) = 1. Therefore, by Theorem 3.2.23, we have P0(

∨∞
n0
φn |

T0, ψ) = limn P0(φn | T0, ψ), which implies P (
∨∞
n0
φn | X) = limn P (φn | X).

But
∨∞
n0
φn ≡X

∨
n φn, so (3.2.3) holds in this case as well.

Proposition 3.4.20. If P0 is a complete pre-theory, then L(P0) is complete.

Proof. Let P0 be a complete pre-theory with root T0 and let P = L(P0).
Proposition 3.4.19 implies P is entire. Suppose P (φ | X) = p and P (ψ | X) = q.
Then T (X) = TX + ψX , P0(φ | T0, ψX) = p, and P0(ψ | T0, ψX) = q. Since P0

is complete, P0(φ ∧ ψ | T0, ψX) = r for some r. Thus, P (φ ∧ ψ | X) = r, and P
satisfies Definition 3.3.1(i).

Now suppose X ∈ anteP and X ∪ {φ} ∈ anteP . Then T (X) = TX + ψX ,
so that T (X ∪ {φ}) = T (X) + φ = TX + ψX + φ = TX + ψX ∧ φ. By
Proposition 3.4.13, we have ψX ∧ φ ∈ AF(P0). Thus, T0 + ψX ∧ φ ∈ anteP0.
Since T0 + ψX ∧ φ ≡ (T0 + ψX) ∪ {φ}, the rule of logical equivalence gives
(T0 + ψX) ∪ {φ} ∈ anteP0. But T0 + ψX ∈ anteP0 and P0 is complete, so
P0(φ | T0, ψX) exists. Hence, P (φ | X) = P0(φ | T0, ψX) exists, so that P
satisfies Definition 3.3.1(ii).
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Proposition 3.4.21. If P0 is a pre-theory, then L(P0) is semi-closed.

Proof. Let P0 be a pre-theory with root T0 and let P = L(P0). Proposition
3.4.19 implies P is entire. Suppose P (φ | X) = p whenever P is a completion of
P . Since P0 is a pre-theory, it is semi-closed. It therefore has a completion. Let
P 0 be a completion of P0. Corollary 3.4.11 implies P ′

0 = P 0 ⇃T0
is a completion

of P0 that is also a pre-theory with root T0. Let P
′ = L(P ′

0). Then Proposition
3.4.20 implies P ′ is complete and Proposition 3.4.18 implies P ⊆ P ′. Hence, P ′

is a completion of P , so by supposition, P ′(φ | X) = p.
By Corollary 3.4.10, we have X ↪→ anteP . Choose X ′ ∈ anteP and ψ′ ∈ F

such that X ≡ X ′∪{ψ′}. Then T (X) = T (X ′)+ψ′ = TX
′
+ψX′+ψ′ = TX

′
+ψ,

where ψ = ψX′ ∧ ψ′. From Proposition 3.4.13, it follows that ψ ∈ AF(P0).
As in the proof of Proposition 3.4.18, we have [T0, τ(P0)] ⊆ [T0, τ(P

′
0)] and

AF(P0) ⊆ AF(P ′
0). Hence, TX

′ ∈ [T0, τ(P
′
0)] and ψ ∈ AF(P ′

0), which implies
P ′
0(φ | T0, ψ) = p. But P ′

0 ⊆ P 0, so P 0(φ | T0, ψ) = p. Since P 0 was arbitrary
and P0 is semi-closed, the rule of inductive extension gives P0(φ | T0, ψ) = p.
Hence, P (φ | X) = P (φ | TX′

, ψ) = p, which shows that P satisfies the rule of
induction extension and is therefore semi-closed.

Proposition 3.4.22. If P0 is a pre-theory, then L(P0) is a closed extension of
P0.

Proof. Let P0 be a pre-theory with root T0 and let P = L(P0). Proposition
3.4.14 implies P is an extension of P0, and Proposition 3.4.21 implies P is
semi-closed. Let S ⊆ F be nonempty and assume P (θ | X) = 1 for all
θ ∈ S. Then X ∈ anteP and P0(θ | T0, ψX) = 1 for all θ ∈ S. By the
rule of material implication, P0(ψX → θ | T0) = 1 for all θ ∈ S. Hence,
if we define S′ = {ψX → θ | θ ∈ S} and T ′ = TX + S′, then Proposition
3.4.5 implies S′ ⊆ τ(P0), so that T ′ ∈ [T0, τ(P0)]. By Lemma 3.1.22, we have
X ∪ S ≡ TX + ψX + S = TX + ψX + S′ = T ′ + ψX . It therefore follows that
X ∪ S ∈ anteP and P (φ | X ∪ S) = p if and only if P0(φ | T0, ψX) = p,
which holds if and only if P (φ | X) = p. This shows that P satisfies the rule of
deductive extension and is therefore closed.

Proof of Theorem 3.3.4. Let P0 be a pre-theory with root T0 and let P = L(P0).
Proposition 3.4.22 shows that P is a closed extension of P0. Let P

′ be another
closed extension of P0 and suppose P (φ | X) = p. Then P0(φ | T0, ψX) = p,
which implies P ′(φ | T0, ψX) = p. Since TX ⊆ τ(P0), we have P0(θ | T0) = 1
for all θ ∈ TX . Deductive transitivity gives P0(θ | T0, ψX) = 1 for all θ ∈ TX ,
which implies P ′(θ | T0, ψX) = 1 for all θ ∈ TX . Since P ′ is closed, the
rule of deductive extension gives P ′(φ | T0, ψX , TX) = 1. But T0 ⊆ TX , so
T0 + ψX + TX = TX + ψX ≡ X, and the rule of logical equivalence gives
P ′(φ | X) = p.

3.4.6 Characterizing inductive theories

Recall the notation P(P0), established in Section 3.3.4. The proof of Theorem
3.3.4 shows that P(P0) = L(P0), so that P(P0) is simply the lift of P0.
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In particular, this gives us an explicit construction of P(P0) from P0. We
will use this explicit construction to prove Corollary 3.3.5 and Theorem 3.3.6.
Henceforth, we will drop the notation L(P0), and write only P(P0) instead.

Proof of Corollary 3.3.5. Let P0, P
′
0 be pre-theories with roots T0, T

′
0,

respectively, and let P = P(P0) and P
′ = P(P ′

0).

First assume P = P ′. Then T0 ∈ anteP0 ⊆ anteP = anteP ′. We may
therefore choose T ′ ∈ [T ′

0, τ(P
′
0)] and ψ′ ∈ AF(P ′

0) such that T0 = T ′ + ψ′.
Then T ′

0 ⊆ T ′ ⊆ T ′ + ψ′ = T0. By reversing the roles of P0 and P ′
0, we also

have T0 ⊆ T ′
0, showing that T0 = T ′

0. Thus, by Proposition 3.4.15, we have
P0 = P ⇃T0= P ′ ⇃T ′

0
= P ′

0.

Now assume P0 ⊂ P ′
0 ⊆ P . Then P is a closed extension of P ′

0, so Theorem
3.3.4 implies P ′ ⊆ P . On the other hand, P ′ is a closed extension of P ′

0 and
P0 ⊂ P ′

0, so P
′ is a closed extension of P0, giving P ⊆ P ′. Thus, P = P ′, so by

the above P0 = P ′
0, a contradiction.

Proposition 3.4.23. If P0 is a pre-theory, then P(P0) is connected.

Proof. Let P0 be a pre-theory with root T0 and let P = P(P0). We will show
that P0 is a basis for P . First note that P0 is strongly connected and P0 ⊆ P .
Now let X ∈ anteP be given. Define X̂ = T0 + ψX and S = TX . Then
X̂ ∈ anteP0. Since TX ⊆ τ(P0), we have P0(θ | T0) = 1 for all θ ∈ S. By

deductive transitivity, P0(θ | X̂) = 1 for all θ ∈ S. Hence, S ⊆ τ(P0, X̂). Lastly,

from T0 ⊆ TX , it follows that X ≡ TX + ψX = T0 + TX + ψX ≡ X̂ ∪ S.

Proof of Theorem 3.3.6. By Theorem 3.3.4 and Proposition 3.4.23, we have (i)
implies (ii). For the converse, let P be closed and connected. Let T0 be the root
of P and define P0 = P ⇃T0

. By Theorem 3.4.7, the set P0 is semi-closed. By
construction, P0 is strongly connected with root T0. Thus, P0 is a pre-theory.
We will show that P = P(P0).

For notational simplicity, let P ′ = P(P0). Since P is a closed extension of P0,
Theorem 3.3.4 gives P ′ ⊆ P . Suppose P (φ | X) = p. By Proposition 3.4.6, we
may choose T ∈ [T0, τ(P )] and ψ ∈ F such that X ≡ T+ψ and T0+ψ ∈ anteP .
Since T ⊆ τ(P ), we have P (θ | T0) = 1 for all θ ∈ T . By deductive transitivity,
P (θ | T0, ψ) = 1 for all θ ∈ T . Since P is closed, the rule of deductive extension
implies P ( · | T0, ψ) = P ( · | T0, ψ, T ). But T0 + ψ + T = T + ψ ≡ X. Hence,
P ( · | T0, ψ) = P ( · | X), and it therefore follows that P (φ | T0, ψ) = p. Since
P0 = P ⇃T0

, this gives P0(φ | T0, ψ) = p. Finally, since P ′ is the lift of P0, we
have P ′(φ | X) = P ′(φ | T, ψ) = P0(φ | T0, ψ) = p.

Remark 3.4.24. Note that by Theorem 3.3.6 and Proposition 3.4.15, if P is
an inductive theory, then P = P(P0), where P0 = P ⇃T0

. Also note that by
Proposition 3.4.5, we have τ(P ) = τ(P0). Hence, every X ∈ anteP satisfies
X ↪→ [T0, τ(P )].



58 CHAPTER 3. PROPOSITIONAL CALCULUS

3.5 Generating inductive theories

In the first half of this section, we prove Theorem 3.3.7. One might think
that we could do this the same way we would do it for the deductive calculus.
Namely, we could try to prove that (i) the intersection of inductive theories
is an inductive theory; therefore, (ii) the intersection of all inductive theories
that contain Q is the smallest inductive theory containing Q. Unfortunately,
as we will see in Section 4.4.1 (see Remark 4.4.3), it turns out that (i) is false.
(Surprisingly, though, (ii) is still true, provided we pay special attention to the
root of Q.) We therefore have to find a different proof method.

As it turns out, the intersection of pre-theories (with a common root) is
a pre-theory. This will be the key to our proof, but it will require several
preliminary definitions and results. When we are done proving Theorem 3.3.7,
we present a partial converse to the rule of logical implication (see Theorem
3.5.6).

In the second half of this section, we generalize inductive derivability to
something that we call “inductive conditions”. This allows us to reason with
more general statements, such as Q(φ | X) > 1/2.

3.5.1 Strongly connected equivalence

Our first preliminary on the way to the proof of Theorem 3.3.7 shows that,
when extending a consistent set to an inductive theory, we are never required
to change roots.

Proposition 3.5.1. Every consistent set can be extended to an inductive theory
with the same root. More specifically, let Q be consistent with root T0 and let P
be an inductive theory with Q ⊆ P . Then T0 ∈ anteP and P ⇃T0

is a pre-theory
with root T0 that satisfies Q ⊆ P(P ⇃T0

) ⊆ P .

Proof. Let Q be consistent with root T0 and let P be an inductive theory with
Q ⊆ P . Since T0 is the root of Q, we have T0 = T (X0) for some X0 ∈ anteQ.
But Q ⊆ P , so X0 ∈ anteP and, by the rule of logical equivalence, T0 ∈ anteP .
Let P ′

0 = P ⇃T0 . Then P ′
0 is strongly connected with root T0 and, by Theorem

3.4.7, the set P ′
0 is semi-closed. Therefore, P ′

0 is a pre-theory, and we may define
P ′ = P(P ′

0). Note that P ′ is an inductive theory with root T0. Since P ′
0 ⊆ P

and P is an inductive theory, Theorem 3.3.4 implies P ′ ⊆ P . It remains only
to show that Q ⊆ P ′.

Suppose Q(φ | X) = p. We want to show that P ′(φ | X) = p. Since P ′ is
the lift of P ′

0, we must find T ∈ [T0, τ(P
′
0)] and ψ ∈ F such that X ≡ T + ψ

and P ′
0(φ | T0, ψ) = p. Let Q̂ be a basis for Q. Choose X̂ ∈ ante Q̂ and

S ⊆ τ(Q̂; X̂) such that that X ≡ X̂ ∪ S. Proposition 3.4.4 implies that

T0 is the root of Q̂. Hence, we may choose ψ ∈ F such that X̂ ≡ T0 + ψ.
Define S′ = {ψ → θ | θ ∈ S} and T = T0 + S′. By Lemma 3.1.22, we have

X ≡ X̂∪S ≡ T0+ψ+S = T0+ψ+S′ = T +ψ, so it suffices to show S′ ⊆ τ(P ′
0)

and P ′
0(φ | T0, ψ) = p.
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By Proposition 3.4.5, in order to show that S′ ⊆ τ(P ′
0), we must show

that P ′
0(ψ → θ | T0) = 1 for all θ ∈ S. Let θ ∈ S. Then Q̂(θ | X̂) = 1.

But Q̂ ⊆ Q ⊆ P , so P (θ | X̂) = P (θ | T0, ψ) = 1. By the rule of material
implication, P (ψ → θ | T0) = 1, which implies P ′

0(ψ → θ | T0) = 1.

Finally, since Q̂ ⊆ Q ⊆ P , we have τ(Q̂; X̂) ⊆ τ(P ; X̂). Hence, S ⊆ τ(P ; X̂).

Since P is closed, deductive extension implies P ( · | X̂) = P ( · | X̂ ∪ S). But

X̂ ∪ S ≡ X. Also, Q ⊆ P , so we have P (φ | X) = p. Using the rule of logical

equivalence, we have P (φ | T0, ψ) = P (φ | X̂) = P (φ | X) = p. Therefore, since
P ′
0 = P ⇃T0

, we obtain P ′
0(φ | T0, ψ) = p.

Our next result says that connected sets are, in a certain sense, logically
unnecessary. It is enough to only consider strongly connected sets. To make
this precise, we first define what it means for two subsets of F IS to be logically
equivalent.

Let Q,Q′ ⊆ F IS be connected. We say that Q and Q′ are equivalent,
written Q ≡ Q′, if, for all inductive theories P , we have Q ⊆ P if and only if
Q′ ⊆ P . After proving Theorem 3.3.7, we will be able to speak of the inductive
theory generated by Q. At that point, we will have the much more natural
characterization of equivalence given in Proposition 3.5.5.

Theorem 3.5.2. If Q is connected, then there exists strongly connected Q0 with
the same root as Q such that Q0 ≡ Q.

Proof. Let Q be connected with root T0 and let Q̂ be a basis for Q. For each
X ∈ anteQ, choose X̂ ∈ ante Q̂, SX ⊆ τ(Q̂; X̂), and ψX ∈ F such that

X ≡ X̂ ∪ SX and X̂ ≡ T0 + ψX . For X ∈ ante Q̂ ⊆ anteQ, assume we
have chosen X̂ = X and SX = ∅. Define

Q0 = {(T0 + ψX , φ, p) | (X,φ, p) ∈ Q}.

Note that if X̂ ∈ ante Q̂ ⊆ anteQ, then SX̂ = ∅ and X̂ ≡ T0 + ψX̂ . Thus, if

(X̂, φ, p) ∈ Q̂ ⊆ Q, then (T0 + ψX̂ , φ, p) ∈ Q0.
Let P be an inductive theory. Assume Q0 ⊆ P . Let (X,φ, p) ∈ Q. Then

(T0 + ψX , φ, p) ∈ Q0, which implies P (φ | T0, ψX) = p. Let θ ∈ SX ⊆
τ(Q̂; X̂). Then (X̂, θ, 1) ∈ Q̂, so that (T0 + ψX̂ , θ, 1) ∈ Q0, which implies

P (θ | T0, ψX̂) = 1. But T0 + ψX̂ ≡ X̂ ≡ T0 + ψX , so by the rule of logical
equivalence, P (θ | T0, ψX) = 1. Since θ was arbitrary, deductive extension gives

P (φ | T0, ψX , SX) = p. But T0 +ψX +SX ≡ X̂ ∪SX ≡ X, so the rule of logical
equivalence gives P (φ | X) = p, showing that Q ⊆ P .

Now assume Q ⊆ P . Let (Y, φ, p) ∈ Q0. Choose (X,φ, p) ∈ Q such that

Y = T0 + ψX . Then P (φ | X) = p. Note that X̂ ≡ Y , so that X ≡ Y ∪ SX .
If SX = ∅, then X ≡ Y , so by the rule of logical equivalence, P (φ | Y ) = p.

Assume SX ̸= ∅. Let θ ∈ SX ⊆ τ(Q̂; X̂). Then (X̂, θ, 1) ∈ Q̂. But Q̂ ⊆ Q ⊆ P ,

so P (θ | X̂) = 1. Since X̂ ≡ Y , the rule of logical equivalence implies
P (θ | Y ) = 1. Since θ was arbitrary, deductive extension gives Y ∪SX ∈ anteP
and P ( · | Y ) = P ( · | Y, SX). Since X ≡ Y ∪ SX , we get P (φ | Y, SX) = p.
Therefore, P (φ | Y ) = p, showing that Q0 ⊆ P .
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3.5.2 Intersections of inductive sets

We now get to the heart of the matter, which is the intersection of subsets of
F IS. The next result shows that the closure properties are all preserved under
such intersections. It is straightforward to verify that strong connectivity is also
preserved. Hence, as a corollary, we find that the intersection of pre-theories
(with a common root) is a pre-theory. After establishing that result, we give
the proof of Theorem 3.3.7.

Theorem 3.5.3. Let C ⊆ PF IS be nonempty.

(i) If each set in C is admissible, then
⋂

C is admissible.

(ii) If each set in C is entire, then
⋂

C is entire.

(iii) If each set in C is semi-closed, then
⋂
C is semi-closed.

(iv) If each set in C is closed, then
⋂
C is closed.

Proof. Let P =
⋂
C. Assume each set in C is admissible. Suppose (X,φ, p) ∈ P ,

X ′ ≡ X, and φ′ ≡X φ. Let P ′ ∈ C, so that P ′(φ | X) = p. Since P ′ is
admissible, P ′(φ′ | X ′) = p. Since P ′ was arbitrary, (X ′, φ′, p) ∈ P . Now
suppose (X ′, φ′, p′) ∈ P . Choose P ′ ∈ C. Then P ′(φ′ | X ′) = p′ = p. Thus, P
is admissible.

Now assume each set in C is entire. Let X ∈ anteP and X ⊢ φ. Choose
φ′ ∈ F and p ∈ [0, 1] such that (X,φ′, p) ∈ P . Let P ′ ∈ C. Then P ′(φ′ | X) = p,
so that X ∈ anteP ′. Since P ′ is entire and X ⊢ φ, the rule of logical implication
gives P ′(φ | X) = 1. Since P ′ was arbitrary, we have P (φ | X) = 1, showing
that P satisfies the rule of logical implication. Similar proofs show that P
satisfies rules (R3)–(R7), and therefore, P is entire.

Assume each set in C is semi-closed. Suppose P (φ | X) = p for every
completion P of P . Let P ′ ∈ C and let P ′ be a completion of P ′. Since
P ⊆ P ′ ⊆ P ′, it follows that P ′ is also a completion of P . Thus, P ′(φ | X) = p.
Since P ′ was arbitrary and P ′ is semi-closed, we have P ′(φ | X) = p. Since P ′

was arbitrary, this gives P (φ | X) = p, and P is semi-closed.
Finally, assume each set in C is closed. Suppose S ⊆ F is nonempty and

P (θ | X) = 1 for all θ ∈ S. That is, ∅ ≠ S ⊆ τ(P ;X). Let P ′ ∈ C. Since P ⊆ P ′,
we have τ(P ;X) ⊆ τ(P ′;X), so that ∅ ≠ S ⊆ τ(P ′;X). Since P ′ is closed,
deductive extension implies X ∪ S ∈ anteP ′ and P ′( · | X,S) = P ′( · | X).
Since P ′ was arbitrary, we have

P (φ | X,S) = p iff P ′(φ | X,S) = p for all P ′ ∈ C
iff P ′(φ | X) = p for all P ′ ∈ C
iff P (φ | X) = p.

Since S is a nonempty subset of τ(P ;X), it follows that τ(P ;X) is nonempty,
which implies X ∈ anteP . Hence, by the above, X ∪ S ∈ anteP and
P ( · | X,S) = P ( · | X), showing that P is closed.
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Corollary 3.5.4. Let C0 be a nonempty set of pre-theories with common root
T0 and define P0 =

⋂
C0. Then P0 is a pre-theory with root T0.

Proof. By Proposition 3.5.3, the set P0 is semi-closed. Let X ∈ anteP0. Choose
φ ∈ F and p ∈ [0, 1] such that P0(φ | X) = p. Let P ∈ C0. Then P (φ | X) = p,
so that X ∈ anteP . Since P is strongly connected with root T0, we may choose
ψ ∈ F such that X ≡ T0 + ψ. Since X was arbitrary, P0 is strongly connected
with root T0.

Proof of Theorem 3.3.7. Let Q be consistent. Then Q is connected and we may
choose an inductive theory P ′ such that Q ⊆ P ′. Let T0 be the root of Q. By
Proposition 3.5.1, we have T0 ∈ anteP ′ and, if we define P ′

0 = P ′ ⇃T0
, then P ′

0 is
a pre-theory with root T0. By Theorem 3.5.2, we may choose strongly connected
Q0 with root T0 such that Q0 ≡ Q. Let C0 be the set of all pre-theories with
root T0 that contain Q0.

Since Q0 ≡ Q and Q ⊆ P ′, we have Q0 ⊆ P ′. Since Q0 is strongly connected
with root T0, this gives Q0 ⊆ P ′

0. Hence, C0 is nonempty. Let P0 =
⋂

C0.
Corollary 3.5.4 implies P0 is a pre-theory with root T0. Define P = P(P0).
Since Q0 is a subset of every element of C0, it follows that Q0 ⊆ P0 ⊆ P .
Therefore, since Q0 ≡ Q, we have Q ⊆ P .

To show that P is the smallest such inductive theory, let P ′′ be an arbitrary
inductive theory with Q ⊆ P ′′. As above, if P ′′

0 = P ′′ ⇃T0
, then P ′′

0 is a pre-
theory with root T0 and Q0 ⊆ P ′′

0 . Hence, P ′′
0 ∈ C0, so that P0 ⊆ P ′′

0 , which
implies P ⊆ P(P ′′

0 ). But P
′′
0 ⊆ P ′′, so by Theorem 3.3.4, we have P(P ′′

0 ) ⊆ P ′′,
and therefore, P ⊆ P ′′.

3.5.3 A converse to the rule of logical implication

Having proved Theorem 3.3.7, we now have the notation PQ at our disposal.
With this notation, we are able to give a more natural characterization of the
equivalence of two subsets of F IS. We also give a definition that we will need
later, and provide a partial converse to the rule of logical implication.

Proposition 3.5.5. Let Q,Q′ ⊆ F IS be connected. Then Q ≡ Q′ if and only if
either both are inconsistent or both are consistent and PQ = PQ′

Proof. Assume Q ≡ Q′. Then Q ⊆ P if and only if Q′ ⊆ P for all inductive
theories P . Hence, Q is consistent if and only if Q′ is consistent. Suppose both
are consistent. Since Q ⊆ PQ, we have Q′ ⊆ PQ, which implies PQ′ ⊆ PQ.
Similarly, PQ ⊆ PQ′ , and therefore, PQ = PQ′ .

For the converse, if both are inconsistent, then neither can be extended to an
inductive theory, so they are vacuously equivalent. Assume both are consistent
and PQ = PQ′ . Let P be an inductive theory with Q ⊆ P . Then PQ ⊆ P .
Thus, Q′ ⊆ PQ′ = PQ ⊆ P . Similarly, Q′ ⊆ P implies Q ⊆ P , showing that
Q ≡ Q′.



62 CHAPTER 3. PROPOSITIONAL CALCULUS

If Q is consistent, we define T (Q) = τ(PQ). We also denote T (Q) by TQ. By
Proposition 3.2.13, the set TQ is a deductive theory. We call TQ the deductive
theory determined by Q.

Note that φ ∈ TQ if and only if Q ⊢ (X,φ, 1) for all X ∈ antePQ. In
other words, TQ is the set of formulas which, under PQ, have probability one,
regardless of the antecedent. Informally, TQ represents the deductive hypotheses
that are implicit in the set Q.

Theorem 3.5.6. Suppose P is an inductive theory and let X ∈ anteP . Then
P (φ | X) = 1 if and only if X,TP ⊢ φ.

Proof. Let P be an inductive theory and X ∈ anteP . Then P (θ | X) = 1 for
all θ ∈ TP . Hence, by the rule of deductive extension, X ∪ TP ∈ anteP and
P ( · | X) = P ( · | X,TP ).

Suppose X,TP ⊢ φ. Since X ∪ TP ∈ anteP , the rule of logical implication
gives P (φ | X,TP ) = 1. By the above, P (φ | X) = 1. For the converse, suppose
P (φ | X) = 1. Let T0 be the root of P , so that P = P(P0), where P0 = P ⇃T0

.
We then have X ≡ TX + ψX and P0(φ | T0, ψX) = 1. By the rule of material
implication, P0(ψX → φ | T0) = 1, which implies ψX → φ ∈ TP . Therefore,
X,TP ⊢ ψX , ψX → φ ⊢ φ.

3.5.4 Inductive conditions

At this point, we have proven all the results in Sections 3.3.4 and 3.3.5. We have
therefore fully established and justified the notation Q ⊢ (X,φ, p). Informally,
we think of Q ⊢ (X,φ, p) as representing a process of derivation, where we take
the inductive statements in Q as our hypotheses, then apply the nine rules of
inductive inference to derive (X,φ, p). But every hypothesis in Q is a precise
inductive statements of the form Q(η | Y ) = q. We are often interested in using
more general hypotheses, such as Q(η | Y ) > q. Or we may wish to hypothesize
that Q and everything it entails satisfies a certain symmetry condition. To allow
for these more general hypotheses, we define the following.

An inductive condition is a collection C of inductive theories with a common
root. An inductive condition C is said to be consistent if C ≠ ∅. If each P ∈ C
has root T0, then we call T0 the root of C.

For instance, C might be a collection of inductive theories P , each satisfying
P (η | Y ) > q. Or C might be a collection where each member satisfies a given
symmetry property. If we wish to simply assume Q, without any generalizations,
we can also do that with an inductive condition. Namely, if Q is connected with
root T0, then let C(Q), which we also denote by CQ, be defined as the set of
inductive theories P with root T0 such that Q ⊆ P . Then CQ also has root
T0 and CQ is consistent if and only if Q is consistent. Moreover, by Theorem
3.3.7, we have PQ ∈ CQ and PQ ⊆ P for all P ∈ CQ. Hence, PQ =

⋂
CQ. If

we identify CQ with Q, then we can say that CQ generates the inductive theory⋂
CQ.
Generalizing this to arbitrary inductive conditions is not straightforward.

The problem, as mentioned at the beginning of this section, is that the
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intersection of inductive theories is not necessarily an inductive theory. What
we will show, however, is that if C is an inductive condition with root T0, then
there is a largest inductive theory with root T0 contained in

⋂
C. If C = CQ,

then that largest theory is PQ.
Let C be an inductive condition with root T0. Define C0 = {P ⇃T0

| P ∈ C}.
By Corollary 3.5.4, if C is consistent, then

⋂
C0 is a pre-theory with root T0.

Hence, may define P(C) = P(
⋂
C0). We also denote P(C) by PC , and call this

the inductive theory generated by C. The next result shows that the inductive
theory generated by C is indeed the largest inductive theory contained in

⋂
C.

Theorem 3.5.7. Let C be a consistent inductive condition. Then PC ⊆
⋂
C.

Moreover, if P is an inductive theory with the same root as C such that P ⊆
⋂
C,

then P ⊆ PC.

Proof. Let C be a consistent inductive condition with root T0. Let P
′ ∈ C. Then⋂

C0 ⊆
⋂
C ⊆ P ′, which implies PC ⊆ P ′. Since P ′ was arbitrary, this shows

PC ⊆
⋂
C.

Now suppose P is an inductive theory with root T0 such that P ⊆
⋂
C.

Then P = P(P0), where P0 = P ⇃T0
. Let P ′

0 ∈ C0 be arbitrary, and choose
P ′ ∈ C such that P ′

0 = P ′ ⇃T0 . Since P ′ ∈ C, it follows that P ⊆ P ′, which
implies P0 ⊆ P ′

0. Since P ′
0 was arbitrary, this gives P0 ⊆

⋂
C0. Therefore,

P = P(P0) ⊆ P(
⋂
C0) = PC .

As noted earlier, if Q ⊆ F IS is consistent, then PQ =
⋂

CQ. Hence, by
Theorem 3.5.7, we have P(Q) = P(CQ).

If C is an inductive condition and PC ∈ C, then we say the condition C is
determinate, otherwise C is indeterminate. Note that if Q ⊆ F IS is consistent,
then CQ is determinate.

If C is an inductive condition and (X,φ, p) ∈ F IS, we write C ⊢ (X,φ, p)
to mean that C is consistent and PC(φ | X) = p. Since P(Q) = P(CQ), we
have that Q ⊢ (X,φ, p) if and only if CQ ⊢ (X,φ, p), so that this new use of the
turnstile symbol is an extension of our previous use.

If C and C′ are inductive conditions with the same root, then C, C′ ⊢ (X,φ, p)
means C ∩ C′ ⊢ (X,φ, p). In particular, if we identify Q and CQ, then
Q, C ⊢ (X,φ, p) means CQ, C ⊢ (X,φ, p). Lastly, we use C, X ⊢ φ as shorthand
for C ⊢ (X,φ, 1). For example, Q, C, X ⊢ φ means that Q and C have the same
root, CQ ∩ C is consistent (that is, nonempty), and, if P = P(CQ ∩ C), then
P (φ | X) = 1.

Finally, if C is a consistent inductive condition, we define T (C) = T (PC).
We also denoted T (C) by TC .

Proposition 3.5.8. If C is a consistent inductive condition, then TC =
⋂
{TP |

P ∈ C}.

Proof. Let C be a consistent inductive condition with root T0. Let P ′
0 =

⋂
C0

and P ′ = PC , so that P ′ = P(P ′
0). Suppose θ ∈ TC = TP ′ . Then P ′(θ | T0) = 1,

so by Theorem 3.5.7, we have P (θ | T0) = 1 for all P ∈ C. By Proposition 3.4.5,
we have θ ∈ TP for all P ∈ C, so that θ ∈

⋂
{TP | P ∈ C}.
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Conversely, suppose θ ∈
⋂
{TP | P ∈ C}. Then P0(θ | T0) = 1 for all P0 ∈ C0.

Hence, P ′
0(θ | T0) = 1. As above, Proposition 3.4.5 gives θ ∈ TP ′ .

Recall Theorem 3.5.6, which gives a partial converse to the rule of logical
implication. The following result reformulates that in terms of our new notation
and shows that C, X ⊢ φ can be rewritten in terms of the classical derivability
relation from Section 3.1.

Proposition 3.5.9. Suppose C is a consistent inductive condition and let
X ∈ antePC. Then C, X ⊢ φ if and only if TC , X ⊢ φ.

Proof. Let C be consistent and let X ∈ antePC . Note that C, X ⊢ φ if and
only if PC(φ | X) = 1. Also note that TC = T (PC). Hence, the result follows
immediately from Theorem 3.5.6.

We conclude this section with a result that we will need in Chapter 4.

Proposition 3.5.10. Let P be an inductive theory with root T0 and let T ′
0 ∈

[T0, TP ]. Let P ′
0 = P ⇃T ′

0
. Then P ′

0 is a pre-theory with root T ′
0. Moreover, if

P ′ = P(P ′
0), then TP ′ = TP and P ′ = P ⇃[T ′

0,TP ].

Proof. By Theorem 3.4.7, since P ′
0 is strongly connected, we have that P ′

0 is
a pre-theory with root T ′

0. Let P ′ = P(P ′
0). We first show that TP ′ = TP .

By Proposition 3.4.5, it suffices to show that P ′(θ | T ′
0) = 1 if and only if

P (θ | T0) = 1. Suppose P ′(θ | T ′
0) = 1. Then P (θ | T ′

0) = 1. But T ′
0 ⊆ TP ,

so by the rule of deductive extension, we have P (θ | T0) = 1. Conversely,
suppose P (θ | T0) = 1. Again by the rule of deductive extension, we obtain
P (θ | T ′

0) = 1, and so P ′(θ | T ′
0) = 1.

It remains to show that P ′ = P ⇃[T ′
0,TP ]. Since P

′
0 ⊆ P , Theorem 3.3.4 implies

P ′ ⊆ P . Moreover, every X ∈ anteP ′ satisfies X ↪→ [T ′
0, TP ′ ] = [T ′

0, TP ]. Hence,
P ′ ⊆ P ⇃[T ′

0,TP ].
Conversely, suppose (X,φ, p) ∈ P ⇃[T ′

0,TP ]. Then P (φ | X) = p and
X ↪→ [T ′

0, TP ]. Write T (X) = T + ψ, where T ∈ [T ′
0, TP ] ⊆ [T0, TP ]. Then

p = P (φ | X) = P0(φ | T0, ψ). Since P0 ⊆ P , we have P (φ | T0, ψ) = p. But
T0 ⊆ T ′

0 ⊆ τ(P ), so by the rule of deductive extension, we have P (φ | T ′
0, ψ) = p,

and this implies P ′
0(φ | T ′

0, ψ) = p. Since TP = TP ′ , we have T ∈ [T ′
0, TP ′ ].

Therefore P ′(φ | X) = p, and this shows P ⇃[T ′
0,TP ]⊆ P ′.



Chapter 4

Propositional Models

The logical relationships between deductive and inductive statements in F and
F IS are described by the derivability relation ⊢ developed in Chapter 3. This
relation is a kind of calculus, based on a set of inferential rules. The rules
themselves depend only on the syntax of the statements. No interpretation or
meaning is given to them, and no such meaning is necessary to describe these
logical relationships.

We can, however, use meanings and interpretations to investigate the logical
relationships between statements. When we do this, we arrive at a different
relation, called the consequence relation, and denoted by ⊨. When we study
logical relationships using ⊢, we are studying the syntactics of the logic. When
we use ⊨, we are studying the semantics.

Meanings are assigned to statements using models. The classical type of
propositional model (which we call a strict model) is one that simply assigns a
truth value (0 or 1) to each propositional variable. Truth values then propagate
to every sentence in F via the usual interpretations of ¬ and

∧
. These strict

models originated with Wittgenstein (see [33, Satz 4.31]) and can be visualized
as rows in what we now call a truth table.

In Wittgenstein’s view, a strict model represents a logically possible state
of the world. Since we are interested in modeling inductive inference, we wish
to model degrees of uncertainty about the state of the world. For us, then, a
model will be a collection of strict models, together with a set of weights whose
relative magnitudes represent relative degrees of uncertainty. Without loss of
generality, we may assume these weights add up to one. In other words, we will
define a model to be a probability measure on a set of strict models.

Models are used to define the consequence relation ⊨. On the deductive side,
we say that X ⊨ φ if, in every model that satisfies X, the sentence φ is also
satisfied. A completely analogous definition holds on the inductive side when
we write P ⊨ (X,φ, p).

In Section 4.1, we define models and we define the consequence relation for
deductive statements. That is, we define what it means to say that X ⊨ φ,
when X ⊆ F and φ ∈ F . We prove that, together, ⊢ and ⊨ form a sound

65
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logical system, meaning that X ⊢ φ implies X ⊨ φ. In other words, if we can
use X to prove φ, then φ is satisfied in every model of X. We also prove that
this logical system is complete, meaning that X ⊨ φ implies X ⊢ φ. In other
words, if φ is satisfied in every model of X, then there is a proof of φ from X.
Together, soundness and completeness show that X ⊢ φ if and only if X ⊨ φ.
In particular, by Theorem 3.1.10, the consequence relation is σ-compact.

These results should be contrasted with the usual approach to (deductive)
semantics in F . One can define a strict consequence relation using strict models.
It is well known (see Examples 4.4.5 and 4.4.6) that both completeness and σ-
compactness fail in that case. By overlaying our semantics with a probability
measure, we recover both properties.

In Section 4.2, we extend the consequence relation to inductive statements,
and prove both the soundness and completeness of this extension. These results
finalize our description of probability as logic. Probability is a system of
inference on inductive statements. It contains classical propositional logic as
a special case and extends it in two directions: from deductive to inductive,
and from finite conjunctions to countably infinite conjunctions. It has both
semantics and a syntactic calculus. (In Chapter 5, we will repeat these
constructions in a predicate language, showing that probability, as inductive
logic, also extends first-order logic in both these directions.)

In Section 4.3.1, we address the relationship between this logical system
of probability and modern, measure-theoretic probability theory. Modern
probability has its origin in Kolmogorov’s 1933 manuscript, Foundations of
the Theory of Probability [20]. Therein, Kolmogorov lays out what he calls
the axioms of probability. Today, those axioms take the form of a definition,
namely, the definition of a probability space: a measure space with total mass
one. The foundation of modern probability, therefore, is the probability space.

For us, the probability space is the foundation of our semantics. In Theorem
4.3.1, we show that every probability space is isomorphic to a semantic model
in our logical system. The proof of Theorem 4.3.1 exhibits a natural mapping
from the outcomes and events of the given probability space to strict models and
sentences, respectively. With this result, we see that all of modern, measure-
theoretic probability is embedded in our logical system. Probability theory as we
know it today is simply the semantics of a larger system of logical reasoning. (In
Chapter 5, we will extend this embedding to include random variables. See, for
instance, Section 5.4.1 and the table of correspondences immediately preceding
Section 5.4.2.)

Generally speaking, there is a difference between saying that a model satisfies
a set of statements, and saying that it characterizes them. To say that it
characterizes them is to say that they are the only statements satisfied by the
model. In that case, the model is a perfect semantic reflection of the given set
of statements. Finding a model that characterizes a set of statements allows us
to see the logical structure of that set in a single semantic model.

In Theorem 4.2.4, we show that models (that is, probability spaces), are only
able to characterize complete inductive theories. The structure of an incomplete
inductive theory cannot be represented by a probability space. Proposition
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4.1.16 tells us why. Namely, if we start with a collection of inductive statements
and conditions, and then draw all available inferences, we are not led to a σ-
algebra, but rather to a Dynkin system. Consequently, we see that Dynkin
systems arise naturally and organically in the study of inductive inference. This
fact may offer some insight into why Dynkin’s π-λ theorem—a purely measure-
theoretic result—features so much more prominently in probability theory than
it does in analysis.

In the rest of Section 4.3 and in Section 4.4, we present several examples,
illustrating and applying many of the ideas presented in both Chapters 3 and
4.

Finally, in Section 4.5, we introduce the idea of (inductive) independence—
a purely logical and syntactic notion—and then show that it is semantically
characterized by the usual product formula from measure theory. We then
present two examples to illustrate its use.

4.1 Models and deductive semantics

4.1.1 Truth assignments

Recall that B denotes the Boolean σ-algebra {0, 1}, whose partial order is the
usual ⩽. The elements 0 and 1 are called truth values. If S is a set, then a
function ν : S → B is an assignment of truth values to the elements of S. The
set of all such functions is denoted by BS .

Given an element s ∈ S, we define the projection πs : B
S → B by πsν = νs.

Let B = PB. Then BS denotes the product σ-algebra. That is, BS is the
smallest σ-algebra on BS such that each πs is (BS ,B)-measurable. In symbols,

BS = σ({πs | s ∈ S}) = σ({π−1
s A | s ∈ S,A ∈ B}).

A subset of BS is called a cylinder set if it has the form

π−1
s1 A1 ∩ · · · ∩ π−1

sn An

for some s1, . . . , sn ∈ S and A1, . . . , An ∈ B. Equivalent, a cylinder set is a set
of the form

{ν ∈ BS | νs1 = x1, . . . , νsn = xn}.
for some s1, . . . , sn ∈ S and x1, . . . , xn ∈ B. The σ-algebra BS is also generated
by the collection of cylinder sets. Note that the collection of cylinder sets is a
π-system. That is, it is closed under intersections.

If we say that a function f : BS → B is measurable, we mean that it is
(BS ,B)-measurable. Note that ¬f = 1−f and

∧
n fn = infn fn. Hence, if f and

fn are all measurable, then so are ¬f and
∧
n fn. Also note that every function

f : BS → B has the form f = 1B for some B ⊆ BS , and f is measurable if and
only if B ∈ BS .

Lemma 4.1.1. Let R ⊆ S, let h : BR → B, and define f : BS → B by
fν = h(ν|R). If h is measurable, then f is measurable.
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Proof. Let R ⊆ S and define

Σ = {B ∈ BR | ν 7→ 1B(ν|R) is (BS ,B)-measurable}.

It suffices to show that Σ = BR. Since constant functions are measurable, we
have ∅ ∈ Σ. Since 1Bc = ¬1B , it follows that Σ is closed under complements.
Let {Bn}∞n=1 ⊆ Σ and define B =

⋂
nBn. Then 1B =

∧
n 1Bn

, so that B ∈ Σ,
and Σ is closed under countable intersection. Therefore, Σ is a σ-algebra.

Now let
B = {ν ∈ BR | νs1 = x1, . . . , νsn = xn}

be a cylinder set in BR. Define h : BS → B by hν = 1B(ν|R). Then

h−11 = {ν ∈ BS | νs1 = x1, . . . , νsn = xn}

is a cylinder set in BS . Hence, Σ contains the cylinder sets in BR. Since BR is
the smallest σ-algebra containing the cylinder sets, we have Σ = BR.

Let R ⊆ S. A measurable function f : BS → B is said to be R-ary if there
exists a measurable h : BR → B such that fν = h(ν|R) for all ν ∈ BS .

Corollary 4.1.2. Let R ⊆ U ⊆ S. If f : BS → B is R-ary, then f is U -ary.

Proof. Let f : BS → B be R-ary. Choose measurable h : BR → B such
that fν = h(ν|R) for all ν ∈ BS . Define g : BU → B by gν = h(ν|R).
Lemma 4.1.1 implies g is measurable. Moreover, for any ν ∈ BS , we have
g(ν|U ) = h((ν|U )|R) = h(ν|R) = fν.

Proposition 4.1.3. Let S be a set. Then every measurable f : BS → B is
R-ary for some countable R ⊆ S.

Proof. Let

Σ = {B ∈ BS | 1B is R-ary for some countable R ⊆ S }.

It suffices to show that Σ = BS . Clearly, 1∅ is ∅-ary, so that ∅ ∈ Σ. Since
1Bc = ¬1B , it follows that Σ is closed under complements. Let {Bn}∞n=1 ⊆ Σ
and define B =

⋂
nBn. For each n, choose countable Rn ⊆ S such that 1Bn

is Rn-ary. Let R =
⋃
nRn. Then R is countable and, by Corollary 4.1.2, it

follows that 1Bn is R-ary for all n. Choose measurable hn : BR → B such that
1Bnν = hn(ν | R) for all ν ∈ BS , and define h =

∧
n hn. Then h is measurable

and
1Bν =

∧
n 1Bn

ν =
∧
n hn(ν|R) = h(ν|R),

so that B ∈ Σ. Hence, Σ is closed under countable intersections, and Σ is
therefore a σ-algebra.

Now let
B = {ν ∈ BS | νs1 = x1, . . . , νsn = xn}

be a cylinder set in BS . Then B is R-ary, where R = {s1, . . . , sn}, showing that
Σ contains the cylinder sets. Since BS is the smallest σ-algebra containing the
cylinder sets, we have Σ = BS .
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4.1.2 Strict models and Boolean functions

A strict model is a function ω : PV → B. That is, a strict model is an
assignment of truth values to each propositional formula. The set of all strict
models is BPV . The domain of a strict model can be uniquely extended to all
of F by formula recursion. That is, ω¬φ = ¬ωφ and ω

∧
Φ =

∧
φ∈Φ ωφ. We

call ωφ the truth value of φ in the strict model ω.
The definition of a strict model depends on the choice of propositional

variables PV , which in turn determine the language F . When we wish to
emphasize this fact, we will call ω a strict model in F .

A Boolean function is a measurable function f : BPV → B. We say that a
formula φ represents a Boolean function f if ωφ = fω for all strict models ω.

Proposition 4.1.4. Every formula represents a unique Boolean function.
Conversely, every Boolean function is represented by a formula.

Proof. Let φ ∈ F and define fφ : BPV → B by fφω = ωφ. To show that fφ is a
Boolean function, we must show that it is measurable. This follows by formula
induction since fr = πr, f¬φ = ¬fφ, and f∧Φ =

∧
φ∈Φ fφ.

Now let

Σ = {B ∈ BPV | 1B is represented by a formula}.

It suffices to show that Σ = BPV . If we fix r ∈ PV , then 1∅ is represented by the
formula r∧¬r, so ∅ ∈ Σ. If φ represents 1B , then ¬φ represents ¬1B = 1Bc , so Σ
is closed under complements. And if φn represents 1Bn , then

∧
n φn represents∧

n 1Bn
= 1⋂

n Bn
, so that Σ is closed under countable intersections, and Σ is

therefore a σ-algebra.
Now let

B = {ω ∈ BPV | ωr1 = x1, . . . , ωrn = xn}
be a cylinder set. Recall the notation φ1 = φ and φ0 = ¬φ, and note that
ωφ = x if and only if ωφx = 1. Hence, 1B is represented by the formula
rx1
1 ∧· · ·∧rxn

n , so that Σ contains the cylinder sets, and therefore Σ = BPV .

By Proposition 4.1.3, every Boolean function is Π-ary for some countable
set of propositional variables Π ⊆ PV .

Proposition 4.1.5. Let φ ∈ F and let f be the Boolean function that it
represents. Then f is Π-ary, where Π = PV ∩ Sf φ is the countable set of
propositional variables that appear in φ.

Proof. Let φ ∈ F represent fφ and let Πφ = PV ∩ Sf φ. We will show that fφ
is Πφ-ary by induction on φ.

If r ∈ PV , then Πr = {r} and fr = πr is {r}-ary. Suppose fφ is Πφ-ary.
Then f¬φ = ¬fφ is also Πφ-ary. Since Sf φ ⊆ Sf ¬φ, we have Πφ ⊆ Π¬φ. Hence,
by Corollary 4.1.2, it follows that f¬φ is Π¬φ-ary.

Now let Φ ⊆ F be countable and suppose fθ is Πθ-ary for all θ ∈ Φ. Define
φ =

∧
Φ. Note that Πθ ⊆ Πφ for each θ ∈ Φ. Hence, Corollary 4.1.2 implies

that fθ is Πφ-ary for each θ ∈ Φ, and therefore fφ =
∧
θ∈Φ fθ is also Πφ-ary.
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4.1.3 Models and satisfiability

An inductive model, or simply a model, is a probability space, P = (Ω,Σ,P),
where Ω is a set of strict models.

As with strict models, the definition of a model depends on the choice of
propositional variables PV , which in turn determine the language F . When we
wish to emphasize this fact, we will call P a model in F .

If X ⊆ F and ω is a strict model, we say that ω strictly satisfies X, written
ω |≡ X, if ωφ = 1 for all φ ∈ X. We write ω |≡ φ for ω |≡ {φ}. A set X ⊆ F is
strictly satisfiable if there is a strict model ω such that ω |≡ X.

Let Ω be a set of strict models. For φ ∈ F , let

φΩ = {ω ∈ Ω | ω |≡ φ}

be the set of strict models in Ω that strictly satisfy φ. More generally, for
X ⊆ F , we define XΩ = {φΩ | φ ∈ X}.

The mapping φ 7→ φΩ satisfies (¬φ)Ω = φcΩ and (
∧
Φ)Ω =

⋂
φ∈Φ φΩ. Similar

relations hold for the shorthand operators. For instance (
∨

Φ)Ω =
⋃
φ∈Φ φΩ,

(φ→ ψ)Ω = φcΩ ∪ ψΩ, and (φ↔ ψ)Ω = (φΩ △ ψΩ)
c.

Note that if φ ∈ F represents the Boolean function f , then φΩ = f−11.
Hence, by Proposition 4.1.4, if Ω = BPV , then BPV = {φΩ | φ ∈ F}.

Let P be a model and let φ ∈ F . We say that P satisfies φ, written P ⊨ φ,
if PφΩ = 1, where (Ω,Σ,P) is the completion of (Ω,Σ,P). For X ⊆ F , we write
P ⊨ X to mean P ⊨ φ for all φ ∈ X. Note that P ⊨ ∅ for every model P. A
set X ⊆ F is satisfiable if there is a model P such that P ⊨ X. Note that if
X ⊆ X ′ and P ⊨ X ′, then P ⊨ X.

Proposition 4.1.6. Let X ⊆ F .

(i) If X is strictly satisfiable, then X is satisfiable.

(ii) If X is satisfiable and countable, then X is strictly satisfiable.

Proof. Note that ω |≡ X if and only if P = ({ω}, {∅, {ω}}, δω) ⊨ X, which yields
(i). For (ii), suppose X is satisfiable and countable. Let P = (Ω,Σ,P) be a
model that satisfies X. Then P

⋂
φ∈X φΩ = 1, so we may choose ω ∈

⋂
φ∈X φΩ,

and this ω strictly satisfies X.

If P is a model, we define

Th P = {φ ∈ F | P ⊨ φ}. (4.1.1)

As we will see in Proposition 4.1.12, the set of formulas Th P is a consistent
deductive theory. Note that if P = (Ω,Σ,P) is the completion of P, then
Th P = Th P.

Let P = (Ω,Σ,P) be a model with completion (Ω,Σ,P). Let ΣF = Σ∩BPV
and let PF be P restricted to ΣF . Then ΣF is a sub-σ-algebra of Σ, so that
PF = (Ω,ΣF ,PF ) is also a model. For any φ ∈ F , we have φΩ ∈ Σ if and only
if φΩ ∈ ΣF . Hence, all of the logical information in P is contained in PF . This
is made precise in Proposition 4.1.8 below. We say that two models P and Q
are isomorphic (as models), denoted by P ≃ Q, if PF = QF .
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Lemma 4.1.7. If P is a model, then (PF )F = PF .

Proof. Let P = (Ω,Σ,P) be a model. For notational simplicity, let Γ = ΣF and
Q = P |Γ, so that PF = (Ω,Γ,Q). We must show that ΓF = Γ and QF = Q.
Since Γ ⊆ BPV , we have

Γ = Γ ∩ BPV ⊆ Γ ∩ BPV = ΓF .

Conversely, let A ∈ ΓF = Γ ∩ BPV . Since A ∈ Γ, we may write A = B ∪ N ,
where B ∈ Γ, N ⊆ F ∈ Γ, and QF = 0. By the definition of Q, this implies
PF = 0. Now Γ = Σ ∩ BPV . Hence, B ∈ Σ and F ∈ Σ. Since N ⊆ F and
PF = 0, we have N ∈ Σ. Therefore, A = B ∪ N ∈ Σ. But A ∈ BPV also.
Hence, A ∈ Σ ∩ BPV = ΣF = Γ, and this shows ΓF = Γ.

By definition, QF is Q restricted to ΓF . But ΓF = Γ, so we have that
QF = Q |Γ = Q.

Proposition 4.1.8. For any model P and any φ ∈ F , we have P ⊨ φ if and
only if PF ⊨ φ.

Proof. Suppose P ⊨ φ. Then φΩ ∈ Σ and PφΩ = 1. Since φΩ ∈ BPV , we have
φΩ ∈ ΣF and PF φΩ = 1. For the converse, let Γ = ΣF and Q = P |Γ, so that
PF = (Ω,Γ,Q). Suppose PF ⊨ φ. Then φΩ ∈ Γ and QφΩ = 1. By Lemma
4.1.7, we have φΩ ∈ Γ and QφΩ = 1. Since Γ = Σ ∩ BPV and Q = P |Γ, this
gives φΩ ∈ Σ and PφΩ = 1, so that P ⊨ φ.

Remark 4.1.9. If P and Q are isomorphic models, then P ⊨ φ if and only if
Q ⊨ φ for all φ ∈ F . This follows immediately from the definition of isomorphic
models and Proposition 4.1.8.

4.1.4 Deductive consequence and soundness

We say φ ∈ F is a consequence of X ⊆ F , or that X entails φ, which we denote
by X ⊨ φ, if, for all models P such that P ⊨ X, we have P ⊨ φ. Note that if
X is not satisfiable, then it is vacuously true that X ⊨ φ for all φ ∈ F .

We write ψ ⊨ φ for {ψ} ⊨ φ and ⊨ φ for ∅ ⊨ φ. Note that ⊨ φ if and only if
P ⊨ φ for all models P, which holds if and only if ω |≡ φ for all strict models
ω. (If ω |≡ φ for all ω, then φΩ = Ω in every model; conversely, if ω |̸≡ φ, then
P = ({ω}, {∅, {ω}}, δω) ⊭ φ.) We also write X ⊨ Y to mean that X ⊨ φ for
all φ ∈ Y . Note here that X ⊨ Y if and only if P ⊨ X implies P ⊨ Y for all
models P.

A logical system is sound if every formula that is derivable from X is a
consequence of X. The following theorem shows that our notion of deductive
satisfiability yields a sound logical system, at least insofar as deductive inference
is concerned.

Theorem 4.1.10 (Deductive soundness). Let X ⊆ F and φ ∈ F . If X ⊢ φ,
then X ⊨ φ.
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Proof. It suffices to show that (i)–(vi) in Definition 3.1.3 still hold when ⊢ is
replaced by ⊨. Conditions (i) and (ii) are trivial.

Suppose X ⊨
∧
Φ. Let P = (Ω,Σ,P) ⊨ X. Then P ⊨

∧
Φ, which implies(∧

Φ
)
Ω
=

⋂
θ∈Φ θΩ ∈ Σ

and P
⋂
θ∈Φ θΩ = 1. Thus, P

⋃
θ∈Φ θ

c
Ω = 0. For each θ ∈ Φ, we have that θcΩ

is a subset of a null set. Hence, θcΩ ∈ Σ and P θcΩ = 0, implying θΩ ∈ Σ and
P θΩ = 1. Therefore, P ⊨ θ, showing that X ⊨ θ and proving (iii). The proof
of (iv) is similar.

For (v), suppose X ⊨ φ and X ⊨ ¬φ, and assume there exists a model P
such that P ⊨ X. Then PφΩ = 1 and PφcΩ = 1, a contradiction. Hence, X is
not satisfiable, and so it is vacuously true that X ⊨ ψ.

For (vi), suppose X,φ ⊨ ψ, X,¬φ ⊨ ψ, and X ⊭ ψ. Choose a model
P = (Ω,Σ,P) such that P ⊨ X and P ⊭ ψ. If ψΩ ∈ Σ, then PψΩ < 1.
Suppose ψΩ /∈ Σ. Then P∗ ψΩ < P∗ ψΩ ⩽ 1. In this case, there exists a measure
P′ on (Ω, σ(Σ ∪ {ψΩ})) such that P′ |Σ = P and P′ ψΩ = P∗ ψΩ. In either case,
(Ω,Σ,P) can be extended to a complete model P ′ = (Ω,Σ′,P′) in which ψΩ ∈ Σ′

and PψΩ < 1. Therefore, P ′ ⊨ X and P ′ ⊭ ψ.
By extending the model even further, we may assume φΩ ∈ Σ′. Suppose

P′ φΩ = 0. Then P ′ ⊨ ¬φ, so by supposition, we have P ′ ⊨ ψ, a contradiction.
Hence, P′ φΩ > 0, and we may define a probability measure Q on (Ω,Σ′) by
Q = P′( · | φΩ), and then define the model Q = (Ω,Σ′,Q).

Since QφΩ = 1, we have Q ⊨ φ. Also, if A ∈ Σ′ and P′A = 1, then QA = 1.
Thus, since P ′ ⊨ X, it follows that Q ⊨ X. By supposition, then, we have
Q ⊨ ψ. Since ψΩ ∈ Σ′, this gives QψΩ = 1. In other words, P′(ψΩ | φΩ) = 1.
By reversing the roles of φ and ¬φ, this same argument yields P′(ψΩ | φcΩ) = 1.
Therefore,

P′ ψΩ = P′ φΩ P′(ψΩ | φΩ) + P′ φcΩ P′(ψΩ | φcΩ) = P′ φΩ + P′ φcΩ = 1,

which contradicts the fact that P ′ ⊭ ψ.

Corollary 4.1.11. If X ⊆ F is satisfiable, then X is consistent.

Proof. Suppose X is inconsistent. Then X ⊢ ⊥. By Theorem 4.1.10, we have
X ⊨ ⊥. But ⊥Ω = ∅, so P ⊭ ⊥ for all P. Hence, X is not satisfiable.

Proposition 4.1.12. If P is a model, then Th P is a consistent deductive
theory.

Proof. Let T = Th P and suppose T ⊢ φ. By Theorem 4.1.10, we have T ⊨ φ.
Since P ⊨ T , this implies P ⊨ φ. Hence, φ ∈ T , so that T is a deductive
theory. Since ∅ = ⊥Ω, we have P ⊭ ⊥, so that ⊥ /∈ T and T is consistent.
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4.1.5 Karp’s completeness theorem

In this subsection, we establish that our logical system is complete, meaning that
every consequence of X is derivable from X. Completeness is the converse of
soundness. Together, they show that the derivability and consequence relations
are identical.

In Theorem 3.1.10, we showed that ⊢ is σ-compact. In Theorem 4.1.17 below,
we will show σ-compactness for ⊨, and then use this to establish completeness
in Theorem 4.1.19.

It is well-known that both σ-compactness and completeness fail when we
adopt the classical semantic notion of the strict model (see Example 4.4.5).
In that case, only a weaker version of completeness is available. This weaker
version was proven by Karp in [16]. We present Karp’s version below, and then
use it to establish the full completeness theorem for our notion of deductive
satisfiability.

Theorem 4.1.13 (Karp’s completeness theorem). For all formulas φ ∈ F ,
we have ⊢ φ if and only if ⊨ φ.

Proof. The only if direction is a consequence of Theorem 4.1.10. For the if
direction, we appeal to Karp’s completeness theorem. In [16, Theorem 5.3.2],
Karp proved that ⊢′ φ if and only if ω |≡ φ for all strict models ω, where ⊢′

is a certain Hilbert-type system of deduction. As noted previously, ⊨ φ if and
only if ω |≡ φ for all strict models ω. We therefore have that ⊨ φ if and only if
⊢′ φ. To complete the proof, we must verify that ⊢′ φ implies ⊢ φ.

To accomplish this, we must first describe the differences between ⊢′ and
⊢. In Karp’s system, → is a primitive symbol; for us, it is defined shorthand.
This, however, causes no difficulties, since (φ → ψ) ↔ (¬φ ∨ ψ) is a tautology
in Karp’s system.

Recall from Theorem 3.1.17 that ⊢ φ if and only if there is a proof of φ from
the axioms Λ. Karp’s ⊢′ differs from our ⊢ only in the choice of the axioms;
the notion of proof is the same. Aside from the aforementioned use of →, this
is the only difference between ⊢′ and ⊢. Hence, we need only verify that each
of Karp’s axioms can be proven in ⊢. The axioms of Karp that are not already
accounted for in Λ are:

(Λ4) φ→ ψ → φ

(Λ5) (¬φ→ ¬ψ) → ψ → φ

(Λ6)
∧
φ∈Φ(ψ → φ) → ψ →

∧
Φ

By Theorem 3.1.17, it suffices to prove these by natural deduction, which is
entirely straightforward.

Remark 4.1.14. As a consequence of Karp’s completeness theorem, we have
that φ is a tautology if and only if ω |≡ φ for all strict models ω. Hence, in
any model P, we have φ ⊢ ψ implies φΩ ⊆ ψΩ, and φ ≡ ψ implies φΩ = ψΩ.
If Ω = BPV is the set of all strict models, then both of these implications are
biconditional.



74 CHAPTER 4. PROPOSITIONAL MODELS

With Karp’s completeness theorem, we can now prove the result that was
described in Remark 3.1.7.

Proposition 4.1.15. Let X ⊆ Ffin and φ ∈ Ffin. If X ⊢ φ, then X ⊢fin φ.

Proof. Let X ⊆ Ffin and φ ∈ Ffin. Suppose X ⊢ φ. The well-known
completeness theorem from finitary propositional logic states that X ⊢fin φ
if and only if ω |≡ X implies ω |≡ φ for all strict models ω. (See, for instance,
[28, Theorem 1.4.6]).

Let ω be a strict model and assume that ω |≡ X. By Proposition 3.1.14, we
may choose countable X0 ⊆ X such that ⊢

∧
X0 → φ. By Karp’s completeness

theorem, ⊨
∧
X0 → φ. Hence, ω |≡

∧
X0 → φ. But ω |≡ X ⊇ X0. Therefore,

ω |≡ φ.

4.1.6 Inductive theories and Dynkin systems

We briefly pause our development to make an observation about Dynkin
systems. Let P be an inductive theory and fix X ∈ anteP . In Section 3.2.2,
we noted that the domain of P ( · | X) need not be closed under conjunctions
and disjunctions. We are now in a position to say something in the positive
direction about the structure of this set of formulas.

Let Ω = BPV and define

∆ = ∆(P,X) = {φΩ | P (φ | X) exists}. (4.1.2)

Let A ∈ BPV = {φΩ | φ ∈ F} and choose φ ∈ F such that A = φΩ. By the
above definition, if P (φ | X) exists, then A ∈ ∆. Conversely, if A ∈ ∆, then
Remark 4.1.14 and the rule of logical equivalence imply that P (φ | X) exists.
Hence, ∆ is an embedding of the domain of P ( · | X) into BPV . The structure
of this domain, therefore, can be understood by looking at the structure of ∆.

Proposition 4.1.16. If P be an inductive theory, then ∆(P,X) is a Dynkin
system for every X ∈ anteP .

Proof. Let P be an inductive theory and X ∈ anteP . Let ∆ = ∆(P,X) be
defined as above. By the rule of logical implication, P (⊤ | X) = 1. Hence,
Ω = ⊤Ω ∈ ∆, and ∆ is nonempty. Let A ∈ ∆. Choose φ ∈ F such that A = φΩ.
Then Ac = (¬φ)Ω. By Corollary 3.2.7, we have Ac ∈ ∆. Now suppose {An} ⊆ ∆
is pairwise disjoint. Choose φn ∈ F such that An = (φn)Ω. For i ̸= j, we have
⊥Ω = ∅ = Ai ∩ Aj = (φi ∧ φj)Ω. Hence, from Remark 4.1.14, it follows that
φi ∧ φj ≡ ⊥. By the rule of logical equivalence, P (φi ∧ φj | X) = 0. Therefore,
Theorem 3.2.24 implies P (

∨
n φn | X) exists. But (

∨
n φn)Ω =

⋃
nAn, so⋃

nAn ∈ ∆, and ∆ is a Dynkin system.

4.1.7 The full completeness theorem

Theorem 4.1.17 (σ-compactness). A set X ⊆ F is satisfiable if and only if
every countable subset of X is satisfiable.
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Proof. The only if part is trivial. Suppose every countable subset of X is
satisfiable. Assume X is inconsistent. Then X ⊢ ⊥. By Theorem 3.1.10, there
exists countable X0 ⊆ X such that X0 ⊢ ⊥, implying that X0 is inconsistent.
By Corollary 4.1.11, we have that X0 is not satisfiable, a contradiction. Hence,
X is consistent.

Let Ω be the set of all strict models. Let

Σ = {φΩ | φ ∈ T (X) or ¬φ ∈ T (X)}.

Then Σ is a σ-algebra. If A ∈ Σ, choose φ such that A = φΩ and define PA = 1
if φ ∈ T (X) and 0 otherwise. By Remark 4.1.14, the function P is well-defined.

Since X is consistent, ⊥ /∈ T (X). Thus, P ∅ = P⊥Ω = 0. Conversely,
⊤ ∈ T (X), so PΩ = P⊤Ω = 1.

Now let {An}n∈N ⊆ Σ be pairwise disjoint, and define A =
⋃
nAn. For each

n, choose φn such that An = (φn)Ω, and define φ =
∨
n φn. Note that A = φΩ.

Suppose m ̸= n. Since

(φm ∧ φn)Ω = Am ∩An = ∅ = ⊥Ω,

we have φm ∧ φn ≡ ⊥, implying that φm ∧ φn /∈ T (X). Since T (X) is closed
under conjunctions, either φm /∈ T (X) or φn /∈ T (X). This implies that there
is at most one n ∈ N with PAn = 1. Therefore,

∑
n PAn ∈ {0, 1} and∑

PAn = 1 iff there exists n such that PAn = 1

iff there exists n such that φn ∈ T (X)

iff φ ∈ T (X)

iff PφΩ = PA = 1,

showing that P is countably additive. Thus, P is a measure on (Ω,Σ) with
PΩ = 1, and so P = (Ω,Σ,P) is a model.

Now let φ ∈ X ⊆ T (X) be arbitrary. Then φΩ ∈ Σ, and since φ ∈ T (X),
we have PφΩ = 1, showing that P ⊨ X, so that X is satisfiable.

Corollary 4.1.18. A set X ⊆ F is satisfiable if and only if X is consistent.

Proof. The only if part is Corollary 4.1.11. Suppose X is not satisfiable. By
Theorem 4.1.17, there exists a countable subset X0 ⊆ X that is not satisfiable.
By Proposition 4.1.6, the set X0 is not strictly satisfiable. Thus, ω |≡ ¬

∧
X0

for all strict models ω, which implies ⊨ ¬
∧
X0. By Theorem 4.1.13, we

have ⊢ ¬
∧
X0. Thus, X ⊢

∧
X0 and X ⊢ ¬

∧
X0, showing that X is

inconsistent.

Theorem 4.1.19 (Deductive completeness). For X ⊆ F and φ ∈ F , we
have X ⊨ φ if and only if X ⊢ φ.

Proof. The if part is Theorem 4.1.10. Suppose X ⊬ φ. Then X ∪ {¬φ} is
consistent, by Theorem 3.1.13. Thus, X ∪ {¬φ} is satisfiable, by Corollary
4.1.18. Let P be a model with P ⊨ X ∪ {¬φ}. Then P is an example of a
model with P ⊨ X and P ⊭ φ. Thus, X ⊭ φ.



76 CHAPTER 4. PROPOSITIONAL MODELS

4.2 Inductive semantics

4.2.1 Inductive satisfiability

We now define a notion of satisfiability for inductive statements. Let P =
(Ω,Σ,P) be a model with completion P = (Ω,Σ,P). Let (X,φ, p) be an
inductive statement. We say that P satisfies (X,φ, p), written P ⊨ (X,φ, p),
if there exists Y ⊆ Th P and ψ ∈ F such that X ≡ Y ∪ {ψ} and

PφΩ ∩ ψΩ

PψΩ

= p. (4.2.1)

Note that P ⊨ (X,φ, p) if and only if P ⊨ (X,φ, p). Hence, in many
circumstances, we may assume without loss of generality that our models are
complete.

For Q ⊆ F IS, we write P ⊨ Q to mean P ⊨ (X,φ, p) for all (X,φ, p) ∈ Q.
A set Q is satisfiable if there exists a model P such that P ⊨ Q.

The next result shows that if P ⊨ (X,φ, p), then (4.2.1) will hold, regardless
of how we decompose X into Y and ψ. As a corollary, we see that for fixed X
and φ, there can be only one p such that P ⊨ (X,φ, p).

Proposition 4.2.1. If X ≡ Y ∪{ψ} ≡ Y ′∪{ψ′} and P ⊨ Y, Y ′, then ψΩ = ψ′
Ω

a.s. In particular, if P ⊨ (X,φ, p) and X ≡ Y ∪ {ψ}, where P ⊨ Y , then
(4.2.1) holds.

Proof. Suppose X ≡ Y ∪ {ψ} ≡ Y ′ ∪ {ψ′} and P ⊨ Y, Y ′. Using Theorem
4.1.19, we have Y, ψ ⊨ ψ′, which implies Y ⊨ ψ → ψ′. Hence, P ⊨ ψ → ψ′, so
that PψΩ ∩ (ψ′

Ω)
c = 0. Similarly, Pψ′

Ω ∩ ψcΩ = 0. Thus, PψΩ △ ψ′
Ω = 0.

Now suppose P ⊨ (X,φ, p) and X ≡ Y ∪ {ψ}, where P ⊨ Y . Choose
Y ′ ⊆ F and ψ′ ∈ F such that X ≡ Y ′∪{ψ′}, P ⊨ Y ′, and PφΩ∩ψ′

Ω/Pψ′
Ω = p.

By the above, ψΩ = ψ′
Ω a.s. Hence, PψΩ = Pψ′

Ω and PφΩ ∩ ψΩ = PφΩ ∩ ψ′
Ω,

so that (4.2.1) holds.

Corollary 4.2.2. Let P be a model. If P ⊨ (X,φ, p) and P ⊨ (X,φ, p′), then
p = p′.

Proof. Suppose P ⊨ (X,φ, p′). Write X ≡ Y ∪ {ψ}, where P ⊨ Y and
PφΩ ∩ ψΩ/PψΩ = p′. By Proposition 4.2.1, if P ⊨ (X,φ, p), then (4.2.1)
holds, and so p = p′.

4.2.2 Models determine theories

Given a model P, we define

ThP = {(X,φ, p) ∈ F IS | P ⊨ (X,φ, p)}. (4.2.2)
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Lemma 4.2.3. Let P = (Ω,Σ,P) be a model. Let X,Y ⊆ F and ψ ∈ F .
Assume X ≡ Y ∪ {ψ} and P ⊨ Y . Then P ⊨ (X,φ, 1) if and only if ψΩ ∈ Σ
and ψΩ ⊆ φΩ a.s.

Proof. Without loss of generality, assume P is complete. Suppose P ⊨
(X,φ, 1). Write X ≡ Y ′ ∪ {ψ′}, where P ⊨ Y ′ and PφΩ ∩ ψ′

Ω/Pψ′
Ω = 1.

By Proposition 4.2.1, we have ψΩ = ψ′
Ω a.s. Hence, PφΩ ∩ ψΩ/PψΩ = 1, and

this gives PφcΩ ∩ ψΩ = 0. Conversely, suppose ψΩ ∈ Σ and ψΩ ⊆ φΩ a.s. Then
PψΩ ∩ φcΩ = 0, which implies PψΩ ∩ φΩ = PψΩ, so that P ⊨ (X,φ, 1).

Theorem 4.2.4. If P is a model, then ThP is a complete inductive theory
with root Taut.

Proof. Let P be a model and let P = ThP. Without loss of generality, assume
P is complete. We first show that P is admissible. Suppose (X,φ, p) ∈ P ,
X ′ ≡ X, and φ′ ≡X φ. Choose Y and ψ such that X ≡ Y ∪ {ψ}, P ⊨ Y , and
PφΩ ∩ ψΩ/PψΩ = p. Then Y, ψ ⊢ φ′ ↔ φ, so that Y ⊢ ψ → (φ ↔ φ′). But
P ⊨ Y , so PψΩ ∩ (φ′

Ω △ φΩ) = 0. But

(φ′
Ω △ φΩ) ∩ ψΩ = (φ′

Ω ∩ ψΩ)△ (φΩ ∩ ψΩ).

Thus, φ′
Ω ∩ψΩ = φΩ ∩ψΩ a.s. Since P is complete, this gives φ′

Ω ∩ψΩ ∈ Σ and
Pφ′

Ω ∩ψΩ = PφΩ ∩ψΩ. Hence, Pφ′
Ω ∩ψΩ/PψΩ = p. Since X ′ ≡ X ≡ Y ∪{ψ},

it follows that (X ′, φ′, p) ∈ P .
Now assume (X ′, φ′, p′) ∈ P . By Corollary 4.2.2, we have p = p′, and

therefore P is admissible.
We next show that P is entire. Throughout the proof of entirety, we fix

X ∈ anteP . Choose (X,φ′, p′) ∈ P . Write X ≡ Y ∪ {η}, where P ⊨ Y and
PφΩ ∩ ηΩ/P ηΩ = p′.

Suppose X ⊢ φ. Then Y ⊢ η → φ. Hence P ⊨ η → φ, which implies
P ηΩ ∩ φcΩ = 0. Since ηΩ ∈ Σ, it follows that P ηΩ ∩ φΩ = P ηΩ, and therefore
P (φ | X) = 1. Thus, P satisfies the rule of logical implication.

Suppose P (ψ | X,φ) = 1. Since X ∪ {φ} ≡ Y ∪ {η ∧ φ}, Lemma 4.2.3 gives
ηΩ ∩ φΩ ⊆ ψΩ a.s. Thus, ηΩ = (ηΩ ∩ φΩ) ∪ (ηΩ ∩ φcΩ) ⊆ ψΩ ∪ φcΩ a.s. Since
(φ → ψ)Ω = ψΩ ∪ φcΩ, Lemma 4.2.3 implies P (φ → ψ | X) = 1, and P satisfies
the rule of material implication.

Suppose P (φ | X) = 1 and φ ⊢ ψ. By Lemma 4.2.3, we have ηΩ ⊆ φΩ

a.s. Remark 4.1.14 shows that φΩ ⊆ ψΩ. Hence, ηΩ ⊆ ψΩ a.s., so that Lemma
4.2.3 implies P (ψ | X) = 1. Now suppose X ′ ∈ anteP and X ′ ⊢ X. Write
X ′ = Y ′ ∪ {η′}, where P ⊨ Y ′ and η′Ω ∈ Σ. Then Y ′, η′ ⊢ Y, η, so that
Y ′ ⊢ η′ → η. Hence, P ⊨ η′ → η, which gives P η′Ω ∩ ηcΩ = 0. Thus, η′Ω ⊆ ηΩ
a.s. It follows that η′Ω ⊆ φΩ a.s., so that Lemma 4.2.3 gives P (φ | X ′) = 1, and
P satisfies the rule of deductive transitivity.

Suppose X ⊢ ¬(φ ∧ ψ) and two of the probabilities in (3.2.1) exist. Then
Y ⊢ η → ¬(φ ∧ ψ), so that P ηΩ ∩ φΩ ∩ ψΩ = 0. Let φ′ = φ ∧ η and ψ′ = ψ ∧ η.
Then Pφ′

Ω ∩ ψ′
Ω = 0. Since two of the probabilities in (3.2.1) exist, two of the

sets φ′
Ω ∪ ψ′

Ω, φ
′
Ω, and ψ′

Ω are in Σ. Since φ′
Ω ∩ ψ′

Ω is also in Σ and Σ is a
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σ-algebra, it follows that all three sets are in Σ and Pφ′
Ω ∪ ψ′

Ω = Pφ′
Ω + Pψ′

Ω.
From here, (3.2.1) follows immediately, and P satisfies the addition rule.

By Proposition 4.2.1, we have that P (φ | X) exists and is positive if and
only if PφΩ ∩ ηΩ/P ηΩ = p, for some p > 0. Similarly, P (φ ∧ ψ | X) exists
and is positive if and only if PφΩ ∩ ψΩ ∩ ηΩ/P ηΩ = r, for some r > 0. Since
X∪{φ} ≡ Y ∪{φ∧η}, Proposition 4.2.1 also gives that P (ψ | X,φ) exists and is
positive if and only if PφΩ∩ψΩ∩ηΩ/PφΩ∩ηΩ = q, for some q > 0. From this,
it follows that if two of the probabilities in (3.2.2) exist and are positive, then all
three exist and are positive, and pq = r. Hence, P satisfies the multiplication
rule.

Now suppose P (φn | X) = pn for all n, and X,φn ⊢ φn+1. By Proposition
4.2.1, we have P(φn)Ω ∩ ηΩ/P ηΩ = pn. We also have Y ⊢ φn ∧ η → φn+1, so
that P ⊨ φn ∧ η → φn+1, which gives P(φn)Ω ∩ ηΩ ∩ (φn+1)

c
Ω = 0. Hence,

(φn)Ω ∩ ηΩ ⊆ (φn+1)Ω a.s. This gives (φn)Ω ∩ ηΩ ⊆ (φn+1)Ω ∩ ηΩ a.s. Since

(
∨
n φn)Ω ∩ ηΩ = (

⋃
n(φn)Ω) ∩ ηΩ =

⋃
n((φn)Ω ∩ ηΩ),

it follows that (
∨
n φn)Ω ∩ ηΩ ∈ Σ and, using continuity from below, we have

P(
∨
n φn)Ω ∩ ηΩ/P ηΩ = limn→∞ P(φn)Ω ∩ ηΩ/P ηΩ. Therefore, P satisfies the

continuity rule, and P is entire.
We next show that P is complete. Suppose P (φ | X) exists. Then we may

write X ≡ Y ∪ {η}, where P ⊨ Y , PφΩ ∩ ηΩ exists, and P ηΩ > 0. Assume
P (ψ | X) also exists. From Proposition 4.2.1, it follows that PψΩ ∩ ηΩ also
exists. Since Σ is a σ-algebra, we have

(φ ∧ ψ)Ω ∩ ηΩ = φΩ ∩ ψΩ ∩ ηΩ = (φΩ ∩ ηΩ) ∩ (ψΩ ∩ ηΩ) ∈ Σ.

Hence, P(φ ∧ ψ)Ω ∩ ηΩ exists, and so therefore, P (φ ∧ ψ | X) exists, showing
that P satisfies Definition 3.3.1(i).

Now suppose X ∈ anteP . Then we may write X ≡ Y ∪ {ψ}, where P ⊨ Y
and PψΩ > 0. Assume also that X∪{φ} ∈ anteP . Since X∪{φ} ≡ Y ∪{φ∧ψ},
Proposition 4.2.1 implies that PφΩ ∩ ψΩ exists. Hence, P (φ | X) exists, and so
P satisfies Definition 3.3.1(ii), showing that P is complete.

Since P is complete, it is therefore semi-closed. We next show that P is
closed. Assume S ⊆ F is nonempty with P (θ | X) = 1 for all θ ∈ S. Then we
may write X ≡ Y ∪ {ψ}, where ψΩ ⊆ θΩ a.s. for all θ ∈ S. Let S′ = {ψ → θ |
θ ∈ S} and Y ′ = Y ∪ S′. By Lemma 3.1.22, we have X ∪ S ≡ Y ′ ∪ {ψ}. Also,
for any θ ∈ S, we have Ω = ψcΩ ∪ ψΩ ⊆ ψcΩ ∪ θΩ = (ψ → θ)Ω a.s., which gives
P ⊨ ψ → θ. Hence, P ⊨ Y ′, and therefore P ( · | X) = P ( · | X,S), showing
that P satisfies the rule of deductive extension and is thus closed.

Finally, we show that P is connected with root Taut. Let P0 = P ⇃Taut .
Corollary 3.4.8 implies that P0 is a complete pre-theory with root T0. We will
show that P0 is a basis for P . Let X ∈ anteP . Write X ≡ Y ∪ {ψ}, where
P ⊨ Y and PψΩ > 0. Since {ψ} = ∅ ∪ {ψ}, we have {ψ} ∈ anteP0. Let θ ∈ Y
be arbitrary. Since P ⊨ Y , we have P θΩ = 1. Therefore, P (θ | ψ) = 1, which
gives P0(θ | ψ) = 1. This shows that Y ⊆ τ(P0; {ψ}), proving that P0 is a basis
for P .
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Remark 4.2.5. The relationship between ThP in (4.2.2) and Th P in (4.1.1)
is that if P = ThP, then TP = Th P. To see this, let P = ThP and note
that by Proposition 3.4.5, we have θ ∈ TP if and only if P (θ | Taut) = 1, which
holds if and only if P ⊨ (Taut, θ, 1). But this holds if and only if P θΩ = 1, and
this is the definition of P ⊨ θ.

4.2.3 Theories determine models

Theorem 4.2.6. Let P be a complete inductive theory with root T0. Then there
exists a model P such that TP = Th P and P = ThP ⇃[T0,Th P]. In particular,
every inductive theory is satisfiable.

Proof. Let P be a complete inductive theory with root T0. Let Ω = BPV and
let Σ = {φΩ | P (φ | T0) exists}. Since Ω = ⊤Ω, the rule of logical implication
implies Ω ∈ Σ. Since φcΩ = (¬φ)Ω, Corollary 3.2.7 implies that Σ is closed under
complements. Let {An} ⊆ Σ be pairwise disjoint, and let A =

⋃
nAn. For each

n, choose φn such that An = (φn)Ω, and note that A = φΩ, where φ =
∨
n φn.

Also note that since {An} are pairwise disjoint, we have ⊢ ¬(φi ∧ φj) for all
1 ⩽ i < j <∞. Hence, Theorem 3.2.24 implies A ∈ Σ, so that Σ is closed under
countable, pairwise disjoint unions. It follows that Σ is a Dynkin system. Since
P is complete, Definition 3.3.1(i) implies that Σ is closed under intersections.
Therefore, Σ is a σ-algebra.

By Remark 4.1.14 and the rule of logical equivalence, we may define
P : Σ → [0, 1] by PφΩ = P (φ | T0). Note that ⊤Ω = Ω and ⊥Ω = ∅, so
that PΩ = 1 and P ∅ = 0. As above, Theorem 3.2.24 implies that P is countably
additive, so that P is a probability measure on (Ω,Σ).

Let P = (Ω,Σ,P) and let P = (Ω,Σ,P) be its completion. Let A ∈ Σ∩BPV .
Since A ∈ BPV , we may choose φ ∈ F such that A = φΩ. Since A ∈ Σ, we may
write A = φΩ = ψΩ∪N , where P (ψ | T0) exists, N ⊆ ηΩ, and P (η | T0) = 0. By
(3.2.5) and the rule of logical implication, P (φ∧η | T0) = 0. Hence, φΩ∩ηΩ ∈ Σ.
On the other hand, φΩ ∩ ηcΩ = ψΩ ∩ ηcΩ ∈ Σ. Therefore, A = φΩ ∈ Σ, and
this shows that Σ ∩ BPV ⊆ Σ. Since the reverse inclusion is trivial, we have
Σ ∩ BPV = Σ.

We next show that for any φ,ψ ∈ F , we have

P0(φ | T0, ψ) = p iff P ⊨ (T0 + ψ,φ, p). (4.2.3)

Suppose P0(φ | T0, ψ) = p. Then P (φ | T0, ψ) = p. By Definition 3.3.1(ii),
Lemma 3.2.10, and the multiplication rule, we have that P (ψ | T0) > 0 and

P (φ ∧ ψ | T0)
P (ψ | T0)

= p. (4.2.4)

Hence, (4.2.1) holds, so P ⊨ (T0 + ψ,φ, p). Conversely, suppose that P ⊨
(T0 + ψ,φ, p). Then (4.2.1) holds. Since Σ∩BPV = Σ, the same equality holds
for P instead of P. Hence, P (ψ | T0) > 0, P (φ∧ψ | T0) exists, and (4.2.4) holds,
which, by the multiplication rule, gives P (φ | T0, ψ) = p, proving (4.2.3).
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Now, Theorem 4.2.4 implies that ThP is a complete inductive theory with
root Taut, and Remark 4.2.5 implies T (ThP) = Th P. By the rule of logical
implication, P ⊨ T0. Hence, T0 ∈ [Taut,Th P]. It follows from Proposition
3.5.10 that if we define P ′

0 = ThP ⇃T0
and P ′ = P(P ′

0), then TP ′ = Th P and
P ′ = ThP ⇃[T0,Th P]. By (4.2.3), we have P0 = P ′

0. Hence, P = P ′, and so it
follows that TP = Th P and P = ThP ⇃[T0,Th P]. This proves the first claim
of the theorem.

For the second claim, let P be an inductive theory with root T0. Let
P0 = P ⇃T0

, so that P = P(P0). Since P0 is a pre-theory, it is semi-closed and,
therefore, has a completion. By Corollary 3.4.11, we may choose a completion
P 0 that is also a pre-theory with root T0. Let P = P(P 0). By Proposition
3.4.20, the set P is a complete inductive theory with root T0 such that P ⊆ P .
As shown above, we may construct a model P such that P ⊆ P ⊆ ThP.
Hence, P ⊨ P and P is satisfiable.

4.2.4 Consistency and satisfiability

Note that by deductive completeness, the notions of connectivity and strong
connectivity can be completely characterized in terms of semantics. Therefore,
the following theorem shows that consistency can also be characterized in terms
of semantics.

Theorem 4.2.7. A set Q ⊆ F IS is consistent if and only if it is connected and
satisfiable.

Proof. Suppose Q is connected and satisfiable. Choose a model P such that
P ⊨ Q. Then Q ⊆ ThP. Theorem 4.2.4 implies ThP is an inductive theory.
Hence, Q can be extended to an inductive theory, so Q is consistent. Conversely,
suppose Q is consistent. Choose an inductive theory P such that Q ⊆ P . By
Theorem 4.2.6, there exists a model P such that that P ⊨ P . Since Q ⊆ P ,
we have P ⊨ Q, so Q is satisfiable.

Recall that Q ⊢ (X,φ, p) means that Q is consistent and PQ(φ | X) = p.
As such, the following proposition gives a semantic characterization of inductive
derivability in the special case that X ↪→ T0, where T0 is the root of Q. As a
corollary, we find that TQ also has a semantic characterization.

Proposition 4.2.8. Let Q be connected and satisfiable, so that Q is also
consistent. Let T0 be the root of Q. Then the following are equivalent:

(i) PQ(φ | T0, ψ) = p,

(ii) for all models P, if P ⊨ Q and P ⊨ T0, then P ⊨ (T0 + ψ,φ, p).

Proof. Suppose that PQ(φ | T0, ψ) = p, and let P ⊨ Q and P ⊨ T0. Then
Q ⊆ ThP. By Theorems 4.2.4 and 3.3.7, this gives PQ ⊆ ThP, so that
P ⊨ (T0 + ψ,φ, p).

Conversely, suppose that for all models P, if P ⊨ Q and P ⊨ T0, then
P ⊨ (T0 + ψ,φ, p). Let P0 = PQ ⇃T0

. Let P be a completion of P0 and
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define P = P(P ⇃T0). Since T0 ∈ anteP , Corollary 3.4.8 and Proposition 3.4.20
imply that P is a complete inductive theory with root T0. By Theorem 4.2.6,
we may choose a model P such that TP = Th P and P = ThP ⇃[T0,Th P].

Note that Q ⊆ PQ = P(P0) ⊆ P(P ⇃T0) = P ⊆ ThP. Hence, P ⊨ Q.
Also T0 ⊆ TP = Th P, so that P ⊨ T0. Therefore, by assumption,
P ⊨ (T0 + ψ,φ, p). But P = ThP ⇃[T0,Th P], so this gives P (φ | T0, ψ) = p.

Also, P = P(P ⇃T0), which implies P ⇃T0= P ⇃T0 . Hence, P (φ | T0, ψ) = p. Since
P was arbitrary, the rule of inductive extension yields P0(φ | T0, ψ) = p, and
therefore PQ(φ | T0, ψ) = p.

Corollary 4.2.9. Let Q be connected and satisfiable, so that Q is also
consistent. Let T0 be the root of Q. Then the following are equivalent:

(i) θ ∈ TQ,

(ii) for all models P, if P ⊨ Q and P ⊨ T0, then P ⊨ θ.

Proof. Assume θ ∈ TQ, so that PQ(θ | T0) = 1. Suppose P ⊨ Q and P ⊨ T0.
Proposition 4.2.8 implies P ⊨ (T0, θ, 1). Since T0 ≡ T0 ∪ {⊤} and P ⊨ T0, we
have P θΩ ∩ ⊤Ω/P⊤Ω = 1. But ⊤Ω = Ω, so P θΩ = 1, which means P ⊨ θ.

Now assume that for all models P, if P ⊨ Q and P ⊨ T0, then P ⊨ θ.
As above, if P ⊨ T0 and P ⊨ θ, then P ⊨ (T0, θ, 1). Hence, for all models
P, if P ⊨ Q and P ⊨ T0, then P ⊨ (T0, θ, 1). Proposition 4.2.8 implies
PQ(θ | T0) = 1, so that by Proposition 3.4.5, we have θ ∈ TQ.

4.2.5 Inductive consequence and completeness

Having characterized TQ in terms of semantics, we are now ready to define the
inductive consequence relation.

Definition 4.2.10. Let Q ⊆ F IS and (X,φ, p) ∈ F IS. We say that (X,φ, p) is a
consequence of Q, or that Q entails (X,φ, p), which we denote by Q ⊨ (X,φ, p),
if

(i) Q is connected and satisfiable,

(ii) X ↪→ [T0, TQ], where T0 is the root of Q, and

(iii) P ⊨ Q implies P ⊨ (X,φ, p), for all models P.

Corollary 4.2.9 shows that TQ has an entirely semantic characterization.
Hence, Definition 4.2.10 is an entirely semantic definition.

Note that P ⊨ (Taut,⊤, 1) for all models P. However, Q ⊢ (Taut,⊤, 1)
only if the root of Q is Taut. Hence, (ii) cannot be removed if we are to have
completeness.

To simplify the verification that Q ⊨ (X,φ, p), we can replace (iii) with

(iii)′ P ⊨ Q implies P ⊨ (X,φ, p) whenever P is complete and P ⊨ T0.
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We show this below in Theorem 4.2.13, after proving two lemmas. Let
Q = (Ω,Σ,Q) be a complete model and assume that Q ζΩ > 0 for some ζ ∈ F .
Define the probability measure P on (Ω,Σ) by PA = QA ∩ ζΩ/Q ζΩ and let
P = (Ω,Σ,P). Note that if QA = 1, then PA = 1. Hence, Q ⊨ Y implies
P ⊨ Y for all Y ⊆ F .

Lemma 4.2.11. Let Q and P be as above and let P = (Ω,Σ,P) be the
completion of P. Then A ∈ Σ if and only if A ∩ ζΩ ∈ Σ, and in this case,
PA = PA ∩ ζΩ.

Proof. Suppose A∩ζΩ ∈ Σ. Since P ζcΩ = 0 and A∩ζcΩ ⊆ ζcΩ, we have A∩ζcΩ ∈ Σ.
Hence, A = (A ∩ ζΩ) ∪ (A ∩ ζcΩ) ∈ Σ and PA = PA ∩ ζΩ. Conversely, suppose
A ∈ Σ. Write A = B ∪ F , where B ∈ Σ, F ⊆ N , and N ∈ Σ with PN = 0. By
the definition of P, we have QN∩ζΩ = 0. Now write A∩ζΩ = (B∩ζΩ)∪(F∩ζΩ).
Then B ∩ ζΩ ∈ Σ. Also, since F ∩ ζΩ ⊆ N ∩ ζΩ and Q is complete, it follows
that F ∩ ζΩ ∈ Σ. Therefore, A ∩ ζΩ ∈ Σ. Moreover, this shows that PA = PB
and PA ∩ ζΩ = PB ∩ ζΩ. Since P ζΩ = 1, we have PB = PB ∩ ζΩ. Therefore,
PA = PA ∩ ζΩ.

Lemma 4.2.12. Let Q and P be as above. If Q ⊨ (X,φ, p) and ζ ∈ T (X),
then P ⊨ (X,φ, p).

Proof. Suppose Q ⊨ (X,φ, p) and ζ ∈ T (X). Write X ≡ Y ∪{ψ}, where Q ⊨ Y .
Then P ⊨ Y also. Since ζ ∈ T (X), we have X ≡ Y ∪ {ψ, ζ} ≡ Y ∪ {ψ ∧ ζ}. By
Proposition 4.2.1 and the fact that Q is complete, it follows that

p =
QφΩ ∩ ψΩ ∩ ζΩ

QψΩ ∩ ζΩ
=

PφΩ ∩ ψΩ

PψΩ
.

Therefore, P ⊨ (X,φ, p).

Theorem 4.2.13. In Definition 4.2.10, we may replace (iii) with (iii)′.

Proof. Clearly, Definition 4.2.10 implies (iii)′. For the converse, let Q ⊆ F IS

and (X,φ, p) ∈ F IS. Assume (i), (ii), and (iii)′. To show that (iii) holds, let
Q be a model and assume that Q ⊨ Q. We want to show that Q ⊨ (X,φ, p).
As noted below (4.2.1), we may assume without loss of generality that Q is
complete.

By Proposition 3.4.2, we may choose X0 such that T0 = T (X0) and
X0 ∈ anteQ. We may then choose (X0, ξ, q) ∈ Q, so that Q ⊨ (X0, ξ, q).
Write X0 ≡ Y ∪ {ζ}, where Q ⊨ Y and Q ζΩ > 0. Define P = (Ω,Σ,P) by
PA = QA ∩ ζΩ/Q ζΩ. Then P ⊨ Y and P ⊨ ζ. Hence, P ⊨ X0, which
gives P ⊨ T0. Let (X ′, φ′, p′) ∈ Q. Then ζ ∈ T0 ⊆ T (X ′). By Lemma
4.2.12, it follows that P ⊨ (X ′, φ′, p′). This shows that P ⊨ Q. We therefore
have P ⊨ T0 and P ⊨ Q. By (iii)′, this gives P ⊨ (X,φ, p), which implies
P ⊨ (X,φ, p).

By (ii), we may write X ≡ T + ψ, where T ∈ [T0, TQ]. Since T ⊆ TQ and
Q ⊨ Q, we have Q ⊨ T . It remains only to show that QφΩ ∩ ψΩ/QψΩ = p.
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For this, note that ζ ∈ T0 ⊆ T (X), so that X ≡ T +ψ∧ζ. Since Q ⊨ T , we also
have P ⊨ T . Hence, by Proposition 4.2.1 and Lemma 4.2.11, it follows that

p =
PφΩ ∩ ψΩ ∩ ζΩ

PψΩ ∩ ζΩ
=

QφΩ ∩ ψΩ

QψΩ
.

Therefore, Q ⊨ (X,φ, p), which shows that (iii) holds.

Having defined the inductive consequence relation, we now show that it is
identical to the inductive derivability relation.

Theorem 4.2.14 (Inductive soundness and completeness). Let Q ⊆ F IS

and (X,φ, p) ∈ F IS. Then Q ⊢ (X,φ, p) if and only if Q ⊨ (X,φ, p).

Proof. Suppose Q ⊢ (X,φ, p). Then Q is consistent and PQ(φ | X) = p. By
Remark 3.4.24, we have X ↪→ [T0, TQ], where T0 is the root of Q. Theorem
4.2.7 implies Q is connected and satisfiable. Suppose P ⊨ Q. Theorems 4.2.4
and 3.3.7 implies P ⊨ PQ. Hence, P ⊨ (X,φ, p).

For the converse, suppose Q ⊨ (X,φ, p). We need to show that PQ(φ | X) =
p. By Definition 4.2.10(ii), we may write T (X) = T + ψ, where T ∈ [T0, TQ].
Hence, it suffices to show PQ(φ | T0, ψ) = p. We will do this using Proposition
4.2.8.

Suppose P ⊨ Q and P ⊨ T0. Then T0 ⊆ Th P, so by Remark 4.2.5 and
Proposition 3.5.10, if we define P = ThP ⇃[T0,Th P], then P is an inductive
theory with root T0, and TP = Th P. Corollary 4.2.9 gives TQ ⊆ Th P, so
that T ∈ [T0,Th P]. Hence, X ↪→ [T0,Th P]. Moreover, Definition 4.2.10(iii)
implies (X,φ, p) ∈ ThP. Hence, P (φ | X) = p. But T (X) = T + ψ and
T ∈ [T0, TP ]. Therefore, P (φ | T0, ψ) = p. This implies P ⊨ (T0 + ψ,φ, p), so
by Proposition 4.2.8, we have PQ(φ | T0, ψ) = p.

Remark 4.2.15. According to Remark 3.3.8 and Theorems 4.2.7 and 4.2.14,
a connected and satisfiable set P ⊆ F IS is an inductive theory if and only if
P ⊨ (X,φ, p) implies (X,φ, p) ∈ P for all (X,φ, p) ∈ F IS.

4.2.6 Differing roots

Proposition 3.5.10 shows that if P is an inductive theory with root T0, and
T ′
0 ∈ [T0, TP ], then P ′ = P ⇃[T ′

0,TP ] is an inductive theory with root T ′
0. The

difference between these two theories is described entirely by the sentences in
T ′
0 \ T0. In P ′, these sentences are part of the root, which means they are

part of every antecedent. In P , they are part of TP , which means they have
probability one under every antecedent. In either case, we are assuming such a
sentence is “true,” in one sense or another. It may be tempting, then, to think
that these two theories are effectively the same. In fact, for any model P, if
P ⊨ P , then P ⊨ P ′. The converse, however, is not true. The theory with the
lower root, P , has fewer models, as we illustrate below in Proposition 4.2.16.
In other words, by placing a hypothesis in TP rather than T0, we are making
a semantically stronger assumption. Intuitively, the sentences in T0 are only
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hypothetical postulates. The inductive statements in P are all assertions about
the case in which we are given T0. A sentence ζ ∈ TP \T0 has a different status.
In that case, we have P (ζ | T0) = 1. Hence, the inductive theory P is asserting
that ζ is entailed (probabilistically) by T0.

To illustrate this fact, let Q = (Ω,Σ,Q) be a complete model and assume
that Q ζΩ ∈ (0, 1) for some ζ ∈ F . Define the probability measure P on
(Ω,Σ) by PA = QA ∩ ζΩ/Q ζΩ and let P = (Ω,Σ,P). Let (Ω,Σ,P) be the
completion of (Ω,Σ,P). Note that ThP is an inductive theory with root Taut,
and T0 = T (ζ) ∈ [Taut,Th P]. Let P = ThP ⇃[T0,Th P].

Proposition 4.2.16. With notation as above, we have Q ⊨ P , but Q ⊭ ThP.

Proof. Since P ⊨ (Taut, ζ, 1), but Q ζΩ < 1, we have Q ⊭ ThP. Suppose
P (φ | T0, ψ) = p. Then PφΩ ∩ ψΩ/PψΩ = p. By Lemma 4.2.11,

p =
PφΩ ∩ ψΩ ∩ ζΩ

PψΩ ∩ ζΩ
=

QφΩ ∩ ψΩ ∩ ζΩ
QψΩ ∩ ζΩ

=
QφΩ ∩ (ψ ∧ ζ)Ω

Q(ψ ∧ ζ)Ω
.

Since T0 ∪ {ψ} ≡ ∅ ∪ {ζ ∧ ψ} and Q ⊨ ∅, we have Q ⊨ (T0 ∪ {ψ}, φ, p). This
shows that Q ⊨ P ⇃T0

. By Proposition 3.5.10, it follows that Q ⊨ P .

4.2.7 The semantics of inductive conditions

Remark 4.2.15 gives an entirely semantic characterization of inductive theories.
Consequently, inductive conditions can also be characterized semantically. We
are therefore ready to extend the notions of satisfiability and consequence to
inductive conditions.

We say that a model P satisfies an inductive condition C if P ⊨ P for some
P ∈ C. An inductive condition is satisfiable if P ⊨ C for some model P. The
following proposition shows that this notion of satisfiability is an extension of
our previous definition.

Proposition 4.2.17. Let Q ⊆ F IS be connected and let P be a model. Then
P ⊨ Q if and only if P ⊨ CQ.

Proof. Suppose P ⊨ CQ. Choose P ∈ CQ such that P ⊨ P . Since Q ⊆ P ,
we have P ⊨ Q. Conversely, suppose P ⊨ Q. Theorem 4.2.7 implies Q is
consistent, so we may define PC . Since Q ⊆ ThP and Theorem 4.2.4 implies
ThP is an inductive theory, we have PQ ⊆ ThP. That is, P ⊨ PQ. But
PQ ∈ CQ. Hence, P ⊨ CQ.

The next two results show that both the consistency of C and the deductive
theory TC have semantic characterizations.

Theorem 4.2.18. An inductive condition is consistent if and only if it is
satisfiable.

Proof. Let C be an inductive condition. If C is satisfiable, then by definition, it
is nonempty, and therefore consistent. For the converse, suppose C is consistent.
Choose P ∈ C. By Theorem 4.2.6, we may choose a model P such that P ⊨ P .
Hence, P ⊨ C, and C is satisfiable.
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Proposition 4.2.19. Let C be a satisfiable inductive condition, so that C is also
consistent. Let T0 be the root of C. Then the following are equivalent:

(i) θ ∈ TC,

(ii) for all models P, if P ⊨ C and P ⊨ T0, then P ⊨ θ.

Proof. Suppose θ ∈ TC . Assume P ⊨ C and P ⊨ T0. Choose P ∈ C such that
P ⊨ P . Since TC =

⋂
{TP | P ∈ C}, we have θ ∈ TP . From Corollary 4.2.9, it

follows that P ⊨ θ.
Now suppose that for all models P, if P ⊨ C and P ⊨ T0, then P ⊨ θ.

Assume θ /∈ TC . Then we may choose P ∈ C such that θ /∈ TP . By Corollary
4.2.9, we may choose a model P such that P ⊨ P , P ⊨ T0, and P ⊭ θ. Since
P ⊨ P and P ∈ C, we have P ⊨ C. Hence, by our initial supposition, P ⊨ θ, a
contradiction.

Having characterized TC in terms of semantics, we can now extend the
consequence relation to inductive conditions.

Definition 4.2.20. We say that (X,φ, p) ∈ F IS is a consequence of an inductive
condition C, or that C entails (X,φ, p), which we denote by C ⊨ (X,φ, p), if

(i) C is satisfiable,

(ii) X ↪→ [T0, TC ], where T0 is the root of C, and

(iii) P ⊨ C implies P ⊨ (X,φ, p), for all models P.

From Proposition 4.2.17, it follows that for any connected Q ⊆ F IS, we
have Q ⊨ (X,φ, p) if and only if CQ ⊨ (X,φ, p). Hence, Definition 4.2.20 is a
generalization of Definition 4.2.10.

As with Definition 4.2.10, we cannot remove (ii). In fact, in Section 4.4.1, we
provide an example where (i) and (iii) above are satisfied, but (ii) fails because
X is too large. (See Remark 4.4.4.)

Theorem 4.2.21 (Soundness and completeness for conditions). Let C
be an inductive condition and (X,φ, p) ∈ F IS. Then C ⊢ (X,φ, p) if and only if
C ⊨ (X,φ, p).

Proof. Suppose C ⊢ (X,φ, p). Then C is consistent and PC(φ | X) = p. By
Remark 3.4.24, we have X ↪→ [T0, TC ], where T0 is the root of C. Theorem
4.2.18 implies C is satisfiable. Suppose P ⊨ C. Choose P ∈ C such that
P ⊨ P . Since PC ⊆ P , we have P (φ | X) = p. By Remark 4.2.15, this implies
P ⊨ (X,φ, p). But TC ⊆ TP , so X ↪→ [T0, TP ]. Therefore, Definition 4.2.10(iii)
gives P ⊨ (X,φ, p).

For the converse, suppose C ⊨ (X,φ, p). We need to show that PC(φ | X) =
p. By Definition 4.2.20(ii), we may write T (X) = T + ψ, where T ∈ [T0, TC ].
Hence, it suffices to show that PC(φ | T0, ψ) = p.

Let P ∈ C be arbitrary. If P ⊨ P , then P ⊨ C, so by supposition,
P ⊨ (X,φ, p). Since TC ⊆ TP , we have X ↪→ [T0, TP ]. Thus, P ⊨ (X,φ, p).
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By Remark 4.2.15, this gives P (φ | X) = p. But T (X) = T + ψ, where
T ∈ [T0, TC ] ⊆ [T0, TP ]. Therefore, P (φ | T0, ψ) = p. Since P was arbitrary, it
follows that (T0 + ψ,φ, p) ∈

⋂
C0 ⊆ PC , so PC(φ | T0, ψ) = p.

4.3 Counterexamples and resolutions I

In this section, we present several examples that serve to illustrate the necessity
of rules (R8) and (R9). More specifically, entire sets, which are closed under
only (R1)–(R7), exhibit a number of pathological behaviors. These behaviors
were alluded to in Chapter 3. In this section, we provide concrete examples.

To develop these examples, we must expand our tools for creating inductive
theories and entire sets. We do this in Sections 4.3.1 and 4.3.2.

4.3.1 Every probability space is a model

A model is a particular type of probability space, namely one in which Ω is a
set of strict models. Theorem 4.3.1 below shows that every probability space,
regardless of Ω, is isomorphic to a model. More specifically, for every probability
space, there is an appropriate choice of PV such that the given probability space
is isomorphic to a model in F(PV ).

Later, in Theorem 5.4.2, we will give a version of this result in predicate
logic. Theorem 5.4.2 will not only be concerned with an arbitrary probability
space, but also with an arbitrary collection of random variables on that space.

Theorem 4.3.1. Let PV be a given set of propositional variables and let
F = F(PV ). Let (S,Γ, ν) be an arbitrary probability space. Then (S,Γ, ν)
has a subspace that is isomorphic to a model in F . If card(PV ) ⩾ card(Γ), then
(S,Γ, ν) itself is isomorphic to a model. In particular, every probability space is
isomorphic to a model in F(PV ) for an appropriate choice of PV .

Proof. Let G : PV → Γ. If card(PV ) ⩾ card(Γ), then take G to be surjective.
Extend G to F by G¬φ = (Gφ)c and G

∧
n φn =

⋂
nGφn. Let Θ = GF ⊆ Γ

and note that Θ is a σ-algebra. Hence, (S,Θ, ν|Θ) is a measure subspace of
(S,Γ, ν). If card(PV ) ⩾ card(Γ), then Θ = Γ. We abuse notation and simply
write ν for both ν and ν|Θ. We will show that (S,Θ, ν) is isomorphic to a
model in F . More specifically, if Ω = BPV is the set of all strict models, and
Σ = BBV = {φΩ | φ ∈ F}, then we will construct a probability measure P on
(Ω,Σ) such that (S,Γ, ν) and (Ω,Σ,P) are isomorphic.

For x ∈ S, define the strict model ωx by ωx |≡ r if and only if x ∈ Gr, for
all r ∈ PV . By formula induction, it follows that ωx |≡ φ if and only if x ∈ Gφ,
for all φ ∈ F . Define h : S → Ω by hx = ωx. After constructing P, we will show
that h induces an isomorphism.

To construct P, we first prove that φ ≡ ψ implies Gφ = Gψ. Recall the set of
axioms, Λ, defined in Section 3.1.3. It is straightforward to verify that Gφ = S
if φ ∈ Λ is an axiom. Suppose φ is a tautology. Then there is a proof of φ from
∅. Using induction of the length of the proof, as in the proof of Proposition
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3.1.16, one readily verifies that Gφ = S. Now suppose φ ≡ ψ. Then φ ↔ ψ
is a tautology. Hence Gφ ↔ ψ = S. But Gφ ↔ ψ = (Gφ△ Gψ)c. Therefore,
Gφ = Gψ, proving the claim.

By Remark 4.1.14, we have φΩ = ψΩ if and only if φ ≡ ψ. Hence, if φΩ = ψΩ,
then Gφ = Gψ. We may therefore define g : Σ → Θ by gφΩ = Gφ. Let A ∈ Σ
and choose φ ∈ F such that A = φΩ = {ω ∈ Ω | ω |≡ φ}. Then

x ∈ h−1A iff hx ∈ A

iff ωx ∈ φΩ

iff ωx |≡ φ

iff x ∈ Gφ = gφΩ = gA.

Hence, h−1 = g, so that h−1φΩ = Gφ. In particular, this shows that h is
(Θ,Σ)-measurable, so we may define P = ν ◦h−1 = ν ◦ g, making P = (Ω,Σ,P)
a model.

To verify that h induces an isomorphism from (S,Θ, ν) to P, we must check
that for each U ∈ Θ, there exists A ∈ Σ such that h−1A = U ν-a.s. Let U ∈ Θ
and choose φ ∈ F such that U = Gφ. Then A = φΩ ∈ Σ and, by the above,
h−1A = Gφ = U .

4.3.2 Dynkin spaces

Theorem 4.2.4 gives us the means to construct inductive theories. For the first
set of examples in the section, however, we need to construct entire sets that are
not inductive theories. We will do this using Dynkin systems. More specifically,
we will define what we call Dynkin spaces, a generalization of probability spaces
that use Dynkin systems instead of σ-algebras. Then, analogous to Theorem
4.2.4, we will use these Dynkin spaces to construct entire sets.

Definition 4.3.2. A Dynkin space is a triple, (S,∆, ρ), where S is a nonempty
set, ∆ is a Dynkin system on S, and ρ : ∆ → [0, 1] satisfies

(i) ρΩ = 1,

(ii) if A,B ∈ ∆ with A ⊆ B, then ρB \A = ρB − ρA, and

(iii) if {An} ⊆ ∆ with An ⊆ An+1, then ρ
⋃
An = lim ρAn.

Let (S,∆, ρ) be a Dynkin space. A set A ∈ ∆ is called (Dynkin) measurable.
A set A ∈ ∆ is null if A ∈ ∆ and ρA = 0. Note that a measurable subset of a
null set is a null set. A Dynkin space is complete if every subset of a null set is
a null set.

Proposition 4.3.3. If (S,∆, ρ) is a Dynkin space, then ρ is countably additive.
That is, if {An} ⊆ ∆ is pairwise disjoint, then ρ

⋃
An =

∑
ρAn.

Proof. Let A,B ∈ ∆ be disjoint. Since ∆ is a Dynkin system, it is closed under
countable, pairwise disjoint unions. Hence, A ∪B ∈ ∆. By Definition 4.3.2(ii),
we have ρB = ρA ∪B − ρA. Therefore, ρ is finitely additive. From Definition
4.3.2(iii), we obtain ρ

⋃
An = limn

∑n
1 ρAj .
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Proposition 4.3.4. Let (S,∆, ρ) be a complete Dynkin space. If A ∈ ∆,
ρA = 1, and A ⊆ B, then ρB = 1.

Proof. Suppose A ∈ ∆, ρA = 1, and A ⊆ B. Then Ac ∈ ∆, ρAc = 0,
and Bc ⊆ Ac. Since (S,∆, ρ) is complete, this gives ρBc = 0, which implies
ρB = 1.

Proposition 4.3.5. Let (S,∆, ρ) be a complete Dynkin space and let {An} ⊆ ∆.
If ρAn = 0 for all n, then ρ

⋃
An = 0. If ρAn = 1 for all n, then ρ

⋂
An = 1.

Proof. Assume ρAn = 0 for all n. Let Bn = An \
⋃n−1

1 Aj . Then Bn ⊆ An.
Since (S,∆, ρ) is complete, we have ρBn = 0. Since {Bn} is pairwise disjoint,
we also have

⋃
Bn ∈ ∆. But

⋃
Bn =

⋃
An, so ρ

⋃
An = ρ

⋃
Bn =

∑
ρBn = 0.

For the second claim, apply the first to Acn.

Lemma 4.3.6. Let Ω = BPV and let ∆ ⊆ BPV be a Dynkin system. Suppose
D = (Ω,∆, ρ) is a complete Dynkin space. Define

Th D = {φ ∈ F | ρφΩ = 1}.

Then Th D is a consistent deductive theory.

Proof. Suppose Th D ⊢ φ. Choose countable Φ ⊆ Th D such that ⊢
∧

Φ → φ.
Then ω |≡

∧
Φ → φ for all strict models ω. Hence, (

∧
Φ)Ω ⊆ φΩ. By

Proposition 4.3.5, we have ρ(
∧
Φ)Ω = ρ

⋂
θ∈Φ θΩ = 1. Proposition 4.3.4 then

implies ρφΩ = 1. Therefore, φ ∈ Th D and Th D is a deductive theory. Finally,
ρ⊥Ω = ρ ∅ = 0, so ⊥ /∈ Th D and Th D is consistent.

Lemma 4.3.7. Let D and Th D be as in Lemma 4.3.6. Let T0 ⊆ Th D be a
deductive theory. Define P ⊆ F IS so that (X,φ, p) ∈ P if and only if there
exists ψ ∈ F such that T (X) = T0 + ψ and

ρφΩ ∩ ψΩ

ρψΩ
= p. (4.3.1)

Then P is entire.

Proof. Note that if A ∈ ∆ and ρA △ B = 0, then B ∈ ∆ and ρB = ρA.
By adapting the proofs of Proposition 4.2.1, Corollary 4.2.2, and Lemma 4.2.3,
we obtain the following results. If T0 + ψ = T0 + ψ′, then ρψΩ △ ψ′

Ω = 0.
In particular, if (X,φ, p) ∈ P and T (X) = T0 + ψ, then (4.3.1) holds. As
a consequence, if (X,φ, p) ∈ P and (X,φ, p′) ∈ P , then p = p′. Also, if
T (X) = T0 + ψ, then (X,φ, 1) ∈ P if and only if ψΩ ∈ ∆ and ρψΩ ∩ φcΩ = 0.

Using these results, we may adapt the first part of the proof of Theorem
4.2.4 to show that P is entire. Note that in the proof of the addition rule, we
must use the fact that if A∩B ∈ ∆ and two of the sets A∪B, A, and B are in
∆, then all three sets are in ∆ and ρA ∪B = ρA+ ρB − ρA ∩B.
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4.3.3 Entirety is not enough

The examples in this subsection illustrate the insufficiency of entire sets as a
basis for inductive inference.

In Example 4.3.8 below, we use Dynkin spaces to construct a family of entire,
strongly connected sets, indexed by q ∈ (0, 1). Every member of this family is an
example showing that probabilities of conjunctions need not be defined. That
is, if P is one of the entire sets constructed in Examples 4.3.8, then P (r1) exists,
P (r2) exists, but P (r1 ∧ r2) does not exist.

We follow up in Example 4.3.10 by considering the case q = 1/4. In this
case, we show that P is inconsistent. That is, it cannot be extended to an
inductive theory. Since P is entire, it exhibits no violations whatsoever of rules
(R1)–(R7). However, if we try to extend P so that it is closed under (R8), then
we will inevitably create of violation of (R1)–(R7).

In Proposition 4.3.11, we consider the case q = 1/2. As mentioned above,
P (r1 ∧ r2) does not exist. Proposition 4.3.11 is concerned with what happens
when we try to assign a value, q′, to this expression. The result is that q′ = 1/4
is the unique value that we may choose in order to avoid violating rules (R1)–
(R7). As such, this provides an example of the necessary use of rule (R8) to
infer a probability.

Example 4.3.8. In this example, we construct an entire, strongly connected
set P with root T0 such that the domain of P ( · | T0) is not closed under
conjunctions.

For n ∈ N0 and k ⩾ 1, define

dk(n) =
⌊
2−k+1n

⌋
− 2

⌊
2−kn

⌋
,

where ⌊x⌋ is the greatest integer less than or equal to x. Then dk(n) denotes
the k-th binary digit of n, counting digits from the right.

Let PV = {r1, r2}. Let Ω = BPV be the set of all strict models, so that
Ω = {ωn | 0 ⩽ n ⩽ 3}, where ωnrk = dk(n). Note that these four strict models
correspond to the usual rows of a truth table with two propositional variables.

Let

A1 = (r1)Ω = {ω1, ω3}, and
A2 = (r2)Ω = {ω2, ω3}.

Note that
(r1 ↔ r2) = (A1 △A2)

c = {ω0, ω3}.

Let Γ = {A1, A2, (A1 △A2)
c} and

∆ = {∅,Ω} ∪ Γ ∪ {Ac | A ∈ Γ}.

Then ∆ ⊆ BPV is a Dynkin system on Ω. Fix q ∈ (0, 1) and, for A ∈ Γ, define
ρq A = q and ρq Ac = 1 − q. Together with ρq ∅ = 0 and ρq Ω = 1, this makes
D = (Ω,∆, ρ) a complete Dynkin space.
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Let T0 = Taut and let P be the entire set defined in Lemma 4.3.7. Note that

P (r1 | T0) = q,

P (r2 | T0) = q,

P (r1 ↔ r2 | T0) = q.

On the other hand, (r1 ∧ r2)Ω = {ω3} /∈ ∆ so that P (r1 ∧ r2 | T0) is undefined.
Hence, P is an entire set such that the domain of P ( · | T0) is not closed under
conjunctions.

Lemma 4.3.9. Let P ⊆ F IS be entire. Let X ∈ anteP and let G ⊆ F denote
the domain of P ( · | X). Let r1, r2 ∈ PV and assume r1, r2, r1 ↔ r2 ∈ G. Let

φ0 = ¬r1 ∧ ¬r2,
φ1 = r1 ∧ ¬r2,
φ2 = ¬r1 ∧ r2,

φ3 = r1 ∧ r2.

If φ3 ∈ G, then φj ∈ G for all j.

Proof. Note that φ3 ⊢ r1, r2, r1 ↔ r2. Also, r1 ∧¬φ3 ≡ φ1, r2 ∧¬φ3 ≡ φ2, and
(r1 ↔ r2)∧¬φ3 ≡ φ0. Hence, the result follows from Proposition 3.2.5 and the
rule of logical equivalence.

Example 4.3.10. Let P be as in Example 4.3.8 with q = 1/4. Then P is entire
but not consistent. More specifically, P cannot be extended to a deductive
theory. To see this, suppose P ′ is an inductive theory with P ⊆ P ′. Let
P ′
0 = P ′ ⇃T0

so that P ⊆ P ′
0 and P ′

0 is a pre-theory. Since P ′
0 is a pre-theory, it

is semi-closed and therefore has a completion. Let P 0 be a completion of P ′
0.

Then P 0 is also a completion of P . Let G ⊆ F be the domain of P 0( · | T0).
Definition 3.3.1 implies that G is closed under conjunctions. Thus, r1 ∧ r2 ∈ G,
so that by Lemma 4.3.9, we have r1∧¬r2,¬r1∧r2,¬r1∧¬r2 ∈ G. From Lemma
3.2.17 and Proposition 3.2.5, it follows that

1 = P 0(r1 | T0) + P 0(¬r1 ∧ r2 | T0) + P 0(¬r1 ∧ ¬r2 | T0)
⩽ P 0(r1 | T0) + P 0(r2 | T0) + P 0(r1 ↔ r2 | T0)
= 3/4,

a contradiction.
Note that this contradiction does not depend on P 0 being complete. It is

enough to assume that P 0 is an entire extension of P such that P 0(r1 ∧ r2 | T0)
exists. Consequently, there is no value of q′ such that P ∪ {(T0, r1 ∧ r2, q

′)} has
an entire extension.

Proposition 4.3.11. Let P be as in Example 4.3.8 with q = 1/2. Let q′ ∈ [0, 1]
and Q = P ∪ {(T0, r1 ∧ r2, q

′)}. Then Q has an entire extension if and only if
q′ = 1/4.
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Proof. Suppose P ′ is an entire set with Q ⊆ P ′. Let G denote the domain of
P ′( · | T0). Let φj be defined as in Lemma 4.3.9, so that φj ∈ G for all j. Let
pj = P ′(φj | T0) and note that p3 = q′. By the addition rule,

p0 + p3 = p1 + p3 = p2 + p3 = 1/2,

which implies p0+ p1+ p2+3p3 = 3/2. But
∑
j pj = 1, so 1+2p3 = 3/2, giving

q′ = p3 = 1/4.
Now assume q′ = 1/4. Let P = (Ω,Σ,P), where Ω = {ωn | 0 ⩽ n ⩽ 3} as

in Example 4.3.8, Σ = PΩ, and P satisfies Pωn = 1/4 for all n. Then ThP is
an entire extension of Q.

We conclude this section with an example of an inductive theory that fails to
be complete by violating Definition 3.3.1(ii). That is, we construct an inductive
theory P where X ∈ anteP and X ∪ {φ} ∈ anteP even though P (φ | X) does
not exist.

Example 4.3.12. Let PV = {r1, r2, r3}. Recall the notation dk(n) defined in
Example 4.3.8. Let Ω be the set of all strict models, so that Ω = {ωn : 0 ⩽
n ⩽ 7}, where ωnrk = dk(n). Let Σ = PΩ. Fix q ∈ (0, 1) and let Pq be the
probability measure on (Ω,Σ) determined by

Pq ω4 = Pq ω5 = 0,

Pq ω6 = Pq ω7 = q/2,

Pq ωn = (1− q)/4 for 0 ⩽ n ⩽ 3.

Define the model Pq = (Ω,Σ,Pq) and let P q = ThPq. Then P q is a complete
inductive theory with root Taut. Note that

(r1)Ω = {ω1, ω3, ω5, ω7},
(r2)Ω = {ω2, ω3, ω6, ω7},
(r3)Ω = {ω4, ω5, ω6, ω7}.

Hence, P q(r1) = 1/2, P q(r2 | r3) = 1, and P q(r3) = q.
Let Q be defined by Q(r1) = 1/2 and Q(r2 | r3) = 1. Then Q is strongly

connected with root Taut. Also, Q ⊆ P q, so Q is consistent. Let P = PQ be
the inductive theory generated by Q. Then P ⊆ P q for all q ∈ (0, 1). Hence,
P (r3) is undefined, and P violates Definition 3.3.1(ii).

4.4 Counterexamples and resolutions II

This section contains examples related to satisfiability and the consequence
relation. In Section 4.4.1, we construct an example where P ⊨ C implies
P ⊨ (X,φ, p) for all models P, but C ⊬ (X,φ, p). The failure occurs because
X is so large that it is not countably axiomatizable over [Taut, TC ]. As such,
this example demonstrates the need for Definition 4.2.20(ii). It also serves as
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an example of a collection of inductive theories whose intersection is not an
inductive theory, as well as an example of an indeterminate inductive condition.

In Section 4.4.2, we address the issue of completeness and strict satisfiability.
In [16], Karp showed that completeness fails when we try to use strict
satisfiability as a basis for our semantics. She presented therein two examples.
In Examples 4.4.5 and 4.4.6, we revisit Karp’s examples, demonstrate their
resolution in the current context, and show how they connect to classical
probability theory.

4.4.1 An unknown false statement

Let PV = {rt | t ∈ [0, 1]}. The idea behind this example is the following. We
wish to build an inductive theory based on the following assumptions. With
probability 1/2, every propositional variable is true. Otherwise, there is exactly
one r ∈ PV that is false. But in this latter case, we do not want to make any
assumptions about which r is false.

Let T0 = Taut. For t ∈ [0, 1], let

Q(t) = {(T0, rt, 1/2)} ∪ {(T0, rs, 1) | s ̸= t},

Lemma 4.4.1. For each t ∈ [0, 1], the set Q(t) is consistent.

Proof. The set Q(t) is clearly strongly connected with root T0. By Theorem
4.2.7, it suffices to show that Q(t) is satisfiable.

Let Ω = BPV be the set of all strict models and Σ = BPV = {φΩ | φ ∈ F}.
For A ⊆ [0, 1], define the strict model ωA by ωAr

t = 0 if and only if t ∈ A.
Let ωt = ω{t}. Let δ(w) be the point mass measure concentrated on ω. Define
Pt = (δ(ωt) + δ(ω∅))/2 and Pt = (Ω,Σ,Pt). Then ω∅ ∈ rΩ for all r ∈ PV , and
ωt ∈ rΩ if and only if r = rs for some s ̸= t. Hence, Pt rt = 1/2 and Pt rs = 1
for s ̸= t. Therefore, Pt ⊨ Q(t) and Q(t) is satisfiable.

Define the consistent inductive condition C = {PQ(t) | t ∈ [0, 1]}, so that PC
is the inductive theory we were aiming to build.

Proposition 4.4.2. With notation as above, PC ⊂
⋂

C. In particular, PC /∈ C.
That is, the condition C is indeterminate.

Proof. By Theorem 3.5.7, we have PC ⊆
⋂

C. Assume PC =
⋂

C.
Note that for any inductive theory P , by the rule of logical implication, X ∈

anteP if and only if (X,⊤, 1) ∈ P . Hence, antePC =
⋂
{antePQ(t) | t ∈ [0, 1]}.

For t ∈ [0, 1], let St = {rs | s ̸= t}. Then PQ(t)(r | T0) = 1 for all r ∈ St and
PQ(t)(r

t | T0) = 1/2. By Lemma 3.2.10, we have {rt} ∈ antePQ(t). By the rule
of deductive extension, St ∪{rt} = PV ∈ antePQ(t). Since t was arbitrary, this
gives PV ∈ antePC . Hence, we may write PV ≡ T + ψ, where T ∈ [Taut, TC ]
and ψ ∈ F .

Let Ω, Σ, ωt, ω∅, and Pt be as in the proof of Lemma 4.4.1. Let f be the
Boolean function that ψ represent. Proposition 4.1.5 implies that f is Π-ary,
where Π = PV ∩Sf ψ is the countable set of propositional variables that appear
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in ψ. Hence, we may choose a measurable h : BΠ → B such that, for all ω ∈ Ω,
we have ωψ = fω = h(ω|Π).

Enumerate Π as Π = {rt1 , rt2 , . . .}. Choose t0 /∈ {t1, t2, . . .} and let
P = δ(ωt0) and P = (Ω,Σ,P).

Assume for the moment that P ⊨ TC + ψ. Since T + ψ ⊆ TC + ψ and
PV ≡ T + ψ, this gives P ⊨ PV . In particular, P ⊨ rt0 , so that rt0Ω ∈ Σ and
P rt0Ω = 1. By the definition of P, this implies ωt0 ∈ rt0Ω , so that ωt0r

t0 = 1, a
contradiction. Therefore, PC ⊂

⋂
C, and we are done.

It suffices, then, to show that P ⊨ TC + ψ. We first show that P ⊨ TC .
Let θ ∈ TC be arbitrary. By Proposition 3.5.8, we have θ ∈ T (PQ(t)) for all

t ∈ [0, 1]. Hence, Pt θΩ = 1 for all t ∈ [0, 1]. This implies that ω∅ ∈ θΩ and
ωt ∈ θΩ for all t. In other words, ω∅θ = 1 and ωtθ = 1 for all t.

Let Π′ = PV ∩ Sf θ = {rs1 , rs2 , . . .}. As above, we may choose measurable
g : BΠ′ → B such that, for all ω ∈ Ω, we have ωθ = g(ω|Π′). Let θ0 =

∧∞
j=1 r

sj .

For n ∈ N, let θn = ¬rsn ∧ (
∧
j ̸=n r

sj ). Finally, define θ′ =
∨∞
n=0 θ

n. If

t0 /∈ {s1, s2, . . .}, then ωt0r
sj = 1 for all j ∈ N, which implies ωt0θ

0 = 1. If
t0 = sn for some n ∈ N, then ωt0θn = 1. In either case, we have ωt0θ

′ = 1, so
that ωt0 ∈ θ′Ω, and therefore, P θ′Ω = 1.

Now suppose ω ∈ θ′Ω. Choose n ∈ N0 such that ω ∈ θnΩ. If n = 0, then
ω|Π′ = ω∅|Π′ , so that ωθ = ω∅θ = 1 and ω ∈ θΩ. If n ∈ N, then ω|Π′ = ωsn |Π′ ,
so that ωθ = ωsnθ = 1 and again ω ∈ θΩ. This shows that θ

′
Ω ⊆ θΩ. Therefore,

P θΩ = 1, so that P ⊨ θ. Since θ was arbitrary, we have P ⊨ TC .
Lastly, we show that P ⊨ ψ. Since (Ω,Σ, δ(ω∅)) ⊨ PV and PV ≡ T + ψ,

we have ω∅ ∈ ψΩ, so that ω∅ψ = 1. Since t0 /∈ {t1, t2, . . .}, we also have that
ω∅|Π = ωt0 |Π. Hence, ωt0ψ = ω∅ψ = 1, which gives ωt0 ∈ ψΩ and therefore
P ⊨ ψ.

Remark 4.4.3. Since PC is the largest inductive theory contained in
⋂

C, it
follows that

⋂
C is not an inductive theory. By Theorem 3.5.3, the set

⋂
C is

closed. Hence, it must not be connected. In other words, the condition C is an
example of a collection of connected sets whose intersection is not connected.

Remark 4.4.4. Note that if P ⊨ C, then P ⊨ PQ(t) for some t. But we also
have (PV,⊤, 1) ∈ PQ(t) for all t. Hence, P ⊨ C implies P ⊨ (PV,⊤, 1). On the
other hand, the proof of Proposition 4.4.2 shows that PV /∈ antePC . Therefore,
this example illustrates the necessity of Definition 4.2.20(ii).

4.4.2 Karp’s counterexamples

Example 4.4.5. It is well-known that σ-compactness fails for strict
satisfiability. That is, there exists X ⊆ F such that every countable subset is
strictly satisfiable, but X itself is not strictly satisfiable. Karp gives an example
of such an X in [16, Example 4.1.3].

However, since strict satisfiability implies satisfiability (Proposition 4.1.6(i))
and satisfiability is σ-compact (Theorem 4.1.17), we know that any such X
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must be satisfiable. We present Karp’s example below, and then show that it is
satisfied by one of the most common models in probability theory.

Let PV = {rkn | (n, k) ∈ N × {0, 1}}. Let ζ =
∧
n(r

0
n ∨ r1n), and for each

f : N → {0, 1}, let ψf = ¬
∧
n r

f(n)
n . Let X = {ζ} ∪ {ψf | f ∈ {0, 1}N}.

Suppose X0 ⊆ X is countable. Since {0, 1}N is uncountable, there exists
g : N → {0, 1} such that ψg /∈ X0. Define ω by ωrkn = 1 if and only if g(n) = k.

Then ω |≡ ζ. Note that ω |≡ ψf if and only if there exists n such that ωr
f(n)
n = 0.

Given f ̸= g, we may choose n such that f(n) ̸= g(n), and so for this value of

n, we have ωr
f(n)
n = 0. Hence, ω |≡ ψf for all f ̸= g, and therefore ω |≡ X0. It

follows that every countable subset of X is strictly satisfiable.
Now suppose ω |≡ X. Since ω |≡ ζ, we may choose, for each n ∈ N, a value

f(n) ∈ {0, 1} such that ω |≡ r
f(n)
n . But then ω |≡

∧
n r

f(n)
n , meaning ω |̸≡ ψf , a

contradiction. Therefore, X is not strictly satisfiable.
As mentioned in the beginning of this example, however, we know that there

exists a model P = (Ω,Σ,P) such that P ⊨ X. In this case, we can construct
such a model using Ω = BPV and taking Σ = BPV = {φΩ | φ ∈ F}, thereby
assigning a probability to every formula in F . The model is a natural one
that is ubiquitous in probability theory. Namely, it is the one that models an
i.i.d. sequence of coin flips.

Let (S,Γ, ν) be a probability space on which we have constructed an
i.i.d. sequence ⟨Xn | n ∈ N⟩ of {0, 1}-valued random variables with ν{Xn =
1} = 1/2. Define G : PV → Γ by Grkn = {Xn = k}. Let P = (Ω,Σ,P) be the
model constructed in the proof of Theorem 4.3.1. Note that

Gζ = {Xn ∈ {0, 1} for all n},
Gψf = {Xn = f(n) for all n}c.

Hence, P ζΩ = νGζ = 1 and P(ψf )Ω = νGψf = 1 for all f , showing that P ⊨ X.
We will investigate this example further in Section 4.5.5, after covering the

topic of independence.

Example 4.4.6. We present here another example of Karp’s (see [16, Example
4.1.2]). Again we see an X that demonstrates the failure of σ-compactness for
strict satisfiability. And again, we know that X is satisfiable. We could use the
construction in the proof of Theorem 4.1.17 to build a model that satisfies X.
In this example, though, we do not do that. Rather, we show that any such
model has a certain property. Namely, in any such model, P = (Ω,Σ,P), there
will be formulas φ ∈ F such that φΩ /∈ Σ.

Let I be an uncountable set and let PV = {rtn | t ∈ I, n ∈ N}. For each
t ∈ I, let ζt =

∨
n r

t
n. For each s, t ∈ I and n ∈ N, let ψs,tn = ¬(rsn ∧ rtn). Then

define

X = {ζt | t ∈ I} ∪ {ψs,tn | s, t ∈ I, s ̸= t, n ∈ N}.

Let X0 ⊆ X be countable. Then there is a countable set S ⊂ I such that

X0 ⊆ {ζt | t ∈ S} ∪ {ψs,tn | s, t ∈ S, s ̸= t, n ∈ N}.
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Let t 7→ n(t) be an injection from S to N. Define a model ω by ωrtn = 1 if
and only if t ∈ S and n = n(t). Then, for each t ∈ S, we have ω |≡ rtn(t), and

therefore ω |≡ ζt. Also, if s, t ∈ S, s ̸= t, and n ∈ N, then either n ̸= n(s)
or n ̸= n(t), implying that at least one of ωrsn and ωrtn is 0. Thus, ω |≡ ψs,tn .
Altogether, this shows that ω |≡ X0, so that every countable subset of X is
strictly satisfiable.

Now suppose ω |≡ X. For each t ∈ I, we have ω |≡ ζt. By the definition of
ζt, we may choose n(t) ∈ N such that ω |≡ rtn(t). But I is uncountable and N
is countable, so there exists distinct s, t ∈ I such that n(s) = n(t). It follows
that ωψs,tn(s) = 0, and so ω |̸≡ ψs,tn(s), a contradiction. Therefore, X is not strictly

satisfiable.
Again, by Proposition 4.1.6(i) and Theorem 4.1.17, we know that X is

satisfiable, meaning there is a model P = (Ω,Σ,P) such that P ⊨ X. In
this case, however, we cannot construct such a model using Σ = BPV = {φΩ |
φ ∈ F}. In any model that satisfies X, there will exist φ ∈ F such that φΩ /∈ Σ.
In other words, there will be formulas that are not assigned a probability.

To see that this is the case, let P = (Ω,Σ,P) be a model. Assume that
P ⊨ X and that rΩ ∈ Σ for all r ∈ PV . For n, k ∈ N, define

S(n, k) = {t ∈ I | P(rtn)Ω ⩾ k−1}.

Suppose s, t ∈ I and s ̸= t. Then ψs,tn = ¬(rsn ∧ rtn) ∈ X. Thus,

P(ψs,tn )Ω = P((rsn)Ω ∩ (rtn)Ω)
c = 1.

In other words, (rsn)Ω and (rtn)Ω are pairwise disjoint, up to a set of measure
zero. It follows that S(n, k) is a finite set with at most k elements.

Now fix t ∈ I. Since ζt =
∨
n r

t
n ∈ X, we have 1 = P ζtΩ = P

⋃
n(r

t
n)Ω. Thus,

there exists n ∈ N such that P(rtn)Ω > 0, showing that t ∈ S(n, k) for some
n, k ∈ N. In other words, I =

⋃
n,k S(n, k), expressing I as a countable union

of finite sets, contradicting the fact that I is uncountable.

Remark 4.4.7. It follows from Example 4.4.6 that we cannot construct an
N-valued stochastic process ⟨Y (t) | t ∈ I⟩ such that for all s ̸= t, we have
Y (s) ̸= Y (t) a.s. (Recall that a stochastic process is simply an indexed collection
of random variables taking values in the same measurable space.) To see this,
suppose we have such a process, built on a probability space (S,Γ, ν). Define
G : PV → Γ by Grtn = {Y (t) = n}, and let P = (Ω,Σ,P) be the model
constructed in the proof of Theorem 4.3.1. Then P ⊨ X and Σ = {φΩ | φ ∈ F},
a contradiction.

4.5 Independence

In this section, we introduce the concept of (inductive) independence. It is a
purely logical concept, defined solely in terms of formulas and inductive theories,
without reference to any model. Intuitively, φ and ψ are independent given X
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if P (φ | X) is unchanged by adding ψ to X. More generally, a sequence of
formulas is independent if, whenever we take two disjoint subsequences and,
from each subsequence, create a formula using negation and conjunction, the
two resulting formulas are independent.

To make this notion precise, we will introduce the concept of a dialog set,
which describes all the formulas that can be created from a given set of formulas.
Dialog sets are the syntactic analogues of σ-algebras.

After defining independence, we introduce the semantic concept of “measure
independence,” which is nothing more than the familiar notion of independence
in a measure space, defined by the property that the measure of an intersection
factors into a product. Using this, we give a characterization of independence
in terms of satisfiability and measure independence.

Finally, we give two examples in which we use independence to build
inductive conditions, and then look at the inductive theories generated by those
conditions.

4.5.1 Dialog sets

Definition 4.5.1. A set D ⊆ F is a dialog set if it satisfies the following:

(i) φ ∈ D implies ¬φ ∈ D,

(ii) Φ ⊆ D countable implies
∧

Φ ∈ D, and

(iii) φ ∈ D and φ ≡ ψ implies ψ ∈ D.

Note that the Φ in (ii) may be empty. Hence, ⊤ ∈ D, and by (i) and (iii),
also ⊥ ∈ D. Note further that (iii) implies D is closed under →, ↔, and

∨
.

The intersection of any family of dialog sets is again a dialog set. Also, the
language F itself is a dialog set, and is the largest dialog set. If X ⊆ F , then the
dialog set generated by X, denoted by δ(X), is the smallest dialog set containing
X. It is equal to the intersection of all dialog sets containing X. The smallest
dialog set is

δ(∅) = Taut ∪ ¬Taut.

Intuitively, δ(X) is the set of all formulas that can be built out the formulas in
X using negation, conjunction, and logical equivalence. Note that δ(PV ) = F .

Proposition 4.5.2. Let Ω be a set of strict models. If D ⊆ F is a dialog set,
then DΩ is a σ-algebra on Ω. More generally, if X ⊆ F , then σ(XΩ) = δ(X)Ω.

Proof. Let D ⊆ F be a dialog set. Then Ω = ⊤Ω ∈ DΩ. Let A ∈ DΩ. Choose
φ ∈ D such that A = φΩ. Then ¬φ ∈ D, so that Ac = φcΩ = (¬φ)Ω ∈ DΩ.
Finally, suppose {An} ⊆ DΩ. Choose φn ∈ D such that An = (φn)Ω. Then⋂
An = (

∧
φn)Ω ∈ DΩ, and hence, DΩ is a σ-algebra.

Now let X ⊆ F . Then XΩ ⊆ δ(X)Ω. By the above, δ(X)Ω is a σ-algebra.
Hence, σ(XΩ) ⊆ δ(X)Ω. For the reverse inclusion, define D = {φ ∈ F | φΩ ∈
σ(XΩ)}. The set D clearly satisfies (i) and (ii) of Definition 4.5.1. Remark
4.1.14 shows that it also satisfies (iii). Thus, D is a dialog set. Since X ⊆ D, it
follows that δ(X) ⊆ D and therefore δ(X)Ω ⊆ σ(XΩ).
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4.5.2 Independence of two formulas

Let P be an inductive theory. For X ⊆ F , let domP ( · | X) ⊆ F denote the
domain of P ( · | X). If X /∈ anteP , then domP ( · | X) = ∅.

Let φ,ψ ∈ domP ( · | X). We say that φ is dependent on ψ given X
(under P ) if P (φ | X,ψ) exists and is not equal to P (φ | X). We say
that φ is independent of ψ given X (under P ) if either P (ψ | X) = 0 or
P (φ | X,ψ) = P (φ | X).

Note that if P (ψ | X) > 0 and P (φ | X,ψ) does not exist, then φ is
not dependent on ψ, and φ is also not independent of ψ. If P is complete,
then this situation cannot arise. To see this, note that if P is complete and
φ,ψ ∈ domP ( · | X), then P (φ ∧ ψ | X) exists. Hence, by the multiplication
rule, if P (ψ | X) > 0, then P (φ | X,ψ) exists.

Lemma 4.5.3. If φ is dependent on ψ given X, then both 0 < P (φ | X) < 1
and 0 < P (ψ | X) < 1.

Proof. Let φ be dependent on ψ given X. By Lemma 3.2.10, we have
P (ψ | X) > 0. Suppose P (ψ | X) = 1. Then the multiplication rule and
Proposition 3.2.11 imply P (φ | X) = P (φ | X,ψ), a contradiction.

Now suppose P (φ | X) = 1. As above, the multiplication rule and
Proposition 3.2.11 imply P (φ | X,ψ) = 1, a contradiction. Finally, suppose
P (φ | X) = 0. Then P (¬φ | X) = 1. Again, this gives P (¬φ | X,ψ) = 1, so
that (3.2.5) implies P (φ | X,ψ) = 0, a contradiction.

Lemma 4.5.4. If φ is dependent on ψ given X, then both P (ψ | X,φ) and
P (φ | X,¬ψ) exist.

Proof. Suppose φ is dependent on ψ given X. Then P (φ | X), P (ψ | X), and
P (φ | X,ψ) exist, and P (φ | X,ψ) ̸= P (φ | X). Since P (ψ | X) and P (φ | X,ψ)
exist, the multiplication rule implies P (φ ∧ ψ | X) exists. By Lemma 4.5.3, we
have P (φ | X) > 0. Hence, another application of the multiplication rule implies
that P (ψ | X,φ) exists. From Proposition 3.2.5, it follows that P (φ ∧ ¬ψ | X)
exists. Lemma 4.5.3 implies P (¬ψ | X) > 0. Therefore, a final application of
the multiplication rule gives the existence of P (φ | X,¬ψ).

Proposition 4.5.5. Suppose φ is dependent on ψ given X. Then P (φ | X,ψ) >
P (φ | X) if and only if P (φ | X,¬ψ) < P (φ | X).

Proof. Suppose P (φ | X,ψ) > P (φ | X). Lemma 4.5.3 implies P (ψ | X) > 0,
and Lemma 4.5.4 implies P (ψ | X,φ) exists. Thus, by (3.2.8),

P (φ | X)P (ψ | X,φ) > P (ψ | X)P (φ | X),

which implies P (ψ | X,φ) > P (ψ | X). By (3.2.5), this implies P (¬ψ | X,φ) <
P (¬ψ | X). On the other hand, Lemma 4.5.4 implies P (φ | X,¬ψ) exists, so
that (3.2.8) implies

P (¬ψ | X)P (φ | X,¬ψ) = P (φ | X)P (¬ψ | X,φ).
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As before, this implies P (φ | X,¬ψ) < P (φ | X). The analogous argument
proves the converse.

Proposition 4.5.6. Let φ,ψ ∈ F . Then φ is dependent on ψ given X if and
only if ψ is dependent on φ given X.

Proof. Let φ be dependent on ψ given X. Then P (φ | X) and P (ψ | X) exist.
By Lemma 4.5.4, we have that P (ψ | X,φ) exists. Suppose P (ψ | X,φ) =
P (ψ | X). Lemma 4.5.3 implies P (ψ | X) > 0. Thus, by (3.2.8), we have
P (φ | X) = P (φ | X,ψ), a contradiction. Therefore, ψ is dependent on φ given
X. The converse follows by reversing the roles of φ and ψ.

Theorem 4.5.7. Let φ,ψ ∈ domP ( · | X). Then φ is independent of ψ given
X if and only if

P (φ ∧ ψ | X) = P (φ | X)P (ψ | X). (4.5.1)

Proof. Suppose P (ψ | X) = 0. Then φ is independent of ψ given X. Also,
Proposition 3.2.11 implies P (φ ∧ ψ | X) = 0, so that (4.5.1) holds.

Now suppose P (ψ | X) > 0. Then φ is independent of ψ given X if and
only if P (φ | X,ψ) = P (φ | X). On the other hand, by the multiplication rule,
(4.5.1) holds if and only if P (φ | X,ψ) = P (φ | X).

Corollary 4.5.8. Let φ,ψ ∈ domP ( · | X). If φ is independent of ψ given X,
then φ is independent of ¬ψ given X.

Proof. Suppose φ is independent of ψ given X. By Proposition 3.2.5 and
Theorem 4.5.7, we have

P (φ ∧ ¬ψ | X) = P (φ | X)− P (φ ∧ ψ | X)

= P (φ | X)− P (φ | X)P (ψ | X)

= P (φ | X)(1− P (ψ | X))

= P (φ | X)P (¬ψ | X).

Hence, Theorem 4.5.7 implies φ is independent of ¬ψ given X.

By Proposition 4.5.6 and Theorem 4.5.7, we can alter our terminology to
say that φ and ψ are dependent or independent, given X. Note that by
Theorem 4.5.7 and Proposition 3.2.11, if φ,ψ ∈ domP ( · | X) and either
P (φ | X) ∈ {0, 1} or P (ψ | X) ∈ {0, 1}, then φ and ψ are independent given X.

4.5.3 Independence of a sequence of formulas

Let I be a set with |I| ⩾ 2 and let ⟨φi | i ∈ I⟩ be an indexed collection of
formulas in domP ( · | X). Such a collection is independent given X (under
P ) if φ and ψ are independent given X whenever φ ∈ δ({φi | i ∈ I1}) and
ψ ∈ δ({φi | i ∈ I2}), where I1 and I2 are nonempty disjoint subsets of I.

Proposition 4.5.9. Let φ,ψ ∈ domP ( · | X). Then φ and ψ are independent
given X if and only if ⟨φ,ψ⟩ is independent given X.
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Proof. The if direction is trivial. For the only if direction, suppose φ and ψ are
independent given X and let φ′ ∈ δ({φ}) and ψ′ ∈ δ({ψ}). Note that δ({φ})
consists of tautologies, contradictions, and formulas that are equivalent to either
φ or ¬φ, and similarly for δ({ψ}). We may assume that 0 < P (φ′ | X) < 1 and
0 < P (ψ′ | X) < 1, so that neither φ nor ψ is a tautology or contradiction.

Clearly, φ′ and ψ′ are independent if φ′ ≡ φ and ψ′ ≡ ψ. By Corollary 4.5.8,
φ′ and ψ′ are independent if φ′ ≡ φ and ψ′ ≡ ¬ψ. Repeated applications of
this result cover the cases φ′ ≡ ¬φ and ψ′ ≡ ¬ψ, and φ′ ≡ ¬φ and ψ′ ≡ ψ.

Theorem 4.5.10. Let P be an inductive theory and X ∈ anteP . If ⟨φi | i ∈ I⟩
is independent given X, then δ({φi | i ∈ I}) ⊆ domP ( · | X).

Proof. Let Ω = BPV and define ∆ as in (4.1.2), so that ∆ = YΩ, where
Y = domP ( · | X). Proposition 4.1.16 implies that ∆ is a Dynkin system
on Ω. Let U = {(φi)Ω | i ∈ I}. Since ⟨φi | i ∈ I⟩ is independent given X, it
follows that U ⊆ ∆. By Theorem 4.5.7, we have that U is a π-system, that is,
U is closed under pairwise intersections. Therefore, Dynkin’s π-λ theorem gives
σ(U) ⊆ ∆.

Now let φ ∈ δ({φi | i ∈ I}). By Proposition 4.5.2, we have φΩ ∈ σ(U) ⊆ ∆.
Hence, we may choose φ′ ∈ domP ( · | X) such that φΩ = φ′

Ω. Since Ω = BPV ,
according to Remark 4.1.14, it follows that φ ≡ φ′. Therefore, by the rule of
logical equivalence, φ ∈ domP ( · | X).

4.5.4 A semantic characterization of independence

Let (S,Γ, ν) be a probability space and I a set with |I| ⩾ 2. For each
i ∈ I, let Ai ∈ Γ. Then ⟨Ai | i ∈ I⟩ is measure independent in (S,Γ, ν) if
ν
⋂
i∈J Ai =

∏
i∈J ν Aj , whenever J ⊆ I is finite. Note that this is the usual

definition of independence in a probability space. Also note that we may assume
without loss of generality that |J | ⩾ 2.

Let P be an inductive theory. Let P = (Ω,Σ,P) be a model and suppose
P ⊨ P . Let X ∈ anteP . Write X ≡ Y ∪ {ψ}, where P ⊨ Y and PψΩ > 0.
Define the probability measure PX on (Ω,Σ) by PX A = PA ∩ ψΩ/PψΩ, and
let PX = (Ω,Σ,PX). Note that by Proposition 4.2.1, the model PX does not
depend on our choice of Y and ψ.

Theorem 4.5.11. Let P be an inductive theory, X ∈ anteP , and I a set with
|I| ⩾ 2. Let ⟨φi | i ∈ I⟩ be an indexed collection of formulas in domP ( · | X).
Then the following are equivalent:

(i) ⟨φi | i ∈ I⟩ is independent given X.

(ii) For any model P, if P ⊨ P , then ⟨(φi)Ω | i ∈ I⟩ is measure independent
in PX .

(iii) There exists a model P such that P ⊨ P and ⟨(φi)Ω | i ∈ I⟩ is measure
independent in PX .
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Proof. Suppose (i) holds. Assume P is a model and P ⊨ P . Let J ⊆ I
be finite with |J | ⩾ 2. Fix k ∈ J . Let I1 = {k} and I2 = J \ {k}. Then
φk ∈ δ({φi : i ∈ I1}) and

∧
i∈I2 φi ∈ δ({φi : i ∈ I2}) are independent given X.

By (4.5.1),
P (

∧
i∈J φi | X) = P (φk | X)P (

∧
i∈J\{k} φi | X).

Since P ⊨ P , this implies

PX
⋂
i∈J(φi)Ω = PX(φk)Ω PX

⋂
i∈J\{k}(φi)Ω.

Iterating this argument gives PX
⋂
i∈J(φi)Ω =

∏
i∈J PX(φi)Ω, so that the

indexed collection ⟨(φi)Ω | i ∈ I⟩ is measure independent in PX , showing that
(i) implies (ii).

By Theorem 4.2.6, (ii) implies (iii).
Suppose (iii) holds. For i ∈ I, let Ai = (φi)Ω, so that by hypothesis,

⟨Ai | i ∈ I⟩ is measure independent in PX . A result from measure theory tells us
that if I1 and I2 are disjoint subsets of I, then A and B are measure independent
in PX whenever A ∈ σ({Ai | i ∈ I1}) and B ∈ σ({Ai | i ∈ I2}).

Let I1 and I2 be nonempty disjoint subsets of I. Let U = {φi | i ∈ I1} and
V = {φi | i ∈ I2}. Let φ ∈ δ(U) and ψ ∈ δ(V ). By Proposition 4.5.2, we have
φΩ ∈ σ(UΩ) and ψΩ ∈ σ(VΩ), so that φΩ and ψΩ are measure independent in
PX . Hence,

PX φΩ ∩ ψΩ = PX φΩ PX ψΩ. (4.5.2)

Theorem 4.5.10 implies φ, ψ, and φ ∧ ψ are all in domP ( · | X). Since P ⊨ P ,
it follows that (4.5.2) implies P (φ ∧ ψ | X) = P (φ | X)P (ψ | X). By Theorem
4.5.7, therefore, φ and ψ are independent given X. Thus, (iii) implies (i).

Corollary 4.5.12. Let P be an inductive theory, X ∈ anteP , and I a set with
|I| ⩾ 2. Let ⟨φi | i ∈ I⟩ be an indexed collection of formulas in domP ( · | X).
Then ⟨φi | i ∈ I⟩ is independent given X if and only if

P (
∧
j∈J φj | X) =

∏
j∈J P (φj | X)

for all finite J ⊆ I.

Proof. This follows immediately from Theorems 4.5.11 and 4.2.6.

4.5.5 Fair coin flips

In this subsection, our aim is to create an inductive theory that describes an
infinite sequence of independent flips of a fair coin.

We must first construct the language in which this will be done. Let
PV = {rkn | (n, k) ∈ N×{0, 1}}. We interpret rkn as representing the proposition,
“The nth flip of the coin lands on k.” Here, k = 1 represents heads and k = 0
represents tails.

Our inductive theory will be built on three “axioms,” informally stated as:

(1) Each flip must land on heads or tails.



4.5. INDEPENDENCE 101

(2) On an individual flip, the probabilities of heads and tails are each 1/2.

(3) The flips are independent.

We will enforce (1) with our choice of root, T0. We will enforce (2) with a set
Q of inductive statements. We will enforce (3) with an inductive condition, C.

Let T0 = T ({ζ}), where ζ =
∧
n(r

0
n ∨ r1n). Let

Q = {(T0, rkn, 1/2) | (n, k) ∈ N× {0, 1}}.

Note that Q is connected with root T0. Define the inductive condition C to

be the set of all inductive theories with root T0 such that ⟨rf(n)n | n ∈ N⟩ is
independent given T0 whenever f ∈ {0, 1}N.

Recall that Q, C ⊢ (X,φ, p) means CQ ∩ C ⊢ (X,φ, p).

Lemma 4.5.13. The inductive condition CQ ∩ C is consistent.

Proof. Let P = (Ω,Σ,P) be the model constructed in Example 4.4.5. As
shown in that example, P ⊨ T0. Hence, by Proposition 3.5.10, we have that
P = ThP ⇃[T0,Th P] is an inductive theory with root T0. Note that

P(rkn)Ω = νGrkn = ν{Xn = k} = 1/2.

Hence, P (rkn | T0) = P(rkn)Ω = 1/2, so that Q ⊆ P , and therefore P ∈ CQ.
Let f ∈ {0, 1}N. Since (r

f(n)
n )Ω = {Xn = f(n)}, it follows that ⟨(rf(n)n )Ω |

n ∈ N⟩ is measure independent in P. Thus, Theorem 4.5.11 implies P ∈ C, and
so P ∈ CQ ∩ C. Hence, CQ ∩ C is nonempty, and therefore consistent.

By Lemma 4.5.13, we may define PQ,C = P(CQ ∩ C), the inductive theory
generated by Q and C. Note that Q, C ⊢ (X,φ, p) if and only if PQ,C(φ | X) = p.
In other words, PQ,C is precisely the inductive theory we are aiming for. It
contains exactly those inductive statements that can be derived from (1)–(3).

Proposition 4.5.14. The inductive condition CQ ∩ C is determinate. That is,
PQ,C ∈ CQ ∩ C.

Proof. Suppose P ⊨ CQ ∩ C. Choose P ∈ CQ ∩ C such that P ⊨ P . Then P

is an inductive theory with root T0 such that Q ⊆ P and ⟨rf(n)n | n ∈ N⟩ is
independent given T0 whenever f ∈ {0, 1}N. Let f ∈ {0, 1}N and let I ⊆ N be

finite. By Corollary 4.5.12, we have P (
∧
i∈I r

f(i)
i | T0) = 2−|I|. Hence, P ⊨

(T0,
∧
i∈I r

f(i)
i , 2−|I|). By Theorem 4.2.21, we have Q, C ⊢ (T0,

∧
i∈I r

f(i)
i , 2−|I|).

Therefore, PQ,C(
∧
i∈I r

f(i)
i | T0) = 2−|I|. Again by Corollary 4.5.12, this shows

that PQ,C ∈ C. Taking |I| = 1 shows PQ,C ∈ CQ.

Proposition 4.5.15. Let P be the inductive theory in the proof of Lemma
4.5.13. Then P = PQ,C.
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Proof. Since P ∈ CQ ∩ C, we have PQ,C ⊆
⋂

CQ ∩ C ⊆ P . For the reverse
inclusion, since P and PQ,C both have root T0, it suffices to show that
P ⇃T0

⊆ PQ,C ⇃T0
. For notational simplicity, let P ′ = PQ,C .

We first show that P ′(φ | T0) exists for every φ ∈ F . Let Y ⊆ F be
the set of all finite conjunctions of propositional variables. We claim that
Y ⊆ domP ′( · | T0). To see this, let φ ∈ Y . Suppose, for some n, that φ
contains both r0n and r1n. Then φ ⊢ r0n ∧ r1n. Since r0n ∨ r1n ∈ T0, we have
P ′(r0n ∨ r1n | T0) = 1. Hence, Theorem 3.2.18 implies P ′(r0n ∧ r1n | T0) = 0, and
therefore, P ′(φ | T0) = 0. On the other hand, suppose that φ contains at most

one of r0n and r1n for each n. Then φ =
∧
i∈I r

f(i)
i for some finite I ⊆ N and some

f ∈ {0, 1}N. By the proof of Proposition 4.5.14, we have P ′(φ | T0) = 2−|I|.
Hence, Y ⊆ domP ′( · | T0).

Recall that in Lemma 4.5.13, we have Ω = BPV . The above shows that
YΩ ⊆ ∆, where ∆ = {φΩ | P ′(φ | T0) exists}. Proposition 4.1.16 implies that ∆
is a Dynkin system. Since YΩ is closed under pairwise intersections, Dynkin’s
π-λ theorem implies that BPV = σ(YΩ) ⊆ ∆. Hence, if φ ∈ F , then φΩ ∈ ∆,
so that φΩ = φ′

Ω for some φ′ ∈ domP ′( · | T0). Remark 4.1.14 gives φ ≡ φ′, so
that by the rule of logical equivalence, P ′(φ | T0) exists.

Now suppose P (φ | T0, ψ) = p. Then, by the definition of P , we have
PφΩ∩ψΩ/PψΩ = p. Since P ′(φ∧ψ | T0) and P ′(ψ | T0) both exist and P ⊨ P ′,
this implies that P ′(φ ∧ ψ | T0)/P ′(ψ | T0) = p. From the multiplication rule,
it follows that P ′(φ | T0, ψ) = p.

Recall ψf = ¬
∧
n r

f(n)
n from Example 4.4.5, where f ∈ {0, 1}N. The function

f is simply a sequence of 1’s and 0’s. If we interpret f as a sequence of heads
and tails, then the formula ψf represents the sentence,

“The pattern of heads and tails produced by the coin is not f .”

By Proposition 4.5.15 and Example 4.4.5, we have PQ,C(ψf | T0) = 1 for every
f ∈ {0, 1}N. Hence, T0, Q, C ⊢ ψf , so that ψf is a logical consequence of (1)–(3),
and this is true for every f ∈ {0, 1}N.

Classical intuition suggests that this is paradoxical, since the coin must
produce some pattern. But this classical intuition is rooted in the idea of
strict satisfiability. Indeed, Example 4.4.5 shows that there is no strict model
that strictly satisfies both T0 and every ψf . A strict model is an assignment of
truth values to every sentence. Classical intuition thinks in terms of these truth
assignments. To remove any cognitive dissonance produced by this example,
intuition must be changed so that it thinks in terms of probability measures on
truth assignments.

4.5.6 Biased coin flips

As in the previous subsection, our aim here is to create an inductive theory that
describes an infinite sequence of independent coin flips. This time, however, we
will drop the assumption that the coin is fair.
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As before, we use the language built on PV = {rkn | (n, k) ∈ N × {0, 1}},
where rkn represents the proposition, “The nth flip of the coin lands on k.”

This time, the “axioms” of our inductive theory will be:

(1) Each flip must land on heads or tails.

(2) On an individual flip, the probabilities of heads and tails sum to 1.

(3) Every flip has the same probability of heads, which is neither 0 nor 1.

(4) The flips are independent.

We will enforce (1) with our choice of root, T0. We will enforce (2)–(4) with
inductive conditions.

As before, let T0 = T ({ζ}), where ζ =
∧
n(r

0
n ∨ r1n). Let IT0

be the set of
inductive theories with root T0. Define the inductive conditions,

C2 = {P ∈ IT0
| P (r0n | T0) + P (r1n | T0) = 1 for all n},

Cq = {P ∈ IT0
| P (r1n | T0) = q for all n}, q ∈ (0, 1),

C4 = {P ∈ IT0 | ⟨rf(n)n | n ∈ N⟩ is independent given T0 for all f ∈ {0, 1}N}

Let C3 =
⋃
q∈(0,1) Cq. Then Cj represents assumption (j) for 2 ⩽ j ⩽ 4. Let

C = C2 ∩ C3 ∩ C4.

Proposition 4.5.16. The condition C is consistent, but indeterminate. That
is, PC /∈ C. More precisely, the domain of PC( · | T0) does not contain any
propositional variables. Hence, PC /∈ C2, PC /∈ C4, and PC /∈ Cq for any
q ∈ (0, 1).

Proof. Let P be the model constructed in Example 4.4.5 and let P =
ThP ⇃[T0,Th P]. Then P ∈ C2 ∩ C1/2 ∩ C4 ⊆ C and P ⊨ P . Hence, P ⊨ C, so
that C is satisfiable and therefore consistent.

Fix r ∈ PV and assume PC(r | T0) exists. Let q0 = PC(r | T0). Choose
q ∈ (0, 1) such that q0 /∈ {q, 1 − q}. As in Example 4.4.5, we may construct a
model Pq such that P q = ThPq ⇃[T0,Th P]∈ C2 ∩ Cq ∩ C4 ⊆ C. Since P q ∈ Cq,
we have P q(r | T0) ∈ {q, 1−q}. On the other hand, since P q ∈ C, it follows that
PC ⊆

⋂
C ⊆ P q, so that P q(r | T0) = q0, a contradiction. Hence, PC(r | T0)

does not exist.

Proposition 4.5.16 shows that the domain of PC( · | T0) does not contain
any propositional variables. This domain, however, is not trivial. That is, it
contains more than just tautologies and contradictions. Recall the formulas

ψf = ¬
∧
n r

f(n)
n , where f ∈ {0, 1}N. As in Example 4.4.5, we can show

that P (ψf | T0) = 1 for every P ∈ C. Since PC ⇃T0
=

⋂
C0, it follows that

PC(ψf | T0) = 1 for every f ∈ {0, 1}.
It might be tempting to think that PC( · | T0) is entirely deductive, in

the sense that PC(φ | T0) ∈ {0, 1} whenever PC(φ | T0) exists. After all, the
inductive condition C does not specify any numerical probabilities at all. What
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we will show, however, is that the opposite is true. For any p ∈ (0, 1), there is
a formula φ ∈ F such that PC(φ | T0) = p.

The intuition behind this is the following. It is possible to simulate a fair
coin flip with a biased coin. Simply flip the coin twice. If the results match, start
over. If they do not match, use the second of the two flips as the result. But
we can do this as many times as we like. So we can simulate an i.i.d. sequence
of fair coin flips. We can then use this sequence to simulate a random number
that is uniformly chosen from the interval (0, 1). Finally, we construct a formula
which asserts that this uniform random number is less than p.

Proposition 4.5.17. For any p ∈ (0, 1), there exists a formula φ ∈ F such
that PC(φ | T0) = p.

Proof. Fix p ∈ (0, 1). Let Ω = BPV be the set of all strict models and
Σ = BPV = {φΩ | φ ∈ F}. Let ζ ′ =

∧
n ¬(r0n ∧ r1n). Define Yn : Ω → {0, 1}

as follows. If ω |̸≡ ζ ∧ ζ ′, then Yn(ω) = 0. If ω |≡ ζ ∧ ζ ′, then define Yn(ω)

so that ω |≡ r
Yn(ω)
n . Note that {Yn = 1} = (ζ ∧ ζ ′ ∧ r1n)Ω ∈ Σ. Hence, Yn is

Σ-measurable.
Define τ0 = 0 and

τk = inf{n > τk−1 | n is even and Yn ̸= Yn−1}.

Define Zk = 0 on {τk = ∞} and Zk = Yτk on {τk <∞}, and let U =
∑∞

1 2−kZk.
Then U is Σ-measurable, which implies {U ⩽ p} ∈ Σ. Choose φ ∈ F such that
{U ⩽ p} = φΩ. We will show that PC(φ | T0) = p.

Fix P ∈ C. Let P be an arbitrary model with P ⊨ P . Define P ′ =
ThP ⇃[T0,Th P], so that P ′ is a complete inductive theory with root T0 such
that P ⊆ P ′. By the proof of Theorem 4.2.6, we may construct a model P ′ =
(Ω,Σ,P), where Ω = BPV and Σ = BPV , such that P ′ = ThP ′ ⇃[T0,Th P′].

Using P ∈ C, P ⊆ P ′, and Theorem 3.2.18, we have P ′(ζ ′ | T0) = 1. Hence,
{Yn = 1} = (r1n)Ω P-a.s. Thus, {Yn} are i.i.d. in P ′ with P{Yn = 1} = q, where
q is the value satisfying P ∈ Cq. It is a straightforward exercise to verify that
{Zk} are i.i.d. with P{Zk = 1} = 1/2. Hence, U is uniformly distributed on
(0, 1), which gives P ′(φ | T0) = PφΩ = P{U ⩽ p} = p.

From the definition of P ′, we have P ⊨ (T0, φ, p). Since P was arbitrary,
Theorem 4.2.14 implies P ⊢ (T0, φ, p). But P is an inductive theory, so
this gives P (φ | T0) = p. Finally, since P was arbitrary, it follows that
(T0, φ, p) ∈

⋂
C0 = PC ⇃T0

, so that PC(φ | T0) = p.



Chapter 5

Predicate Logic

In this chapter, we repeat the work we did in Chapters 3 and 4, but in the
setting of a predicate language. Most of the work in this chapter is devoted
to the deductive side of predicate logic. The development of inductive logic
requires hardly any modification from the propositional case.

The language we use is just like first-order logic, except it allows countable
conjunctions and disjunctions. It is typically denoted in the literature by Lω1,ω.
We will denote it simply by L.

In Section 5.1, we introduce the syntax of L. We define terms, formulas,
sentences, and all of their related concepts, such as subformulas, free and bound
variables, and substitutions. The set of formulas is denoted by L. As in the
propositional case, formulas are built from an alphabet of symbols. To the
propositional alphabet, we add an uncountable number of variable symbols,
and we add the logical symbol ∀. Unlike the propositional case, our alphabet
will not include the set PV . Instead, it will include a set of symbols L, called the
extralogical signature. The set L includes constant symbols, relation symbols,
and function symbols.

Sentences are formulas that have no free variables. For example, x > 0 is
a formula, whereas ∀xx > 0 is a sentence. The set of formulas is denoted by
L, and the set of sentences is denoted by L0 ⊆ L. Intuitively, a sentence says
something. It can be meaningful and have a truth value. On the other hand,
a formula is ambiguous. It could mean many different things, depending on
the values assigned to its free variables. As such, it cannot have its own truth
value. Predicate logic is concerned with sentences. In fact, both deductive and
inductive theories consist exclusively of sentences. As such, our models and
our inferential calculi should deal directly with L0. In the inductive case, that
is exactly what we will do. In the deductive case, however, we do something
different. In that case, it will be easier for us to build models and inferential
calculi for L. When we do so, we will treat free variables as if they are constant
symbols.

Section 5.2 is concerned with inferential calculus in predicate logic. The
bulk of this section is devoted to a system of natural deduction for deductive
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inference in L. We present this system, prove that it is σ-compact, and then
show how it connects to inference in L0. We discuss the inductive calculus,
which carries over almost entirely unchanged from Chapter 3. Finally, we give
a Hilbert-type calculus for deductive inference. Specifically, this is the calculus
used by Carol Karp in [16].

In Section 5.3, we present the semantics of predicate logic. As before, the
majority of the section is given to deductive semantics. Inductive semantics
carry over from Chapter 4 with very little modifications. In predicate logic,
sentences are given meaning by interpreting them in a structure. A model
will be a probability measure on a set of structures. Using this, we will
define satisfiability and the consequence relation, then prove σ-compactness,
soundness, and completeness.

Section 5.3 also contains the theory of Peano arithmetic in the infinitary
setting. We present the usual theory from first-order logic, as well as two
different extensions to the infinitary language L0. That is, we define three
theories, PAfin ⊆ PA− ⊆ PA. The theory PAfin is the usual theory of Peano
arithmetic in first-order logic. The theories PA− and PA are extensions to L0.
The first extension, PA−, is conservative, in the sense that every sentence in
PA− \ PAfin is purely infinitary. In other words, in PA−, we cannot deduce
any new first-order sentences that we could not already deduce in PAfin. This
is because PA− and PAfin have the same axioms. In particular, even in PA−,
we can only do induction on finitary formulas. The second extension, PA, is
stronger. There, we allow induction on infinitary formulas. In doing so, we
find that PA completely characterizes the natural numbers. That is, every true
sentence about arithmetic is provable in PA.

Finally, in Section 5.4, we connect inductive logic to the measure-theoretic
concept of a random variable. As described in Section 1.9, we will be forced
to deal with an issue we call “the relativity of randomness.” We will do so
by introducing and discussing “frames of references.” The connection between
inductive logic and random variables will allow us to show that a measure-
theoretic probability model—that is, a probability space, together with a
collection of random variables—is a special case of a model in inductive logic.
In other words, measure-theoretic probability is embedded in inductive logic. In
fact, this embedding is proper. As we will see in Example 5.4.8, inductive logic
is capable of expressing things that cannot be expressed in measure-theoretic
probability.

5.1 The syntax of predicate formulas

In this section, we present the predicate language L. We describe the alphabet,
and the rules for constructing terms, formulas, and sentences. In Karp’s original
construction of L (see [16]), formulas are countably long strings of symbols. Our
construction follows [18] instead, building up formulas out of sets.
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5.1.1 The alphabet and terms

Let L be an extralogical signature. Recall the convention that, unless otherwise
stated, c denotes a constant symbol, r a relation symbol, and f a function
symbol with arity n ⩾ 1.

Let Var = {xα | α < ω1} be an uncountable set of symbols. The symbols
in Var are called individual variables. Unless otherwise stated, letters such as
u, v, x, y, z will denote distinct individual variables.

We define an alphabet, A = L ∪ Var ∪ {¬,
∧
,∀,=}. Let S = SL denote the

set of (finite) strings over A. We use boldface for the symbol, =, to distinguish
it from the ordinary equal sign. For instance, ξ = x0 = x1 means that ξ is
equal to the length-3 string, x0 = x1. Parentheses are not part of our alphabet,
but we may sometimes add them for readability. For example, the above might
be written as ξ = (x0 = x1) to further emphasize the distinction between =
and =. We may also write ξ : x0 = x1, as another way to improve readability.

Definition 5.1.1. The set of terms in L, denoted by T = TL, is the smallest
subset of S such that

(i) Var ⊆ T ,

(ii) c ∈ T for all constant symbols c ∈ L, and

(iii) if f ∈ L is an n-ary function symbol and t1, . . . , tn ∈ T , then ft1 · · · tn ∈ T .

Unless otherwise stated, letters such as s and t will denote terms. Individual
variables and constant symbols are called prime terms. A term is called
compound if it is not prime. Terms of the form in (iii) are called function
terms. Note that every compound term is a function term.

Also note that terms have the same definition here as they do in first-order
logic. Hence, they have all the same properties. For instance (see [28, Section
2.2]), the unique term concatenation property says that if t1 · · · tn = s1 · · · sm,
then n = m and ti = si for all i. Also, the unique term reconstruction property
says that if ft1 · · · tn = fs1 · · · sn, then ti = si for all i.

When convenient, we will adopt the notation t⃗ = t1 · · · tn for a concatenation
of terms. We also adopt shorthand to improve the readability of terms. For
example, suppose x, y, z ∈ Var , and let + and ◦ be binary operation symbols.
Then t = +xy is a term, and ◦tz = ◦+xyz is a term. This latter term is
especially difficult to read, and we would typically write it as (x+ y) ◦ z. Note
that parentheses are not symbols in our alphabet; this is simply shorthand. We
also adopt this shorthand for relations, so that <xy would be written as x < y.

Definition 5.1.2. For t ∈ T , the set var t ⊆ Var is defined recursively as
follows:

(i) if c ∈ L is a constant symbol, then var c = ∅,

(ii) if x ∈ Var , then varx = {x}, and

(iii) var ft1 · · · tn = var t1 ∪ · · · ∪ var tn.
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Intuitively, var t is the set of individual variables occurring in t. By induction
on t, it can be shown that var t is countable for all t ∈ T . If var t = ∅, then we
call t a ground term, or constant term.

Definition 5.1.3. For t ∈ T , the set sym t ⊆ L is defined recursively as follows:

(i) if c ∈ L is a constant symbol, then sym c = {c},

(ii) if x ∈ Var , then symx = ∅, and

(iii) sym ft1 · · · tn = {f} ∪ sym t1 ∪ · · · ∪ sym tn.

Intuitively, sym t is the set of extralogical symbols occurring in t. Note that
sym t is also countable. In addition, we define

con t = {c ∈ sym t | c is a constant symbol},

which denotes the (countable) set of constant symbols occurring in t.

5.1.2 Formulas

A string φ ∈ S is an equation if φ = (s = t), where s, t ∈ T . A string φ ∈ S is a
prime (or atomic) formula if it is an equation or if it has the form φ = rt1 · · · tn,
where r ∈ L is an n-ary relation symbol and t1, . . . , tn ∈ T .

Note that prime formulas have the same definition here as they do in first-
order logic. Hence, they have all the same properties. For instance (see [28,
Section 2.2]), the unique prime formula reconstruction property says that if
rt1 · · · tn = rs1 · · · sn, then ti = si for all i. Also, terms do not contain the
symbol =. Therefore, if (s = t) = (s′ = t′), then s = s′ and t = t′.

We will define the set of formulas so that a formula is a finite tuple, where
each element in the tuple is either a symbol from our alphabet, a formula, or a
countable set of formulas.

Let S0 denote the set of prime formulas. For an ordinal α < ω1, let

S′
α = Sα ∪ {⟨¬, φ⟩ | φ ∈ Sα} ∪ {⟨∀, x, φ⟩ | x ∈ Var , φ ∈ Sα}.

As with strings, when writing tuples such as these, we will typically omit the
commas and angled brackets, so that, for instance, ∀xφ = ⟨∀, x, φ⟩.

We then define

Sα+1 = S′
α ∪ {⟨

∧
,Φ⟩ | Φ ⊆ S′

α is nonempty and countable}.

Here, countable means finite or countably infinite. As above, we will typically
write

∧
Φ as a shorthand for ordered pairs of this type.

In the case that α is a nonzero limit ordinal, we define Sα =
⋃
ξ<α Sξ.

Finally, we define L = Lω1,ω =
⋃
α<ω1

Sα. Note that Sα ⊆ Sβ whenever α < β.
An element φ ∈ L is called a formula. A formula φ is called a literal if φ = π
or φ = ¬π for some prime formula π.
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Theorem 5.1.4 (Unique formula reconstruction property). If φ is a
formula that is not prime, then exactly one of the following holds.

(i) There exists a unique ψ ∈ L such that φ = ¬ψ.

(ii) There exists a unique x ∈ Var and a unique ψ ∈ L such that φ = ∀xψ.

(iii) There exists a unique Φ ⊆ L such that φ =
∧

Φ.

Proof. Let φ ∈ L and assume φ is not prime. Let β be the smallest ordinal such
that φ ∈ Sβ . Since φ is not prime, β > 0. Since φ /∈ Sξ for all ξ < β, it follows
that β is not a limit ordinal. Therefore, β is a successor ordinal, and we may
write β = α+ 1. Since φ /∈ Sα, we have

φ ∈ {⟨¬, ψ⟩ | ψ ∈ Sα} ∪ {⟨∀, x, ψ⟩ | x ∈ Var , ψ ∈ Sα}
∪ {⟨

∧
,Φ⟩ | Φ ⊆ S′

α is nonempty and countable}.

Note that the above union is a disjoint union. Hence, φ is in exactly one of the
above three sets.

Let Lfin denote the smallest subset of L that satisfies

(i) prime formulas are in Lfin,

(ii) if φ ∈ Lfin and x ∈ Var , then ¬φ ∈ Lfin and ∀xφ ∈ Lfin, and

(iii) if Φ ⊆ Lfin is nonempty and finite, then
∧

Φ ∈ Lfin.

Formulas in Lfin are said to be finitary. The set Lfin is, in fact, the set of
formulas used in first-order logic. The reader can consult any introductory text
on mathematical logic for the basic properties of Lfin and its corresponding
syntax and semantics. When necessary, we will cite [28] for this purpose.

We adopt all the same shorthand as in the propositional language F , except
for the definitions of falsum and verum, which will be given later in Section 5.2.5.
In addition, we also use the shorthand ∃xφ = ¬∀¬φ and (s ̸= t) = ¬(s = t).
We may also write ∀x1x2 · · ·xn or ∀x⃗ instead of ∀x1∀x2 · · · ∀xn. If ▷ is a binary
relation symbol, we will write

(∀x ▷ t)φ = ∀x(x ▷ t→ φ),

(∃x ▷ t)φ = ∃x(x ▷ t ∧ φ),

and similarly for ⋫. In Section 5.1.5, after introducing substitutions, we will
give shorthand for ∃!, the unique existential quantifier.

The set of formulas L depends on the extralogical signature L. We may
sometimes emphasize this fact in our notation. For example, if L = {◦, e}, we
may write L = L{◦, e}. We may also write SL and TL instead of SL and TL.
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5.1.3 Formula induction and recursion

The proof of Theorem 3.1.1 carries over with minor modification to give us the
following.

Theorem 5.1.5 (The principle of formula induction). The set of formulas,
L, is the smallest set that satisfies the following:

(i) prime formulas are in L,

(ii) if φ ∈ L and x ∈ Var , then ¬φ ∈ L and ∀xφ ∈ L, and

(iii) if Φ ⊆ L is nonempty and countable, then
∧

Φ ∈ L.

Given φ ∈ L, we define Sf φ ⊆ L, the set of subformulas of φ, by
formula recursion. Namely, Sf π = {π} if π is prime, Sf ¬φ = {¬φ} ∪ Sf φ,
Sf

∧
Φ = {

∧
Φ} ∪

⋃
φ∈Φ Sf φ, and Sf ∀xφ = {∀xφ} ∪ Sf φ. It follows by formula

induction that Sf φ is countable for every φ ∈ L.
Given φ ∈ L, we define lenφ ∈ N ∪ {∞}, which we call the length of φ,

by formula recursion. If φ is prime, then φ is a finite, nonempty string of
symbols from our alphabet A. In this case, let lenφ be the length of this
string. We then extend this by len¬φ = 1 + lenφ, len∀xφ = 2 + lenφ, and
len

∧
Φ = 1 +

∑
φ∈Φ lenφ. Note that if φ has a subformula of infinite length,

then φ has infinite length. Also note that φ ∈ Lfin if and only if lenφ <∞.
Given φ ∈ L, we define the ordinal rkφ, called the rank of φ, by formula

recursion. Namely, rkπ = 0 if π is prime, rk¬φ = rkφ + 1, rk
∧

Φ =
(
⋃
φ∈Φ rkφ) + 1, and rk∀xφ = rkφ + 1. Note that rkφ = 0 if and only if

φ is prime, and rkφ is a successor ordinal whenever φ is not prime.

5.1.4 Variables and symbols

Definition 5.1.6. For φ ∈ L, the set varφ ⊆ Var is defined recursively as
follows:

(i) var s = t = var s ∪ var t,

(ii) var rt1 · · · tn = var t1 ∪ · · · ∪ var tn,

(iii) var¬φ = varφ,

(iv) var
∧
Φ =

⋃
φ∈Φ varφ, and

(v) var ∀xφ = varφ ∪ {x}.

Intuitively, varφ is the set of individual variables occurring in φ. It follows by
formula induction that varφ is countable for every φ ∈ L. In other words, even
though Var is uncountable, any given formula will only make use of countably
many individual variables.

Given φ ∈ L, we define bndφ ⊆ Var , the set of bound variables in φ,
by formula recursion. Namely, bndπ = ∅ if π is prime, bnd¬φ = bndφ,
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bnd
∧
Φ =

⋃
φ∈Φ bndφ, and bnd ∀xφ = bndφ ∪ {x}. Intuitively, bndφ is

the set of variables x such that the prefix ∀x occurs in φ. If bndφ = ∅, then φ
is quantifier-free.

Given φ ∈ L, we define the set of free variables in φ, denoted by freeφ,
by formula recursion. Namely, freeπ = varπ if π is prime, free¬φ = freeφ,
free

∧
Φ =

⋃
φ∈Φ freeφ, and free∀xφ = freeφ \ {x}. Intuitively, freeφ is the set

of variables in φ that are not associated with a quantifier. For X ⊆ L, we define
freeX =

⋃
φ∈X freeφ.

Strictly speaking, bndφ and freeφ need not be disjoint. For example,
suppose

φ = (x ⩽ y ∧ ∀x∃y x+ y = 0).

Here, ⩽ is a binary relation symbol and 0 is a constant symbol. In this formula,
the first occurrences of x and y are both free, whereas the others are bound.
Hence, bndφ = freeφ = {x, y}. Once we move beyond the syntax of formulas
and establish their logical relationships, we will see that φ is logically equivalent
to

φ′ = (x ⩽ y ∧ ∀u∃v u+ v = 0).

In this formula, bndφ′ = {u, v} and freeφ′ = {x, y}, so that bndφ′ and freeφ′

are disjoint. In general, given any formula φ, there is a logically equivalent φ′

with bndφ′ ∩ freeφ′ = ∅. Hence, for most purposes, we may assume that no
variable is both bound and free.

A sentence, or closed formula, is a formula φ such that freeφ = ∅. The set
of sentences is denoted by L0. The set of finitary sentences is L0

fin = L0 ∩ Lfin.
Note that L0

fin is the set of sentences used in first-order logic. An open formula
is a formula that has one or more free variables.

If x1, . . . , xn ∈ Var are distinct, we will write φ = φ(x1, . . . , xn) or φ = φ(x⃗)
to mean that freeφ ⊆ {x1, . . . , xn}. Similarly, for t ∈ T , we write t = t(x⃗) to
mean that var t ⊆ {x1, . . . , xn}.

Definition 5.1.7. For φ ∈ L, the set symφ ⊆ L is defined recursively as
follows:

(i) sym s = t = sym s ∪ sym t,

(ii) sym rt1 · · · tn = {r} ∪ sym t1 ∪ · · · ∪ sym tn,

(iii) sym¬φ = symφ,

(iv) sym
∧
Φ =

⋃
φ∈Φ symφ, and

(v) sym∀xφ = symφ.

Intuitively, symφ is the set of extralogical symbols occurring in φ. Note
that symφ, like varφ, is also countable. In addition, we define

conφ = {c ∈ symφ | c is a constant symbol},

which denotes the (countable) set of constant symbols occurring in φ.
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5.1.5 Substitutions

A substitution is a function σ : Var → T . Such a function can be extended to
σ : T → T by cσ = c and (f t⃗)σ = ftσ1 · · · ftσn. Given φ ∈ L, we want to define
φσ ∈ L so that φσ denotes the result of substituting for every term t in φ the
new term tσ. We do this by transfinite recursion on the rank of φ.

Suppose φ ∈ L is prime. Then φ = (s = t) or φ = rt1 · · · tn. In the first
case, we define φσ = (sσ = tσ). In the second case, we define φσ = rtσ1 · · · tσn.
In this way, we have defined the map σ 7→ φσ for every φ ∈ L with rkφ = 0.

Let α be a nonzero ordinal and assume σ 7→ φσ has been defined for every
φ ∈ L with rkφ < α. Fix φ ∈ L with rkφ = α. By the unique formula
reconstruction property, one of the following holds:

(i) φ = ¬ψ, where rkψ < α,

(ii) φ =
∧
Φ, where rk θ < α for all θ ∈ Φ, or

(iii) φ = ∀xψ, where rkψ < α.

In the first two cases, define φσ = ¬ψσ and φσ =
∧
θ∈Φ θ

σ, respectively. In the
third case, define φσ = ∀xψτ , where τ : Var → T is the substitution defined
by xτ = x and yτ = yσ whenever y ̸= x. By transfinite recursion on rkφ, this
defines σ 7→ φσ for all φ ∈ L.

If x ∈ Var and t ∈ T , we use the notation t/x to denote the substitution
σ : Var → T defined by xσ = t and yσ = y for y ̸= x. We read t/x as “t for x”
and write φσ as φ(t/x). This is extended in the natural way for x⃗ = ⟨x1, . . . , xn⟩
and t⃗ = ⟨t1, . . . , tn⟩.

Note that, in general, φ(t1t2/x1x2) ̸= φ(t1/x1)(t2/x2). For example, if
φ = x1 < x2, then φ(x2x1/x1x2) = x2 < x1, but φ(x2/x1)(x1/x2) = x1 < x1.

Proposition 5.1.8. Let s, t ∈ T and x ∈ Var . Then

var s(t/x) ⊆ (var s \ {x}) ∪ var t.

Proof. We prove this by induction on s. If s = x, then s(t/x) = t, so
var s(t/x) = var t, and the result holds. If s = y, where y ̸= x, or s = c,
then s(t/x) = s and x /∈ var s. Hence, var s(t/x) = var s = var s \ {x}, and the
result holds.

Now suppose the result holds for t1, . . . , tn, and let s = ft1 · · · tn. Let
t′i = ti(t/x), so that var t′i ⊆ (var ti \ {x}) ∪ var t and s(t/x) = ft′1 · · · t′n. Then

var s(t/x) =
⋃n
i=1 var t

′
i

⊆
⋃n
i=1(var ti \ {x}) ∪ var t

= ((
⋃n
i=1 var ti) \ {x}) ∪ var t

= (var s \ {x}) ∪ var t,

and the result holds.
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Proposition 5.1.9. Let φ ∈ L, x ∈ Var , and t ∈ T . Then

freeφ(t/x) ⊆ (freeφ \ {x}) ∪ var t.

Proof. We prove this by induction on φ. An argument like the one in the proof
of Proposition 5.1.8 covers the cases where φ is prime, φ = ¬ψ, and φ =

∧
Φ.

Suppose φ = ∀xψ. Then freeφ = freeψ \ {x}. In particular, x /∈ freeφ.
Moreover, φ(t/x) = φ, so that freeφ(t/x) = freeφ = freeφ \{x}, and the result
holds.

Now suppose φ = ∀yψ, where y ̸= x. Then φ(t/x) = ∀y ψ(t/x), and
freeφ(t/x) = freeψ(t/x) \ {y}. Assume z ∈ freeφ(t/x), but z /∈ (freeφ \
{x}) ∪ var t. Then z ∈ freeψ(t/x) and z ̸= y. By the inductive hypothesis,
the result holds for ψ. Hence, z ∈ (freeψ \ {x}) ∪ var t. But z /∈ var t. Thus,
z ∈ freeψ and z ̸= x. Since freeφ = freeψ \ {y}, we have z ∈ freeφ. It follows
that z ∈ freeφ \ {x}, a contradiction.

Corollary 5.1.10. If φ(x) ∈ L and t is a ground term, then φ(t) ∈ L0.

Proof. Let φ(x) ∈ L and let t be a ground term. Then freeφ ⊆ {x} and
var t = ∅. By Proposition 5.1.9, we have freeφ(t) = ∅, so that φ(t) is a
sentence.

Using substitutions, we introduce the shorthand,

∃!xφ = ∃xφ ∧ ∀xy(φ ∧ φ(y/x) → x = y),

where y /∈ varφ.

5.2 Predicate calculus

In this section, we define both the deductive and inductive derivability relations.
As in the propositional case, we will denote them both by ⊢. We begin with the
deductive case. As described in Section 5.2.6, the inductive case will require no
modification from its presentation in Chapter 3.

For deductive derivability, we wish to define a relation ⊢ from PL0 to L0

such that X ⊢ φ captures what it means to say a sentence φ can be logically
deduced from the sentences in X. Our aim here is to do this through natural
deduction, as we did in Section 3.1.2 for the propositional language F . We
will keep all the rules in Definition 3.1.3, and add two rules each for ∀ and =.
Ideally, we would like our new rules to be the following:

1. if X ⊢ ∀xφ(x) and t is a ground term, then X ⊢ φ(t),

2. if c /∈ con(X ∪ φ(x)) and X ⊢ φ(c), then X ⊢ ∀xφ(x),

3. ⊢ t = t for all ground terms t, and

4. if X ⊢ s = t, φ(s), then X ⊢ φ(t).
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The problem with these rules is (2). We may not have enough constants in
our language to ensure there exists a c /∈ con(X ∪ φ(x)). As shown later
in Proposition 5.2.16, we can always add constants to our language without
affecting derivability. But until that can be established, these rules will not be
easy to work with.

We therefore take a slightly different approach. We define the derivability
relation from PL to L. That is, we allow ourselves to use open formulas in our
derivations. In an open formula, we will treat free variables like constants.
In this way, every language will effectively have an uncountable number of
constants available for use in (2). This still doesn’t fully resolve the problem,
since X itself can be uncountable. But in Theorem 5.2.11, we will prove σ-
compactness, so that we need only consider countable X.

Reasoning with sentences, however, is our primary concern in the bulk of
what we want to do. Both deductive and inductive theories consist entirely of
sentences. As such, after presenting our system of natural deduction and proving
σ-compactness, we will look at expanding our language by adding additional
constants. This will give us two ways to connect our natural deduction to
reasoning with sentences. These are presented in Propositions 5.2.17 and 5.2.18.

We then define deductive and inductive theories, and finally finish the section
with a presentation of a Hilbert-type calculus. This is the calculus used by Karp
in [16], and we will need it in order to apply her completeness result in the setting
of predicate logic.

By allowing open formulas, however, we introduce a new problem. Suppose
L = L{◦, e}, where ◦ is a binary operation symbol and e is a constant symbol.
Let φ(x) = ∃y x ̸= y and t = y ◦ e. Then φ(t) = ∃y y ◦ e ̸= y. If we interpret
these formulas in group theory, where e is the group identity and ◦ is the group
operation, then ∀xφ(x) = ∀x∃y x ̸= y is a true sentence in every group that
has more than one element. And yet, the sentence φ(t) is always false in that
context. Hence, ∀xφ(x) cannot logically imply φ(t). This would not violate
(1), because t is not a ground term. But when we remove that restriction on t,
this will become a problem. The issue is that the variable y ∈ var t is a bound
variable in φ, so after the substitution, it becomes bound. If free variables are
to be treated as constants, then variables inside terms must become free after a
substitution. To ensure this, we will need to avoid substitutions that “collide”
with bound variables.

5.2.1 Free substitutions

Let φ ∈ L, ζ ∈ Sf φ, and x ∈ Var . We say that ζ is in the scope of ∀x in φ
if there exists ψ such that ∀xψ ∈ Sf φ and ζ ∈ Sf ψ. We say that ζ has a free
occurrence of x in φ if x ∈ free ζ and ζ is not in the scope of ∀x in φ. Note that
if φ′ ∈ Sf φ, ζ ∈ Sf φ′, and ζ has a free occurrence of x in φ, then ζ has a free
occurrence of x in φ′.

Proposition 5.2.1. If ζ has a free occurrence of x in φ, then x ∈ freeφ.
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Proof. If ζ = φ, the result is immediate, so assume ζ ̸= φ. Then φ is not prime,
so we may write φ = ¬φ′, φ =

∧
Φ, or φ = ∀yφ′. By induction on φ, we may

assume the result is true for φ′ and for all θ ∈ Φ.
In the first case, ζ ∈ Sf φ′, so ζ has a free occurrence of x in φ′. Hence,

x ∈ freeφ′ = freeφ. In the second case, ζ ∈ Sf θ for some θ ∈ Φ. Thus,
x ∈ free θ ⊆ freeφ. Similarly, in the third case, we get x ∈ freeφ′. But ζ is not
in the scope of ∀x in φ, so y ̸= x. Hence, freeφ = freeφ′.

Let x, y ∈ Var and φ ∈ L. We say that y is not free for x in φ if there exists
ζ ∈ Sf φ such ζ is in the scope of ∀y in φ and ζ has a free occurrence of x in φ.
Otherwise, y is free for x in φ. For t ∈ T , we way that t is free for x in φ if y
is free for x in φ for all y ∈ var t. More generally, a substitution σ is free for φ
if xσ is free for x in φ, for all x ∈ Var .

Proposition 5.2.2. If bndφ ∩ (var t \ {x}) = ∅, then t is free for x in φ. In
particular, y is free for x in φ if y = x or y /∈ bndφ.

Proof. Suppose t is not free for x in φ. Then there exists y ∈ var t such that a
free occurrence of x occurs inside the scope of ∀y. In particular, we must have
y ̸= x and y ∈ bndφ, so that y ∈ bndφ ∩ (var t \ {x}).

Proposition 5.2.3. Let y /∈ varφ and ζ ∈ Sf φ(y/x). If ζ has a free occurrence
of y in φ(y/x), then ζ is not in the scope of ∀x in φ(y/x).

Proof. The proof is by induction on φ and follows the same lines as the proof
of Proposition 5.2.1.

Corollary 5.2.4. If y /∈ varφ, then x is free for y in φ(y/x).

Proof. Suppose x is not free for y in φ(y/x). Then there exists ζ ∈ Sf φ(y/x)
such that ζ is in the scope of ∀x in φ(y/x) and ζ has a free occurrence of y in
φ(y/x). But this contradicts Proposition 5.2.3.

5.2.2 Natural deduction

Definition 5.2.5. The derivability relation, denoted by ⊢ or ⊢L, is the smallest
relation from PL to L satisfying (i)–(vi) in Definition 3.1.3, as well as the
following:

(vii) if X ⊢ ∀xφ, then X ⊢ φ(t/x) when t is free for x in φ,

(viii) if x /∈ freeX and X ⊢ φ, then X ⊢ ∀xφ,

(ix) ⊢ t = t for all t ∈ T , and

(x) if X ⊢ s = t, φ(s/x), then X ⊢ φ(t/x) when s and t are free for x in φ.

Since x is always free for x in φ, (vii) implies

(vii)′ if X ⊢ ∀xφ, then X ⊢ φ.
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Remark 5.2.6. If X ⊢L φ and L ⊆ L′, then X ⊢L′ φ. To see this, let L ⊆ L′

and define ⊢′ = ⊢L′∩(PL×L). Since ⊢′ satisfies (i)–(x) for L, we have ⊢L ⊆ ⊢′.

Remark 5.2.7. The finitary derivability relation is the smallest relation ⊢fin

from PLfin to Lfin such that conditions (i)–(x) from Definition 5.2.5 hold, with
the exception that in (iii) and (iv), we require Φ to be finite. The finitary
derivability relation is a typical natural-deduction calculus for first-order logic.
Clearly, ⊢fin ⊆ ⊢. As we will see in Proposition 5.3.15, if X ⊆ Lfin, φ ∈ Lfin,
and X ⊢ φ, then X ⊢fin φ. In other words, when restricted to finitary formulas,
infinitary calculus cannot produce any new inferences beyond those already
available in first-order logic.

The proof of Proposition 3.1.8, which is based on (i)–(vi), is still valid
here. Throughout the rest of this chapter, unless otherwise indicated, we
will use lowercase Roman numerals refer to Definition 5.2.5 and letters refer
to Proposition 3.1.8.

Proposition 5.2.8 (Bound renaming). For any φ ∈ L and y /∈ varφ, we
have ∀xφ ⊢ ∀y φ(y/x) and ∀y φ(y/x) ⊢ ∀xφ.

Proof. If y = x, the result follows from (i). Assume, then, that y ̸= x. Since
y /∈ varφ, it follows from (vii) that ∀xφ ⊢ φ(y/x). Hence, by (viii), we have
∀xφ ⊢ ∀y φ(y/x).

Let φ′ = φ(y/x). Corollary 5.2.4 implies that x is free for y in φ′. Hence,
by (vii), we have ∀yφ′ ⊢ φ′(x/y) = φ. But x /∈ free ∀yφ′, so (viii) implies
∀yφ′ ⊢ ∀xφ.

Remark 5.2.9. Bound renaming gives us the following alternate to (viii):

(viii)′ if y /∈ freeX ∪ varφ and X ⊢ φ(y/x), then X ⊢ ∀xφ,

To see this, suppose y /∈ freeX ∪ varφ and X ⊢ φ(y/x). Then (viii) implies
X ⊢ ∀y φ(y/x) and Proposition 5.2.8 gives ∀y φ(y/x) ⊢ ∀xφ.

We now prove σ-compactness. In the predicate case, the theorem is stronger,
in that we can not only pass to a countable subset of formulas. We can also pass
to a countable subset of extralogical symbols. We begin with the basic version,
which is the analogue of the propositional version.

Proposition 5.2.10. Let X ⊆ L and φ ∈ L. Then X ⊢ φ if and only if there
exists a countable subset X0 ⊆ X such that X0 ⊢ φ.

Proof. As in the proof of Theorem 3.1.10, we will prove that the following are
equivalent:

X ⊢ φ, (5.2.1)

there exists countable X0 ⊆ X such that
∧
X0 ⊢ φ, and (5.2.2)

there exists countable X0 ⊆ X such that X0 ⊢ φ. (5.2.3)
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The proof of Theorem 3.1.10 carries through to show that (5.2.2) implies (5.2.3),
and (5.2.3) implies (5.2.1). Define ⊢′ so that X ⊢′ φ if and only if X ⊢ φ and
(5.2.2) holds. Since Lemma 3.1.9 is still valid for ⊢, the proof of Theorem 3.1.10
shows that (i)–(iv) hold for ⊢′. It is straightforward to verify that ⊢′ satisfies
(vii)–(x).

Theorem 5.2.11 (σ-compactness). Let X ⊆ L and φ ∈ L. Then X ⊢L φ if
and only if there exist countable X0 ⊆ X and L0 ⊆ L such that X0 ⊢L0

φ.

Proof. The if direction follows from (ii) and Remark 5.2.6. For the only if
direction, define ⊢′ ⊆ PL × L by X ⊢′ φ if X0 ⊢L0 φ for some countable
X0 ⊆ X and L0 ⊆ L. It suffices to show that ⊢′ satisfies (i)–(x).

Suppose φ ∈ L. Let L0 = symφ. Then L0 ⊆ L is countable, and by (i) for
L0, we have φ ⊢L0

φ. Thus, φ ⊢′ φ, and ⊢′ satisfies (i).
Let Φ ⊆ L be countable and suppose X ⊢′ θ for all θ ∈ Φ. For each θ ∈ Φ,

choose countable Xθ ⊆ X and Lθ ⊆ L such that Xθ ⊢Lθ
θ. Let X0 =

⋃
θ∈ΦXθ

and L0 =
⋃
θ∈Φ Lθ, both of which are countable. Remark 5.2.6 implies Xθ ⊢L0 θ

for all θ ∈ Φ. Hence, by (ii) for L0, we have X0 ⊢L0 θ for all θ ∈ Φ. Therefore,
by (iv) for L0, it follows that X0 ⊢L0

∧
Φ. Thus, X ⊢′ ∧Φ, and ⊢′ satisfies

(iv).
The proofs of (ii), (iii), and (v)–(x) are similar.

Since they are based on (i)–(vi), Propositions 3.1.11 and 3.1.12 hold here as
well.

We finish this subsection with a result that we will need later. A variable
permutation is a bijection π : Var → Var . We extend a variable permutation
to π : T → T by cπ = c and (ft1 · · · tn)π = ftπ1 · · · tπn. For φ ∈ L, we
define φπ by (s = t)π = (sπ = tπ), (rt1 · · · tn)π = rtπ1 · · · tπn, (¬φ)π = ¬φπ,
(
∧
Φ)π =

∧
φ∈Φ φ

π, and (∀xφ)π = ∀xπφπ.

Proposition 5.2.12. If π is a variable permutation, then X ⊢ φ if and only if
Xπ ⊢ φπ.

Proof. Define ⊢′ by X ⊢′ φ if X ⊢ φ and Xπ ⊢ φπ. It is straightforward to
verify that ⊢′ satisfies (i)–(x). Hence, X ⊢ φ implies Xπ ⊢ φπ. Applying this
result to π−1 gives the converse.

5.2.3 Constant expansions

We now connect our deductive system back to sentences. To do this, we will
need to expand our language by adding additional constant symbols.

Let L be an extralogical signature with corresponding language L. Let C
be a set of constant symbols. Then LC denotes the language corresponding to
the extralogical signature L ∪ C. If C = {c}, then we write Lc for LC. The
language LC is called a constant expansion of L.

Let C be a countable set of constant symbols. A C-substitution is an injective
function σ : C → Var . Given a C-substitution, we extend it to σ : TLC → Var
by xσ = x, cσ = c for c /∈ C, and (ft1 · · · tn)σ = ft

σ
1 · · · t

σ
n. Define φσ
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recursively by (s = t)σ = (sσ = tσ), (rt1 · · · tn)σ = rt
σ
1 · · · t

σ
n, (¬φ)σ = ¬φσ,

(
∧
Φ)σ =

∧
φ∈Φ φ

σ, and (∀xφ)σ = ∀xφσ. Intuitively, tσ and φσ are obtained
from t and φ, respectively, by replacing each occurrence of c ∈ C with cσ. For
X ⊆ L, we let Xσ = {φσ | φ ∈ X}. Note that if X ⊆ LC, then Xσ ⊆ L.
For V ⊆ Var , we say that σ avoids V if cσ /∈ V for all c ∈ C. Since Var is
uncountable, given any countable V0 ⊆ Var , there exists a C-substitution that
avoids V0. By term induction, it is easy to see that s(t/x)σ = sσ(tσ/x) when σ
avoids x. Using this and formula induction, we have φ(t/x)σ = φσ(tσ/x).

If c is a constant symbol and y ∈ Var , we use the notation y/c to denote
the {c}-substitution σ defined by cσ = y. We read y/c as “y for c” and
write φσ as φ(y/c). In this case, the identity φ(t/x)σ = φσ(tσ/x) becomes
φ(t/x)(y/c) = φ′(t′/x), where t′ = t(y/c) and φ′ = φ(y/c). This is extended in
the natural way for c⃗ = ⟨c1, . . . , cn⟩ and x⃗ = ⟨x1, . . . , xn⟩, provided the ci’s and
the xi’s are distinct.

Proposition 5.2.13. If σ and σ′ both avoid varφ, then there is a variable
permutation such that φσ

′
= (φσ)π. In particular, ⊢L φ

σ if and only if ⊢L φ
σ′
.

Proof. Since C is countable and both σ and σ′ are injective, we may choose a
bijection π : Var → Var such that π ◦ σ = σ′ and xπ = x for all x outside the
ranges of σ and σ′. We prove that φσ

′
= (φσ)π by induction on φ. The proof

is entirely straightforward except for the inductive step φ = ∀xψ. For this, let
φ = ∀xψ and assume σ and σ′ both avoid varφ. Then σ and σ′ both avoid
varψ, so by the inductive hypothesis, ψσ

′
= (ψσ)π. Since σ and σ′ avoid varφ,

we have xπ = x. Thus,

(φσ)π = (∀xψσ)π = ∀xπ(ψσ)π = ∀xψσ
′
= φσ

′
.

For the final result, we apply Proposition 5.2.12.

Proposition 5.2.14. Let X ⊆ LC and φ ∈ LC. If σ and σ′ are C-substitutions
that both avoid varX ∪ {φ}, then Xσ ⊢L φ

σ if and only if Xσ′ ⊢L φ
σ′
.

Proof. Suppose Xσ ⊢L φσ. Choose countable X0 ⊆ X such that X
σ
0 ⊢L φσ.

Let ψ =
∧
X0. Since ψσ =

∧
θ∈X0

θσ and (ψ → φ)σ = ψσ → φσ, we have
⊢L (ψ → φ)σ. But σ and σ′ both avoid var(ψ → φ). Hence, by Proposition
5.2.13, we have ⊢L (ψ → φ)σ

′
, which implies Xσ′ ⊢L φσ

′
. Reversing the roles

of σ and σ′ gives the converse.

Proposition 5.2.15 (Constant elimination). Let C be a countable set of
constant symbols and suppose X ⊢LC φ. Then there exists a countable set
X0 ⊆ X such that X0 ⊢LC φ and X

σ
0 ⊢L φσ whenever σ is a C-substitution

that avoids varX0∪{φ}. In particular, if σ avoids varX∪{φ}, then Xσ ⊢L φ
σ.

Proof. Define ⊢′ ⊆ PLC×LC by X ⊢′ φ if X ⊢LC φ and there exists countable
X0 ⊆ X such that X0 ⊢LC φ and X

σ
0 ⊢L φσ whenever σ avoids varX0 ∪ {φ}.

It suffices to show that ⊢′ satisfies (i)–(x).
It is immediate that (i) and (ii) hold. For (iii), suppose X ⊢′ ∧Φ. Choose

countable X0 ⊆ X such that X0 ⊢LC
∧

Φ and X
σ
0 ⊢L (

∧
Φ)σ =

∧
θ∈Φ θ

σ
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whenever σ avoids varX0∪{
∧
Φ} = varX0∪Φ. Now fix θ ∈ Φ. Then X0 ⊢LC θ

and X
σ
0 ⊢L θσ whenever σ avoids varX0 ∪ Φ. Suppose σ avoids varX0 ∪ {θ}.

Since varX0∪Φ is countable, we may choose σ′ that avoids varX0∪Φ. Since σ
and σ′ both avoid varX0∪{θ}, the inductive hypothesis and Proposition 5.2.14
give X

σ
0 ⊢L θ

σ. Therefore, X ⊢′ θ and ⊢′ satisfies (iii). The proofs for (iv)–(vi)
are similar.

For (vii), suppose X ⊢′ ∀xφ and let t be free for x in φ. Choose countable
X0 ⊆ X such that X0 ⊢ ∀xφ and X

σ
0 ⊢ (∀xφ)σ = ∀xφσ whenever σ avoids

varX ∪ {∀xφ}. Now let σ avoid varX ∪ {φ(t/x)}. As above, by Proposition
5.2.14, we may assume σ also avoids both varX0 ∪ {∀xφ} and var t. Then by
hypothesis, X

σ
0 ⊢ (∀xφ)σ = ∀xφσ.

We now show that tσ is free for x in φσ. Suppose not. Then there exists
y ∈ var tσ such that a free occurrence of x in φσ occurs within the scope of ∀y
in φσ. But σ avoids x, so every occurrence of x in φσ is an occurrence of x in
φ. Also, by the definition of C-substitutions, any occurrence of the quantifier
∀y in φσ is an occurrence of ∀y in φ. Hence, there is a free occurrence of x in
φ that occurs within the scope of ∀y in φ. Since t is free for x in φ, we must
have y /∈ var t. On the other hand, since ∀y occurs in φ, we have y ∈ varφ.
Therefore, σ avoids y. It follows that y /∈ var tσ, a contradiction.

Since tσ is free for x in φσ and X
σ
0 ⊢ ∀xφσ, it follows from (vii) that

X
σ
0 ⊢ φσ(tσ/x). But φσ(tσ/x) = φ(t/x)σ, so that X

σ
0 ⊢ φ(t/x)σ, showing

that ⊢′ satisfies (vii). The proofs of (viii)–(x) are the similar.

Proposition 5.2.16. Let LC be a constant expansion of L. Let X ⊆ L and
φ ∈ L. Then X ⊢L φ if and only if X ⊢LC φ.

Proof. The only if direction follows from Remark 5.2.6. For the if direction,
suppose X ⊢LC φ. By Theorem 5.2.11, we may choose countable X0 ⊆ X and
L0 ⊆ L ∪ C such that X0 ⊢L0

φ. Let C0 = (L0 ∩ C) \ L denote the constant
symbols that are in L0 but not in L. Then C0 is countable and L0 ⊆ LC0.
Hence, by Remark 5.2.6, we have X0 ⊢LC0 φ. Let σ be a C0-substitution that
avoids varX0 ∪ {φ}. Proposition 5.2.15 gives us X

σ
0 ⊢L φσ. But symφ ⊆ L,

so C0 ∩ symφ = ∅. In other words, none of the constants in C0 appear in φ.
By induction on φ, it follows that φσ = φ. Similarly, X

σ
0 = X0. Therefore,

X0 ⊢L φ, which gives X ⊢L φ.

5.2.4 Deduction with sentences

Using constant expansions, we can connect derivability back to sentences in two
ways. The first is to verify the four rules given at the beginning of this section.

Proposition 5.2.17. The derivability relation in L, when restricted to
sentences, satisfies (i)–(vi) in Definition 3.1.3, as well as the following:

(vii)0 if X ⊢ ∀xφ(x) and t is a ground term, then X ⊢ φ(t),

(viii)0 if c /∈ con(X ∪ φ(x)) and X ⊢Lc φ(c), then X ⊢ ∀xφ(x), and
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(ix)0 ⊢ t = t for all ground terms t,

(x)0 if X ⊢ s = t, φ(s), then X ⊢ φ(t).

Proof. Since ⊢ satisfies (i)–(vi) and L0 is closed under negation and conjunction,
⊢ still satisfies (i)–(vi) when restricted to sentences. Suppose X ⊢ ∀xφ(x) and
t is a ground term. Then φ(t) is a sentence, and (vii) implies (vii)0.

For (viii)0, suppose c /∈ con(X ∪ φ(x)) and X ⊢Lc φ(c). Since ∀xφ(x) is a
sentence, we only need to show that X ⊢ ∀xφ. By Theorem 5.2.11, we may
choose countable X0 ⊆ X such that X0 ⊢Lc φ(c). Choose y /∈ varX0 ∪ {φ}.
Then the {c}-substitution y/c avoids varX0 ∪ {φ(c)}. Hence, by Proposition
5.2.15, we have X0(y/c) ⊢ φ(c)(y/c). But φ(c)(y/c) = φ′(c′), where c′ =
c(y/c) = y and φ′ = φ(y/c) = φ, since c /∈ conφ. Thus, φ(c)(y/c) = φ.
Similarly, since c /∈ conX0, we also have X0(y/c) = X0. Therefore, X0 ⊢ φ(y).
Now y /∈ freeX0 ∪ varφ. Hence, from (viii)′, it follows that X0 ⊢ ∀xφ, which
gives X ⊢ ∀xφ.

If t is a ground term, then t = t is a sentence, so (ix) implies (ix)0. Now
suppose X ⊢ s = t, φ(s). Then s = t is a sentence, which implies s and t are
ground terms. Thus, φ(t) is a sentence, and (x) implies (x)0.

The second way to connect derivability to sentences is to replace the free
variables in open formulas with constants. For each x ∈ Var , choose a distinct
constant symbol cx that is not already in L. Let C = {cx | x ∈ Var}. A free
eliminator is a substitution σ : Var → TLC such that for all x ∈ Var , either
xσ = x or xσ = cx. If xσ = cx for all x ∈ Var , then σ is called a full free
eliminator. Note that if σ is a full free eliminator, then φσ is a sentence for all
φ ∈ L.

Proposition 5.2.18. Let X ⊆ L and φ ∈ L, and let σ be a free eliminator.
Then X ⊢L φ if and only if Xσ ⊢LC φσ.

Proof. Suppose X ⊢L φ. Let V ′ = {x ∈ Var | xσ ̸= x} and let C ′ = {cx |
x ∈ V ′}. Then X ⊢LC′ φ by Proposition 5.2.16. By Theorem 5.2.11, there
exists countable C0 ⊆ C ′ such that X ⊢LC0

φ. Define the C0-substitution σ by
c
σ
x = x, so that (ψσ)σ = ψ for all ψ ∈ LC0, and (ψσ)σ = ψ whenever ψ ∈ L and
ψσ ∈ LC0. Then (Xσ)σ ⊢LC0

(φσ)σ. But X ⊆ L and φ ∈ L, so Xσ = X and
φσ = φ. Therefore, Xσ ⊢LC0

φσ, so Proposition 5.2.16 gives Xσ ⊢LC φσ.

Now suppose Xσ ⊢LC φσ. Note that ψ ∈ L implies ψσ ∈ LC ′. Hence,
Proposition 5.2.16 implies Xσ ⊢LC′ φσ. By Theorem 5.2.11, we may choose
countable X0 ⊆ X and C0 ⊆ C ′ so that Xσ

0 ⊢LC0
φσ. Let V0 = {x ∈ V ′ |

cx ∈ C0} and note that V0 is countable. By Proposition 5.2.8, we may assume
bndXσ

0 ∪ {φσ} is disjoint from both V0 and freeXσ
0 ∪ {φσ}. We may then use

Proposition 5.2.12 to ensure freeXσ
0 ∪{φσ} is also disjoint from V0. Now define

σ as above. If cx ∈ C0, then c
σ
x = x ∈ V0. Therefore, σ avoids varXσ

0 ∪ {φσ}.
Proposition 5.2.15 now gives (Xσ

0 )
σ ⊢L (φσ)σ. Since φ ∈ L and φσ ∈ LC0, we

have (φσ)σ = φ. Similarly, (Xσ
0 )
σ = X0. Therefore, X0 ⊢L φ.
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5.2.5 Tautologies and consistency

Proposition 5.2.19. For any x ∈ Var , we have ⊢ ∃xx = x.

Proof. Let φ(x) = (x = x). By (i) and (vii)′, we have ∀x¬φ(x) ⊢ ¬φ(x). By
(ix) and (ii), we have ∀x¬φ(x) ⊢ φ(x). Hence, (v) implies ∀x¬φ(x) ⊢ ∃xφ(x).
Since ∃xφ(x) = ¬∀x¬φ(x), we have ¬∀x¬φ(x) ⊢ ∃xφ(x), by (i). Therefore, the
result follows from (vi).

Let ∃1 = ∃x0 x0 = x0. Informally, ∃1 says that at least one object exists.
Justified by Proposition 5.2.19, we define verum and falsum, respectively, by
⊤ = ∃1 and ⊥ = ¬⊤.

More generally, for integers n > 1, we define

∃n = ∃x0 · · ·xn−1

∧
i<j<n xi ̸= xj .

Informally, ∃n asserts that there are at least n objects. Let ∃=n = ∃n ∧ ¬∃n+1,
which asserts that there are exactly n objects. We also define ∃∞ =

∧∞
n=1 ∃n,

which say that infinitely many objects exist. This last sentence is the only one
that is not in Lfin.

A set X ⊆ L is inconsistent if X ⊢ φ for all φ ∈ L; it is otherwise consistent.
Note that X is inconsistent if and only if X ⊢ ⊥. Theorem 3.1.13 is easily seen
to hold also for L.

A formula φ ∈ L is a tautology if ⊢ φ; it is a contradiction if {φ} is
inconsistent. Note that φ is a tautology if and only if ¬φ is a contradiction, and
vice versa. As in Proposition 3.1.14, we have X ⊢ φ if and only if there exists
a countable X0 ⊆ X such that ⊢

∧
X0 → φ.

5.2.6 Deductive and inductive theories

A set T ⊆ L0 is a (deductive) theory if T ⊢ φ implies φ ∈ T for all φ ∈ L0.
The intersection of any family of theories is again a theory. Also, L0 itself is a
theory. Hence, if X ⊆ L0, then we may define the (deductive) theory generated
by X, denoted by T (X) or TX , as the smallest theory having X as a subset.
Note that T (X) = {φ ∈ L0 | X ⊢ φ}.

We adopt the same notation for theories that we did in our propositional
calculus. The smallest theory is the set of tautological sentences, which we
denote by Taut, or TautL. Note that unlike the propositional case, Taut is not
the set of tautologies. A tautology φ is in Taut is and only if φ ∈ L0. The
largest theory is L0. A theory T is inconsistent if and only if T = L0. The
definition of logical equivalence, and its associated notation, are all the same as
in the propositional calculus. Note that Lemma 3.1.22 holds also in L0.

The construction of inductive derivability in predicate languages follows
exactly as it does in the propositional case. Let LIS = PL0 ×L0 × [0, 1] denote
the set of inductive statements in L. All of the results in Sections 3.2–3.5 depend
only the fact that ⊢F satisfies (i)–(vi) of Definition 3.1.3. Since Theorem 5.2.17
shows that ⊢L restricted to L0 also satisfies (i)–(vi), it follows that all of those
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results hold in the predicate case as well, with F replaced by L0. We adopt all
of the notation and terminology of Sections 3.2–3.5 to define, in LIS, inductive
theories, inductive conditions, inductive derivability, and all their associated
notions.

5.2.7 Karp’s calculus

Karp’s completeness theorem [16, Theorem 11.4.1], which we present later in
Theorem 5.3.13, will be essential for us. Karp, however, defines her deductive
calculus in a different way. We present here Karp’s calculus, and show that it
is equivalent to the calculus of natural deduction that we defined earlier. We
follow the presentation of her calculus that is given in [18, Chapter 4].

Let Λ− be the smallest subset of L such that if x, y ∈ Var , t ∈ T , φ,ψ ∈ L,
and Φ ⊆ L is countable with φ ∈ Φ, then the following formulas are in Λ−:

(Λ1) (φ→ ψ → ζ) → (φ→ ψ) → φ→ ζ

(Λ2) (φ→ ¬ψ) → ψ → ¬φ

(Λ3)
∧
Φ → φ

(Λ4) ∀xφ→ φ(t/x) when t is free for x in φ

(Λ5) x = x

(Λ6) x = y → y = x

(Λ7) φ ∧ t = x→ φ(t/x) when t is free for x in φ

The set of axioms, or logical theorems, denoted by Λ = ΛL, is the smallest subset
of L such that

(I) Λ− ⊆ Λ,

(II) if ψ,ψ → φ ∈ Λ, then φ ∈ Λ,

(III) if ψ → φ ∈ Λ and x /∈ freeψ, then ψ → ∀xφ ∈ Λ,

(IV) If Φ ⊆ L is countable and ψ → θ ∈ Λ for all θ ∈ Φ, then ψ →
∧

Φ ∈ Λ.

A proof of φ ∈ L from X ⊆ L is an (α+ 1)-sequence of formulas, ⟨φβ | β ⩽ α⟩,
where α is a countable ordinal, φα = φ, and for each β ⩽ α, either φβ ∈ X∪Λ, or
there exist i, j < β such that φi = (φj → φβ), or there exists Φ ⊆ {φξ | ξ < β}
such that φβ =

∧
Φ. Note that if ⟨φβ | β ⩽ α⟩ is a proof of φα from X, then

for any β < α, it follows that ⟨φξ | ξ ⩽ β⟩ is a proof of φβ from X. For φ ∈ L
and X ⊆ L, define X |∼ φ to mean there is a proof of φ from X. Note that by
(II) above and Proposition 5.2.21 below, φ ∈ Λ if and only if |∼ φ.

Lemma 5.2.20. If φ ∈ Λ, then ψ → φ ∈ Λ for all ψ ∈ L.
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Proof. Let φ ∈ Λ and ψ ∈ L. By (Λ3), we have ¬¬ψ ∧ ¬φ → ¬φ ∈ Λ. Thus,
(Λ2) and (II) give φ→ ¬(¬¬ψ ∧¬φ) ∈ Λ. But unwinding our shorthand shows
that ¬(¬¬ψ ∧ ¬φ) = ¬ψ ∨ φ = ψ → φ. Therefore, φ → ψ → φ ∈ Λ. A final
application of (II) yields ψ → φ ∈ Λ.

Proposition 5.2.21. The set Λ satisfies

(IV)′ If Φ ⊆ Λ is countable, then
∧

Φ ∈ Λ.

Proof. Fix θ0 ∈ Φ. By Lemma 5.2.20, θ0 ∈ Λ and θ0 → θ ∈ Λ for all
θ ∈ Φ. Hence, (IV) implies θ0 →

∧
Φ ∈ Λ, and therefore, using (II), we

have
∧
Φ ∈ Λ.

Remark 5.2.22. Let F be a propositional language with infinitely many
propositional variables. Given a function τ : PV → L, we extend it to τ : F → L
recursively by (¬φ)τ = ¬φτ and (

∧
Φ)τ =

∧
φ∈Φ φ

τ . If φ ∈ Ffin is a tautology,
then we call φτ an instance of a finitary propositional tautology. By Remark
3.1.15, every such φτ can be derived using (Λ1)–(Λ3), (I), (II), and (IV)′. Hence,
every instance of a finitary propositional tautology is an axiom.

Proposition 5.2.23. Let φ,ψ ∈ L. Then ψ |∼ φ if and only if |∼ ψ → φ.

Proof. Suppose ψ |∼ φ and let ⟨φβ | β ⩽ α⟩ be a proof of φ from ψ. If α = 0,
then φ = ψ or φ ∈ Λ. If φ = ψ, then |∼ φ → φ by Remark 5.2.22. If φ ∈ Λ,
then |∼ ψ → φ by Lemma 5.2.20.

Now assume α > 0 and the result is true whenever there is a proof of length
less than α. As above, if φ ∈ {ψ} ∪ Λ, then |∼ ψ → φ. Suppose φi = φj → φ
for some i, j < α. Then |∼ ψ → φj and |∼ ψ → φj → φ. By (Λ1),

|∼ (ψ → φj → φ) → (ψ → φj) → ψ → φ.

With two applications of modus ponens, we obtain |∼ ψ → φ. Finally, suppose
φ =

∧
Φ, where Φ ⊆ {φξ | ξ < β}. Then |∼ ψ → θ for all θ ∈ Φ. From (IV), it

follows that |∼ ψ → φ.
Conversely, suppose |∼ ψ → φ. Then ψ |∼ ψ → φ and ψ |∼ ψ. Applying

modus ponens gives ψ |∼ φ.

The proof of Proposition 3.1.16 carries through so that it also holds in this
setting.

Theorem 5.2.24. Let X ⊆ L and φ ∈ L. Then X |∼ φ if and only if X ⊢ φ.

Proof. We first prove that X |∼ φ implies X ⊢ φ. It suffices to show that (1)–
(3) in Proposition 3.1.16 hold when |∼ is replaced by ⊢. The proof of Theorem
3.1.17 carries through in this case, leaving us only to show that ⊢ φ whenever
φ ∈ Λ. We prove this by induction using (I)–(IV). Our base case is (I), in which
we prove that ⊢ φ for all φ ∈ Λ−.

Axioms of the form (Λ1) and (Λ2) are covered by Remark 5.2.22. Axioms of
the form (Λ3)–(Λ5) are covered by (iii), (vii), and (ix), respectively. For (Λ6),
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let s = x, t = y, and φ = (x = z). By (x), we have x = y, x = z ⊢ y = z, which
gives

⊢ x = z → x = y → y = z.

From here, (viii) gives

⊢ ∀z(x = z → x = y → y = z),

so that by (vii),

⊢ (x = z → x = y → y = z)(x/z) = (x = x→ x = y → y = x).

Hence, x = x ⊢ x = y → y = x. Combined with ⊢ x = x, we get (Λ6).
Finally, for (Λ7), suppose t is free for x in φ. By (x), we have x = t, φ ⊢

φ(t/x). Reversing the roles of x and y in (Λ6) gives ⊢ y = x → x = y. From
(viii) and (vii), it follows that ⊢ t = x → x = t. Putting these together, we
obtain ⊢ t = x ∧ φ→ φ(t/x), and this completes our base case.

For inductive step (II), suppose ψ,ψ → φ ∈ Λ and ⊢ ψ,ψ → φ. Then we
directly have ⊢ φ, and we are done. Step (IV) is equally straightforward. For
step (III), suppose ψ → φ ∈ Λ with x /∈ freeψ and ⊢ ψ → φ. Then ψ ⊢ φ, so
that (viii) implies ψ ⊢ ∀xφ, which gives ⊢ ψ → ∀xφ.

To prove thatX ⊢ φ impliesX |∼ φ, it suffices to show that (i)–(x) hold when
⊢ is replaced by |∼. The fact that (i)–(vi) hold for |∼ follows exactly as in the
propositional case. We get (vii) from (Λ4). For (viii), suppose x /∈ freeX and
X |∼ φ. Fix a proof of φ from X and let X0 be the set of θ ∈ X that appear in
the proof. Since proofs have countable lengths, X0 is countable. Also, X0 |∼ φ.
By (Λ3), we have

∧
X0 |∼ φ. Lemma 5.2.23 implies |∼

∧
X0 → φ, so that (III)

gives |∼
∧
X0 → ∀xφ. Since X |∼

∧
X0, an application of modus ponens yields

X |∼ ∀xφ.
From (Λ5), (viii), and (vii), we obtain (ix). For (x), suppose s and t are

free for x in φ and X |∼ s = t, φ(s/x). By (Λ7), (viii), and (vii), we have
|∼ φ(s/x) ∧ t = s → φ(t/x). Hence, t = s, φ(s/x) |∼ φ(t/x). In the same way,
but using (Λ6), we get s = t |∼ t = s. Combining these gives X |∼ φ(t/x).

5.3 Predicate models

In this section, we present the semantics of both deductive and inductive
predicate logic. We define satisfiability and consequence, and prove σ-
compactness, soundness, and completeness. As with the predicate calculus,
the bulk of our work will be in the deductive case. The inductive case will
require very little modification from its presentation in Chapter 4.

5.3.1 Strict satisfiability

Let L be an extralogical signature and L the set of formulas built from L. We
will use the two phrases, “L-structure” and “L-structure,” interchangeably. Let
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ω = (A,Lω) be an L-structure. For ground terms t, we define tω ∈ A recursively
by (ft1 · · · tn)ω = fω(tω1 , . . . , t

ω
n).

An assignment v into A is a function v : Var → A. We can extend v to
a function vω : T → A by vω(c) = cω and vω(ft1 · · · tn) = fωvω(t1) · · · vω(tn).
The extended function vω is called an assignment into ω. When there is no
risk of confusion, we will omit the subscript and also write v for the extended
function vω.

Note that if t is a ground term, then v(t) = tω. More generally, if
t = t(x1, . . . , xn), then v(t) depends only on v(x1), . . . , v(xn). In this case,
we will write tω [⃗a], for a⃗ ∈ An, as shorthand for v(t), where v is any assignment
satisfying v(xi) = ai.

Given an assignment v, if x ∈ Var and a ∈ A, then we define a new
assignment vax by vax(x) = a and vax(y) = v(y) for y ̸= x.

Definition 5.3.1. Let ω be a structure and v an assignment into ω. For φ ∈ L,
we define ω |≡ φ[v] recursively as follows:

(i) ω |≡ (s = t)[v] if and only if v(s) = v(t),

(ii) ω |≡ (rt1 · · · tn)[v] if and only if rωv(t1) · · · v(tn),

(iii) ω |≡ (¬φ)[v] if and only if ω |̸≡ φ[v],

(iv) ω |≡ (
∧
Φ)[v] if and only if ω |≡ φ[v] for all φ ∈ Φ, and

(v) ω |≡ (∀xφ)[v] if and only ω |≡ φ[vax] for all a ∈ A.

If ω |≡ φ[v], we say that ω strictly satisfies φ with v. Note that if φ ∈ Lfin, then
|≡ is the usual notion of satisfiability from first-order logic.

If φ = φ(x1, . . . , xn) and v and v′ are assignments that agree on x1, . . . , xn,
then ω |≡ φ[v] if and only if ω |≡ φ[v′]. In this case, we will write ω |≡ φ[⃗a], where
a⃗ ∈ An, to mean that ω |≡ φ[v] for all assignments v satisfying v(xi) = ai. In
particular, if φ is a sentence, then ω |≡ φmeans that ω |≡ φ[v] for all assignments
v. A formula φ is said to be strictly satisfiable if ω |≡ φ[v] for some structure ω
and some assignment v.

The proofs of the following three theorems are the same as in first-order
logic, except we use Definition 5.3.1(iv). See, for instance, [28, Theorems 2.3.1,
2.3.4, and 2.3.5] for details.

Theorem 5.3.2 (Coincidence theorem). Let ω and ω′ be structures with a
common domain. Let v and v′ be assignments into ω and ω′, respectively. Let
φ ∈ L and assume

(i) v(x) = v′(x) for all x ∈ freeφ, and

(ii) sω = sω
′
for all s ∈ symφ.

Then ω |≡ φ[v] if and only if ω′ |≡ φ[v′].
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Theorem 5.3.3 (Invariance theorem). Let ω and ω′ be isomorphic L-
structures and let g : ω → ω′ be an isomorphism. Let v be an assignment
into ω and define the assignment v′ into ω′ by v′(x) = gv(x). Then ω |≡ φ[v] if
and only if ω′ |≡ φ[v′], for all φ ∈ L. In particular, if φ = φ(x1, . . . , xn), then
ω |≡ φ[⃗a] if and only if ω′ |≡ φ[ga⃗] for all a⃗ ∈ An, where A is the domain of ω.
Consequently, if φ ∈ L0 is a sentence, then ω |≡ φ if and only if ω′ |≡ φ.

If v is an assignment into ω and σ is a substitution, then vσ is the assignment
defined by vσ(x) = v(xσ). By induction on t, we have vσ(t) = v(tσ) for all t ∈ T .

Theorem 5.3.4 (Substitution theorem). Let v be an assignment into the
structure ω. Let φ ∈ L and let σ be a substitution. If σ is free for φ, then
ω |≡ φσ[v] if and only if ω |≡ φ[vσ]. In particular, if t is free for x in φ, then
ω |≡ φ(t/x)[v] if and only if ω |≡ φ[vax], where a = v(t).

Remark 5.3.5. The strict satisfiability relation is not σ-compact. For example,
let L = {cn | n ∈ N0} be a set of distinct constant symbols and let

X = {∀x
∨
n∈N0

x = cn} ∪ {x ̸= y | x, y ∈ Var , x ̸= y}.

Then every countable subset of X is strictly satisfiable, but X is not satisfiable.

5.3.2 Models and deductive satisfiability

An inductive L-model, or simply a model, is a probability space, P = (Ω,Σ,P),
where Ω is a set of L-structures. An assignment into P is an indexed collection
v = ⟨vω | ω ∈ Ω⟩, where vω is an assignment into ω for each ω ∈ Ω. Note that v
does not depend on Σ or P. We may therefore sometimes call v an assignment
into Ω.

If v is an assignment into a model P = (Ω,Σ,P) and φ ∈ L, then we define

φ[v]Ω = {ω ∈ Ω | ω |≡ φ[vω]}.

We say that P satisfies φ with v, denoted by P ⊨ φ[v], if φ[v]Ω ∈ Σ and
Pφ[v]Ω = 1. A set X ⊆ L is satisfiable if there is a model P and an assignment
v into P such that P ⊨ ψ[v] for all ψ ∈ X.

If φ is a sentence, then φ[v]Ω does not depend on v. In this case, we simply
write φΩ, and as in the propositional case, we have

φΩ = {ω ∈ Ω | ω |≡ φ}.

We then write P ⊨ φ to mean P ⊨ φ[v] for all assignments v, and this holds
if and only if φΩ ∈ Σ and PφΩ = 1.

Proposition 5.3.6. Let X ⊆ L.

(i) If X is strictly satisfiable, then X is satisfiable.

(ii) If X is satisfiable and countable, then X is strictly satisfiable.
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Proof. For (i), suppose ω |≡ ψ[v] for all ψ ∈ X. Let P = ({ω}, {∅, {ω}}, δω)
and v = ⟨v⟩. Then P ⊨ φ[v]. For (ii), suppose X is satisfiable and countable.
Let P = (Ω,Σ,P) be a model and v an assignment into P such that P ⊨ ψ[v]
for all ψ ∈ X. Then P

⋂
ψ∈X ψ[v]Ω = 1, so we may choose ω ∈

⋂
ψ∈X ψ[v]Ω. We

then have ω |≡ ψ[vω] for all ψ ∈ X, so that ω strictly satisfies X with vω.

Given a model P = (Ω,Σ,P), let

ΣL = Σ ∩ {φ[v]Ω | φ ∈ L and v is an assignment into P},

and let PL = P|ΣL . Then ΣL is a sub-σ-algebra of Σ, so that (Ω,ΣL,PL) is also
a model. For any φ ∈ L and any assignment v into P, we have φ[v]Ω ∈ Σ if
and only if φ[v]Ω ∈ ΣL. Hence, from a logical standpoint, every set A ∈ Σ \ΣL
is irrelevant.

Let P = (Ω,Σ,P) and Q = (Ω′,Γ,Q) be models. We say that P and Q
are isomorphic (as models), denoted by P ≃ Q, if there exists a measurable
function h : Ω → Ω′ such that h induces an isomorphism (as measure spaces)
from (Ω,ΣL,PL) to (Ω′,ΓL,QL), and ω ≃ hω for P-a.e. ω ∈ Ω. In this case, we
abuse notation and say that h : P → Q is a model isomorphism.

Let h : P → Q be a model isomorphism and v and assignment into P. An
assignment v′ into Q is called an image of v under h if, for each ω ∈ Ω, there
is a function gω : ω → hω such that, for P-a.e. ω ∈ Ω, the function gω is an
isomorphism and v′ω′(x) = gωvω(x) for all x ∈ Var .

An image of v under h always exists. We can construct one as follows. For
each ω′ ∈ Ω′, choose aω′ in the domain of ω′. For each ω ∈ Ω, if ω ≃ hω, then
let gω be an isomorphism from ω to hω. Otherwise, let gω map everything to
ahω. We then define v′ω(x) = gωvω(x).

Lemma 5.3.7. Let h be a model isomorphism from P = (Ω,Σ,P) to Q =
(Ω′,Γ,Q). Let v be an assignment into P and let v′ be an image of v under
h. Then h−1φ[v′]Ω′ = φ[v]Ω, P-a.s. Consequently, for all φ ∈ L, we have
φ[v]Ω ∈ Σ if and only if φ[v′]Ω′ ∈ Γ, and in this case, Qφ[v′]Ω′ = Pφ[v]Ω.

Proof. Let ω′ = hω. For all ω ∈ Ω, we have ω ∈ h−1φ[v′]Ω′ if and only
if ω′ ∈ φ[v′]Ω′ , which holds if and only if ω′ |≡ φ[v′ω′ ]. By Theorem 5.3.3,
for P-a.e. ω, this is equivalent to ω |≡ φ[vω], which holds if and only if
ω ∈ φ[v]Ω. Hence, h−1φ[v′]Ω′ = φ[v]Ω P-a.e. Since h also induces a measure-
space isomorphism from P to Q, we have Q = P ◦ h−1. Therefore, φ[v]Ω ∈ Σ
if and only if φ[v′]Ω′ ∈ Γ, and in this case, Qφ[v′]Ω′ = Pφ[v]Ω.

Theorem 5.3.8 (Deductive isomorphism theorem). Let P and Q be
isomorphic L-models and let h : P → Q be a model isomorphism. Let v be
an assignment into P and let v′ be an image of v under h. Then P ⊨ φ[v]
if and only if Q ⊨ φ[v′], for all φ ∈ L. In particular, if φ is a sentence, then
P ⊨ φ if and only if Q ⊨ φ.

Proof. Let P = (Ω,Σ,P) and Q = (Ω′,Γ,Q) be isomorphic. Let h, v, and v′

be as in the statement of the theorem. Suppose P ⊨ φ[v]. Then Pφ[v]Ω = 1.
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By Lemma 5.3.7, we have Qφ[v′]Ω′ = Pφ[v]Ω = 1. Therefore, Q ⊨ φ[v′].
Reversing the roles of P and Q gives the converse.

Remark 5.3.9. Let P = (Ω,Σ,P) be a model. Let Ω∗ ∈ Σ with PΩ∗ = 1. Let
Σ∗ = {A ∩ Ω∗ | A ∈ Σ} and P∗ = P|Σ∗ . Then P∗ = (Ω∗,Σ∗,P∗) is a model.
Choose ω0 in Ω∗ and define h : Ω → Ω∗ by hω = ω if ω ∈ Ω∗ and hω = ω0

if ω /∈ Ω∗. It is straightforward to verify that h is measurable and induces an
isomorphism (as measure spaces) from (Ω,ΣL,PL) to (Ω∗,Σ∗

L,P
∗
L). Hence, h is

a model isomorphism and P ≃ P∗. It follows that if a given property is true
almost surely in a model P, then we can find an isomorphic model in which it
is true for every structure ω.

5.3.3 Deductive consequence and soundness

We say that φ ∈ L is a consequence of X ⊆ L, or that X entails φ, which we
denote by X ⊨ φ, if P ⊨ φ[v] whenever P ⊨ ψ[v] for all ψ ∈ X. Note that if
X is not satisfiable, then it is vacuously true that X ⊨ φ for all φ ∈ L. In the
case X = ∅, we write ⊨ φ, which means that P ⊨ φ[v] for all P and v. If X
and φ are sentences, then X ⊨ φ if and only if P ⊨ X implies P ⊨ φ.

Remark 5.3.10. If X ⊨ φ and ω |≡ ψ[v] for all ψ ∈ X, then ω |≡ φ[v]. To see
this, simply apply the above definition to P = ({ω}, {∅, {ω}}, δω) and v = ⟨v⟩.
In particular, if X and φ are sentences and ω |≡ X, then ω |≡ φ.

Proposition 5.3.11. Let φ ∈ L. Then ⊨ φ if and only if, for all structures ω
and all assignments vω into ω, we have ω |≡ φ[vω].

Proof. Suppose ⊨ φ. Then P ⊨ φ[v] for all P and v. Let ω be a structure and
vω an assignment into ω. Define P = ({ω}, {∅, {ω}}, δω) and v = ⟨vω⟩. Then
P is a model and v is an assignment into P. By hypothesis, P ⊨ φ[v], which
means φ[v]Ω = {ω}. That is, ω |≡ φ[vω].

Conversely, suppose ω |≡ φ[vω] for all structures ω and all assignments vω
into ω. Let P = (Ω,Σ,P) be a model and v an assignment into P. Then
φ[v]Ω = Ω, so Pφ[v]Ω = 1. Therefore, P ⊨ φ[v].

Proposition 5.3.12. Let X ⊆ L and φ ∈ L, and let σ be a free eliminator.
Then X ⊨L φ if and only if Xσ ⊨LC φσ.

Proof. Suppose X ⊨L φ. Let Q = (Ω′,Γ,Q) be an LC-model and v′ an
assignment into Q. Assume Q ⊨ ψσ[v′] for all ψ ∈ X. For each ω′ ∈ Ω′,
let ω be its L-reduct. Let Ω = {ω | ω′ ∈ Ω} and let P = (Ω,Σ,P) be the
measure space image of Q under the function ω′ 7→ ω. Define an assignment
v into P by vω(x) = v′ω′(x) if xσ = x, and vω(x) = cω

′

x if xσ = cx. By term
induction, vω(t) = v′ω′(tσ) for all t ∈ TL. Then, by formula induction, we obtain
ω |≡ ψ[vω] if and only if ω′ |≡ ψσ[v′ω′ ] for all ψ ∈ L. Hence, if h denotes the
function ω′ 7→ ω, then h−1ψ[v]Ω = ψσ[v′]Ω′ , which gives Pψ[v]Ω = Qψσ[v′]Ω′

for all ψ ∈ L. Therefore, P ⊨ ψ[v] for all ψ ∈ X. By hypothesis, this implies
P ⊨ φ[v], which is equivalent to Q ⊨ φσ[v′], and we have Xσ ⊨LC φσ.
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For the converse, suppose Xσ ⊨LC φσ. Let P = (Ω,Σ,P) be an L-model
and v an assignment into P. Assume P ⊨ ψ[v] for all ψ ∈ X. For each ω ∈ Ω,
define the LC-structure ω′ by sω

′
= sω if s ∈ L, and cω

′

x = vω(x). Define an
assignment v′ into P by v′ω′(x) = vω(x) for all x ∈ Var . Then again by term
and formula induction, we have ω |≡ ψ[vω] if and only if ω′ |≡ ψσ[v′ω′ ] for all
ψ ∈ L, which as above yields P ⊨ φ[v]. Therefore, X ⊨L φ.

Theorem 5.3.13 (Karp’s completeness theorem). Let φ ∈ L0 be a
sentence. Then ⊢ φ if and only if ⊨ φ.

Proof. Karp’s completeness theorem first appears in [16, Theorem 11.4.1]. The
version we are citing is [18, Theorem 4.3]. There it is shown that if φ ∈ L0 is a
sentence, then ω |≡ φ for all structures ω if and only if φ ∈ Λ′, where Λ′ is a set
of logical axioms described in [18]. We claim that Λ′ is the same as Λ, the set of
axioms defined in Section 5.2.7. Since φ ∈ Λ if and only if |∼ φ, our statement
of Karp’s theorem then follows from Theorem 5.2.24 and Proposition 5.3.11.

Keisler’s Λ′ differs from Λ in only one way. To describe it, we recursively
define the shorthand ∼φ as follows:

∼φ = ¬φ if φ is prime,

∼¬φ = φ,

∼
∧
Φ =

∨
θ∈Φ ¬θ = ¬

∧
θ∈Φ ¬¬θ, and

∼∀xφ = ∃x¬φ = ¬∀x¬¬φ.

Keisler’s Λ′ includes everything in Λ, as well as all formulas of the form

(Λ8) ¬φ↔ ∼φ

To check that Λ′ = Λ, we must verify that these formulas are already in Λ. We
can break this down according to whether φ is prime, φ = ¬ψ, φ =

∧
Φ, or

φ = ∀xψ. Doing this, applying the definition of ∼, and using Theorem 5.2.24,
we must check that

⊢ ¬φ↔ ¬φ,

⊢ ¬¬ψ ↔ ψ,

⊢ ¬
∧
Φ ↔ ¬

∧
θ∈Φ ¬¬θ, and

⊢ ¬∀xψ ↔ ¬∀x¬¬ψ.

The first two are propositional tautologies. The third follows from ⊢ θ ↔ ¬¬θ
and Definition 3.1.3(iii),(iv). The fourth follows from ⊢ ψ ↔ ¬¬ψ and Definition
5.2.5(vii)′,(viii).

Theorem 5.3.14 (Karp’s theorem for formulas). For any formula φ ∈ L,
we have ⊢ φ if and only if ⊨ φ.
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Proof. Let σ be a full free eliminator, so that φσ is a sentence. By Propositions
5.2.18 and 5.3.12, we have ⊢L φ if and only if ⊢LC φσ, and ⊨L φ if and only if
⊨LC φσ. Theorem 5.3.13 gives ⊢LC φσ if and only if ⊨LC φσ.

As in the propositional case, Karp’s completeness theorem allows us to prove
the result that was described in Remark 5.2.7.

Proposition 5.3.15. Let X ⊆ Lfin and φ ∈ Lfin. If X ⊢ φ, then X ⊢fin φ.

Proof. Let X ⊆ Lfin and φ ∈ Lfin. Suppose X ⊢ φ. The well-known
completeness theorem from first-order logic states that X ⊢fin φ if and only
if, for all structures ω and all assignments v into ω, we have ω |≡ φ[v] whenever
ω |≡ ψ[v] for all ψ ∈ X. (See, for instance, [28, Theorem 3.2.7]).

Let ω be a structure and v an assignment into ω. Assume that ω |≡ ψ[v] for
all ψ ∈ X. Choose countable X0 ⊆ X such that ⊢

∧
X0 → φ. By Theorem

5.3.14, we have ⊨
∧
X0 → φ. Hence, ω |≡ (

∧
X0 → φ)[v], which means

ω |≡ (
∧
X0)[v] implies ω |≡ φ[v]. Since ω |≡ ψ[v] for all ψ ∈ X0, it follows

that ω |≡ (
∧
X0)[v]. Therefore, ω |≡ φ[v].

Theorem 5.3.16 (Deductive soundness). Let X ⊆ L and φ ∈ L. If X ⊢ φ,
then X ⊨ φ.

Proof. Suppose X ⊢ φ. Let P = (Ω,Σ,P) be a model and v an assignment
into P such that P ⊨ ψ[v] for all ψ ∈ X. By Theorem 5.2.11, we may
choose countable X0 ⊆ X with X0 ⊢ φ. Hence, ⊢ ζ → φ, where ζ =

∧
X0.

By Theorem 5.3.14, we have ⊨ ζ → φ, so that P ⊨ (ζ → φ)[v]. That is,
P(ζ → φ)[v]Ω = 1. But Pψ[v]Ω = 1 for all ψ ∈ X and ζ[v]Ω =

⋂
ψ∈X0

ψ[v]Ω.

Hence, P ζ[v]Ω = 1, so that ζ[v]cΩ is a null set. Since (ζ → φ)[v]Ω = ζ[v]cΩ∪φ[v]Ω,
we have Pφ[v]Ω = P(ζ → φ)[v]Ω = 1. Therefore, P ⊨ φ[v]. Since P was
arbitrary, this shows that X ⊨ φ.

Corollary 5.3.17. If X ⊆ L is satisfiable, then X is consistent. If X is
countable and consistent, then X is strictly satisfiable.

Proof. Let X ⊆ L. Suppose X is inconsistent. Then X ⊢ ⊥. By Theorem
5.3.16, we have X ⊨ ⊥. But ⊥Ω = ∅, so P ⊭ ⊥[v] for all P and v. Hence, X
is not satisfiable. For the second part, suppose X is countable and not strictly
satisfiable. Let v be an assignment into a structure ω. Then ω |̸≡ (

∧
X)[v],

which implies ω |≡ (¬
∧
X)[v]. Since ω and v were arbitrary, we have ⊨ ¬

∧
X.

Theorem 5.3.14 then implies ⊢ ¬
∧
X. Thus, X ⊢

∧
X,¬

∧
X, so that X is

inconsistent.

5.3.4 Deductive completeness

According to Theorem 5.3.14, we have that φ is a tautology if and only if
ω |≡ φ[v] for all ω and v. Hence, in any model P, we have φ ⊢ ψ implies
φ[v]Ω ⊆ ψ[v]Ω and φ ≡ ψ implies φ[v]Ω = ψ[v]Ω, for any assignment v into P.
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In Remark 4.1.14, we saw that in the propositional case, we could obtain
a converse to the above if we took Ω to be the set of all strict models.
That converse was essential to our proof of both deductive and inductive
completeness. In the predicate case, we cannot do this, since the collection
of all structures is not a set. Instead, we will use the set of structures defined
in the proof of the following proposition.

Proposition 5.3.18. There exists a set of structures Ω and an assignment v
into Ω such that φ[v]Ω ⊆ ψ[v]Ω implies φ ⊢ ψ, and φ[v]Ω = ψ[v]Ω implies
φ ≡ ψ. In particular, if φ and ψ are sentences, then φΩ ⊆ ψΩ if and only if
φ ⊢ ψ, and φΩ = ψΩ if and only if φ ≡ ψ.

Proof. Let S be the set of all countable, consistent subsets of L. By Corollary
5.3.17, for each X ∈ S, we may choose a structure ω = ωX and an assignment
vω into ω such that ω |≡ ζ[vω] for all ζ ∈ X. Let Ω = {ωX | X ∈ S} and let
v = ⟨vω | ω ∈ Ω⟩.

For the first implication, let φ,ψ ∈ L and assume φ ⊬ ψ. Then Theorem
3.1.13 implies X = {φ,¬ψ} is consistent, so that X ∈ S. Hence, with
ω = ωX ∈ Ω and v defined as above, we have ω |≡ φ[vω] and ω |≡ (¬ψ)[vω].
The latter implies ω |̸≡ ψ[vω]. Thus, ω ∈ φΩ[v] and ω /∈ ψΩ[v], so that
φΩ[v] ⊈ ψΩ[v]. Reversing the roles of φ and ψ gives the second implication.

Theorem 5.3.19 (σ-compactness). A set X ⊆ L is satisfiable if and only if
every countable subset of X is satisfiable.

Proof. The only if part is trivial. Suppose every countable subset of X is
satisfiable. Assume X is inconsistent. Then X ⊢ ⊥. By Theorem 5.2.11, there
exists countable X0 ⊆ X such that X0 ⊢ ⊥, implying that X0 is inconsistent.
By Corollary 5.3.17, we have that X0 is not satisfiable, a contradiction. Hence,
X is consistent.

Let Ω and v be as in Proposition 5.3.18. Let

Σ = {φ[v]Ω | X ⊢ φ or X ⊢ ¬φ}.

Then Σ is a σ-algebra. If A ∈ Σ, choose φ such that A = φΩ[v]. Since X is
consistent, we cannot have both X ⊢ φ and X ⊢ ¬φ. We may therefore define
PA = 1 if X ⊢ φ and 0 otherwise. If A = φΩ[v] = ψΩ[v], then φ ≡ ψ, by
Proposition 5.3.18. Hence, P is well-defined.

Since X is consistent, X ⊬ ⊥. Thus, P ∅ = P⊥Ω = 0. Conversely, X ⊢ ⊤, so
PΩ = P⊤Ω = 1.

Now let {An}n∈N ⊆ Σ be pairwise disjoint, and define A =
⋃
nAn. For

each n, choose φn such that An = φn[v]Ω, and define φ =
∨
n φn. Note that

A = φ[v]Ω. Suppose m ̸= n. Since

(φm ∧ φn)[v]Ω = Am ∩An = ∅ = ⊥Ω,

we have φm ∧ φn ≡ ⊥, implying that X ⊬ φm ∧ φn. Therefore, either X ⊬ φm
or X ⊬ φn. This implies that there is at most one n ∈ N with PAn = 1. Hence,
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∑
n PAn ∈ {0, 1} and∑

PAn = 1 iff there exists n such that PAn = 1

iff there exists n such that X ⊢ φn
iff X ⊢ φ
iff Pφ[v]Ω = PA = 1,

showing that P is countably additive. Thus, P is a measure on (Ω,Σ) with
PΩ = 1, and so P = (Ω,Σ,P) is a model.

Now let φ ∈ X be arbitrary. Then X ⊢ φ, so that φ[v]Ω ∈ Σ, and
Pφ[v]Ω = 1. This shows that P ⊨ φ[v] for all φ ∈ X, and X is satisfiable.

Corollary 5.3.20. A set X ⊆ L is satisfiable if and only if X is consistent.

Proof. The only if part is Corollary 5.3.17. Suppose X is not satisfiable. By
Theorem 5.3.19, there exists a countable subset X0 ⊆ X that is not satisfiable.
By Proposition 5.3.6, the set X0 is not strictly satisfiable. Hence, by Corollary
5.3.17, the set X0 is inconsistent, which implies that X is inconsistent.

Theorem 5.3.21 (Deductive completeness). For X ⊆ L and φ ∈ L, we
have X ⊨ φ if and only if X ⊢ φ.

Proof. The if part is Theorem 5.3.16. Suppose X ⊬ φ. Then X ∪ {¬φ} is
consistent, by Theorem 3.1.13. Thus, X ∪ {¬φ} is satisfiable, by Corollary
5.3.20. Choose P and v such that P ⊨ ψ[v] for all ψ ∈ X ∪ {¬φ}. Then
P ⊨ ψ[v] for all ψ ∈ X, but P ⊭ φ[v]. Thus, X ⊭ φ.

5.3.5 Peano arithmetic

As an example of deductive predicate logic, we present the theory of Peano
arithmetic in the infinitary setting. Let L be a language that contains a constant
symbol 0, a unary function symbol S, and binary operation symbols {+, ·}. In
the language L, for each n ∈ N, we use the shorthand n = S · · · S0, where S is
repeated n times.

Define the formulas

φ1 : ∀x Sx ̸= 0 φ2 : ∀xy(Sx = Sy → x = y)

φ3 : ∀xx+ 0 = x φ4 : ∀xy x+ Sy = S(x+ y)

φ5 : ∀xx · 0 = 0 φ6 : ∀xy x · Sy = x · y + x

For definiteness, we may assume x = x0 and y = x1 in the above, so that this
is a finite collection of sentences, rather than a family of formulas indexed by
x, y ∈ Var . Note that each φi ∈ L0

fin. If φ = φ(x, y⃗ ) ∈ L, define

IS(φ) : ∀y⃗ (φ(0/x) ∧ ∀x(φ→ φ(Sx/x)) → ∀xφ)

Let IS = {IS(φ) | φ(x, y⃗ ) ∈ L} ⊆ L0 and ISfin = IS ∩ L0
fin. Since IS(φ) has finite

length if and only if φ has finite length, we have ISfin = {IS(φ) | φ(x, y⃗ ) ∈ Lfin}.
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In first-order logic, ΛPA
− = {φ1, . . . , φ6}∪ ISfin are the usual axioms of Peano

arithmetic. The set ISfin is called the axiom schema of induction. We let
PA− = T (ΛPA

− ) and PAfin = PA− ∩ L0
fin. By Proposition 5.3.15, we have

PAfin = {φ ∈ L0
fin | ΛPA

− ⊢fin φ}. In other words, PAfin is exactly first-order
Peano arithmetic.

We also define ΛPA = {φ1, . . . , φ6} ∪ IS. This differs from ΛPA
− only in

the fact that we are allowed to perform induction on infinitary formulas. Let
PA = T (ΛPA). Then ΛPA

− ⊆ ΛPA and PAfin ⊆ PA− ⊆ PA.
Let N be the standard structure of arithmetic. That is, N = (N0, 0, S,+, ·),

where S is the function n 7→ n + 1. As usual, we will have to rely on context
to know whether S,+, · are referring to objects in the standard structure, or to
symbols in the signature of L. Since N |≡ ΛPA, we have N |≡ PA by Remark
5.3.10. It is well-known that there are nonstandard structures of finitary Peano
arithmetic. That is, there exist structures ω such that ω |≡ PAfin but ω ̸≃ N .
As it turns out, the analogous statement is still true for PA− as we see below in
Proposition 5.3.22. On the other hand, Proposition 5.3.23 shows that it is not
true for PA. In other words, PA completely characterizes the standard structure
of arithmetic, meaning that every true statement about arithmetic is provable
in PA. Another way to say this, according to completeness, is that if φ is true
in the standard structure of arithmetic, then it is true in every model of PA.
This is famously not the case for PA−, thanks to Gödel’s first incompleteness
theorem (see [28, Theorem 6.5.1]).

Proposition 5.3.22. Let P = (Ω,Σ,P) be a model. Then P ⊨ PA− if and
only if ω |≡ PAfin for P-a.e. ω ∈ Ω. Consequently, PA− ⊢ φ if and only if
ω |≡ ΛPA

− implies ω |≡ φ[v] for all ω and all assignments v into ω.

Proof. Suppose P ⊨ PA−. Then P ⊨ ΛPA
− . Since ISfin is countable, so is ΛPA

− .

Hence, PΩ∗ = 1, where Ω∗ =
⋂
φ∈ΛPA

−
φΩ. For every ω ∈ Ω∗, we have ω |≡ ΛPA

− ,

which implies ω |≡ PAfin.
Conversely, suppose ω |≡ PAfin for P-a.e. ω ∈ Ω. Since ΛPA

− ⊆ L0
fin, we have

ΛPA
− ⊆ PAfin. Hence, ω |≡ ΛPA

− for P-a.e. ω ∈ Ω. This implies that Ω∗ = Ω,

P-a.e. It follows that Ω∗ ∈ Σ and PΩ∗ = 1. Therefore, P ⊨ ΛPA
− , which gives

P ⊨ PA−.
For the second claim, the only if direction follows from Theorem 5.3.21

and Remark 5.3.10. For the if direction, suppose ω |≡ φ[v] for all ω and all
assignments v into ω. Let P = (Ω,Σ,P) ⊨ PA− and let v = ⟨vω⟩ be an
assignment into P. By the above, ω |≡ ΛPA

− for P-a.e. ω ∈ Ω. By hypothesis,

ω |≡ φ[vω] for P-a.e. ω ∈ Ω. Hence, Pφ[v]Ω = 1, so that P ⊨ φ[v]. By Theorem
5.3.21, this gives PA− ⊢ φ.

Proposition 5.3.23. Let P = (Ω,Σ,P) be a model. Then P ⊨ PA∞ if and
only if ω ≃ N for P-a.e. ω ∈ Ω. Consequently, for all φ ∈ L0, if N |≡ φ, then
PA∞ ⊢ φ.

Proof. For the first claim, the if direction follows from the fact that ω ≃ N
implies ω |≡ PA∞. For the only if direction, define the formula φ(x) =
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(
∨
n∈N0

x = n). Suppose P ⊨ PA∞. Then P ⊨ ΛPA ∪ {IS(φ)}, which is

countable. Therefore, ω |≡ ΛPA ∪ {IS(φ)} for P-a.e. ω ∈ Ω. Choose any such ω.
Note that n 7→ nω is an embedding of N into ω.

Clearly, ω |≡ φ(0/x). By the definition of n, if a is in the domain of ω and
n ∈ N0, then ω |≡ (x = n)[a] implies ω |≡ (Sx = n+ 1)[a]. Hence, ω |≡ φ[a]
implies ω |≡ φ(Sx/x)[a]. Since a was arbitrary, we have ω |≡ ∀x(φ→ φ(Sx/x)).
It therefore follows that ω |≡ ∀xφ. Hence, the map n 7→ nω is surjective, and so
it is an isomorphism from N to ω.

Finally, let φ ∈ L0 and suppose N |≡ φ. Let P = (Ω,Σ,P) be a model with
P ⊨ PA∞. By the above result and Theorem 5.3.3, we have ω |≡ φ for P-a.e. ω.
Hence, PφΩ = 1, so that P ⊨ φ. By Theorem 5.3.21, this gives PA∞ ⊢ φ.

5.3.6 Inductive consequence and completeness

If P is a model, we define Th P = {φ ∈ L0 | P ⊨ φ}. The proof of Proposition
4.1.12 is valid here, and shows that Th P is a consistent deductive theory. For
(X,φ, p) ∈ LIS, we say that P satisfies (X,φ, p), denoted by P ⊨ (X,φ, p) if
X ≡ Y ∪{ψ} for some Y ⊆ Th P and some ψ ∈ L0 with PφΩ ∩ψΩ/PψΩ = p.

As with the inductive calculus, the results in Section 4.2 depend only on
deductive completeness and the fact that ⊢F satisfies (i)–(vi) of Definition 3.1.3.
Hence, all of the proofs in that section go through in the predicate case, with F
replaced by L0, “strict model” replaced by “structure,” and BPV replaced by
the set Ω in Proposition 5.3.18. We adopt all of the notation and terminology
of Section 4.2 to define inductive consequence in LIS, extend it to inductive
conditions, and establish completeness.

Similarly, all of the results in Sections 4.1.6 and 4.5.1–4.5.4 carry through
with the above three replacements. We therefore adopt all of the notation and
terminology of those sections to define independence and its related notions.

To all of this, we add the following.

Theorem 5.3.24 (Inductive isomorphism theorem). Let P and Q be
isomorphic models. Then P ⊨ (X,φ, p) if and only if Q ⊨ (X,φ, p), for all
(X,φ, p) ∈ LIS.

Proof. Let P = (Ω,Σ,P) and Q = (Ω′,Γ,Q) be isomorphic and suppose
P ⊨ (X,φ, p). Then X ≡ Y ∪ {ψ}, where P ⊨ Y and PφΩ ∩ ψΩ/PψΩ = p.
By Theorem 5.3.8, we have Q ⊨ Y . Lemma 5.3.7 implies QψΩ′ = PψΩ and
QφΩ′ ∩ ψΩ′ = Q(φ ∧ ψ)Ω′ = P(φ ∧ ψ)Ω = PφΩ ∩ ψΩ. We therefore have
QφΩ′ ∩ ψΩ′/QψΩ′ = p, so that Q ⊨ (X,φ, p).

5.4 Predicate models and random variables

In this section, we discuss the relationship between predicate models and random
variables. Here, random variable is meant in the usual sense of measure-theoretic
probability theory. That is, a random variable is a measurable function, defined
on a probability space, taking values in a measurable space. Our first goal
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will be to prove a predicate analogue of Theorem 4.3.1, which states that
every probability space is isomorphic to a propositional model. We begin by
establishing the connection between propositional and predicate models.

Proposition 5.4.1. Every propositional model is isomorphic to a predicate
model. More specifically, let F be a given propositional language with
propositional variables PV , and let P be a model in F . Then there exists a
predicate language L and an L-model Q such that PF and Q are isomorphic
as measure spaces.

Proof. Let P = (Ω,Σ,P) be a propositional model in F . Let α = |PV | and
write PV = ⟨rδ | δ < α⟩. Let {rδ | δ < α} be a set of distinct unary relation
symbols. Let ρ be a constant symbol, which we call the propositional constant.
Define the extralogical signature L = {ρ} ∪ {rδ | δ < α}, and let L be the
associated predicate language.

Given a strict propositional model ω ∈ Ω, we define the L-structure ω as
follows. The domain of ω will be A = BPV . Let rωδ = {ν ∈ A | ν |≡F rδ}, and
let ρω = ω. Let Ω = {ω | ω ∈ Ω} and let Q = (Ω,Γ,Q) be the measure space
image of PF = (Ω,ΣF ,PF ) under the function h mapping ω to ω. Then Q is
an L-model.

Define τ : PV → L by rτδ = rδρ. Extend τ recursively to F by (¬φ)τ = ¬φτ
and (

∧
Φ)τ =

∧
φ∈Φ φ

τ . We then have ω |≡F φ if and only if ω |≡L φτ , for all
φ ∈ F . This is clear by construction when φ ∈ PV . It then follows easily by
formula induction on φ.

Now let A ∈ ΣF = Σ ∩ BPV . Choose φ ∈ F such that A = φΩ. Define
U = φτΩ′ . Then ω ∈ A if and only if ω |≡F φ, and ω ∈ h−1U if and only if
ω |≡L φ

τ . Hence, A = h−1U , so that U ∈ Γ. Since A was arbitrary, this shows
that h induces a measure-space isomorphism from PF to Q.

5.4.1 Random variables as extralogical symbols

In Theorem 4.3.1, we showed that every probability space is isomorphic to a
propositional model. Conversely, every propositional model is a probability
space. In this sense, then, measure-theoretic probability theory is exactly the
semantics of propositional inductive logic. But this simple observation misses an
important point. While the propositional version of inductive logic is capable of
representing any probability space, it does not explicitly represent any random
variables.

The reason this matters is that measure-theoretic probability theory is more
than just probability spaces. The modern practitioner almost always specializes
in a particular class of random variables and stochastic processes. For this
reason, we define the following. A measure-theoretic probability model is a tuple,
(S,Γ, ν,X), where (S,Γ, ν) is a probability space, X = ⟨Xi | i ∈ I⟩ is an indexed
collection of random variables, and Γ = σ(⟨Xi | i ∈ I⟩). That is, for each i ∈ I,
there is a measurable space (Ri,Γi) such that Xi : S → Ri is measurable, and
Γ is the smallest σ-algebra on S that contains {Xi ∈ V } for every i ∈ I and
every V ∈ Γi.
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We aim to prove a predicate analogue of Theorem 4.3.1, and show that
every measure-theoretic probability model has a natural correspondence to an
L-model, where the logical signature L is directly connected to the random
variables X.

We construct the logical signature as follows. Let R =
⋃
i∈I Ri. Let

{r | r ∈ R} be a set of distinct constant symbols, and {V | i ∈ I, V ∈ Γi}
a set of distinct unary relation symbols. Let

LR = {r | r ∈ R} ∪ {V | i ∈ I, V ∈ Γi},

and let LR be the associated predicate language. Define the LR-structure
R = (R,LR) by rR = r and V R = V . Let TR = {φ ∈ L0 | R |≡ φ}. Then TR is
a deductive theory. In LR, we write y ∈ V as shorthand for V y, and y /∈ V as
shorthand for ¬V y. Let C = {Xi | i ∈ I} be a set of distinct constant symbols
not in LR, and define L = LRC.

Theorem 5.4.2. There exists an L-model P = (Ω,Σ,P) with P ⊨ TR, and a
function h : S → Ω mapping x ∈ S to ω ∈ Ω such that

(i) x ∈ {Xi ∈ V } if and only if ω |≡ Xi ∈ V ,

(ii) each U ∈ Γ can be written as U = h−1φΩ for some φ ∈ L0, and

(iii) h induces a measure-space isomorphism from (S,Γ, ν) to P.

Consequently, if P = ThP ⇃[TR,Th P], then

P (
∧n
k=1Xi(k) ∈ V k | TR) = ν

⋂n
k=1{Xi(k) ∈ Vk}, (5.4.1)

whenever i(1), . . . , i(n) ∈ I and Vk ∈ Γi(k).

Proof. For each x ∈ S, define ω = ωx to be the L-expansion of R given by
ωXi = Xi(x). Let Ω = {ωx | x ∈ S} and let h : S → Ω denote the map
x 7→ ωx. Let P = (Ω,Σ,P) be the measure space image of (S,Γ, ν) under
h. Since ω |≡ TR for all ω ∈ Ω, we have P ⊨ TR. By construction, we have
Xi(x) ∈ V if and only if ωx |≡ Xi ∈ V , so (i) holds.

For (ii), let

Γ′ = {U ∈ Γ | U = h−1φΩ for some φ ∈ L0}.

Since
⋃
n h

−1(φn)Ω = h−1(
∨
n φn)Ω and ⊥Ω = ∅, we have that Γ′ is a σ-

algebra. Let V ∈ Γi. Since Xi(x) ∈ V if and only if ωx |≡ Xi ∈ V , it
follows that {Xi ∈ V } = h−1(Xi ∈ V )Ω. Therefore, {Xi ∈ V } ∈ Γ′. Since
Γ = σ(⟨Xi | i ∈ I⟩), this proves that Γ = Γ′, so (ii) holds.

If U ∈ Γ, φ ∈ L0, and U = h−1φΩ, then by the construction of P, we have
φΩ ∈ Σ. Therefore, (ii) implies (iii).

Finally, since h also induces an isomorphism from (S,Γ, ν) to (Ω,Σ,P), we
have P = ν ◦ h−1. This gives

P (
∧n
k=1Xi(k) ∈ V k | TR) = P

⋂n
k=1(Xi(k) ∈ V k)Ω = ν

⋂n
k=1{Xi(k) ∈ Vk},

which verifies (5.4.1).
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We excluded the case where σ(⟨Xi | i ∈ I⟩) is a proper subset of Γ. If we
wish to treat this case, we can simply add ι, the identity function on S, to
our list of random variables. Note, however, that in this case, there are events
U ∈ Γ that have nothing to do with any of the random variables Xi. These are
analogous to propositional sentences in the sense that they are generic assertions
that lack structure. If we add ι to our list of random variables, and ρ = ι ∈ L
is the constant symbol that represents ι, then ρ is playing the same role as the
propositional constant in the proof of Proposition 5.4.1. We see, then, that
we are effectively treating every event U ∈ Γ \ σ(⟨Xi | i ∈ I⟩) as if it were a
propositional variable.

Theorem 5.4.2 shows that every measure-theoretic probability model is an
inductive model. In other words, the whole of measure-theoretic probability
theory is embedded in the semantics of inductive logic. But Theorem 5.4.2
says more than just this. It exhibits a particular embedding. The function
h in Theorem 5.4.2 gives us a logical interpretation for each component of a
measure-theoretic probability model. With this interpretation, we have the
following correspondences.

Measure Theory Inductive Logic
outcome structure
event sentence
set membership strict satisfiability
random variable constant symbol

5.4.2 Extralogical symbols as functions

An L-structure is, in fact, a function whose domain is L. If ω is an L-structure,
then it maps each s ∈ L to the object sω. Hence, if P = (Ω,Σ,P) is an L-
model, then each structure ω ∈ Ω is a function that maps the symbol X to the
object Xω. This is exactly the opposite of what we have in measure-theoretic
probability theory, where each random variable X is a function that maps the
outcome ω to the object X(ω).

Starting with an L-model, P = (Ω,Σ,P), we may wish to reverse the
natural direction of the mapping, and think of the extralogical symbols s ∈ L as
functions defined on Ω. We can do that as follows. If Aω is the domain of ω ∈ Ω,
then a constant symbol c gives rise to the function Xc(ω) = cω, mapping Ω to
A =

⋃
ω∈ΩAω. An n-ary relation symbol can be viewed as an indexed collection

of {0, 1}-valued functions, indexed by An. Namely, for each a⃗ ∈ An, we have
Xr
a⃗(ω) = 1 if a⃗ ∈ rω, and 0 otherwise. For an n-ary function symbol f , we can

add a so-called “cemetery point” to A. Let ∂ be an object not in A. Then f
provides us with an indexed collection of A ∪ {∂}-valued functions, indexed by
An. That is,

Xf
a⃗ (ω) =

{
fωa⃗ if a⃗ ∈ Anω,

∂ if a⃗ /∈ Anω.

These functions are, of course, not measurable. In fact, the set A is not even
equipped with a σ-algebra, and there may not be a natural σ-algebra on A
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that is compatible with Σ. Without measurability, we cannot use the well-
established theory of random variables to analyze the functions determined
by the extralogical symbols. On the other hand, without the requirement of
measurability, we are able to model situations that are not possible with random
variables. See, for instance, Example 5.4.8 below.

5.4.3 The relativity of randomness

Let P = (Ω,Σ,P) be an L-model and let X ∈ L be a constant symbol. If we
try to think of ω 7→ Xω as a kind of non-measurable random variable, then
we run into a problem deeper than its non-measurability. The problem we face
is that every extralogical symbol is a non-measurable random variable. In a
measure-theoretic probability model, if we are faced with a probability of the
form ν{X > 0}, then we can be quite certain that the only thing random is X.
But in an inductive model, the analogous expression is P{ω ∈ Ω | Xω >ω 0ω}.
Not only can the value of 0 vary with ω, the inequality relation itself can also
depend on ω.

This phenomenon can be seen in a very simple example. Let L = {h, t,X}
be a set of constant symbols and L the associated predicate language. We think
of h and t as denoting the heads and tails sides of a coin, and X the result
of flipping the coin. Let T0 ⊆ L0 be the deductive theory generated by the
sentences, h ̸= t and X = h ∨ X = t. We may think of T0 as describing our
state of knowledge prior to flipping the coin. Namely, the two sides of the coin
are distinct, and the coin will not land on its edge.

Let P be the inductive theory generated by

P (X = h | T0) = P (X = t | T0) = 1/2.

This, of course, represents our assumption that the coin is fair.
Intuitively, we imagine that h and t are fixed, whereas X is random. We

can satisfy P with a model that matches this intuition. Let A = {0, 1}. Define
the L-structure ω0 by hω0 = 1, tω0 = 0, and Xω0 = 0. Define the L-structure
ω1 by hω1 = 1, tω1 = 0, and Xω1 = 1. Let Ω = {ω0, ω1}, Σ = PΩ, and
P{ω0} = P{ω1} = 1/2. Then P = (Ω,Σ,P) ⊨ P .

Under P, the symbol h corresponds to the function ω 7→ hω = 1, and the
symbol t corresponds to the function ω 7→ tω = 0. In other words, h and t
are identified with constant functions, and are therefore fixed. On the other
hand, X corresponds to ω 7→ Xω, which is 0 with probability 1/2 and 1 with
probability 1/2. Hence, X is random.

However, we can also satisfy P with a model that violates this intuition. Let

ω0 be as above. Define ω′
1 by hω

′
1 = 0, tω

′
1 = 1, and Xω′

1 = 0. Let Ω′ = {ω0, ω
′
1},

Σ′ = PΩ′, and P′{ω0} = P′{ω′
1} = 1/2. Then P ′ = (Ω′,Σ′,P′) ⊨ P . This time,

however, h and t correspond to functions that are 0 or 1 with equal probability,
and X corresponds to the constant function 0. In this model, it is h and t that
are random, while X is fixed.

Since P is satisfied by both P and P ′, we see that P does not tell us which
terms are random and which terms are fixed. In fact, it is not even meaningful
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to ask this question in P . The only things in P which can be random (that
is, the only things which can be assigned a probability that is not 0 or 1) are
sentences. In order to even ask this question, we must fix a model. And in
fixing a model, we are adopting, so to speak, a point of view. Which terms are
random and which are fixed is relative to that point of view. In P, we take the
point of view that h and t are fixed, while X is random. And in P ′, we take
the point of view that X is fixed, while h and t are random. There are models
in which all three are random. In this example, however, there are no models
in which all three are fixed.

In general, then, whether a term in P is random or fixed depends on our
point of view, or to borrow the language of physics, it depends on our frame of
reference.

5.4.4 Frames of reference

A frame of reference is a method that takes a given L-model P and constructs
a new L-model P ′ such that P ≃ P ′. Formally, we could define a frame of
reference to be a class function that maps each P in a certain class of L-models
to a set of L-models that are isomorphic to P. This level of formalism, however,
will not be necessary for our purposes.

Let P be the inductive theory in Section 5.4.3 that models a fair coin flip.
Proposition 5.4.6 below gives a method of taking any L-model P such that
P ⊨ P , and constructing an isomorphic model P ′ in which the functions
ω 7→ hω and ω 7→ tω are constant functions. In other words, there is a frame of
reference in which h and t are fixed, and not random.

We begin by showing there is a frame of reference in which every object is
an ordinal. A model P = (Ω,Σ,P) is said to be an ordinal model if, for all
structures ω ∈ Ω, the domain of ω is an ordinal.

Lemma 5.4.3. Let P = (Ω,Σ,P) be a model. For each ω ∈ Ω, let Aω be
the domain of ω, and let Bω be a set with |Bω| = |Aω|. Choose a bijection
gω : Aω → Bω, and let ω′ be the isomorphic image of ω under gω. Let
Ω′ = {ω′ | ω ∈ Ω} and let h : Ω → Ω′ denote the function ω 7→ ω′. Define
Q = (Ω′,Γ,Q) to be the measure space image of P under h. Then h is a model
isomorphism from P to Q.

Proof. To verify that h is an isomorphism from P to Q, it suffices to check that
h induces an isomorphism as measure spaces from (Ω,ΣL,PL) to (Ω′,ΓL,QL).
For this, it suffices to show that for all A ∈ ΣL, there exists U ∈ ΓL such that
h−1U = A.

Let A ∈ ΣL. Choose φ ∈ L and choose an assignment v into P such that
A = φ[v]Ω. Define the assignment v′ into Q by v′ω′(x) = gωvω(x), and let
U = φ[v′]Ω′ . It now suffices to show that U ∈ ΓL and h−1U = A. But Q is
the measure space image of P under h. Hence, if h−1U = A ∈ ΣL ⊆ Σ, then
U ∈ Γ, which implies U ∈ ΓL by the definition of ΓL. Therefore, we need only
show that h−1U = A.
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Note that ω ∈ h−1U = h−1φ[v′]Ω′ if and only if ω′ |≡ φ[v′ω′ ]. Similarly,
ω ∈ A = φ[v]Ω if and only ω |≡ φ[vω]. By Theorem 5.3.3, we have ω |≡ φ[v] if
and only if ω′ |≡ φ[v′]. Thus, h−1U = A, and so h is an isomorphism.

Proposition 5.4.4 (Ordinal frame of reference). Every model is
isomorphic to an ordinal model.

Proof. Let P = (Ω,Σ,P) be a model. For each ω ∈ Ω, let Aω be the domain
of ω. Choose an ordinal αω such that |αω| = |Aω|, and choose a bijection
gω : Aω → αω. Define Q as in Lemma 5.4.3. Then P ≃ Q and Q is an ordinal
model.

Lemma 5.4.5. Let α be an ordinal and S ⊆ α. Let β and γ be ordinals such
that |β| = |S| and |γ| = |α \ S|, and let g : S → β be a bijection. Then g can be
extended to a bijection g : α→ β + γ.

Proof. Let g : S → β be a bijection. Choose a bijection h : α\S → γ. Note that
the function f : γ → (β + γ) \ β given by fξ = β + ξ is a bijection. Therefore,
f ◦ h : α \ S → (β + γ) \ β is a bijection. Hence, if we define gξ = fhξ for
ξ ∈ α \ S, then g : α→ β + γ is a bijection.

Proposition 5.4.6 (Constant frame of reference). Let L be a predicate
language with extralogical signature L. Let C = {c0, c1, . . .} ⊆ L be a countable
(possible finite) set of constant symbols. Let T ⊆ L0 be a deductive theory.
Assume that T ⊢ cm ̸= cn for all m ̸= n. Then for all models P such that
P ⊨ T , there exists an ordinal model P ′ = (Ω′,Σ′,P′) such that P ≃ P ′ and
cωn = n for every ω ∈ Ω′.

Proof. Suppose that P ⊨ T . By Proposition 5.4.4, we may assume that P is
an ordinal model. Let φ = (

∧
m ̸=n cm ̸= cn). We then have T ⊢ φ, so that

P ⊨ φ. Let ω ∈ Ω and let αω denote the domain of Ω. We define an ordinal
α′
ω and a bijection gω : αω → α′

ω as follows. If ω /∈ φΩ, then let α′
ω = αω and

let gω be the identity. Suppose ω ∈ φΩ. Then ω |≡ φ, which means cωm ̸= cωn for
all m ̸= n.

Let β = |C|, so that either β = {0, 1, . . . , N} or β = N0. Then C = {cn |
n ∈ β}. Define S = {cωn | n ∈ β} ⊆ αω. Since cωm ̸= cωn for all m ̸= n, we
have |β| = |S| and n 7→ cωn is a bijection from β to S. Define gωc

ω
n = n, so that

gω : S → β is a bijection. Choose an ordinal γ such that |γ| = |αω \ S| and
define α′

ω = β + γ. By Lemma 5.4.5, we may choose an extension of gω to αω
such that gω : αω → α′

ω is a bijection.

Having constructed α′
ω and gω, we now define the ordinal model Q =

(Ω′,Γ,Q) as in Lemma 5.4.3, so that P ≃ Q. By Theorem 5.3.8, we have
Q ⊨ φ. Hence, QφΩ′ = 1. Let ω′ ∈ φΩ′ . Then ω′ |≡ φ, which implies ω |≡ φ,
since ω′ ≃ ω. Therefore, ω ∈ φΩ, and it follows that cω

′

n = gωc
ω
n = n. Hence,

cω
′

n = n for Q-a.e. ω′ ∈ Ω′. By Remark 5.3.9, we may assume that cω
′

n = n for
every ω′ ∈ Ω′.
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5.4.5 The natural frame of reference

Consider an inductive theory P with root T0 such that PA− ⊆ T0. In P , we
may have inductive statements of the form P (X > n | T0) = p, where > is the
extralogical symbol defined by ∀xy(x > y ↔ (∃z ̸= 0)x = y+ z). In any model
P = (Ω,Σ,P) that satisfies P , we then have P(X > n)Ω = p. But

(X > n)Ω = {ω ∈ Ω | Xω >ω nω}.

Hence, the very meaning of n and> in the model P may vary with ω. If we carry
with us an intuition that was built around a study of random variables, then
this situation is highly counterintuitive. We are not accustomed to thinking
of positive integers as random, let alone thinking of > as a random relation.
But recall that the randomness or fixedness of these symbols is not an inherent
property of the inductive theory P that we started it. It is relative to the model
we are considering.

Theorem 5.4.7 below, which is an immediate consequence of Proposition
5.4.6, shows that for any such inductive theory P , there is a frame of reference
in which all the constant symbols n are fixed. We call this the natural frame
of reference. If we replace PA− with PA, then this also fixes >. Indeed, in this
case, > can be defined explicitly by

∀xy(x > y ↔
∨
n>m(x = n ∧ y = m)).

This is because PA ⊢ ∀x
∨
n∈N0

x = n, which was demonstrated in the proof of
Proposition 5.3.23.

To state the formal theorem, let L be a language that contains a unary
function symbol S and constant symbols {n | n ∈ N0}. A deductive theory
T ⊆ L0 is said to contain the counting numbers if

T ⊢ ∀x Sx ̸= 0,

T ⊢ ∀xy(Sx = Sy → x = y), and

T ⊢ n = S · · · S0, for all n ∈ N0.

In the last condition, the symbol S is repeated n times.

Theorem 5.4.7 (Natural frame of reference). Let T ⊆ L0 be a deductive
theory that contains the counting numbers. Then for all models P such that
P ⊨ T , there exists an ordinal model P ′ = (Ω′,Σ′,P′) such that P ≃ P ′ and
nω = n for every ω ∈ Ω′.

Proof. Since T contains the counting numbers, we have T ⊢ n ̸= m for all
n ̸= m. The theorem therefore follows from Proposition 5.4.6.

Example 5.4.8. Let I be an uncountable set. Let

L = {Xt | t ∈ I} ∪ {n | n ∈ N0}
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be a set of constant symbols, and L the associated predicate language. Define
X ⊆ L0 by

X = {m ̸= n | m,n ∈ N0,m ̸= n} ∪ {
∨
n∈N0

Xt = n | t ∈ I}
∪ {Xs ̸= Xt | s, t ∈ I, s ̸= t}.

Let X0 ⊆ X be countable and choose I0 = {t0, t1, t2, . . .} such that

X0 ⊆ {m ̸= n | m,n ∈ N0,m ̸= n} ∪ {
∨
n∈N0

Xt = n | t ∈ I0}
∪ {Xs ̸= Xt | s, t ∈ I0, s ̸= t}.

Define the L-structure ω with domain A = N0 by nω = n, Xω
t = n if t = tn,

and Xω
t = 0 otherwise. Then ω |≡ X0, so that X0 is satisfiable, by Proposition

5.3.6. Since X0 was arbitrary, Theorem 5.3.19 implies X is satisfiable. Choose
a model P = (Ω,Σ,P) such that P ⊨ X. By Proposition 5.4.6, we may assume
that nω = n for all ω ∈ Ω.

Note that for each t ∈ I, we have P ⊨
∨
n∈N0

Xt = n. Hence, Xω
t ∈ N0

for P-a.e. ω ∈ Ω. Moreover, if T0 = T (X) and P = ThP ⇃[T0,Th P], then
P (Xs ̸= Xt | T0) = 1 for all s ̸= t. This should be contrasted with the
observation made in Remark 4.4.7. Namely, there is no N0-valued stochastic
process ⟨Y (t) | t ∈ I⟩ such that Y (s) ̸= Y (t) a.s. for all s ̸= t.



Chapter 6

Real inductive theories

By a “real inductive theory,” we mean an inductive theory that makes
statements about real numbers. If P ⊆ LIS is such a theory with root T0, then
L should be capable of making statements about real numbers, and (ideally) T0
should contain all true statements about real numbers.

One particularly straightforward way to construct such an inductive theory is
to follow the approach taken in Section 5.4.1. Namely, we construct a standard
structure of the real numbers, which we denote by R, and we require T0 to
contain all sentences that are strictly satisfied by R. We can then prove the
analogue of Theorem 5.4.2, showing that every collection of real-valued random
variables can be represented in a natural way inside a real inductive theory.
This is done in Section 6.3.5.

There are several downsides to this approach. The first is that we cannot
talk directly about sets of real numbers. We can add them indirectly as relations
in our language, as we did in Section 5.4.1. But there is no intrinsic theory of
sets in this language. A second, related downside is that we cannot talk about
distinguished elements or subsets of the reals without considerable extra effort.
In particular, we cannot talk directly about integers and rationals, and their
relationships to the reals.

The primary purpose of this chapter is to present a different, more robust
approach. Namely, we will create inductive theories whose root T0 contains all
of axiomatic set theory. In this way, not only can we make inductive statements
about real numbers, but also about all other objects of modern mathematics.

After discussing definitorial extensions in Section 6.1, the axioms of set
theory are presented in Section 6.2. They are the usual axioms of Zermelo-
Fraenkel set theory with choice. As with Peano arithmetic in Section 5.3.5, we
define multiple theories. In fact, we define four theories: ZFCfin ⊆ ZFC− ⊆
ZFC ⊆ ZFC+. The first of these, ZFCfin, is the usual finitary set theory from
first-order logic. The others are extensions to L0. The first extension, ZFC−, is
conservative, in the sense that every sentence in ZFC−\ZFCfin is purely infinitary.
In other words, in ZFC−, we cannot deduce any new first-order sentences that
we could not already deduce in ZFCfin. This is because ZFC− and ZFCfin have

143
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the same axioms. In particular, even in ZFC−, we can only use finitary formulas
when making use of the axioms of separation and replacement (see Section 6.2.2
and 6.2.3).

The extension ZFC is stronger. There, we allow infinitary formulas in the
axiom of separation. In ZFC+, we allow infinitary formulas in both separation
and replacement. We do not spend time on ZFC+ beyond defining it. We
primarily focus on the theories ZFC− and ZFC.

In Section 6.3, we construct the set of real numbers in ZFC−, and build real
inductive theories whose roots are required to contain ZFC−. We then prove the
analogue of Theorem 5.4.2, showing that every collection of real-valued random
variables can be represented inside such a theory. Using ZFC− is superior to
using the standard structure of the reals. Now, not only can we talk about
distinguished sets of real numbers, we can in fact talk about all kinds of sets,
backed up by the full power of set theory.

These benefits, however, come at a price. In ZFC−, although we can define
the set of real numbers, we cannot define each individual real number. We
can explicitly define each rational number, and we can explicitly define certain
individual real numbers, such as π, e, and

√
2. But it is intuitively clear, at least

in finitary set theory, that the vast majority of real numbers elude any type of
description. As such, our probabilistic statements will only be able to mention
the rationals, and a handful of definable reals.

To elaborate on this, consider an inductive statement, P (φ | X) = p. There
are two things to notice about this. First, it is not an element of L. We cannot
add a quantifier to the outside of this statement, except in a metatheoretical
sense. Second, the formula φ is a sentence. It cannot contain any free variables.
Hence, any mention of a real number inside φmust be done through an explicitly
defined constant. Therefore, when using ZFC−, any real number which cannot
be explicitly defined in ZFC− cannot be used inside an inductive statement.

Another downside to using ZFC− is that it produces a weaker analogue of
Theorem 5.4.2. In that theorem, we see a direct and intuitive correspondence
between outcomes in the measure-theoretic model, and structures in the
inductive model. This connection is lost when we do things in ZFC−.

It turns out that the right place to work is in ZFC. This is done in Section
6.4. In ZFC, not only can we explicitly define each individual real number,
we can also explicitly define each individual Borel set, and each individual
measurable function. Hence, any statement we might make in our measure-
theoretic model has an explicit counterpart in ZFC. Moreover, we recover the
natural correspondence between outcomes and structures.

Additionally, in ZFC, we can construct a frame of reference in which the real
numbers, Borel sets, and measurable functions are all almost surely fixed, and
not random. In this sense, ZFC is home to the natural intuition of the practicing
probabilist, to whom it would never occur to think of such things as varying
with ω.

Adopting ZFC, however, involves accepting a new axiom of set theory—or
rather, accepting an expanded version of the axiom of separation. In Section
6.2.7, we discuss reasons why this is hardly any more problematic that assuming
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that ZFCfin is consistent.
Finally, in Sections 6.5 and 6.6, we illustrate how the major theorems and

structures of measure-theoretic probability can be expressed using inductive
logic. The examples we cover are the law of large numbers, the central limit
theorem, conditional expectation, and the general form of the law of total
probability, also known as the tower property of conditional expectation.

6.1 Definitorial extensions

We often want to introduce new symbols into our language that are defined in
terms of old ones. Sometimes this can be done using shorthand. In that case,
the new symbols are not actually part of our language. They are just notational
conventions we use to talk about our language. We have seen this already with
the symbols ∃ and →.

Sometimes, however, we want to formally augment our logical signature. For
example, in the context of a deductive theory T , suppose we have T ⊢ ∃!xφ(x).
We may wish to introduce a constant symbol to denote the unique object whose
existence is being asserted. This is not easily done with shorthand. In this
subsection, we go over precisely how this is done, and what effects it has on
deductive and inductive derivability.

6.1.1 Defining individual symbols

Relation symbols. Let L be a predicate language with logical signature L.
Let r be an n-ary relation symbol with r /∈ L, and let L[r] be the language
with signature L ∪ {r}. An explicit definition of r in L is a sentence in L[r]0
of the form θr = ∀x(rx⃗ ↔ δ(x⃗)), where δ = δ(x1, . . . , xn) ∈ L. The formula δ
is called a defining formula. We may sometimes denote δ by δr, to indicate its
relationship to r.

Given φ ∈ L[r], we define φrd ∈ L as follows. If φ is an equation, then
φrd = φ, and if φ = rt⃗, then φrd = δ(⃗t ). We extend this recursively by
(¬φ)rd = ¬φrd, (

∧
Φ)rd =

∧
φ∈Φ φ

rd, and (∀xφ)rd = ∀xφrd. Intuitively, φ is

reduced down to φrd by replacing all occurrences of rt⃗ by δ(⃗t ).

Constant symbols. Let c be a constant symbol with c /∈ L. Let L[c] be the
language with signature L ∪ {c}. An explicit definition of c in L is a sentence
in L[c]0 of the form θc = ∀y(y = c↔ δ(y)), where δ = δ(y) ∈ L. The formula δ
is called a defining formula. We may sometimes denote δ by δc, to indicate its
relationship to c. Let ξc = ∃!y δc. Note that θc ⊢ ξc. In general, we will only
use the definition θc in situations where ξc holds. Given φ ∈ L[c], we choose
z /∈ varφ and define φrd ∈ L by φrd = ∃z(φ(z/c) ∧ δ(z)).

Function symbols. Finally, let f be an n-ary function symbol with f /∈ L and
n ⩾ 1. Let L[f ] be the language with signature L ∪ {f}. An explicit definition
of f in L is a sentence in L[f ]0 of the form θf = ∀x⃗y(y = fx⃗↔ δ(x⃗, y)), where
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δ = δ(x1, . . . , xn, y) ∈ L. The formula δ is called a defining formula. We may
sometimes denote δ by δf , to indicate its relationship to f . Let ξf = ∀x⃗ ∃!y δf .
Note that θf ⊢ ξf . In general, we will only use the definition θf in situations
where ξf holds.

Given φ ∈ L[f ], we define φrd ∈ L by formula recursion. First suppose
φ in prime. Then φ is a string of finite length. Here, we define φrd exactly
as in first-order logic. (See, for example, [28, Section 2.6].) Namely, choose
y /∈ varφ. Find the leftmost occurrence of f in φ, which will be followed by
a unique concatenation of terms t⃗ = t1 · · · tn, and let φ′ be the prime formula
obtained by replacing f t⃗ with y. Note that φ = φ′(f t⃗/y). We then define
φ1 = ∃y(φ′ ∧ δ(⃗t, y)). The resulting formula φ1 has one fewer occurrence of f
than φ. If f still occurs in φ1, then repeat the procedure to obtain φ2, and so on.
Since φ has only finitely many occurrences of f , this procedure will eventually
terminate in some φm that no longer contains f . We then define φrd = φm. We
extend this definition recursively by (¬φ)rd = ¬φrd, (

∧
Φ)rd =

∧
φ∈Φ φ

rd, and

(∀xφ)rd = ∀xφrd.

6.1.2 Defining multiple symbols

More generally, let M be a set of extralogical symbols, disjoint from L. Let L′

be the language with signature L ∪M . For each s ∈ M , let θs be an explicit
definition of s in L, and let Θ = {θs | s ∈ M}. Let ξr = ⊤ for all relation
symbols r ∈M , and let Ξ = {ξs | s ∈M}. Note that Θ ⊢ Ξ. In general, we will
only use the definitions Θ in situations where Ξ holds.

Given φ ∈ L′, we define the reduced formula, φrd ∈ L, as follows. If φ
is prime, then symφ is finite. We may therefore eliminate the symbols in
symφ ∩ M in a stepwise fashion as above. We then extend this recursively
by (¬φ)rd = ¬φrd, (

∧
Φ)rd =

∧
φ∈Φ φ

rd, and (∀xφ)rd = ∀xφrd. More generally,

for X ⊆ L′, we write Xrd = {φrd | φ ∈ X}.

6.1.3 Extensions and models

Let ω = (A,Lω) be an L-structure, and define the L′-structure, ω′ = (A, (L′)ω
′
)

as follows. First, let sω
′
= sω whenever s ∈ L. If s = r ∈ M is a relation

symbol, then we define rω
′
by rω

′
a⃗ if and only if ω |≡ δr [⃗a], where a⃗ ∈ An.

Next, suppose s = c ∈ M is a constant symbol. If ω |≡ ξc = ∃!y δc, then there
exists a unique a ∈ A such that ω |≡ δc[a]. We then define cω

′
= a. Otherwise,

if ω |̸≡ ξc, then choose a ∈ A arbitrarily and set cω
′
= a. Lastly, suppose

s = f ∈ M is a function symbol. If ω |≡ ξf = ∀x⃗ ∃!y δf , then for each a⃗ ∈ An,

there exists a unique b ∈ A such that ω |≡ δf [⃗a, b]. We then define fω
′
(⃗a) = b.

Otherwise, if ω |̸≡ ξf , then we define fω
′
arbitrarily. Note that ω′ is constructed

so that ω′ |≡ θs whenever ω |≡ ξs. Conversely, note that if ν is an L′-model
and ω is its L-reduct, then ω |≡ ξs whenever ν |≡ θs, and ν and ω′ agree on
L ∪ {s ∈ M | ν |≡ θs}. Finally, given an assignment vω into ω, we define the
assignment v′ω′ into ω′ by v′ω′(x) = v(x) for all x ∈ Var .
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Proposition 6.1.1. Let ω be an L-structure and φ ∈ L′. Assume ω |≡ ξs for all
s ∈ M ∩ symφ. Then ω′ |≡ φ[v′ω′ ] if and only ω |≡ φrd[vω], for all assignments
vω.

Proof. If φ ∈ L, then φrd = φ. Hence, by Theorem 5.3.2, the proposition holds
for all φ ∈ L.

For φ ∈ L′, we first consider the case,M∩symφ = {r}. In this case, ω |≡ ξr.
It follows that ω′ |≡ θr = ∀x⃗(rx⃗ ↔ δ(x⃗)). We now prove the proposition by
induction on φ. Suppose φ is prime. Then either φ ∈ L or φ = rt⃗. In the
former case, we established that the proposition holds. In the latter case, we
have φrd = δ(⃗t ), so the result follows from ω′ |≡ θr. The inductive steps are
straightforward. The cases M = {c} and M = {f} are similar.

We now consider the case of general M . As above, the result holds if
symφ ∩M contains a single element. It therefore holds whenever symφ ∩M
is finite, by reducing each symbol one at a time. In particular, it holds
for each prime φ, since prime formulas are finite strings of symbols. The
result then follows by induction on φ, using the recursive definition of strict
satisfiability.

Let P = (Ω,Σ,P) be an L-model. For each ω ∈ Ω, define the L′-structure
ω′ as above. Let Ω′ = {ω′ | ω ∈ Ω}, let h denote the map ω 7→ ω′, and
let P ′ = (Ω′,Γ,Q) be the measure space image of P under h. Since ω′ |≡ θs
whenever ω |≡ ξs, it follows that P ′ ⊨ θs whenever P ⊨ ξs. Given an assignment
v into P, define the assignment v′ into P ′ by v′ω′(x) = vω(x) for all x ∈ Var .

Lemma 6.1.2. Let Q = (ΩQ,ΓQ,QQ) be an L′-model such that Q ⊨ Θ. For
each ν ∈ ΩQ, let gν be the L-reduct of ν. Define Ω = {gν | ν ∈ ΩQ} and let
P = (Ω,Σ,P) be the measure space image of Q under g. Given an assignment
w into Q, define the assignment v into P by vgν(x) = wν(x) for all x ∈ Var .
Let P ′ and v′ as above. Then P ⊨ Ξ and, for any φ ∈ L′, we have Q ⊨ φ[w]
if and only if P ′ ⊨ φ[v′].

Proof. Let ξs ∈ Ξ. Since ξs ∈ L, it follows from Theorem 5.3.2 that gν |≡ ξs
if and only if ν |≡ ξs. Hence, (ξs)ΩQ = g−1(ξs)Ω, so that Q ⊨ ξs if and only if
P ⊨ ξs. Since Θ ⊢ Ξ and Q ⊨ Θ, this gives P ⊨ Ξ.

Now let M0 =M ∩ symφ and note that M0 is countable. Let Θ0 = {θs | s ∈
M0}. Then Q ⊨

∧
Θ0, so that ν |≡

∧
Θ0, for a.e. ν. It follows that ν and ω′

agree on L ∪M0, for a.e. ν. The result now follows from Theorem 5.3.2.

Proposition 6.1.3. Let P = (Ω,Σ,P) be an L-model such that P ⊨ Ξ, and
let P ′ = (Ω′,Γ,Q) be as above. Let φ ∈ L′ and let v be an assignment
into P. Then φ[v′]Ω′ ∈ Γ if and only if φrd[v]Ω ∈ Σ, and in this case,
Qφ[v′]Ω′ = Pφrd[v]Ω. In particular, P ′ ⊨ φ[v′] if and only P ⊨ φrd[v].

Proof. Since symφ is countable and P ⊨ Ξ, we may choose Ω∗ ∈ Σ such that
PΩ∗ = 1 and ω |≡ ξs, for all s ∈ M ∩ symφ and all ω ∈ Ω∗. Hence, by
Proposition 6.1.1, we have ω′ |≡ φ[v′ω′ ] if and only ω |≡ φrd[vω], for P-a.e. ω ∈ Ω.
Therefore, h−1φ[v′]Ω′ = φrd[v]Ω a.s. It follows from the definition of P ′ that
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φ[v′]Ω′ ∈ Γ if and only if φrd[v]Ω ∈ Σ, and in this case, Qφ[v′]Ω′ = Pφrd[v]Ω.
In particular, Qφ[v′]Ω′ = 1 if and only if Pφrd[v]Ω = 1, so that P ′ ⊨ φ[v′] if
and only P ⊨ φrd[v].

6.1.4 Deductive elimination

The following theorem captures the exact relationship between derivability in
L′ and derivability in L. By Remark 5.2.6, since L ⊆ L′, we are able to simply
write ⊢, instead of ⊢L and ⊢L′ .

Theorem 6.1.4 (Deductive elimination theorem). Let X ⊆ L′ and φ ∈ L′.
Then X,Θ ⊢ φ if and only if Xrd,Ξ ⊢ φrd.

Proof. Assume X,Θ ⊢ φ. Let P = (Ω,Σ,P) be an L-model and let v be an
assignment into P such that P ⊨ ψ[v] for all ψ ∈ Xrd ∪ Ξ. Since P ⊨ Ξ, we
may define P ′ as in Proposition 6.1.3. We then have P ′ ⊨ ζ[v′] if and only
P ⊨ ζrd[v] for all ζ ∈ L′. It follows that P ′ ⊨ ψ[v′] for all ψ ∈ X. Since
P ′ ⊨ θs whenever P ⊨ ξs, it also follows that P ′ ⊨ Θ. Thus, P ⊨ ψ[v′] for all
ψ ∈ X∪Θ. Since X,Θ ⊢ φ, we conclude that P ′ ⊨ φ[v′]. One more application
of Proposition 6.1.3 gives P ⊨ φrd[v]. Since P and v were arbitrary, this shows
that Xrd,Ξ ⊢ φrd.

Now suppose Xrd,Ξ ⊢ φrd. Let Q = (ΩQ,ΓQ,QQ) be an L′-model and
let w be an assignment into Q such that Q ⊨ ψ[w] for all ψ ∈ X ∪ Θ. Since
Q ⊨ Θ, we may define P as in Lemma 6.1.2. We then have P ⊨ Ξ and
P ′ ⊨ ψ[v′] for all ψ ∈ X ∪Θ. Proposition 6.1.3 then implies P ⊨ ψrd[v] for all
ψ ∈ X ∪Θ. In particular, P ⊨ ψ[v] for all ψ ∈ Xrd. Together with P ⊨ Ξ and
Xrd,Ξ ⊢ φrd, this gives P ⊨ φrd[v]. Another application of Proposition 6.1.3
gives P ′ ⊨ φ[v′]. Therefore, by Lemma 6.1.2, we have Q ⊨ φ[w]. Since Q and
w were arbitrary, this shows that X,Θ ⊢ φ.

Corollary 6.1.5. For any X1, X2 ⊆ L′, we have X1 ∪Θ ≡ X2 ∪Θ if and only
if Xrd

1 ∪ Ξ ≡ Xrd
2 ∪ Ξ.

Proof. Suppose X1 ∪ Θ ≡ X2 ∪ Θ. Then X1,Θ ⊢ X2. Theorem 6.1.4 implies
Xrd

1 ,Ξ ⊢ Xrd
2 . Likewise, Xrd

2 ,Ξ ⊢ Xrd
1 . Therefore, Xrd

1 ∪ Ξ ≡ Xrd
2 ∪ Ξ. The

proof of the converse is similar.

Definition 6.1.6. Let T ⊆ L0 be a deductive theory, and let Θ and Ξ be as in
Section 6.1.2. We say that Θ is legitimate in T if Ξ ⊆ T . If Θ is legitimate in T ,
then we define the deductive theory T ′ ⊆ (L′)0 by T ′ = T +Θ. The deductive
theory T ′ is called a definitorial extension of T .

Corollary 6.1.7. Let T ′ be a definitorial extension of T . Then for all φ ∈ L′,
we have T ′ ⊢ φ if and only if T ⊢ φrd. In particular, T is consistent if and only
if T ′ is consistent.

Proof. By Theorem 6.1.4, we have T ′ ⊢ φ if and only if T rd,Ξ ⊢ φrd. But
T rd = T and Ξ ⊆ T . Therefore, T rd,Ξ ⊢ φrd if and only if T ⊢ φrd.
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6.1.5 Inductive elimination

Our aim here is to prove Theorem 6.1.10 below, which is an inductive version
of Theorem 6.1.4.

Let P be an inductive theory in LIS with root T0, and let T ′
0 be a definitorial

extension of T0. That is, T ′
0 = T0 + Θ, where Θ is legitimate in T0, meaning

that Ξ ⊆ T0.
Let X ⊆ (L′)0 and assume that X ↪→ T ′

0. Choose ψ ∈ (L′)0 such that
X ≡ T ′

0 + ψ. Define QX ⊆ (L′)IS by

QX = {(X,φ, p) | P (φrd | T0, ψrd) = p}.

We claim that the definition of QX does not depend on the choice ψ. To see
this, suppose that ζ ∈ (L′)0 and X ≡ T ′

0 + ζ. Then T ′
0 ⊢ ψ → ζ. By Corollary

6.1.7, we have T0 ⊢ ψrd → ζrd, so that T0, ψ
rd ⊢ ζrd. Reversing the roles of ψ

and ζ gives T0, ζ
rd ⊢ ψrd. Hence, T0 + ψrd = T0 + ζrd. By the rule of logical

equivalence, P (φrd | T0, ψrd) = p if and only if P (φrd | T0, ζrd) = p, and so QX

does not depend on ψ.
Let Q =

⋃
{QX | X ↪→ T ′

0}. Then Q is strongly connected with root T ′
0.

Lemma 6.1.8. With notation as above, Q is satisfiable.

Proof. Let P be an L-model such that P ⊨ P . Then P ⊨ TP and Ξ ⊆ T0 ⊆ TP ,
so that P ⊨ Ξ. Define P ′ as in Proposition 6.1.3. Since P ′ ⊨ θs whenever
P ⊨ ξs, we have P ′ ⊨ Θ. Also, T rd

0 = T0, so Proposition 6.1.3 gives P ′ ⊨ T0.
Therefore, P ′ ⊨ T0 +Θ = T ′

0.
Now suppose (X,φ, p) ∈ Q. Write X ≡ T ′

0 + ψ, where P (φrd | T0, ψrd) = p.
Then Pφrd

Ω ∩ψrd
Ω /Pψrd

Ω = p. By Proposition 6.1.3, we have QφΩ′∩ψΩ′/QψΩ′ =
p, so that P ′ ⊨ (X,φ, p). Since (X,φ, p) was arbitrary, P ′ ⊨ Q.

It follows from Lemma 6.1.8 and Theorem 4.2.7 that Q is consistent. We
may therefore define P ′ = PQ. Let P

′
0 = P ′ ⇃T ′

0
.

Lemma 6.1.9. With notation as above, P ′
0 = Q.

Proof. Since Q ⊆ P ′ and X ↪→ T ′
0 for every X ∈ anteQ, we have Q ⊆ P ′

0.
Conversely, suppose that P ′

0(φ | X) = p. Write X ≡ T ′
0 + ψ, so that P ′(φ |

T ′
0, ψ) = p. Let P and P ′ be as in the proof of Lemma 6.1.8. Since P ′ ⊨ Q, it

follows that P ′ ⊨ P ′. Therefore, QφΩ′∩ψΩ′/QψΩ′ = p. Proposition 6.1.3 then
gives Pφrd

Ω ∩ψrd
Ω /Pψrd

Ω = p, so that P ⊨ (T0+ψ
rd, φrd, p). Since this is true for

every L-model P such that P ⊨ P , and since T0 + ψrd ↪→ [T0, TP ], it follows
from Definition 4.2.10 that P ⊨ (T0 + ψrd, φrd, p). Remark 4.2.15 therefore
implies P (φrd | T0, ψrd) = p, so that (X,φ, p) ∈ Q. Hence, Q = P ′

0.

Theorem 6.1.10 (Inductive elimination theorem). Let P be an inductive
theory in LIS with root T0, and let T ′

0 be a definitorial extension of T0 as in
Definition 6.1.6. Then there exists a unique inductive theory P ′ ⊆ (L′)IS with
root T ′

0 such that
P ′(φ | X,Θ) = P (φrd | Xrd,Ξ), (6.1.1)

where either both sides exist or both sides do not.
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Proof. Let P ′ be defined as above. We first show that P ′(φ | X,Θ) = p implies
P (φrd | Xrd,Ξ) = p. Suppose P ′(φ | X,Θ) = p. Write X ∪ Θ ≡ T ′ + ψ,
where T ′ ∈ [T ′

0, TP ′ ], ψ ∈ (L′)0, and P ′(φ | T ′
0, ψ) = p. Since P ′

0 = Q,
we have Q(φ | T ′

0, ψ) = p. From the definition of Q, it follows that P (φrd |
T0, ψ

rd) = p. Therefore, to show that P (φrd | Xrd,Ξ) = p, it suffices to show
that Xrd ∪ Ξ ≡ T + ψrd for some T ∈ [T0, TP ]. For this, let T = T ((T ′)rd ∪ Ξ).
Since Θ ⊆ T ′

0 ⊆ T ′, we have X ∪Θ ≡ T ′+Θ+ψ. Corollary 6.1.5 therefore gives
Xrd ∪ Ξ ≡ (T ′)rd ∪ Ξ ∪ {ψrd} ≡ T + ψrd. We must now show that T0 ⊆ T and
T ⊆ TP .

For T0 ⊆ T , note that T0 ⊆ T ′
0 ⊆ T ′. We therefore have T ′ ⊢ T0, so that

T ′,Θ ⊢ T0. Since T rd
0 = T0, Theorem 6.1.4 gives (T ′)rd,Ξ ⊢ T0, so that T0 ⊆ T .

For T ⊆ TP , we first show that T rd
P ′ ⊆ TP . Let ζ ∈ TP ′ . Then P ′(ζ | T ′

0) = 1.
By Lemma 6.1.9, we have Q(ζ | T ′

0) = 1. From the definition of Q, it follows
that P (ζrd | T0) = 1. Therefore, ζrd ∈ TP , and this shows that T rd

P ′ ⊆ TP .
Now, since Ξ ⊆ T0 ⊆ TP , we have that Θ is legitimate in TP . Corollary 6.1.7

therefore gives TP +Θ ⊢ ζ if and only if TP ⊢ ζrd, for all ζ ∈ L′. By the above,
TP ⊢ T rd

P ′ . Hence, TP + Θ ⊢ TP ′ . Since T ′ ⊆ TP ′ , this implies TP + Θ ⊢ T ′.
Another application of Corollary 6.1.7 yields TP ⊢ (T ′)rd. As previously noted,
Ξ ⊆ TP . Therefore, TP ⊢ T , so that T ⊆ TP .

We now show that P (φrd | Xrd,Ξ) = p implies P ′(φ | X,Θ) = p. Suppose
P (φrd | Xrd,Ξ) = p. Write Xrd ∪ Ξ ≡ T + ψ, where T ∈ [T0, TP ], ψ ∈ L0,
and P (φrd | T0, ψ) = p. By Lemma 6.1.9, the definition of Q, and the fact that
ψrd = ψ, we have P ′(φ | T0, ψ) = p. Therefore, to show that P ′(φ | X,Θ) = p,
it suffices to show that X ∪ Θ ≡ T ′ + ψ for some T ′ ∈ [T ′

0, TP ′ ]. For this, let
T ′ = T +Θ. Since Ξ ⊆ T0 ⊆ T , we have Xrd ∪ Ξ ≡ T + Ξ+ ψ = T ′ + ψ.

We must now show that T ′
0 ⊆ T ′ and T ′ ⊆ TP ′ . The first follows easily,

since T ′
0 = T0 + Θ ⊆ T + Θ = T ′. For the second, note that if ζ ∈ L0 and

P (ζ | T0) = 1, then Q(ζ | T ′
0) = 1, which implies P ′(ζ | T ′

0) = 1. Therefore,
TP ⊆ TP ′ . Since T ⊆ TP , we have T ′ = T + Θ ⊆ TP + Θ ⊆ TP ′ + Θ. But
Θ ⊆ T ′

0 ⊆ TP ′ , so it follows that T ′ ⊆ TP ′ .
For uniqueness, let P ′′ ⊆ (L′)0 be another inductive theory with root T ′

0

that satisfies (6.1.1), and suppose P ′′(φ | X) = p. Then Θ ⊆ T ′
0 ⊆ T (X), so

that X ≡ X ∪Θ. By the rule of logical equivalence and (6.1.1), we have

P ′′(φ | X) = P ′′(φ | X,Θ) = P (φrd | Xrd,Ξ) = P ′(φ | X,Θ) = P ′(φ | X),

which shows that P ′′ ⊆ P ′. Reversing the roles of P ′ and P ′′ gives P ′′ = P ′.

The inductive theory P ′ in Theorem 6.1.10 is called a definitorial extension
of P . In the special case that P is a complete inductive theory, we have the
following semantic characterization of P ′.

Corollary 6.1.11. Let T0 ⊆ L0 be a deductive theory. Let P be an L-model
with P ⊨ T0 and define P = ThP ⇃[T0,Th P ]. Let P ′ be a definitorial extension
of P . Then P ′ = ThP ′ ⇃[T ′

0,Th P′], where P ′ is defined above Lemma 6.1.2.

Proof. By Lemma 6.1.9 and Theorem 3.3.4, it suffices to show that Q =
ThP ′ ⇃T ′

0
. Note that (X,φ, p) ∈ Q if and only if we can write X ≡ T ′

0 + ψ,
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where P ⊨ (T0 + ψrd, φrd, p). Also note that (X,φ, p) ∈ ThP ′ ⇃T ′
0
if and only

if we can write X ≡ T ′
0+ψ, where P ′ ⊨ (T ′

0+ψ,φ, p). Since P
′ is a definitorial

extension, we have Ξ ⊆ T0, which implies P ⊨ Ξ. Hence, from Proposition
6.1.3, it follows that P ⊨ (T0+ψ

rd, φrd, p) if and only if P ′ ⊨ (T ′
0+ψ,φ, p).

6.1.6 Primitive vs. defined symbols

Let P ⊆ LIS be an inductive theory with root T0. The extralogical symbols in L
have no formal definitions within P . Syntactically, they get their meaning from
their use, that is, from the inductive statements (X,φ, p) ∈ P in which they
appear. If P and T0 are generated by a set of axioms, then we might say that
the symbols in L are “defined” by these axioms. That is, they get whatever
meaning they may have from what the axioms have to say about them.

Now suppose P ′ is a definitorial extension of P . Then, unlike the symbols
in L, the symbols in L′ \ L do have a formal definition in P ′. For instance, to
each constant symbol c ∈ L′ \L, there corresponds a defining formula δc(y) ∈ L
such that θc = ∀y(y = c ↔ δc(y)) ∈ T ′

0. It seems, then, that the symbols in
L′ can be divided into two disjoint categories. Those in L we might call the
“primitive symbols,” which lack a formal definition and get their meaning from
their use. While those is L′ \ L we might call the “defined symbols,” which get
their meaning by virtue of being defined in terms of the primitive symbols.

But this distinction is metatheoretical. Neither the deductive theory T ′
0 nor

the inductive theory P ′ can “see” which symbols are primitive and which are
defined. From the point of view of P ′, a constant symbol c ∈ L′\L is a primitive
symbol that gets its meaning from the statements and sentences in P ′ and T ′

0,
one of which is θc. In other words, there is no real difference between thinking
of θc as a definition of c and thinking of θc as a new axiom that gives meaning
to the primitive symbol c. In the context of a given inductive theory such as
P ′, there are no defined symbols. There are only primitive symbols.

Moreover, if we understand meaning as coming from use, which it does
in formal logical systems such as this, then the very act of defining the new
symbol c ∈ L′ \L can change the meaning of the primitive symbols in L. More
specifically, to define c, we must add the new “axiom,” θc = ∀y(y = c↔ δc(y)),
changing T0 to T ′

0. The formula δc(y) undoubtedly uses symbols from L. Under
the extension P ′, those symbols are now used differently from how they were
used under P . Hence, their meanings in P ′ and P may be different.

In practice, this latter issue may be one that we rarely, if ever, encounter.
This is because we can avoid the issue in any circumstance where the elimination
theorems apply. But we will later see in Chapter 7 (specifically Sections 7.3.4
and 7.5.3) circumstances where the elimination theorems do not apply. And in
those circumstances, we must confront this issue head on.
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6.2 Zermelo–Fraenkel set theory

In this section, we present Zermelo-Fraenkel set theory in the infinitary setting.
Let L be a language that contains a binary relation symbol ∈. We use the
boldface ∈ here to distinguish it from the usual ∈ that is used when discussing
structures and models. As noted in Section 5.1.2, we will use the shorthand
(∀y ∈ x)φ = ∀y(y ∈ x→ φ) and (∃y ∈ x)φ = ∃y(y ∈ x ∧ φ). More generally,

(∀y1 · · · yn ∈ x)φ = (∀y1 ∈ x) · · · (∀y1 ∈ x)φ,

and similarly for ∃. We also write x ⊆ y = ∀z(z ∈ x → z ∈ y). Again, we use
boldface ⊆ to distinguish it from the usual ⊆.

All of the formulas we define below are sentences. To simplify notation, we
write them as open formulas of the form φ(x⃗). It is to be understood that this
refers to the sentence ∀x⃗φ(x⃗).

6.2.1 Extensionality, union, and power set

Define the sentences

AE : ∀z(z ∈ x↔ z ∈ y) → x = y

AU : ∀x∃y∀z(z ∈ y ↔ (∃u ∈ x)z ∈ u)

AP : ∀x∃y∀z(z ∈ y ↔ z ⊆ x)

These are, respectively, the axioms of extensionality, union, and power set. The
first says that two sets x and y are equal if they have the same elements. The
second says that, given a collection x of sets, there is a set y which is the union
of the sets in x. The third says that if x is a set, then there is a set y consisting
of all the subsets of x. We will have more to say about these axioms later.

6.2.2 Axiom schema of separation

For φ(x, z, u⃗) ∈ L with y /∈ freeφ, define

AS(φ) : ∃y∀z(z ∈ y ↔ φ ∧ z ∈ x)

This is called the axiom of separation. Given a set x, the axiom AS(φ) allows
us to create the set {z ∈ x | φ(x, z, u⃗)}, which depends on x and u⃗. This is done
as follows. Let φ(x, z, u⃗) ∈ L with y /∈ freeφ. It can be shown that

AE,AS(φ) ⊢ ∀xu⃗ ∃!y∀z(z ∈ y ↔ φ ∧ z ∈ x).

Hence, in any theory that contains AE and AS(φ), we may make the legitimate
definitorial extension, y = Fxu⃗ ↔ ∀z(z ∈ y ↔ φ ∧ z ∈ x). The term Fxu⃗ is
exactly the set we were trying to create. In such a case, we use the notation
{z ∈ x | φ} or {z ∈ x | φ(x, z, u⃗)} as shorthand for the term Fxu⃗.
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The axiom of separation is, in fact, an axiom schema. It is one axiom for
each allowable formula φ. Let

AS = {AS(φ) | φ(x, z, u⃗) ∈ L and y /∈ freeφ},

and set ASfin = AS∩L0
fin. Note that AS(φ) ∈ L0

fin if and only if φ ∈ Lfin. Hence,
ASfin can be defined just as AS, but with the requirement that φ ∈ Lfin. In
other words, ASfin is the usual axiom schema of separation used in first-order
logic. The difference between AS and ASfin is that with AS, we are allowed to
use infinitary formulas φ when building new sets.

6.2.3 Axiom schema of replacement

For φ(x, y, z⃗ ) ∈ L with u, v /∈ freeφ, define

AR(φ) : ∀x∃!y φ→ ∀u∃v∀y(y ∈ v ↔ (∃x ∈ u)φ)

This is called the axiom of replacement. Given a set u and a function F , it
allows us to create a set of the form {Fxz⃗ | x ∈ u}, which depends on u and z⃗.
The function F is determined by the formula φ. This is done as follows. Let
φ(x, y, z⃗ ) ∈ L with u, v /∈ freeφ. Suppose T is a theory such that T ⊢ ∀xz⃗ ∃!y φ.
Also assume AE ∈ T and AR(φ) ∈ T . In T , we may make the legitimate
definitorial extension, y = Fxz⃗ ↔ φ(x, y, z⃗ ). Let

ψ(u, v, z⃗ ) = ∀y(y ∈ v ↔ (∃x ∈ u)φ),

and note that

ψ ≡T ∀y(y ∈ v ↔ (∃x ∈ u) y = Fxz⃗ ).

By our hypotheses on T , it follows that T ⊢ ∀uz⃗ ∃!v ψ(u, v, z⃗ ). Hence, we may
make the legitimate definitorial extension, v = Guz⃗ ↔ ψ(u, v, z⃗ ). The term
Guz⃗ is exactly the set we were trying to create. In such a case, we use the
notation {Fxz⃗ | x ∈ u} as shorthand for the term Guz⃗.

The axiom of replacement is, in fact, an axiom schema. It is one axiom for
each allowable formula φ. Let

AR = {AR(φ) | φ(x, y, z⃗ ) ∈ L and u, v /∈ freeφ},

and set ARfin = AR∩L0
fin. Note that AR(φ) ∈ L0

fin if and only if φ ∈ Lfin. Hence,
ARfin can be defined just as AR, but with the requirement that φ ∈ Lfin. In
other words, ARfin is the usual axiom schema of replacement used in first-order
logic. The difference between AR and ARfin is that with AR, we are allowed to
use infinitary formulas to construct our defined function symbol F .
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6.2.4 Definitorial extensions and shorthand

To state the remaining axioms, it will be useful to create new symbols, both
shorthand and formally defined extralogical symbols. To this end, we define

φ1(x, z) : z ̸∈ x

φ2(x, y, z1, z2) : (∀uu ̸∈ x) ∧ y = z1 ∨ (∃uu ∈ x) ∧ y = z2

φ3(x, z, u) : z ∈ u

Note that each φi is in Lfin. Let T be the deductive theory generated by

{AE,AU,AP,AS(φ1),AS(φ3),AR(φ2)}.

Since AE,AS(φ1) ⊢ ∃!y∀z z ̸∈ y, we may make the legitimate definitorial
extension, y = ∅ ↔ ∀z z ̸∈ y. Letting

φ(x, y) = ∀z(z ∈ y ↔ (∃u ∈ x)z ∈ u),

we have AE,AU ⊢ ∀x∃!y φ(x, y), which allows the extension y =
⋃
x↔ φ(x, y).

And with φ(x, y) = ∀z(z ∈ y ↔ z ⊆ x), we have AE,AP ⊢ ∀x∃!y φ(x, y), which
allows the extension y = Px↔ φ(x, y).

We now have

φ2 ≡T (x = ∅ ∧ y = z1 ∨ x ̸= ∅ ∧ y = z2).

It can be shown that AE,AS(φ1) ⊢ ∀xz⃗ ∃!y φ2(x, y, z⃗). This allows the
extension y = Fxz⃗ ↔ φ2(x, y, z⃗ ). Hence, since AR(φ2) ∈ T , we may
adopt the shorthand {z1, z2} for the term {Fxz⃗ | x ∈ PP∅}. We then
write {z} as shorthand for {z, z}. We can recursively define the shorthand
{z1, . . . , zn+1} = {z1, . . . , zn} ∪ {zn+1}.

Since AE,AS(φ3) ∈ T , we have the term {z ∈ x | φ3} = {z ∈ x | z ∈ u}. We
use the shorthand x ∩ u to denote this term. We also write x ∪ u as shorthand
for

⋃
{x, u}, and Sx as shorthand for the term x∪{x}. Finally, the ordered pair

(x, y) is defined via shorthand as the term {{x}, {x, y}}. We can recursively
define the shorthand (x1, . . . , xn+1) = ((x1, . . . , xn), xn+1).

6.2.5 Axioms of infinity, foundation, and choice

Now define the sentences

AI : ∃u(∅ ∈ u ∧ ∀x(x ∈ u→ Sx ∈ u))

AF : (∀x ̸= ∅)(∃y ∈ x)x ∩ y = ∅
AC : ∀u(∅ ̸∈ u ∧ (∀xy ∈ u)(x ̸= y → x ∩ y = ∅) → ∃z(∀x ∈ u)∃!y(y ∈ x ∩ z))

These are, respectively, the axioms of infinity, foundation, and choice. The
axiom of infinity ensures the existence of an infinite set. The axiom of
foundation, among other things, ensure that no set can be an element of itself.
The axiom of choice asserts the existence of a set containing exactly one element
from each of a given collection of sets.
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6.2.6 Finitary and infinitary ZFC

We now define

ZFC− = T + ASfin + ARfin + {AI,AF,AC},

and set ZFCfin = ZFC− ∩ L0
fin. Note that ZFC− = T (ΛZFC

− ), where

ΛZFC
− = {AE,AU,AP,AI,AF,AC} ∪ ASfin ∪ ARfin

are the usual finitary axioms of set theory. Hence, from Proposition 5.3.15, it
follows that ZFCfin is the usual Zermelo–Fraenkel set theory with the axiom of
choice, formulated in first-order logic.

We also define

ZFC = T + AS+ ARfin + {AI,AF,AC},

Note that ZFC = T (ΛZFC), where

ΛZFC = {AE,AU,AP,AI,AF} ∪ AS ∪ ARfin.

The difference between ZFC and ZFC− is that, in ZFC, we are allowed to use
infinitary formulas when applying the axiom schema of separation.

Finally, we define

ZFC+ = T + AS+ AR+ {AI,AF,AC},

Note that ZFC+ = T (ΛZFC∪AR). In ZFC+, we are also allowed to use infinitary
formulas when applying the axiom schema of replacement. Also note that
ΛZFC
− ⊆ ΛZFC and ZFCfin ⊆ ZFC− ⊆ ZFC ⊆ ZFC+.
By the same reasoning as in the proof of Proposition 5.3.22, we obtain the

following.

Proposition 6.2.1. Let P = (Ω,Σ,P) be a model. Then P ⊨ ZFC− if and
only if ω |≡ ZFCfin for P-a.e. ω ∈ Ω. Consequently, ZFC− is consistent if and
only if ZFCfin is consistent. Moreover, ZFC− ⊢ φ if and only if ω |≡ ΛZFC

− implies
ω |≡ φ[v] for all ω and all assignments v into ω.

6.2.7 Consistency of ZFC

In first-order logic, the consistency of ZFCfin is implied by a variety of different
sufficient conditions. One such condition is the following consequence of [6,
Theorem 8.2.8].

Theorem 6.2.2. If there exists a strongly inaccessible cardinal, then ZFCfin is
consistent in first-order logic.

The existence of a strongly inaccessible cardinal cannot be proven in first-
order logic using the standard axioms of set theory, ΛZFC

− . If it could, then
these axioms could prove their own consistency, in violations of Gödel’s second
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incompleteness theorem (see [28, Theorem 7.3.2]). In situations where we want
to use a strongly inaccessible cardinal, we must assume it exists, effectively
adding its existence as a new axiom.

In the comprehensive articles, [23] and [24], Penelope Maddy discusses the
metamathematical arguments, both historical and present, for accepting not
only the current axioms, ΛZFC, but also additional possible axioms, including the
assumption that strongly inaccessible cardinals exist. Of all the non-ZFC axioms
discussed, this so-called Axiom of Inaccessibles seems to have the most support,
with many historical backers, including Gödel. It is supported by a number
of metamathematical principles, which she calls maximize, inexhaustibility,
uniformity, whimsical identity, and reflection. This last principle, she says,
is “probably the most universally accepted rule of thumb in higher set theory.”

In any case, if we want to have an inductive theory whose root contains
either ZFC− or ZFC, then we will need to assume something that ensures these
theories are consistent. Of all the assumptions we could make in this regard,
we prefer the one in Theorem 6.2.2. It is a very mild assumption, compared to
others we might make. It has good metamathematical support. And it seems to
produce a number of helpful results for us. Our first example of this is Theorem
6.2.4 below, which shows that this same assumption gives us the consistency of
ZFC.

To prove this result, we must first see how the existence of a strongly
inaccessible cardinal implies the consistency of ZFCfin in Theorem 6.2.2. For
this, we begin by defining the von Neumann hierarchy, which is a collection of
sets indexed by the ordinals. For each ordinal α, we recursively define the set
Vα as follows. Let V0 = ∅. If α = β + 1, then let Vβ+1 = PVβ . If α is a limit
ordinal, then let Vα =

⋃
ξ<α Vξ. The sets Vα satisfy Vα =

⋃
β<αPVβ , for any

ordinal α. Each Vα is a transitive set, meaning that if A ∈ Vα and x ∈ A, then
x ∈ Vα. The sets Vα also satisfy the following properties:

(i) β < α implies Vβ ∈ Vα and Vβ ⊆ Vα,

(ii) A ∈ Vα implies A ⊆ Vα,

(iii) B ⊆ Vβ implies B ∈ Vα for all α > β, and

(iv) α ⊆ Vα for all α.

Using our identification of natural numbers and ordinals, the first five sets in
the von Neumann hierarchy can be written as

V0 = ∅,
V1 = {0},
V2 = {0, 1},
V3 = {0, 1, 2, {1}},
V4 = {0, 1, 2, 3, {1}, {2}, {0, 2}, {1, 2}, {{1}}, {0, {1}}, {0, 1, {1}}, {0, 1, 2, {1}},

{1, {1}}, {2, {1}}, {0, 2, {1}}, {1, 2, {1}}}.
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Note that |V5| = 65536 and |V6| = 265536. Although these sets grow rapidly, we
have |Vn| < ∞ for all n ∈ N0. Also note that n ⊆ Vn and n ∈ Vn+1, for all
n ∈ N0. Since N0 = ω, we have N0 ⊆ Vω and N0 ∈ Vω+1.

If κ is a cardinal number, then we define the L-structure νκ = (Vκ,∈νκ) by
setting ∈νκ = ∈.

Lemma 6.2.3. If νκ |≡ ΛZFC
− , then Vκ satisfies the following:

(i) νκ |≡ (∀xx ̸∈ y)[b] if and only if b = ∅,

(ii) νκ |≡ (x ⊆ y)[a, b] if and only if a ⊆ b,

(iii) if a ⊆ b and b ∈ Vκ, then a ∈ Vκ, and

(iv) if b ∈ Vκ, then P b ∈ Vκ.

Proof. Let b ∈ Vκ. Note that νκ |≡ (∀xx ̸∈ y)[b] if and only if, for all a ∈ Vκ,
we have a /∈ b. Suppose b ̸= ∅. Then there is an object a such that a ∈ b. Since
Vκ is a transitive set, this implies a ∈ Vκ, a contradiction. Hence, (i) holds.

Next, let a, b ∈ Vκ. Note that νκ |≡ (x ⊆ y)[a, b] if and only if, for all c ∈ Vκ,
we have c ∈ a implies c ∈ b. Suppose a ⊈ b. Then there is an object c such that
c ∈ a but c /∈ b. Again, since Vκ is transitive, we have c ∈ Vκ, a contradiction.
Therefore, (ii) holds.

Let a ⊆ b and b ∈ Vκ. Since every infinite cardinal number is a limit
ordinal, we have Vκ =

⋃
β<κ Vβ and Vκ =

⋃
β<κPVβ . Choose β < κ such that

b ∈ Vβ , and note that β + 1 < κ. Then b ⊆ Vβ , so that a ⊆ Vβ , which implies
a ∈ Vβ+1 ⊆ Vκ, and (iii) holds.

Finally, suppose b ∈ Vκ. Choose β < κ such that b ∈ Vβ . Then b ⊆ Vβ , so
that every a ⊆ b satisfies a ∈ Vβ+1. Hence, P b ⊆ Vβ+1, and this implies that
P b ∈ Vβ+2 ⊆ Vκ.

Theorem 6.2.4. Let νκ be as above. Then the following are equivalent:

(i) κ is strongly inaccessible,

(ii) νκ |≡ ΛZFC
− ,

(iii) νκ |≡ ΛZFC

In particular, if there exists a strongly inaccessible cardinal, then ZFC is strictly
satisfiable.

Proof. The equivalence of (i) and (ii) is [6, Theorem 8.2.8], and (iii) implies (ii)
follows from the fact that ΛZFC

− ⊆ ΛZFC. For the final implication, assume (ii)
holds. We need to show that, for all φ ∈ L,

if φ = φ(x, z, u⃗) and y /∈ freeφ, then νκ |≡ AS(φ). (6.2.1)

We will prove this by induction on φ. Since prime formulas are finitary and
νκ |≡ ΛZFC

− , it holds whenever φ is prime.
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Suppose φ = ¬ψ and (6.2.1) holds for ψ. Assume φ = φ(x, z, u⃗) and
y /∈ freeφ. Then the same is true for ψ. Hence, νκ |≡ AS(ψ). Let
a, d1, . . . , dn ∈ Vκ. Then there exists b ∈ Vκ such that, for all c ∈ Vκ, we
have c ∈ b if and only if c ∈ a and νκ |≡ ψ[a, c, d⃗]. Since Vκ is transitive, this

implies b = {c ∈ a | νκ |≡ ψ[a, c, d⃗]}. By Lemma 6.2.3(iii), we have a \ b ∈ Vκ.

But a \ b = {c ∈ a | νκ |≡ (¬ψ)[a, c, d⃗]}. Hence, νκ |≡ AS(¬ψ).
Now suppose φ =

∧
Φ and (6.2.1) holds for each θ ∈ Φ, and assume that φ =

φ(x, z, u⃗) and y /∈ freeφ. Then the same is true for each θ, so that νκ |≡ AS(θ).

Let a, d1, . . . , dn ∈ Vκ. As above, bθ = {c ∈ a | νκ |≡ θ[a, c, d⃗]} ∈ Vκ. Lemma

6.2.3(iii) then gives b =
⋂
θ∈Φ bθ ∈ Vκ. But b = {c ∈ a | νκ |≡ (

∧
Φ)[a, c, d⃗]}, so

that νκ |≡ AS(
∧
Φ).

Finally, suppose φ = ∀vψ and (6.2.1) holds for ψ. Assume φ = φ(x, z, u⃗)
and y /∈ freeφ. Rename v to un+1, so that νκ |≡ AS(ψ). Let a, d1, . . . , dn ∈ Vκ.

As above, for each e ∈ Vκ, we have be = {c ∈ a | νκ |≡ ψ[a, c, d⃗, e]} ∈ Vκ. By
Lemma 6.2.3(iii), it follows that b =

⋂
e∈Vκ

be ∈ Vκ. But b = {c ∈ a | νκ |≡
(∀vψ)[a, c, d⃗]}, so that νκ |≡ AS(∀vψ).

6.3 Real inductive theories in ZFC−

In this section, we show how to represent real numbers in ZFC−. We then use
this representation to construct real inductive theories in ZFC−.

6.3.1 The set of natural numbers

Let us add to the language of ZFC− a constant symbol n for each n ∈ N0.
We do this through the definitorial extensions, y = 0 ↔ y = ∅ and
y = n ↔ y = S · · · S∅, where S is repeated n times. The symbols n are
syntactic representations of the natural numbers. They give us a way to define
each individual natural number in ZFC−. But defining each individual natural
number is not the same as defining the set of natural numbers. We must define
a set that contains the natural numbers, and nothing but the natural numbers.
One particularly counterintuitive result in ZFC− is that this is impossible, in
the sense expressed by (6.3.1) below.

Instead, the best we can do in ZFC− is to prove that there is a smallest set
that contains the natural numbers. But we cannot prove that this smallest
set contains only the natural numbers. For instance, it is consistent with
ZFC− to postulate that this smallest set contains an object which is greater
than every natural number. Such an object would be called a nonstandard
natural number. Similarly, ZFC− is consistent with the existence of nonstandard
integers, rationals, and real numbers. On the other hand, in ZFC, we can
prove that there is a unique set that contains the natural numbers, and nothing
else. This is expressed in (6.3.2) below, whose proof uses essentially the same
technique as in the proof of Proposition 5.3.23.

In ZFC−, we define the smallest set that contains the natural numbers as
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follows. Let φ(u) = 0 ∈ u ∧ ∀x(x ∈ u→ Sx ∈ u), so that AI = ∃uφ(u), and let
δ(y) = φ(y) ∧ ∀z(φ(z) → y ⊆ z).

Proposition 6.3.1. With notation as above, we have ΛZFC
− ⊢ ∃!y δ(y).

Proof. Let ψ(x) = ∀z(φ(z) → x ∈ z). Since ZFC− ⊢ AS(ψ), we may define
the term t(u) = {x ∈ u | ψ(x)}, which satisfies ZFC− ⊢ φ(u) → δ(t(u)).
Hence, since ZFC− ⊢ AI and AI = ∃uφ(u), it follows that ZFC− ⊢ ∃y δ(y). For
uniqueness, simply note that ZFC− ⊢ δ(x) ∧ δ(y) → x ⊆ y ∧ y ⊆ x.

By Proposition 6.3.1, we can make the legitimate definitorial extension
y = N0 ↔ δ(y). In words, N0 is the smallest set that contains 0 and is closed
under the successor operation.

6.3.2 Arithmetic operations

Recall that the ordered pair (x, y) is shorthand for the set {{x}, {x, y}}. Note
that if ZFC− ⊢ x ∈ u, y ∈ v, then ZFC− ⊢ (x, y) ∈ PP(u ∪ v). Hence, we may
adopt the shorthand

u× v = {z ∈ PP(u ∪ v) | ∃xy(z = (x, y) ∧ x ∈ u ∧ y ∈ v)},

and

vu = {z ∈ P(u× v) | (∀x ∈ u)(∃!y ∈ v)(x, y) ∈ z}.

Here, u × v is the Cartesian product of u and v, and vu is the set of functions
from u to v. We adopt the usual shorthand function notation, z(x). Namely, if
φ(y) ∈ L, then φ(z(x)) is shorthand for the sentence,

∃uv(z ∈ vu ∧ x ∈ u) ∧ ∃y((x, y) ∈ z ∧ φ(y)).

In other words, the sentence φ(z(x)) says that z is a function, x is in the domain
of z, the object y is the unique object such that (x, y) is in z, and φ(y) holds.

With these notions in hand, we can define addition in one of several
equivalent ways, each ending with an explicitly defined constant symbol + such

that ZFC− ⊢ + ∈ NN0×N0
0 , and which agrees with ordinary addition on N0. This

latter fact means, specifically, that

ZFC− ⊢ (m,n, k) ∈ + if and only if m+ n = k.

Note that in the above, the first instance of + is an extralogical symbol and
the second denotes ordinary addition of natural numbers. Since we use the
same typographical symbol for both, we will need to rely on context to tell
the difference. We adopt the usual shorthand, writing x + y = z to mean
(x, y, z) ∈ +. We then do the same for · and <.



160 CHAPTER 6. REAL INDUCTIVE THEORIES

6.3.3 Peano arithmetic and nonstandard numbers

The axioms of Peano arithmetic can all be translated into the language of ZFC−
by replacing each quantifier ∀x with (∀x ∈ N0). By an abuse of notation, we
will denote these translated axioms also by ΛPA

− . We perform a similar abuse
with ΛPA, PA−, and PA. It can be shown that PA− ⊆ ZFC−, and in a similar
way, that PA ⊆ ZFC. Combined with Proposition 5.3.23, this latter fact tells us
that if N |≡ φ, then ZFC ⊢ φ.

The arithmetical completeness of ZFC is intrinsically connected to the
following result. The first part of the result, (6.3.1), shows the impossibility
of proving in ZFC− that 0, 1, 2, . . . are the only natural numbers. The second
part, (6.3.2), shows that this is not a problem in ZFC.

Proposition 6.3.2. If ZFC− is consistent, then

ZFC− ⊬ ∃y∀x(x ∈ y ↔
∨
n∈N0

x = n). (6.3.1)

On the other hand,

ZFC ⊢ ∀x(x ∈ N0 ↔
∨
n∈N0

x = n). (6.3.2)

Proof. For notational simplicity, let ψ(y) = ∀x(x ∈ y ↔
∨
n∈N0

x = n), so that
we aim to show ZFC− ⊬ ∃y ψ(y) and ZFC ⊢ ψ(N0).

Suppose ZFC− is consistent and ZFC− ⊢ ∃y ψ(y). Let φ(u) and δ(y)
be as in the definition of N0. Note that ZFC− ⊢ ψ(y) → φ(y). Also,
ZFC− ⊢ ψ(y) → φ(z) → y ⊆ z. Hence, ZFC− ⊢ ψ(y) → δ(y). It therefore
follows from ZFC− ⊢ ∃y ψ(y) that ZFC− ⊢ ψ(N0). In particular, we have
ZFC− ⊢ ζ(x), where ζ(x) = x ∈ N0 →

∨
n∈N0

x = n.
By Proposition 6.2.1, since ZFC− is consistent, we may find a structure ω

such that ω |≡ ΛZFC
− . Let c be a constant not in L and define X ⊆ (Lc)0fin by

X = ΛZFC
− ∪{c ∈ N0}∪{c ̸= n | n ∈ N0}. Let X0 ⊆ X be finite. Choose m ∈ N0

such that
X0 ⊆ ΛZFC

− ∪ {c ∈ N0} ∪ {c ̸= n | n < m}.

Let ω′ be the Lc-expansion of ω with cω
′
= mω. Then ω′ |≡ X0, so that X0

is strictly satisfiable. By the finiteness theorem for first-order logic (see, for
example, [28, Theorem 3.3.1]), the set X is strictly satisfiable. Choose an Lc-
structure ν such that ν |≡ X, and let ν0 be its L-reduct. Let a = cν . Then
ν0 |≡ ΛZFC

− , ν0 |≡ (x ∈ N0)[a], and ν0 |≡ (x ̸= n)[a] for all n ∈ N0. Therefore,
ν0 |̸≡ ζ[a]. Now let P = ({ν0},P{ν0}, δν0) and v = ⟨v⟩, where v(x) = a.
Then P ⊨ ZFC− and P ⊭ ζ[v]. By Theorem 5.3.21, we have ZFC− ⊬ ζ(x), a
contradiction. This proves (6.3.1).

We now consider (6.3.2). By the definition of N0, we have ZFC− ⊢
∨
n∈N0

x =
n → x ∈ N0. Therefore, we need only prove that ZFC ⊢ ζ(x). By Definition
5.2.5(vii)′, it suffices to show

ZFC ⊢ ∀xζ = (∀x ∈ N0) ξ(x), (6.3.3)

where ξ(x) = (
∨
n∈N0

x = n).
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By AS(ξ), we may define the term t = {x ∈ N0 | ξ(x)}. It is straightforward
to verify that ZFC ⊢ φ(t) and ZFC ⊢ φ(z) → t ⊆ z. Hence, ZFC ⊢ t = N0.
Since t = N0 ≡ZFC− (∀x ∈ N0) ξ(x), this gives (6.3.3).

6.3.4 Real numbers in ZFC−

In our construction of ZFC− in Section 6.2, we implemented a number of
definitorial extensions, so that the extralogical signature of L contains not only
∈, but many other explicitly defined symbols, such as ∅,

⋃
, and P. For the

present treatment, we consider ZFC− to begin with the extralogical signature,

L = {∈,∅, S,N0,+, ·, <} ∪ {n | n ∈ N0}.

Any symbol which was defined in Section 6.2 but does not appear above is
considered to be reduced. We may continue to use some of those symbols, but
these uses should be considered shorthand, until otherwise specified. Note that
each symbol in L, except for ∈, is a constant symbol, and each is explicitly
defined with a finitary defining formula.

From this starting point, we can now explicitly define each integer z ∈ Z in
the usual way as an equivalence class of ordered pairs of natural numbers. For
example, −5 is explicitly defined by the formula,

δ(y) = ∀x(x ∈ y ↔ (∃uv ∈ N0)(x = (u, v) ∧ u+ 5 = v)).

The set of such equivalence classes is also explicitly definable, so that we
may add the symbol Z. However, as was the case with N0, we have that
ZFC− ⊬ ∀x(x ∈ Z ↔

∨
z∈Z x = z), provided ZFC− is consistent.

We can then explicitly define +Z, ·Z, and <Z for integers. In this way we
obtain a definitorial extension of ZFC− with signature

L = {∈,∅, S,N0,Z,+, ·, <,+Z, ·Z, <Z} ∪ {n | n ∈ N0} ∪ {z | z ∈ Z},

where each symbol in L, except for ∈, is a constant symbol, and each is explicitly
defined with a finitary defining formula. We will omit the duplicates of +, ·, and
<, and leave the distinction to context. Similarly, we will omit {n | n ∈ N0}, and
leave to context the distinction between the natural number n and the integer
n.

Finally, we do the same for each q ∈ Q and for Q itself, giving us the
signature,

L = {∈,∅, S,N0,Z,Q,+, ·, <} ∪ {q | q ∈ Q}.

Again, everything but ∈ is a constant symbol with a finitary definition.
A set B is a Dedekind cut if B is a nonempty, proper subset of Q that is

downward closed and has no maximum element. Let

φDC(u) = u ∈ PQ ∧ u ̸= ∅ ∧ u ̸= Q
∧ (∀x ∈ u)(y ∈ Q ∧ y < x→ y ∈ u) ∧ (∀x ∈ u)(∃y ∈ u)(x < y).
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Then φDC(u) says that u is a Dedekind cut. Since φDC is finitary, we have
ZFC− ⊢ AS(φDC). Hence, if

δ(y) = ∀x(x ∈ y ↔ x ∈ PQ ∧ φDC(x)),

then ZFC− ⊢ ∃!y δ(y). We may therefore explicitly define R by y = R ↔ δ(y).
We can also explicitly define addition, multiplication, and less-than in R, all
with finitary formulas. This gives us the extralogical signature,

L− = {∈,∅, S,N0,Z,Q,R,+, ·, <} ∪ {q | q ∈ Q}.

As before, we have omitted the duplicate versions of +, ·, and <, and will rely
on context to understand them. Also, each symbol in L−, except for ∈, is an
explicitly defined constant symbol with a finitary defining formula.

6.3.5 The standard real structure

Before constructing real inductive theories in ZFC−, we first show a simpler,
albeit more limited approach. This approach is essentially just a special case of
Theorem 5.4.2.

Let LR = {+, ·, <} ∪ {r | r ∈ R}. In LR, we will write x ⩽ y as shorthand
for x < y ∨x = y. Define the LR-structure R = (R, LR) by letting +R, ·R, and
<R denote their ordinary counterparts in R, and setting rR = r. Define the
deductive theory TR by TR = {φ ∈ L0 | R |≡ φ}.

Let L be an extralogical signature with LR ⊆ L. If P ⊆ LIS is an inductive
theory with root T0 ⊇ TR, then P is called a real inductive theory in TR.

In Theorem 5.4.2, we saw that every measure-theoretic probability model
can be represented by an inductive model in a certain language. In Theorem
6.3.3 below, we show that if that measure-theoretic model is real-valued, then
it can be represented by an inductive model in LR.

Let (S,Γ, ν) be a probability space and let X = ⟨Xi | i ∈ I⟩ be an indexed
collection of real-valued random variables. That is, each Xi is a Borel-
measurable function from S to R. Assume Γ = σ(⟨Xi | i ∈ I⟩).

Let C = {Xi | i ∈ I} be a set of distinct constant symbols not in LR, and
define L = LRC.

Theorem 6.3.3. There exists an L-model P = (Ω,Σ,P) with P ⊨ TR, and a
function h : S → Ω mapping x ∈ S to ω ∈ Ω such that

(i) x ∈ {Xi ⩽ r} if and only if ω |≡ (Xi ⩽ r),

(ii) each U ∈ Γ can be written as U = h−1φΩ for some φ ∈ L0, and

(iii) h induces a measure-space isomorphism from (S,Γ, ν) to P.

Consequently, if P = ThP ⇃[TR,Th P], then

P (
∧n
k=1Xi(k) ⩽ rk | TR) = ν

⋂n
k=1{Xi(k) ⩽ rk}, (6.3.4)

whenever i(1), . . . , i(n) ∈ I and rk ∈ R.
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Proof. For each x ∈ S, define ω = ωx to be the L-expansion of R given by
ωXi = Xi(x). Let Ω = {ωx | x ∈ S} and let h : S → Ω denote the map
x 7→ ωx. Let P = (Ω,Σ,P) be the measure space image of (S,Γ, ν) under
h. Since ω |≡ TR for all ω ∈ Ω, we have P ⊨ TR. By construction, we have
Xi(x) ⩽ r if and only if ωx |≡ Xi ⩽ r, so (i) holds.

For (ii), let

Γ′ = {U ∈ Γ | U = h−1φΩ for some φ ∈ L0} ⊆ Γ.

Since
⋃
n h

−1(φn)Ω = h−1(
∨
n φn)Ω and ⊥Ω = ∅, we have that Γ′ is a σ-algebra.

Let r ∈ R. Since Xi(x) ⩽ r if and only if ωx |≡ Xi ⩽ r, it follows that
{Xi ⩽ r} = h−1(Xi ⩽ r)Ω. Thus, {Xi ⩽ r} ∈ Γ′, so that Xi is Γ′-measurable
for all i ∈ I. Since Γ is the smallest σ-algebra with this property, we have
Γ ⊆ Γ′. Hence, Γ = Γ′, so (ii) holds.

If U ∈ Γ, φ ∈ L0, and U = h−1φΩ, then by the construction of P, we have
φΩ ∈ Σ. Therefore, (ii) implies (iii).

Finally, since h also induces an isomorphism from (S,Γ, ν) to (Ω,Σ,P), we
have P = ν ◦ h−1. This gives

P (
∧n
k=1Xi(k) ⩽ rk | TR) = P

⋂n
k=1(Xi(k) ⩽ rk)Ω = ν

⋂n
k=1{Xi(k) ⩽ rk},

which verifies (6.3.4).

6.3.6 Embedding random variables in ZFC−

Let L be an extralogical signature with L− ⊆ L. If P ⊆ LIS is an inductive
theory with root T0 ⊇ ZFC−, then P is called a real inductive theory in ZFC−.
Note that, by definition, the root of an inductive theory is a consistent deductive
theory. Hence, the existence of a real inductive theory in ZFC− presupposes the
consistency of ZFC−.

Let (S,Γ, ν) be a probability space and let X = ⟨Xi | i ∈ I⟩ be an indexed
collection of real-valued random variables, with Γ = σ(⟨Xi | i ∈ I⟩). Let
C = {Xi | i ∈ I} be a set of distinct constant symbols not in L−, and define
L = L−C.

Theorem 6.3.4. Assume ZFC− is consistent. Then there exists a complete
inductive theory P ⊆ LIS with root ZFC− such that

P (
∧n
k=1Xi(k) ⩽ qk | ZFC−) = ν

⋂n
k=1{Xi(k) ⩽ qk}, (6.3.5)

whenever i(1), . . . , i(n) ∈ I and qk ∈ Q.

Proof. We will call a set J ⊆ R a “rational interval” if it has one of the following
five forms, for some a, b ∈ Q: J = ∅, J = (a, b], J = (−∞, b], J = (a,∞], or
J = R. In L, we adopt the following shorthand for every a, b ∈ Q with a < b:

(i) x ∈ (a, b] ↔ a < x ∧ x < b ∨ x = b,

(ii) x ∈ (−∞, b] ↔ x < b ∨ x = b, and
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(iii) x ∈ (a,∞) ↔ a < x.

In this way, if we adopt the shorthand ∅ = ∅, then we may write x ∈ J for every
rational interval J .

A “rational cylinder” is a set V ⊆ RI of the form

V = {y ∈ RI | yi(1) ∈ J1, . . . , yi(n) ∈ Jn},

where n ∈ N, i(1), . . . , i(n) ∈ I, and each Jk is a rational interval. If V is a
rational cylinder, then we define the sentence φV ∈ L0 by

φV =
∧n
k=1Xi(k) ∈ Jk.

By Proposition 6.2.1, since ZFC− is consistent, we may choose an L− structure
ω0 such that ω0 |≡ ΛZFC

− . For each y ∈ RI , let ω = ωy be the L-expansion of ω0

given by ωXi = yi, and let Ω = {ωy | y ∈ RI}. Let

E = {φVΩ | V is a rational cylinder},

and let Σ0 be the set of finite, disjoint unions of sets in E . Then Σ0 is an algebra
of sets on Ω.

Now define P0 : E → [0, 1] by P0 φ
V
Ω = ν

⋂n
k=1{Xi(k) ∈ Jk}, and extend this

to Σ0 by finite additivity. Then P0 is a pre-measure on (Ω,Σ0) with P0 Ω = 1.
By Carathéodory’s extension theorem (see, for instance, [10, Theorem 1.11]),
there exists a unique probability measure P on (Ω, σ(Σ0)) that agrees with P0

on Σ0.
Let Σ = σ(Σ0) and P = (Ω,Σ,P). Since ω |≡ ZFC− for all ω ∈ Ω, we

have ZFC− ⊆ Th P. We may therefore define P = ThP ⇃[ZFC−,Th P]. By
construction, (6.3.5) holds whenever each qk ∈ Q.

6.4 Real inductive theories in ZFC

In this section, we show how to represent real numbers in ZFC. We then use
this representation to construct real inductive theories in ZFC. In stark contrast
to what happens in ZFC−, here we find that we can explicitly define every real
number, every Borel set, and every measurable function. We will also construct
a frame of reference in which each of these things is almost surely fixed, and
not random. We call this the “real frame of reference,” and it is presented in
three separate parts as Theorems 6.4.1, 6.4.3, and 6.4.5. Finally in Theorem
6.4.6, we show how real-valued random variables can be naturally and directly
embedding into inductive models that are based on ZFC.

6.4.1 Real numbers and Borel sets

We now work in ZFC. We make all the same definitorial extensions that we did
in ZFC−, bringing us to the extralogical signature,

L = {∈,∅, S,N0,Z,Q,R,+, ·, <} ∪ {q | q ∈ Q}.
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This time, however, (6.3.2) holds, along with the analogous derivability relations
for Z and Q. In fact, for any B ⊆ N0, we can use AS to construct the set
{x ∈ N0 |

∨
n∈B x = n}. In other words, we can explicitly define every set in

PN0, and for each of them, the analogue of (6.3.2) holds. The same is true for
every set of integers and every set of rationals.

Since R is defined as a set of Dedekind cuts, and a Dedekind cut is a set of
rationals, it follows that we can explicitly define each individual real number.
We may therefore add, for each r ∈ R, an explicitly defined constant symbol r,
using the infinitary definition,

δr(y) = ∀x(x ∈ y ↔
∨
q∈B(r) x = q),

where B(r) = {q ∈ Q | q < r}.
We now add to ZFC an explicit, finitary definition of B, which denotes the

Borel σ-algebra, B(R), on R. Unlike with N0, Z, and Q, we do not expect to
be able to explicitly define each individual subset of R, since we cannot form an
uncountable disjunction in the language L. We can, however, explicitly define
each Borel set.

Let E ⊆ PR be given by E = {(−∞, r] | r ∈ R}. Note that B(R) = σ(E).
Recall the recursive construction of B(R) from E given in Section 2.3.1, and
recall that if V ∈ B(R), then rkV denotes the rank of V with respect to E . For
each V ∈ B(R), we explicitly define V by recursion on rkV .

If rkV = 0, then V ∈ E , so that V = (−∞, r]. Define V = {x ∈ R | x ⩽ r},
where we adopt the shorthand x ⩽ y for x < y∨x = y. If rkV = α, then α is a
successor ordinal, and we may write α = β + 1 for some β. If V ∈ E ′

β , then we
may choose W ∈ Eβ such that V =W c. We then define V = {x ∈ R | x /∈W}.
If V /∈ E ′

β , then we may choose a nonempty and countable D ⊆ E ′
β such that

V =
⋂
D. We then define V = {x ∈ R |

∧
W∈D x ∈ W}. This defines V for

every V ∈ B(R).
We now have the extralogical signature,

LZFC = {∈,∅, S,N0,Z,Q,R,B,+, ·, <} ∪ {r | r ∈ R} ∪ {V | V ∈ B(R)}.
(6.4.1)

As usual, we have omitted the duplicates, and each symbol in LZFC, except for
∈, is an explicitly defined constant symbol.

6.4.2 The real frame of reference

Let L be an extralogical signature that contains a binary relation symbol
∈. Let ω = (A,Lω) be an L-structure. For a given b ∈ A, we define
ωb = {a ∈ A | a ∈ω b}. If t is a ground term, then we write ωt = ω(tω).

Theorem 6.4.1 (Real frame of reference I). Let L be an extralogical
signature such that LZFC ⊆ L. Let Q be an L-model such that Q ⊨ ZFC.
Then there exists an L-model P = (Ω,Σ,P) such that Q ≃ P and

(i) ω |≡ ZFC− for every ω ∈ Ω,
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(ii) qω = q for every ω ∈ Ω,

(iii) ωR ⊆ R for every ω ∈ Ω,

(iv) rω = r a.s., for each r ∈ R, and

(v) V ω = ωV = V ∩ ωR a.s., for each V ∈ B(R).

Proof. Let Q = (Ω′,Σ′,Q) be an L-model such that Q ⊨ ZFC. Let

L′
ZFC = {∅, S,N0,Z,Q,R,B,+, ·, <} ∪ {q | q ∈ Q},

so that L′
ZFC is countable and every s ∈ L′

ZFC is an explicitly defined constant
symbol with defining formula δs(y). Let

φ = ∀y(y ∈ Q ↔
∨
q∈Q y = q),

and note that ZFC ⊢ φ. Let

X0 = ΛZFC
− ∪ {φ} ∪ {∃!y δs(y) | s ∈ L′

ZFC},

so that Q ⊨ X0. Since X0 is countable, it follows that ν |≡ X0 for Q-a.e. ν ∈ Ω′.
By Remark 5.3.9, we may assume that ν |≡ X0 for all ν ∈ Ω′.

Fix ν = (Aν , L
ν) ∈ Ω′. Let a ∈ νR and define B = {q ∈ Q | ν |≡ (q < x)[a]}.

Since ν |≡ (∀x ∈ R)(∃y ∈ Q)(y < x) and ν |≡ φ, it follows that B ̸= ∅.
Similarly, B ̸= Q, B is downward closed, and B has no maximum element.
That is, B is a Dedekind cut. Therefore, there exists a unique r ∈ R such that
B = B(r) = {q ∈ Q | q < r}. Let gν : νR → R denote the function a 7→ r.

Let a, a′ ∈ νR and define B and B′ accordingly. Assume a ̸= a′. Since

ν |≡ (∀xy ∈ R)(x ̸= y → x < y ∨ y < x),

we have a <ν a′ or a′ <ν a. Without loss of generality, assume it is the former.
Since

ν |≡ (∀xy ∈ R)(x < y → (∃z ∈ Q)(x < z ∧ z < y)),

and ν |≡ φ, there exists q ∈ Q such that a <ν qν and qν <ν a′. We then have
q ∈ B′ \B, so that B ̸= B′, which implies gνa ̸= gνa

′. Therefore, gν is injective.
In fact, gν is order-preserving, in the sense that a <ν a′ if and only if gνa < gνa

′.
Now let b ∈ ν(PR) and a ∈ νb. Then ν |≡ (x ∈ y ∧ y ∈ PR)[a, b]. Hence,

we have ν |≡ (x ∈ R)[a], so that a ∈ νR. This shows that νb ⊆ νR, so
that gν

νb ⊆ R. Since νR ∩ ν(PR) = ∅, we may extend gν to be a function
gν : νR ∪ ν(PR) → R ∪PR by setting gνb = gν

νb for all b ∈ ν(PR). As above,
it follows that gν remains injective.

We now extend gν to be a bijection from Aν to some set Aω, which is a
superset of gν(

νR∪ ν(PR)). Let ω be the isomorphic image of ν under gν . Note
that since gν is order-preserving on νR, we have a <ω a′ if and only if a < a′,
whenever a, a′ ∈ Aω ∩ R.

Let h denote the function ν 7→ ω and let Ω = hΩ′. Let P = (Ω,Σ,P)
be the measure space image of Q under h. Then h induces a measure-space
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isomorphism from Q to P, and ν ≃ hν for all ν ∈ Ω′. Hence, h is a model
isomorphism, and Q ≃ P. Since ν |≡ X0 for all ν ∈ Ω′ and ω ≃ ν, we have
(i). Moreover, a ∈ ωR if and only if g−1

ν a ∈ νR. Hence, ωR = gν
νR ⊆ R, so (iii)

holds.
Now let r ∈ R. Since P ⊨ ∃!y δr(y), we may choose Ω∗ ∈ Σ such that

PΩ∗ = 1 and ω |≡ ∃!y δr(y) for all ω ∈ Ω∗. Fix ω ∈ Ω∗. Then ω |≡ r ∈ R.
Hence, rω ∈ ωR = gν

νR, so that

rω = gνg
−1
ν rω = sup{q ∈ Q | ν |≡ (q < x)[g−1

ν rω]}
= sup{q ∈ Q | ω |≡ (q < x)[rω]}
= sup{q ∈ Q | ω |≡ q < r}.

But by the definition of r, we have

ω |≡ (∀x ∈ Q)(x < r ↔
∨
q∈B(r) x = q),

where B(r) = {q ∈ Q | q < r}. Thus, ω |≡ q < r if and only if q ∈ B(r).
Therefore, rω = supB(r) = r, proving (iv).

Now fix V ∈ B(R). We will prove (v) by induction on rkV . Suppose
rkV = 0. Then V = (−∞, r]. Choose Ω∗ ∈ Σ such that PΩ∗ = 1 and, for all
ω ∈ Ω∗, we have rω = r and ω |≡ ∃!y δV (y), where δV (y) is the defining formula
for V . Since ω |≡ V ∈ PR, we have ν |≡ V ∈ PR, so that V ν ∈ ν(PR).
Therefore, V ω = gνV

ν = gν
νV . On the other hand,

a ∈ ωV iff a ∈ Aω and ω |≡ (x ∈ V )[a]

iff g−1
ν a ∈ Aν and ν |≡ (x ∈ V )[g−1

ν a]

iff g−1
ν a ∈ νV .

Thus, ωV = gν
νV = V ω. Now, V ω = {x ∈ R | x ⩽ r}ω. Hence,

ωV = {a ∈ ωR | ω |≡ (x ⩽ r)[a]} = {a ∈ ωR | a ⩽ω rω}.

But ωR ⊆ R and rω = r ∈ R. Therefore, a ⩽ω rω if and only if a ⩽ r, which
implies V ω = ωV = V ∩ ωR.

Now suppose rkV = α. Since the rank of a Borel set is always a successor
ordinal, we may write α = β+1. Assume V ∈ E ′

β . Then V = {x ∈ R | x ̸∈W},
where W ∈ Eβ and V = R \W . As above, choose Ω∗ ∈ Σ such that PΩ∗ = 1
and, for all ω ∈ Ω∗, we have ω |≡ ∃!y δW (y) and ω |≡ ∃!y δV (y). Then

V ω = ωV = {a ∈ ωR | a /∈ ωW} = ωR \ (W ∩ ωR) = V ∩ ωR,

proving (v) in the case that V ∈ E ′
β . The proof in the case V /∈ E ′

β is similar.
Finally, since qω = q a.s., for each q ∈ Q, and Q is countable, it follows that

qω = q for each q ∈ Q, a.s. By Remark 5.3.9, we may take P to be such that
(ii) holds.

Corollary 6.4.2. Let r ∈ R and V, V ′, Vn ∈ B(R).
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(i) If r ∈ V , then ZFC ⊢ r ∈ V .

(ii) If r /∈ V , then ZFC ⊢ r ̸∈ V .

(iii) If V ⊆ V ′, then ZFC ⊢ V ⊆ V ′.

(iv) If V =
⋂
n∈N0

Vn, then ZFC ⊢ ∀x(x ∈ V ↔
∨
n∈N0

x ∈ Vn).

Proof. Let r ∈ V . Suppose P ⊨ ZFC. Using the real frame of reference, we
may assume P satisfies (i)–(v) in Theorem 6.4.1. Hence, for a.e. ω, we have
rω = r. Since rω ∈ ωR, this gives rω ∈ V ∩ ωR = ωV , so that ω |≡ (r ∈ V ).
Since this holds almost surely, we have P ⊨ r ∈ V . The proofs of (ii)–(iv) are
similar.

6.4.3 Sequences and limits

Let us define, in ZFC, subtraction of real numbers and the absolute value
function, and adopt the usual shorthand for these functions. Let

φlim(u, v) = u ∈ RN0 ∧ v ∈ R
∧ (∀z ∈ (0,∞))(∃y ∈ N0)(∀x ∈ N0)(x ⩾ y → |u(x)− v| < z).

Then φlim(u, v) says that u is a sequence of real numbers that converges to the
real number v.

Theorem 6.4.3 (Real frame of reference II). The model P = (Ω,Σ,P) in
Theorem 6.4.1 may be chosen so that for every ω ∈ Ω, we have the following:

(i) for each a ∈ ω(RN0) and each n ∈ N0, there exists a unique an ∈ ωR ⊆ R
such that ω |≡ (y = x(n))[a, an], and

(ii) ω |≡ φlim[a, b] if and only if b ∈ ωR and an → b.

Proof. Note that ZFC ⊢ ψ, where

ψ = x ∈ RN0 →
∧
n∈N0

(∃!y ∈ R)y = x(n).

Hence, ω |≡ ψ a.s. By Remark 5.3.9, we may assume ω |≡ ψ for all ω ∈ Ω. Fix
ω ∈ Ω and suppose a ∈ ω(RN0). Then ω |≡ (x ∈ RN0)[a]. Hence, since ω |≡ ψ,
it follows that for each n ∈ N0, there exists a unique an ∈ ωR ⊆ R such that
ω |≡ (y = x(n))[a, an]. Note that in the definition of φlim, it suffices to consider
rational z. Since qω = q for all q ∈ Q, it follows that ω |≡ φlim[a, b] if and only
if b ∈ ωR and an → b.

Remark 6.4.4. Let P = (Ω,Σ,P) be a model that satisfies Theorem 6.4.3. In
L, we can formulate a sentence φ which asserts that + is continuous. For such
a sentence, ZFC− ⊢ φ. Recall that + was defined so that it agrees with the
usual addition of rational numbers. That is, ZFC− ⊢ q1 + q2 = q3 if and only if
q1 + q2 = q3, whenever qi ∈ Q. Using this, it can be shown that, for all ω ∈ Ω
and all a, b, c ∈ ωR ⊆ R, we have ω |≡ (x+ y = z)[a, b, c] if and only if a+ b = c.
A similar thing holds for · and <.
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6.4.4 Measurable functions

Let h : R → R be measurable. Suppose h is a simple function. That is, the
range of h is a finite set {r1, . . . , rn}. Let Vj = h−1{rj}. Then we may explicitly
define h in ZFC by

h = {(x, y) ∈ R× R |
∨n
i=1 x ∈ Vi ∧ y = ri}.

Suppose h is not a simple function. Choose a sequence ⟨hn | n ∈ N0⟩ of simple
functions such that hn → h pointwise. In ZFC, we define

h· = {(x, y) ∈ R× RN0 |
∧
n∈N0

y(n) = hn(x)}.

Then h· is an explicit definition of the function x 7→ ⟨hn(x) | n ∈ N0⟩. We now
define

h = {(x, y) ∈ R× R | φlim(h·(x), y)}.

Theorem 6.4.5 (Real frame of reference III). Let h : R → R be a
measurable function and let P = (Ω,Σ,P) be a model chosen according to
Theorem 6.4.3. Then, for P-a.e. ω ∈ Ω, we have ω |≡ (y = h(x))[a, b] if
and only if a ∈ ωR, b ∈ ωR, and h(a) = b.

Proof. First suppose h is a simple function. Then ω |≡ (y = h(x))[a, b] if and
only if there exists i ∈ {1, . . . , n} such that a ∈ ωVi and b = ri

ω. By Theorem
6.4.1, we may choose Ω∗ ∈ Σ such that PΩ∗ = 1 and, for all ω ∈ Ω∗, we have
ωR ⊆ R, riω = ri, and

ωVi = Vi ∩ ωR. Hence, the conclusion of the theorem
holds for each ω ∈ Ω∗.

Now suppose h is not a simple function. Let ⟨hn | n ∈ N0⟩ be the sequence
of simple functions used to define h. Choose Ω∗ ∈ Σ such that PΩ∗ = 1
and ω |≡ ∃!y δs(y) for every s ∈ {hn | n ∈ N0} ∪ {h·, h}. Suppose ω |≡
(y = h(x))[a, b]. Then ω |≡ φlim(h·(x), y)[a, b], which means ω |≡ φlim[c, b],
where ω |≡ (u = h·(x))[a, c]. By Theorem 6.4.3(i), for each n ∈ N0, there
exists a unique cn ∈ ωR ⊆ R such that ω |≡ (v = u(n))[c, cn]. Since
ω |≡ φlim[c, b], Theorem 6.4.3(ii) implies b ∈ ωR and cn → b. On the other
hand, since ω |≡ (u = h·(x))[a, c], it follows from the definition of h· that
ω |≡ (u(n) = hn(x))[a, c]. Therefore, ω |≡ (v = hn(x))[a, cn]. Since the theorem
holds for simple functions, we have cn = hn(a). Thus, b = limhn(a) = h(a).
The proof of the converse is similar.

6.4.5 Embedding random variables in ZFC

Let L be an extralogical signature with LZFC ⊆ L. If P ⊆ LIS is an inductive
theory with root T0 ⊇ ZFC, then P is called a real inductive theory in ZFC.
As with ZFC−, the existence of a real inductive theory in ZFC presupposes the
consistency of ZFC.

Let (S,Γ, ν) be a probability space and let X = ⟨Xi | i ∈ I⟩ be an indexed
collection of real-valued random variables, with Γ = σ(⟨Xi | i ∈ I⟩). Let
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C = {Xi | i ∈ I} be a set of distinct constant symbols not in LZFC, and
define L = LZFCC.

Theorem 6.4.6 below shows that, if ZFC is strictly satisfiable, then we
recover the full analogue of Theorem 5.4.2, including the natural correspondence
between outcomes and structures. Recall from Theorem 6.2.4 that the existence
of a strongly inaccessible cardinal implies not only the consistency of ZFC−, but
also the strict satisfiability of ZFC. Hence, the assumption in Theorem 6.4.6
is not too far beyond the typically uncontroversial assumption that ZFC− is
consistent.

The proof of Theorem 6.4.6 shows how the inductive model P = (Ω,Σ,P) is
built from the measure-theoretic probability model (S,Γ, ν,X). Each structure
ω ∈ Ω is an expansion of a single structure ω0 that strictly satisfies ZFC. This
implies, for example, that rω does not depend on ω. The same is true for every
other symbol in LZFC. In other words, all the familiar objects of set theory and
the real numbers are all fixed in P. The only things that vary with ω are Xω

i .
This exactly matches our intuition about measure-theoretic models. In practice,
when we work with a measure-theoretic model, we think of the random variables
as being the only things that are “random.” The real numbers, their relations,
the concept of set membership, and so on, are all fixed, and do not change from
one outcome to another. In a sense, then, the practicing probabilist, in using
the logic of countable unions and intersections, and in assuming that all our
familiar mathematics is fixed under different outcomes, is operating under the
implicit assumption that ZFC is strictly satisfiable.

Theorem 6.4.6. Assume ZFC is strictly satisfiable. Then there exists an L-
model P = (Ω,Σ,P) with P ⊨ ZFC, and a function h : S → Ω mapping x ∈ S
to ω ∈ Ω such that

(i) x ∈ {Xi ∈ V } if and only if ω |≡ Xi ∈ V for all V ∈ B(R),

(ii) each U ∈ Γ can be written as U = h−1φΩ for some φ ∈ L0, and

(iii) h induces a measure-space isomorphism from (S,Γ, ν) to P.

Consequently, if P = ThP ⇃[ZFC,Th P], then P satisfies

P (
∧n
k=1Xi(k) ∈ Vk | ZFC) = ν

⋂n
k=1{Xi(k) ∈ Vk}, (6.4.2)

whenever i(1), . . . , i(n) ∈ I and Vk ∈ B(R).

Proof. Assume there exists an LZFC-structure ω0 such that ω0 |≡ ZFC. For
each x ∈ S, define ω = ωx to be the L-expansion of ω0 given by Xω

i = rω0 ,
where r = Xi(x). Let Ω = {ωx | x ∈ S} and let h : S → Ω denote the map
x 7→ ωx. Let P = (Ω,Σ,P) be the measure space image of (S,Γ, ν) under h.
Since ω |≡ ZFC for all ω ∈ Ω, we have P ⊨ ZFC.

Let x ∈ S and V ∈ B(R), and set r = Xi(x). By the definition of ωx, we
have ωx |≡ Xi ∈ V if and only if ω0 |≡ r ∈ V . By Corollary 6.4.2, we have
ZFC ⊢ r ∈ V if r ∈ V , and ZFC ⊢ r ̸∈ V if r /∈ V . Hence, since ω0 |≡ ZFC, we
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have ω0 |≡ r ∈ V if and only if r ∈ V . But r = Xi(x). Hence, x ∈ {Xi ∈ V }
if and only if ωx |≡ Xi ∈ V , proving (i). It follows as in the proof of Theorem
6.3.3 that (ii) and (iii) hold, and (6.4.2) holds for P = ThP ⇃[ZFC,Th P].

6.5 Limit theorems

In this section, we introduce the notion of Borel terms, and use them to
formulate, in inductive logic, both the law of large numbers and the central
limit theorem.

6.5.1 Borel terms

Let P be a real inductive theory in ZFC. That is, P ⊆ LIS, where LZFC ⊆ L,
and P has root T0 ⊇ ZFC. In particular, we are assuming ZFC is consistent.

Let X ∈ anteP . A ground term t ∈ T is real given X if P (t ∈ R | X) = 1.
We say that t is Borel given X if it is real given X and P (t ∈ V | X) exists for
all V ∈ B(R). If t is Borel given X, then the distribution of t given X is the
function µ = µt|X from B(R) to [0, 1] given by µV = P (t ∈ V | X).

Proposition 6.5.1. If t is Borel given X, then the distribution of t is a
probability measure on (R,B(R)).

Proof. Let Q = (Ω,Γ,Q) ⊨ P . We may write X ≡ Y ∪ {ψ}, where Q ⊨ Y and
P (φ | X) = QφΩ ∩ ψΩ/QψΩ whenever P (φ | X) is defined. Let Σ = Γ and let
P be the probability measure on (Ω,Σ) given by PA = QA ∩ ψΩ/QψΩ. Then
P (φ | X) = PφΩ whenever P (φ | X) is defined. Since P = (Ω,Σ,P) ⊨ ZFC, we
may use the real frame of reference, and assume P satisfies (i)–(v) in Theorem
6.4.1.

Thus, ω∅ = ∅ a.s. Hence, for a.e. ω, we have tω /∈ ω∅, meaning ω |̸≡ t ∈ ∅.
This gives (t ∈ ∅)Ω = ∅ a.s., so that µ ∅ = P (t ∈ ∅ | X) = 0. Similarly, since
P (t ∈ R | X) = 1, we have ω |≡ t ∈ R a.s., and it follows that µR = 1.

Let {Vn} ⊆ B(R) be pairwise disjoint, and set V =
⋃
n Vn. Define the

sentences φn = t ∈ Vn. Let i ̸= j. As in the proof of Corollary 6.4.2,
we have ZFC ⊢ ∀x¬(x ∈ Vi ∧ x ∈ Vj). Hence, ZFC ⊢ ¬(φi ∧ φj), which

gives P (φi ∧ φj | X) = 0. Theorem 3.2.24 therefore implies P (
∨
n φn | X) =∑

n P (φn | X) =
∑
n µVn. On the other hand, as above, ZFC ⊢ t ∈ V ↔

∨
n φn,

so that Proposition 3.2.14 gives P (
∨
n φn | X) = P (t ∈ V | X) = µV .

Let t be Borel given X. We define the expected value of t given X by
E[t | X] =

∫
R xµt|X(dx), provided this integral exists. Note that E[t | X] ∈

[−∞,∞]. If
∫
R |x|µt|X(dx) < ∞, then we say t is integrable given X. In this

case, E[t | X] ∈ R.

6.5.2 Jointly Borel terms

A finite sequence of terms, t1, . . . , tn, are jointly Borel given X if each ti is
Borel given X and P (

∧n
i=1 ti ∈ Vi | X) exists, whenever Vi ∈ B(R). If
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t1, . . . , tn are jointly Borel, then each ti is Borel. The converse holds when
P is complete, by Definition 3.3.1(i). More generally, an indexed collection of
terms, t = ⟨ti | i ∈ I⟩, is jointly Borel given X if each finite subsequence is.

Proposition 6.5.2. If t = (t1, . . . , tn) are jointly Borel given X, then there
exists a unique probability measure µ = µt|X on (Rn,B(Rn)) such that

µV1 × · · · × Vn = P (
∧n
k=1 t ∈ Vk | X),

whenever i(1), . . . , i(n) ∈ I and Vk ∈ B(R).

Proof. The existence and uniqueness of µ follows from Carathéodory’s extension
theorem, as in the proof of Theorem 6.3.4, using as our algebra the set of finite
disjoint unions of measurable rectangles, V1 × · · · × Vn.

The unique Borel probability measure µt|X in Proposition 6.5.2 is called the
distribution of t given X.

Remark 6.5.3. Just as we did for B(R), we can explicitly define V for each
V ∈ B(Rn) and establish a real frame of reference for Rn. If µ is the distribution
of (t1, . . . , tn) given X, then µV = P ((t1, . . . , tn) ∈ V | X) for all V ∈ B(Rn).
To see this, let Γ be the set of V ⊆ Rn for which it holds. Proposition 6.5.2 shows
that Γ contains the algebra of finite disjoint unions of measurable rectangles,
which is a π-system that generates B(Rn). Since P is an inductive theory, we
have that Γ is a λ-system. Therefore, by Dynkin’s π-λ theorem, B(Rn) ⊆ Γ.

6.5.3 Independence of terms

Let I be a set with |I| ⩾ 2 and let ⟨ti | i ∈ I⟩ be jointly Borel given X. Then
⟨ti | i ∈ I⟩ are independent given X if

〈
ti ∈ Vi | i ∈ I

〉
are independent given X,

whenever Vi ∈ B(R). We say that ⟨ti | i ∈ I⟩ are identically distributed given
X if the distribution of ti given X does not depend on i. As usual, we write
i.i.d. for the phrase, “independent and identically distributed.”

Remark 6.5.4. If t = (t1, . . . , tn) are independent given X, then Corollary
4.5.12 implies that µt|X =

∏n
k=1 µti|X .

Proposition 6.5.5. Suppose ⟨ti | i ∈ I⟩ are jointly Borel given X. Then there
exists a real-valued stochastic process, ⟨Yi | i ∈ I⟩, defined on a probability space,
(S,Γ, ν), such that

P (
∧n
k=1 ti(k) ∈ Vk | X) = ν

⋂n
k=1{Yi(k) ∈ Vk}, (6.5.1)

whenever i(1), . . . , i(n) ∈ I and Vk ∈ B(R). Moreover, if ⟨ti | i ∈ I⟩ are
independent given X, then ⟨Yi | i ∈ I⟩ are independent.

Proof. Let S = RI and Γ =
⊗

i∈I B(R) the product σ-algebra. For each i ∈ I,
let µi be the distribution of ti. For each n ∈ N and i = (i(1), . . . , i(n)) ∈ In, let
t(i) = (ti(1), . . . , ti(n)), so that µt(i)|X is a probability measure on (Rn,B(Rn)).
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Using the methods in the proof of Proposition 6.5.1, we have that the measures
µt(i)|X are consistent, in the sense of Kolmogorov. Hence, by Kolmogorov’s
extension theorem (see, for instance, [15, Theorem 2.2.2]), there exists a
probability measure ν on (S,Γ) such that

ν{x ∈ S | (xi(1), . . . , xi(n)) ∈ A} = µt(i)|X A, (6.5.2)

whenever A ∈ B(Rn). Define Yi : S → R by Yi(x) = xi. Then ⟨Yi | i ∈ I⟩
is a real-valued stochastic process, and (6.5.1) follows from (6.5.2). The final
claim about independence follows from Corollary 4.5.12, (6.5.2), and Remark
6.5.4.

6.5.4 The law of large numbers for terms

Lemma 6.5.6. Suppose ⟨tn | n ∈ N⟩ are jointly Borel given X, and let
⟨Yn | n ∈ N⟩ be as in Proposition 6.5.5. Define the terms sn = (t1 + · · ·+ tn)/n
and the random variables Zn = (Y1 + · · ·+ Yn)/n. Then

P (
∧n
k=1 si(k) ∈ Vk | X) = ν

⋂n
k=1{Zi(k) ∈ Vk},

whenever i(1), . . . , i(n) ∈ N and Vk ∈ B(R).

Proof. Let i(1), . . . , i(n) ∈ N and Vk ∈ B(R). For each n ∈ N, define
fn : Rn → R by fn(x1, . . . , xn) = (x1+· · ·+xn)/n. Letm = max{i(1), . . . , i(n)}
and V ′

k = f−1
i(k)Vk × Rm−i(k). Then {Zi(k) ∈ Vk} = {(Y1, . . . , Ym) ∈ V ′

k}, so
that

⋂n
k=1{Zi(k) ∈ Vk} = {(Y1, . . . , Ym) ∈ V ′}, where V ′ =

⋂n
k=1 V

′
k. By the

definition of ν, we have ν
⋂n
k=1{Zi(k) ∈ Vk} = µV ′, where µ is the distribution

of (t1, . . . , tm) given X. Hence, by Remark 6.5.3,

ν
⋂n
k=1{Zi(k) ∈ Vk} = P ((t1, . . . , tm) ∈ V ′ | X).

But ZFC ⊢
∧n
k=1 si(k) ∈ Vk ↔ (t1, . . . , tm) ∈ V ′, so the result follows from the

rule of logical implication and Proposition 3.2.14.

Theorem 6.5.7 (Law of large numbers). Let P be a real inductive theory
in ZFC, and let X ∈ anteP . Let ⟨tn | n ∈ N⟩ be a sequence of terms that are
i.i.d given X. Assume t1 is integrable and let µ = E[t1 | X]. Define the terms
sn = (t1 + · · ·+ tn)/n, and let

s = {(x, y) ∈ N0 × R |
∨
n∈N0

x = n ∧ y = sn}.

Then P (φlim(s, µ) | X) = 1.

Proof. By (6.3.2), we have ZFC∞ ⊢ s ∈ RN0 and s(n) = sn. Since we also have
ZFC ⊢ µ ∈ R, it follows that

ZFC ⊢ φlim(s, µ) ↔ (∀z ∈ (0,∞))
∨∞
m=0

∧∞
n=m |sn − µ| < z.
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In fact, if we define εℓ = 1/ℓ for ℓ ∈ N, then

ZFC ⊢ φlim(s, µ) ↔
∧∞
ℓ=1

∨∞
m=0

∧∞
n=m |sn − µ| < εℓ.

Using the real frame of reference, we have ZFC ⊢ |sn−µ| < εℓ ↔ sn ∈ Vℓ, where
Vℓ = (µ− εℓ, µ+ εℓ). Hence, ZFC ⊢ φlim(s, µ) ↔ ψ, where

ψ =
∧∞
ℓ=1

∨∞
m=0

∧∞
k=0

∧m+k
n=m sn ∈ Vℓ.

Hence, by the rule of logical implication and Proposition 3.2.14, it suffices to
show P (ψ | X) = 1.

By the continuity rule,

P (ψ | X) = lim
ℓ→∞

lim
m→∞

lim
k→∞

P (
∧m+k
n=m sn ∈ Vℓ | X).

Let Yn and Zn be as in Lemma 6.5.6. Then the Yn are i.i.d. and integrable, and
Eν [Y1] = µ. By Lemma 6.5.6,

P (ψ | X) = lim
ℓ→∞

lim
m→∞

lim
k→∞

ν
⋂m+k
n=m{Zn ∈ Vℓ}

= ν
⋂∞
ℓ=1

⋃∞
m=0

⋂∞
n=m{|Zn − µ| < εℓ}.

On the other hand, by the law of large numbers for random variables, Zn → µ
ν-a.s. Hence, P (ψ | X) = 1.

6.5.5 The central limit theorem for terms

Let t be Borel given X and assume that t is integrable. Let r = E[t | X]. Then
the term (t− r)2 = (t− r) · (t− r) is Borel given X. The variance of t given X
is defined by V (t | X) = E[(t− r)2 | X]. Note that V (t | X) ∈ [0,∞].

Theorem 6.5.8 (Central limit theorem). Let P be a real inductive theory
in ZFC, and let X ∈ anteP . Let ⟨tn | n ∈ N⟩ be a sequence of terms that are
i.i.d given X. Assume t1 is integrable. Let µ = E[t1 | X] and let sn be as in
Theorem 6.5.7. Let σ =

√
V (t1 | X) and assume σ ∈ (0,∞). Then

lim
n→∞

P (
√
n · (sn − µ) ⩽ r | X) =

1√
2πσ2

∫ r

−∞
e−(x−µ)2/2σ2

dx,

for all r ∈ R.

Proof. Let Yn and Zn be as in Lemma 6.5.6. As in the proof of Theorem 6.5.7,
we have

P (
√
n · (sn − µ) ⩽ r | X) = ν{

√
n (Zn − µ) ⩽ r}.

The result therefore follows from the central limit theorem for random variables,
applied to the sequence ⟨Yn | n ∈ N⟩.
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6.6 Probabilities of probabilities

Anyone who has played a tabletop role-playing game is familiar with the variety
of dice that are used. Not only are there the usual 6-sided dice, but the standard
collection also includes dice with 4, 8, 10, 12, and 20 sides. Imagine taking a
collection of such dice, choosing one of them at random, and rolling it. In that
case, it makes perfectly good sense to ask the question, “What is the probability
that the probability of rolling a 1 is greater than 0.1?”

Although this example illustrates that is sensible to talk about probabilities
of probabilities, it is a rather trivial example. More serious examples arise
in applications of inference, where probabilities are updated on the basis of a
succession of observations.

A priori, these nested probabilities seem to be a problem for inductive logic.
An inductive statement is a triple, (X,φ, p). The first two components of the
triple are part of the language L, but the triple itself is not. This makes
it impossible to construct a formal sentence in L that contains an inductive
statement.

Measure-theoretic probability has a similar problem. There, probabilities are
neither events nor random variables, so they cannot appear inside a probability
measure. The way this is dealt with in measure theory is through the notion
of conditional expectation. A conditional expectation is, in fact, a random
variable, so it can appear inside a probability measure.

In this section, we construct the analogue of this for inductive logic. We will
construct conditional probability and expectation, where we condition on terms
and the resulting object is itself a term. We use this to formulate, in Theorem
6.6.8, the law of total probability, which is also known as the tower rule, or the
law of iterated expectation.

6.6.1 Conditioning on terms

A probability kernel from Rn to Rm is a function ν : Rn × B(Rm) → [0, 1] such
that µ(r⃗, ·) is a probability measure for each r⃗ ∈ Rn, and µ(·, V ) is a measurable
function for each V ∈ B(Rm). If m = n, then we call µ a probability kernel on
Rn. If we say that µ is a probability kernel, or just a kernel, then we mean that
µ is a probability kernel on R.

Definition 6.6.1. Let ν be a probability measure on (R,B(R)). For each
n ∈ N0, let Vn ∈ B(R), and let r ∈ R. Then Vn shrinks nicely to r with respect
to ν if there exist c > 0 and εn > 0 such that εn → 0, Vn ⊆ (r− εn, r+ εn), and
ν Vn > c ν(r − εn, r + εn).

Theorem 6.6.2. Let P be a real inductive theory in ZFC, and let X ∈ anteP .
Let s, t ∈ T be jointly Borel. Then there exists a probability kernel µ such that

lim
n→∞

P (t ∈ V | X, s ∈ Vn) = µ(r, V ) (6.6.1)

for µs|X-a.e. r ∈ R, whenever Vn shrinks nicely to r with respect to µs|X . If µ̃
is another such kernel, then µ(r, ·) = µ̃(r, ·) for µs|X-a.e. r ∈ R.
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Proof. By Proposition 6.5.5, we may define random variables Y1 and Y2 on a
probability space (S,Γ, ν) such that

P (s ∈ V ∧ t ∈ V ′ | X) = ν{Y1 ∈ V } ∩ {Y2 ∈ V ′}

for all V, V ′ ∈ B(R).
Let Eν denote expectation with respect to ν, so that Eν [Z] =

∫
S
Z dν

whenever Z is a real-valued random variable defined on (S,Γ, ν). Then
Eν [1{Y2∈V } | Y1] denotes a version of the conditional expectation of 1{Y2∈V }
given Y1. That is, Z = Eν [1{Y2∈V } | Y1] is a σ(Y1)-measurable random variable
such that Eν [1{Y2∈V }1B ] = Eν [Z1B ] for all B ∈ σ(Y1). Moreover, if Z ′ is any
other random variable with this property, then Z = Z ′, ν-a.s.

There exists a probability kernel µ such that Eν [1{Y2∈V } | Y1] = µ(Y1, V ),
ν-a.s., for every V ∈ B(R). This kernel is unique in the sense that if µ̃ is
another such kernel, then there exists N ∈ Γ such that ν{Y1 ∈ N} = 0 and
µ(r, V ) = µ̃(r, V ) for all (r, V ) ∈ N c × B(R). The kernel µ is called a regular
conditional distribution for Y2 given Y1. The existence and uniqueness of regular
conditional distributions is shown, for instance, in [14, Theorem 5.3].

Let Vn shrink nicely to r with respect to µs|X . Then P (s ∈ V n | X) =
µs|X Vn > 0. By Proposition 6.5.5 and the multiplication rule,

P (t ∈ V | X, s ∈ V n) =
ν{Y2 ∈ V } ∩ {Y1 ∈ Vn}

ν{Y1 ∈ Vn}
.

Using properties of conditional expectation and the fact that µs|X = ν{Y1 ∈ ·},
we have

ν{Y2 ∈ V } ∩ {Y1 ∈ Vn} = Eν [1{Y1∈Vn} E
ν [1{Y2∈V } | Y1]]

= Eν [1{Y1∈Vn}µ(Y1, V )]

=

∫
Vn

µ(x, V )µs|X(dx).

Hence, by the Lebesgue differentiation theorem (see, for instance, [1, Theorem
8.4.6]),

P (t ∈ V | X, s ∈ V n) =
1

µs|X(Vn)

∫
Vn

µ(x, V )µs|X(dx) → µ(r, V )

for µs|X -a.e. r ∈ R.
Finally, suppose µ̃ is another probability kernel such that (6.6.1) holds.

Define N ⊆ R by r ∈ N if and only if there exists ε > 0 such that
µs|X(r − ε, r + ε) = 0. Then N is an open set, and µs|X K = 0 for all compact
K ⊆ N . Hence, µs|X N = 0. Let r ∈ N c and V ∈ B(R). Choose any εn > 0
with εn → 0 and define Vn = (r− εn, r+ εn). Then µs|X Vn > 0, so Vn satisfies
Definition 6.6.1 with c > 1/2. Thus, Vn shrinks nicely to r with respect to µs|X .
By (6.6.1), we have µ(r, V ) = µ̃(r, V ).
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Corollary 6.6.3. Let P be a real inductive theory in ZFC, and let X ∈ anteP .
Let s, t ∈ T be jointly Borel, and let µ be a probability kernel satisfying (6.6.1).
Let r ∈ R. If P (t ∈ V | X, s = r) exists, then

P (t ∈ V | X, s = r) = µ(r, V ).

Proof. Choose any εn > 0 with εn → 0 and let Vn = (r − εn, r + εn). Suppose
P (t ∈ V | X, s = r) exists. By Lemma 3.2.10, we have P (s = r | X) > 0.
Hence, µs|X{r} > 0, so that Vn shrinks nicely to r with respect to µs|X . By the
multiplication and continuity rules, it follows that

lim
n→∞

P (t ∈ V | X, s ∈ Vn) = P (t ∈ V | X, s = r).

The result therefore follows from (6.6.1).

Remark 6.6.4. Theorem 6.6.2 and Corollary 6.6.3 can be generalized to the
case where s1, . . . , sn, t1, . . . , tm are jointly Borel and µ is a probability kernel
from Rn to Rm. In that case, let s = (s1, . . . , sn), and replace (6.6.1) by

lim
n→∞

P (
∧m
ℓ=1 tℓ ∈ Vℓ | X,

∧n
k=1 sk ∈ Vk,n) = µ(r1, . . . , rn, V1 × · · · × Vm)

for µs|X -a.e. (r1, . . . , rn) ∈ Rn, whenever Vk,n shrinks nicely to rk with respect
to µsk|X .

Any kernel µ satisfying (6.6.1) is called a distribution of t given X and s.

6.6.2 Versions of distributions

For fixed V , a function h(r) is called a version of P (t ∈ V | X, s = r) if
h(r) = µ(r, V ) for some µ satisfying (6.6.1). Note that any two versions are
equal µs|X -a.e. We may sometimes write P (t ∈ V | X, s = r) = h(r) to mean
that h(r) is a version of P (t ∈ V | X, s = r), but it should be remembered
that if P (s = r | X) = 0, then P (t ∈ V | X, s = r) does not have a uniquely
determined value for a fixed value of r.

Suppose t is integrable given X. A function h(r) is called a version of
E[t | X, s = r] if h(r) =

∫
R xµ(r, dx) for some µ satisfying (6.6.1). Note that any

two versions are equal µs|X -a.e. We may sometimes write E[t | X, s = r] = h(r)
to mean that h(r) is a version of E[t | X, s = r], but we should remember that
if P (s = r | X) = 0, then E[t | X, s = r] does not have a uniquely determined
value for a fixed value of r.

Let µ satisfy (6.6.1). By the proof of Theorem 6.6.2 and properties of regular
conditional distributions, we have

∫
R |x|µ(r, dx) < ∞ for all r ∈ R. It follows

that r 7→
∫
R xµ(r, dx) is a version of E[t | X, s = r] whenever µ satisfies (6.6.1).

We may sometimes treat P (t ∈ V | X, s = r) and E[t | X, s = r] as if they
were functions, rather than expressions that possess versions. In such situations,
the meaning must be understood according to context. For example, if we say
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that P (t > 0 | X, s = r) = 1 − e−r, then we mean that h(r) = 1 − e−r is a
version of P (t > 0 | X, s = r). On the other hand, if we say that

P (t > 0 | X, s = r) = E[t′ | X, s = r],

then we mean that h(r) is a version of P (t > 0 | X, s = r) if and only if h(r) is
a version of E[t′ | X, s = r]. Since different versions are equal µs|X -a.e., such a
claim can be verified by checking it for a single version.

All of this could be made precise if we were to define E[t | X, s = r] as
the equivalence class of h(r), where h(r) is a version, and two functions are
equivalent if they are equal µs|X -a.e. To save ourselves from even more notation,
we avoid this approach. Moreover, it is common in measure-theoretic probability
to use the language of “versions” when talking about conditional expectation.

6.6.3 Indicator terms

We have seen how to define P (t ∈ V | X, s = r). Here, we see how to define
P (ψ | X, s = r) for more general sentences ψ. If ψ ∈ L0, then we define the
term 1ψ by

y = 1ψ ↔ ψ ∧ y = 1 ∨ ¬ψ ∧ y = 0.

If P (ψ | X) exists, then 1ψ is Borel given X. In fact, in this case, 1ψ is integrable
and E[1ψ | X] = P (ψ | X).

If s is Borel given X, then 1ψ and s are jointly Borel if and only if
P (ψ ∧ s ∈ V | X) exists for all V ∈ B(R). In this case, we define

P (ψ | X, s = r) = P (1ψ ∈ {1} | X, s = r).

That is, we say h(r) is a version of P (ψ | X, s = r) if and only if h(r) is a
version of P (1ψ ∈ {1} | X, s = r). Since ZFC ⊢ ψ ↔ 1ψ ∈ {1}, Theorem 6.6.2
shows that

P (ψ | X, s ∈ Vn) → P (ψ | X, s = r),

for µs|X -a.e. r ∈ R, whenever Vn shrinks nicely to r with respect to µs|X .
Note that

P (t ∈ V | X, s = r) = E[1ψ | X, s = r],

where ψ = t ∈ V . That is, h(r) is a version of P (t ∈ V | X, s = r) if and only
if h(r) is a version of E[1ψ | X, s = r]. Hence, distributions given X and s can
be characterized entirely in terms of expectations.

The following result shows how to connect distributions given X and s to
the root of our inductive theory.

Proposition 6.6.5. Let P be a real inductive theory in ZFC with root T0, and let
X ∈ anteP . Write X ≡ T +ψ, where T ∈ [T0, TP ]. Let s and t be jointly Borel
given T0 and assume P (ψ ∧ s ∈ V1 ∧ t ∈ V2 | T0) exists for all V1, V2 ∈ B(R).
Also assume that t is integrable given T0. Then E[t | X, s = r] = h(r, 1), where
h(r, r′) = E[t | T0, s = r, 1ψ = r′].
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Proof. Let h(r, r′) be a version of E[t | T0, s = r, 1ψ = r′]. Let s = (s, 1ψ).

Then h(r, r′) =
∫
R xµ(r, r

′, dx) for some kernel µ from R2 to R such that

lim
n→∞

P (t ∈ V | T0, s ∈ Vn, 1ψ ∈ V ′
n) = µ(r, r′, V ),

for µs|T0
-a.e. (r, r′) ∈ R2, whenever Vn shrinks nicely to r and V ′

n shrinks nicely
to r′. It follows that

lim
n→∞

P (t ∈ V | X, s ∈ Vn) = lim
n→∞

P (t ∈ V | T0, ψ, s ∈ Vn)

= lim
n→∞

P (t ∈ V | T0, s ∈ Vn, 1ψ ∈ {1})

= µ(r, 1, V ),

for µs|X -a.e. r ∈ R, whenever Vn shrinks nicely to r. Hence, h(r, 1) =∫
R xµ(r, 1, dx) is a version of E[t | X, s = r].

6.6.4 Conditional expectation

Proposition 6.6.7. Let P be a real inductive theory in ZFC with root T0, and
let X ∈ anteP . Let s, t ∈ T be jointly Borel, and assume t is integrable. If h(r)
and h′(r) are versions of E[t | X, s = r], then P (h(s) = h′(s) | X) = 1.

Proof. Let V = {r ∈ R | h(r) = h′(r)} ∈ B(R). We first show that

ZFC ⊢ h(s) = h′(s) ↔ s ∈ V . (6.6.2)

Let P = (Ω,Σ,P) be a model and assume P ⊨ ZFC and P ⊨ h(s) = h′(s).
By adopting the real frame of reference, we may assume P satisfies all of
the conditions in Theorems 6.4.1, 6.4.3, and 6.4.5. Choose Ω∗ ∈ Σ such that
PΩ∗ = 1 and, for every ω ∈ Ω∗, we have that Theorem 6.4.1(v) holds for V ,
Theorem 6.4.5 holds for both h and h′, and ω |≡ h(s) = h′(s). Let ω ∈ Ω∗. Then
sω ∈ ωR and there exists b ∈ ωR such that b = h(sω) and b = h′(sω). Hence,
sω ∈ V ∩ ωR = ωV , so that ω |≡ s ∈ V . Since this is true for every ω ∈ Ω∗, we
have P ⊨ s ∈ V . Since P was arbitrary, this gives ZFC, h(s) = h′(s) ⊢ s ∈ V .
A similar proof shows that ZFC, s ∈ V ⊢ h(s) = h′(s), and this verifies (6.6.2).

By (6.6.2) and Proposition 3.2.14, we have

P (h(s) = h′(s) | X) = P (s ∈ V | X) = µs|X V = µs|X{r ∈ R | h(r) = h′(r)}.

But h and h′ are both versions of E[t | X, s = r]. Therefore, h = h′, µs|X -a.e,
which shows that P (h(s) = h′(s) | X) = 1.

If h(r) is a version of E[t | X, s = r], then the term h(s) is called a version
of E[t | X, s]. Similarly, if h(r) is a version of P (t ∈ V | X, s = r), then the term
h(s) is called a version of P(t ∈ V | X, s). We call E[t | X, s] the conditional
expectation of t given X and s.

We may sometimes treat E[t | X, s] as if it were a term, rather than an
expression that possesses versions. In such situations, the meaning must be
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understood according to context. For example, if we say that t′ = E[t | X, s],
then we mean that t′ is a version of E[t | X, s]. On the other hand, if we say that
E[E[t | X, s] | X] = E[t | X], then what we mean is that E[t′ | X] = E[t | X]
whenever t′ is a version of E[t | X, s]. A similar convention applies to versions
of P(t ∈ V | X, s).

A version of E[t | X, s = r] is a measurable function, whereas a version of
E[t | X, s] is a term. Similarly, a version of P (t ∈ V | X, s = r) is a measurable
function, whereas a version of P(t ∈ V | X, s) is a term. Terms can appear in
inductive statements. Hence, for example,

P (P(t = 1 | X, s) > 0.5 | X) = 2/3 (6.6.3)

is a perfectly meaningful thing to say. It says that (X,h(s) > 0.5, 2/3) ∈ P
whenever h(r) is a version of P (t = 1 | X, s = r). By Propositions 6.6.7 and
3.2.14, if we verify (6.6.3) for a single version, then it is true for all versions.

6.6.5 The law of total probability

Theorem 6.6.8 (Law of total probability). Let P be a real inductive theory
in ZFC and let X ∈ anteP . Let s, t ∈ T be jointly Borel, and assume t is
integrable. Then E[t | X] = E[E[t | X, s] | X].

Proof. Let h(r) be a version of E[t | X, s = r]. Then h(r) =
∫
R xµ(r, dx)

for some kernel µ satisfying (6.6.1). Let Y1 and Y2 be the random variables
constructed in the proof of Theorem 6.6.2, so that µ is a regular conditional
distribution for Y2 given Y1. By properties of regular conditional distributions,
we have Eν [Y2 | Y1] =

∫
R xµ(Y1, dx) = h(Y1). Using properties of conditional

expectations, it follows that Eν [h(Y1)] = Eν [Eν [Y2 | Y1]] = Eν [Y2] = E[t | X].
It therefore suffices to show that E[s′ | X] = Eν [h(Y1)], where s

′ = h(s).
Using the real frame of reference, it follows easily that ZFC ⊢ s′ ∈ V ↔ s ∈

h−1V . Hence, s′ is Borel given X and µs′|X = µs|X ◦ h−1, which implies

E[s′ | X] =

∫
R
xµs′|X(dx) =

∫
R
h(x)µs|X(dx).

But µs|X = ν{Y1 ∈ ·}, so E[s′ | X] = Eν [h(Y1)].

Suppose P (ψ ∧ s ∈ V | X) exists for each V ∈ B(R). In this case, we
define P(ψ | X, s) = E[1ψ | X, s], which means that a term t is a version of
P(ψ | X, s) if and only if it is a version of E[1ψ | X, s]. Since we also have that
P (ψ | X) = E[1ψ | X], Theorem 6.6.8 gives us

P (ψ | X) = E[P(ψ | X, s) | X].

This special case of Theorem 6.6.8, especially when µs|X is discrete, is what is
more commonly known as the law of total probability.



Chapter 7

Principle of Indifference

As discussed in Section 1.5, the principle of indifference is the heuristic idea
that if we are equally ignorant about two statements, then we ought to assign
them the same probability. The principle dates back to Laplace and the birth of
mathematical probability. Although it is intuitively self-evident, it has a history
of producing apparent paradoxes. It has no rigorous formulation in measure-
theoretic probability theory. Hence, using measure theory alone, we are helpless
to distinguish between valid and invalid uses of the principle.

In Section 7.1, we give a precise formulation of the principle of indifference
in the context of inductive logic. As we will see, it is a natural generalization
of a basic principle of deductive logic. In Sections 7.2 and 7.3, we present
several elementary examples of the principle of indifference in action. All of
these examples are finite, in the sense that they involves models P = (Ω,Σ,P),
where Ω is finite.

In the last three sections of this chapter, we consider the principle of
indifference in the context of real inductive theories. In Section 7.4, we show
that exchangeability is a special case of indifference. Sections 7.5 and 7.6 present
several concrete examples. Section 7.5 treats examples involving an interval on
the real line, while Section 7.6 treats examples involving circles and disks in the
plane. The final example of Section 7.6 is the famous example of Bertrand’s
paradox.

7.1 Formulating the principle

The principle of indifference is an inductive generalization of a fundamental
principle of deductive logic. This deductive principle is one that we use all the
time, especially when we make assumptions “without loss of generality.” This
principle, which we call “deductive indifference,” is presented in Section 7.1.2.
In order to state it, we first define what we call “signature permutations.”
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7.1.1 Signature permutations

Let L be a logical signature with associated predicate language L. A signature
permutation, or L-permutation, is a bijection π : L → L such that sπ has the
same type and arity as s, for all s ∈ L. Given a signature permutation, we
extend it to π : T → T by xπ = x and (ft1 · · · tn)π = fπtπ1 · · · tπn. We then
extend it to π : L → L by

(i) (s = t)π = (sπ = tπ),

(ii) (rt1 · · · tn)π = rπtπ1 · · · tπn,

(iii) (¬φ)π = ¬φπ,

(iv) (
∧
Φ)π =

∧
φ∈Φ φ

π, and

(v) (∀xφ)π = ∀xφπ.

By the unique concatenation and reconstruction properties in Sections 5.1.1
and 5.1.2, each of these extensions of π is a bijection. Moreover, by formula
induction in Lfin, we have that φ ∈ Lfin if and only if φπ ∈ Lfin. For X ⊆ L, we
write Xπ = {φπ | φ ∈ X}. If Xπ ≡ X, then we say that X is invariant under
π, or π-invariant.

We will sometimes denote the inverse permutation, π−1, by −π. Also, when
π affects only finitely many extralogical symbols, we may use the usual cycle
notation for permutations. For example, π = (c1 c2)(r1 r2 r3) means that
cπ1 = c2, c

π
2 = c1, r

π
1 = r2, r

π
2 = r3, r

π
3 = r1, and sπ = s for all other extralogical

symbols.
By term and formula induction, ψ ∈ Sf φ if and only if ψπ ∈ Sf φπ. Also,

var t = var tπ, and rkφ, varφ, bndφ, and freeφ are all unchanged by replacing
φ with φπ. In particular, t is a ground term if and only if tπ is a ground
term, and φ is a sentence if and only if φπ is a sentence. On the other hand,
symφπ = π(symφ) and conφπ = π(conφ).

If σ : Var → T is a substitution, then define the substitution σ′ : Var → T
by σ′ = π ◦ σ, which is the substitution given by xσ

′
= xσπ for all x ∈ Var .

Note that this relation does not extend to all of T . For instance cσ
′
= c, but

cσπ = cπ.

Proposition 7.1.1. For all t ∈ T and all φ ∈ L, we have tσπ = tπσ
′
and

φσπ = φπσ
′
. In particular, φ(t/x)π = φπ(tπ/x).

Proof. We first prove tσπ = tπσ
′
by term induction. Since xπ = x, it is true for

x ∈ Var by the definition of σ′. Since constants are unaffected by substitutions,
we have cσπ = cπ = cπσ

′
. Suppose it is true for t1, . . . , tn and let f be an n-ary

function symbol. Then

(ft1 · · · tn)σπ = (ftσ1 · · · tσn)π = fπtσπ1 · · · tσπn
= fπtπσ

′

1 · · · tπσ
′

n = (fπtπ1 · · · tπn)σ
′
= (ft1 · · · tn)πσ

′
,
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and it is true for ft1 · · · tn. By term induction, it holds for all t ∈ T .
We next prove φσπ = φπσ

′
by formula induction. The proof that it holds

for prime formulas and for formulas of the form φ = ¬ψ and φ =
∧
Φ is

similar to the above. Suppose φ = ∀xψ. Then φσπ = (∀xψτ )π = ∀xψτπ,
where xτ = x and yτ = yσ for y ̸= x. By the inductive hypothesis, this gives
φσπ = ∀xψπτ ′

. Using the fact that the proposition holds for terms, we have
xτ

′
= x and yτ

′
= yσ

′
for y ̸= x. Hence, φσπ = (∀xψπ)σ′

= φπσ
′
. The final

assertion follows from the fact that if σ = t/x, then σ′ = tπ/x.

Proposition 7.1.2. Let φ ∈ L. Then σ is free for φ if and only if σ′ is free
for φπ. In particular, t is free for x in φ if and only if tπ is free for x in φπ.

Proof. First note that ζ is in the scope of ∀z in φ if and only if ζπ is in the scope
of ∀z in φπ. Now suppose y in not free for x in φ. Then there exists ζ ∈ Sf φ
such that x ∈ free ζ, ζ is not in the scope of ∀x in φ, and ζ is in the scope of ∀y
in φ. Since ζπ ∈ Sf φπ and free ζπ = free ζ, it follows that y is not free for x in
φπ. The converse also holds. Hence, the second part of the proposition is true
for t = y. For general t, simply note that y ∈ t if and only if y ∈ tπ. The case
of general σ now follows since σ is free for φ if and only if xσ is free for x in φ
for all x, and xσπ = xσ

′
.

7.1.2 Deductive indifference

Theorem 7.1.3 below says that the deductive derivability relation is preserved by
signature permutations. The proof is elementary and the result is completely
unsurprising. After all, the symbols that appear in a proof have no direct
relevance. It is only their relationships to one another that matters. This
principle is what we might call “deductive indifference.” As an example
of applying this principle, we use it to formalize the technique of assuming
something “without loss of generality.”

Theorem 7.1.3. Let X ⊆ L and φ ∈ L. Let π be a signature permutation.
Then Xπ ⊢ φπ if and only if X ⊢ φ. In particular, if X is invariant under π,
then X ⊢ φπ if and only if X ⊢ φ.

Proof. Suppose X ⊢ φ and let ⟨φβ | β ⩽ α⟩ be a proof of φ from X. We claim
that ⟨φπβ | β ⩽ α⟩ is a proof of φπ from Xπ. Since (ψ → ζ)π = ψπ → ζπ and
(
∧
Φ)π =

∧
Φπ, the claim will follow once we show that Λπ = Λ.

For this, it suffices to show that Λ ⊆ Λπ, since we can replace π by −π and
apply π to both sides. Showing Λ ⊆ Λπ can be done by verifying (I)–(IV) in
Section 5.2.7, with Λ replaced by Λπ. Verifying (II)–(IV) is straightforward. To
show that Λ− ⊆ Λπ, it is enough to show (Λ−)π ⊆ Λ, for the reasons given
above.

Let φ ∈ Λ−. If φ has the form (Λ1), then so does φπ, so that φπ ∈ Λ.
The same is true for (Λ2), (Λ3), (Λ5), and (Λ6). For (Λ4), suppose φ =
∀xψ → ψ(t/x), where t is free for x in ψ. Then tπ is free for x in ψπ, and
φπ = ∀xψπ → ψπ(tπ/x). Hence, φπ ∈ Λ. The proof for (Λ7) is similar.



184 CHAPTER 7. PRINCIPLE OF INDIFFERENCE

This shows that X ⊢ φ implies Xπ ⊢ φπ. Using the result with −π gives
the converse. The second result follows from the first by the definition of
invariance.

Theorem 7.1.3 shows that if T ⊆ L0 is a deductive theory, then Tπ is also.
This is because if Tπ ⊢ φ, then T ⊢ φ−π, so that φ−π ∈ T , which implies
φ ∈ Tπ. In fact, we have T (Xπ) = T (X)π for any X ⊆ L0.

The following corollary is a formalization of the without-loss-of-generality
proof method. It is also true in Lfin if we require Φ to be finite.

Corollary 7.1.4. Let X ⊆ L and φ ∈ L. Suppose Φ ⊆ L is countable and
X ⊢

∨
Φ. Fix θ0 ∈ Φ and suppose that for each θ ∈ Φ, there is a signature

permutation π such that θπ0 = θ, X is π-invariant, and φ is π-invariant. Then
X, θ0 ⊢ φ implies X ⊢ φ.

Proof. Assume X, θ0 ⊢ φ. Then X ⊢ θ0 → φ. But θ0 → φ ≡ ¬φ → ¬θ0.
Hence, X,¬φ ⊢ ¬θ0. Let θ ∈ Φ. Choose π as in our hypotheses. Since X,¬φ
is invariant under π, it follows from Theorem 7.1.3 that X,¬φ ⊢ ¬θπ0 ≡ ¬θ.
Since θ was arbitrary, X,¬φ ⊢

∧
θ∈Φ ¬θ ≡ ¬

∨
Φ. Therefore, X,

∨
Φ ⊢ φ. But

X ⊢
∨
Φ, so we have X ⊢ φ.

Example 7.1.5. Consider a scenario where we have three objects, and each is
painted either red or blue. Define the extralogical signature L = {r, b}, where r
and b are unary relation symbols. Let

X = {∃=3,∀x((rx ∨ bx) ∧ ¬(rx ∧ bx))}.

The set X asserts that there are three objects, each is red or blue, and none are
both red and blue. Let us introduce the defined binary relation symbol s by

sxy ↔ (rx ∧ ry) ∨ (bx ∧ by),

so that sxy asserts that x and y have the same color. We want to prove that
there must be two objects of the same color. That is, we want to show that
X ⊢ φ, where

φ = ∃xy(x ̸= y ∧ sxy).

Let us add a new constant c that represents an arbitrary object. By Proposition
5.2.16, it suffices to show that X ⊢Lc φ. Informally, we would like to say that,
without loss of generality, we may assume c is red. In other words, we claim
that it suffices to show X, rc ⊢Lc φ.

This is justified by Corollary 7.1.4. To see this, define π by rπ = b, bπ = r,
and cπ = c. Then both X and φ are π-invariant. Let Φ = {rc, bc}. Then
X ⊢ rc ∨ bc and (rc)π = bc. Hence, according to Corollary 7.1.4, if we can
establish X, rc ⊢Lc φ, then we may conclude X ⊢Lc φ.
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7.1.3 Inductive indifference

We are now able to state the principle of indifference, which is an extension of
Theorem 7.1.3 to the inductive setting.

Definition 7.1.6 (The Principle of Indifference). Let P be an inductive
theory. Suppose that, for every signature permutation π, we have:

(R10) If P (φ | X) exists and Xπ ∈ anteP , then P (φπ | Xπ) = P (φ | X).

Then P satisfies the principle of indifference.

If P (φ | X) is to be an evidentiary relationship between X and φ, then the
principle of indifference is a natural consistency condition to impose. After all,
there is nothing special about the symbols we choose to use. In arithmetic, if
we everywhere switch the symbols + and · , it is still the same arithmetic. The
symbols just have the opposite meaning. If we were going to assign a certain
probability in the original setting, then we ought to assign that same probability
after the symbols are reversed, because nothing has actually changed.

In fact, it is such a natural requirement, it would have made sense to define
it as one of our rules of inductive inference, making it part of the definition of
an inductive theory. We did not do this for two reasons. First, the principle
of indifference is a rule solely for predicate logic. Making it a rule of inductive
inference would have created an asymmetry between propositional and predicate
logic. Second, by omitting it from the rules of inductive inference, we were
be able to prove Theorem 5.4.2, which shows that all of modern, measure-
theoretic probability is embedded in inductive logic. If we made the principle
of indifference part of the definition of an inductive theory, this would not be
the case. In other words, modern probability as we know it today, for better or
for worse, does not require us to conform to the principle of indifference.

And so, the principle of indifference is not a required part of inductive logic.
That is, inductive theories are required to satisfy (R1)–(R9), but they are not
required to satisfy (R10). We will show, however, in the remaining sections of
this chapter, how to add this requirement to our inferences by using inductive
conditions.

Now, if X is π-invariant, then according to the rule of logical equivalence,
we can reformulate the principle of indifference as P (φπ | X) = P (φ | X).
This reformulation is perhaps closer to the intuitive idea of the principle of
indifference. To say that X is our antecedent is to say that the totality of facts
which we know consists of X, together with everything that can be proven
from X. In other words, T (X), the deductive theory generated by X, is
the set of sentences that represents our knowledge. If X is π-invariant, then
T (X) = T (Xπ). In other words, our knowledge remains entirely unchanged by
the permutation π. In this sense, then, we cannot even “see” the permutation π.
We are therefore “indifferent” between φ and φπ. Everything we know about φ,
we also know about φπ, and vice versa. In this case, according to the principle
of indifference, we should assign them the same probability.
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7.1.4 Structures, models, and indifference

In the remainder of this chapter, we will present several examples of the principle
of indifference in action. In order to verify the principle of indifference in these
examples, we will need several results about how (R10) relates to structures and
models.

Let P = (Ω,Σ,P) be an L-model, and let π be a signature permutation. For
ω = (A,Lω) ∈ Ω, define ωπ = (A,Lω

π

) so that (sπ)ω
π

= sω for all s ∈ L. That
is, ωπ = ω ◦ π−1. Let Ωπ = {ωπ | ω ∈ Ω} and let hπ : Ω → Ωπ denote the map
ω 7→ ωπ. Let Pπ = (Ωπ,Σπ,Q) be the measure space image of P under hπ.
Note that hπ is a bijection, and is therefore a pointwise isomorphism (as measure
spaces) from P to Pπ. Hence, it induces a measure-space isomorphism from
(Ω,Σ,P) to (Ωπ,Σπ,Q). In particular, Q = P ◦ h−1

π .
Given an assignment v into P, define the assignment vπ into Pπ by

vπωπ (x) = vω(x) for all x ∈ Var . By term induction, we have vπωπ (tπ) = vω(t)
for all t ∈ T , and by formula induction, ω |≡ φ[vω] if and only if ωπ |≡ φπ[vπωπ ],
for any φ ∈ L. Hence, φ[v]Ω = h−1

π φπ[vπ]Ωπ . Since Q = P ◦ h−1
π , this gives

Pφ[v]Ω = Qφπ[vπ]Ωπ . In particular,

P ⊨ φ[v] if and only if Pπ ⊨ φπ[vπ], (7.1.1)

for all φ ∈ L and all assignments v into P. Note that (7.1.1) could be used to
give a semantic proof of Theorem 7.1.3.

Theorem 7.1.7. Let P be an L-model. Then for any (X,φ, p) ∈ LIS, we have
P ⊨ (X,φ, p) if and only if Pπ ⊨ (Xπ, φπ, p).

Proof. Let P = (Ω,Σ,P) be an L-model and π a signature permutation, so
that Pπ = (Ωπ,Σπ,Q). Let (X,φ, p) ∈ LIS. Then X ⊆ L0 and φ ∈ L0.
Suppose P ⊨ (X,φ, p). Then there exists Y ⊆ L0 and ψ ∈ L0 such that
P ⊨ Y , X ≡ Y ∪{ψ}, and PφΩ ∩ψΩ/PψΩ = p. By (7.1.1), we have Pπ ⊨ Y π.
Theorem 7.1.3 implies Xπ ≡ Y π ∪ {ψπ}. And it follows from Q = P ◦ h−1

π that
QφπΩπ ∩ ψπΩπ/QψπΩπ = p. Hence, Pπ ⊨ (Xπ, φπ, p). Applying this with −π
gives the converse.

Proposition 7.1.8. Let P be an L-model. Suppose that P ≃ Pπ for every
signature permutation π. Then ThP satisfies the principle of indifference.

Proof. Let P = ThP and suppose P (φ | X) = p. Then P ⊨ (X,φ, p), so
that Theorem 7.1.7 gives Pπ ⊨ (Xπ, φπ, p). By hypothesis, P ≃ Pπ. Hence,
Theorem 5.3.24 implies P ⊨ (Xπ, φπ, p). Therefore, P (φπ | Xπ) = p.

Proposition 7.1.9. Let P be an inductive theory with root T0, and let T ∈
[T0, TP ]. If P satisfies the principle of indifference, then so does P ⇃[T,TP ].

Proof. Let P ′ = P ⇃[T,TP ]. Proposition 3.5.10 implies that P ′ is an inductive
theory. Suppose P ′(φ | X) = p and Xπ ∈ anteP ′. Since P ′ ⊆ P , we have
P (φ | X) = p and Xπ ∈ anteP . By the principle of indifference for P , it
follows that P (φπ | Xπ) = p. But Xπ ∈ anteP ′, and so we have Xπ ↪→ [T, TP ].
Therefore, P ′(φπ | Xπ) = p.
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Lemma 7.1.10. Let P be an inductive theory with root T0 and π a signature
permutation. Let X ⊆ L0 and assume X,Xπ ∈ anteP . Write X ≡ T + ψ and
Xπ ≡ T ′ + ψ′, where T, T ′ ∈ [T0, TP ] and ψ,ψ

′ ∈ L0. Suppose P ⊨ P . Then,
for all ζ ∈ T0, we have ψΩ ⊆ ζ−πΩ and ψ′

Ω ⊆ ζπΩ, P-a.s. In particular, if ζπΩ ∈ Σ,
then P ζπΩ > 0, and if ζ−πΩ ∈ Σ, then P ζ−πΩ > 0.

Proof. Since (ζ−π)π = ζ ∈ T0 ⊆ T (Xπ) = T (X)π, we have ζ−π ∈ T (X) ⊆
TP + ψ. Hence, ψ → ζ−π ∈ TP , which implies PψΩ ∩ (ζ−π)cΩ = 0. Therefore,
ψΩ ⊆ ζ−πΩ , P-a.s. In particular, if ζ−πΩ ∈ Σ, then since PψΩ > 0, this gives
P ζ−πΩ > 0. Similarly, since ζ ∈ T0, we have ζπ ∈ T (X)π = T (Xπ) ⊆ TP + ψ′.
Hence, ψ′ → ζπ ∈ TP , so that ψ′

Ω ⊆ ζπΩ, P-a.s. and ζπΩ ∈ Σ implies P ζπΩ > 0.

Let P = (Ω,Σ,P) be a complete L-model. Let T0 ⊆ Th P and define
P = ThP ⇃[T0,Th P]. Let π be a signature permutation. Suppose P (φ | X) = p
and Xπ ∈ anteP . Let ζ ∈ T0 and assume B = ζπΩ ∈ Σ. By Lemma 7.1.10,
we have PB > 0. We may therefore define the probability measures PB on
(Ω,Σ) by PB C = PC ∩B/PB. Let PB = (Ω,Σ,PB). Note that PB ⊨ Th P.
Similarly define PB′ , where we assume B′ = ζ−πΩ ∈ Σ.

Proposition 7.1.11. With the notation given above, if PB ≃ Pπ
B′ , then

P (φπ | Xπ) = p.

Proof. Assume PB ≃ Pπ
B′ . Write X ≡ T +ψ and Xπ ≡ T ′+ψ′, where T, T ′ ∈

[T0,Th P ] and ψ,ψ
′ ∈ L0. Since P (φ | X) = p, we have PφΩ ∩ ψΩ/PψΩ = p.

But ψΩ ⊆ B′ a.s., by Lemma 7.1.10, so that

p =
PφΩ ∩ ψΩ ∩B′

PψΩ ∩B′ =
PB′ φΩ ∩ ψΩ

PB′ ψΩ
,

which implies PB′ ⊨ (X,φ, p). By Theorems 7.1.7 and 5.3.24, it follows that
PB ⊨ (Xπ, φπ, p). As above, since ψ′

Ω ⊆ B, this gives

p =
PB φπΩ ∩ ψ′

Ω

PB ψ′
Ω

=
PφπΩ ∩ ψ′

Ω ∩B
Pψ′

Ω ∩B
=

PφπΩ ∩ ψ′
Ω

Pψ′
Ω

.

Therefore, P ⊨ (Xπ, φπ, p), so that P (φπ | Xπ) = p.

7.2 Examples with a single object

In this section, we give several elementary examples involving the principle of
indifference. In each of these examples, we are primarily concerned with the
properties of a single object.

7.2.1 Either it’s true or it isn’t

The most naive misapplication of the principle of indifference is illustrated by
the following invalid reasoning. Imagine we have a book whose color is unknown
to us. It might be red or might not be red. Since we have no reason to think one
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way or the other, we should assign equal probabilities to both cases. Therefore,
the probability the book is red is 1/2.

Clearly, this cannot be correct, for we could also apply it to the color black,
and then to the color blue. Since probabilities must add up to one, it cannot be
the case that all three colors have probability 1/2.

To see formally that this argument is invalid, let L = {b, R}, where b is
a constant symbol that denotes the book, and R is a unary predicate symbol
that denotes the property of being red. Recall the notation, IT0 , for the set of
inductive theories with root T0. We will assume only the principle of indifference.
That is, we take T0 = Taut, and define the inductive condition,

C = {P ∈ ITaut | P (R(b) | Taut) exists and P satisfies (R10)}.

Proposition 7.2.1. The condition C is consistent and C ⊬ (Taut, R(b), 1/2).

Proof. Let A = {0} and define ω0 = (A,Lω0) by bω0 = 0 and Rω0 = ∅. Define
ω1 similarly, but with Rω1 = {0}. Let Ω = {ω0, ω1} and Σ = PΩ. Fix
p ∈ (0, 1) and define P = (Ω,Σ,P), where P{ω0} = 1 − p and P{ω1} = p. Let
P = ThP ∈ ITaut . Note that R(b)Ω = {ω1}, so that PR(b)Ω = p. Thus,
P (R(b) | Taut) = p.

We will show that P satisfies (R10). Suppose that P (φ | X) = p and
Xπ ∈ anteP . In this example, the only signature permutation is the identity.
Hence, P (φπ | Xπ) = p, and so P satisfies (R10). This shows that P ∈ C
and therefore C is consistent. However, since P (R(b) | Taut) = p and p was
arbitrary, it follows that (Taut, R(b), 1/2) /∈ PC .

7.2.2 A single coin flip

Let us return to the example in Section 5.4.3. We flip a coin with two sides,
and assume only that the sides are distinct and that the coin will land on one
of them. We also assume the principle of indifference.

Let L = {c, s0, s1}, where c, s0, and s1 are constant symbols. We think of s1
and s0 as denoting the heads and tails sides of the coin, respectively, and c as
denoting the result of our toss. Let T0 be generated by the sentences

φ1 : s0 ̸= s1

φ2 : c = s0 ∨ c = s1

Let C = {P ∈ IT0
| P (c = s1 | T0) exists and P satisfies (R10)}.

Proposition 7.2.2. The condition C is consistent and PC(c = s1 | T0) = 1/2.

Proof. Let A = {0, 1} and define ω0 = (A,Lω0) by sω0
i = i and cω0 = 0.

Define ω1 similarly, but with cω1 = 1. Let Ω = {ω0, ω1}, Σ = PΩ, and define
P = (Ω,Σ,P), where P{ω0} = P{ω1} = 1/2. Since P ⊨ T0, we may define
P = ThP ⇃[T0,Th P] ∈ IT0

. Note that P (c = s1 | T0) = 1/2.
We will show that P satisfies (R10). Suppose that P (φ | X) = p and

Xπ ∈ anteP . First assume cπ = s0. Then sπi = c for some i ∈ {0, 1}. Let
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i′ = 1− i, so that sπi′ = s1. We will apply Proposition 7.1.11. Let ζ = (s0 ̸= s1).
Then

B = ζπΩ = (c ̸= s1)Ω = {ω0}, and
B′ = ζ−πΩ = (c ̸= si′)Ω = {ωi}.

Define h : PB → Pπ
B′ by ω0 7→ ωπi and ω1 7→ ωπi′ . Since PB{ω0} = 1 and

PπB′{ωπi } = PB′{ωi} = 1, the function h induces a measure space isomorphism.
Let g : A → A be the bijection defined by g(0) = i and g(1) = i′. Note

that if i = 0, then π = (c s0), and if i = 1, then π = (c s0 s1). In either case,
g ◦ ω0 = ωi ◦ π−1 = ωπi . Hence, ωπi is the isomorphic image of ω0 under g.
Since PB{ω0} = 1, we have ω ≃ hω, PB-a.s., so that h is a model isomorphism.
Proposition 7.1.11 therefore gives P (φπ | Xπ) = p. The case cπ = s1 is similar.

Now assume cπ = c. If π is the identity, then P (φ | X) = P (φπ | Xπ).
Assume π = (s0 s1). Define h : P → Pπ by ωi 7→ ωπi′ . Since P{ωi} = 1/2 and
Pπ{ωπi′} = P{ωi′} = 1/2, the function h induces a measure space isomorphism.
As above, if g : A → A is given by g(i) = i′, then ωπi′ = ωi′ ◦ π−1 = g ◦ ωi.
Therefore, ω ≃ hω, P-a.s., so that h is a model isomorphism. By Theorems
7.1.7 and 5.3.24, this gives P (φπ | Xπ) = p. Altogether, this shows P satisfies
the principle of indifference, and so P ∈ C. Therefore, C is consistent.

For the final claim, it suffices to show that P (c = s1 | T0) = 1/2 whenever
P ∈ C. Let P ∈ C be given. Then P is an inductive theory with root T0,
P (c = s1 | T0) = p for some p, and P satisfies the principle of indifference. Let
π = (s0 s1), and note that Tπ0 = T0. Hence, by the principle of indifference, we
have P (c = s0 | T0) = p. But T0 ⊢ ¬(c = s0 ∧ c = s1), so that the addition rule
gives P (c = s0 ∨ c = s1 | T0) = 2p. On the other hand, T0 ⊢ c = s0 ∨ c = s1,
so that the rule of logical implication implies P (c = s0 ∨ c = s1 | T0) = 1.
By the rule of logical equivalence, we must have 2p = 1, or p = 1/2. Thus,
P (c = s1 | T0) = 1/2.

7.2.3 A single trial

Here we consider a single “trial” that can result in either success or failure.
Intuitively, this example is the same as the single coin flip in Section 7.2.2. With
the coin flip, the possible results (heads or tails) were represented by objects.
In this example, the possible results (success or failure) will be represented by
predicates. For this reason, the proof of consistency in this example will be
shorter.

Let L = {t, S, F}, where t is a constant symbol and S and F are unary
relation symbols. We think of t as denoting the trial, and S and F as denoting
the properties of success and failure, respectively.

Let T0 be generated by the sentence

φ : ∀x((Sx ∨ Fx) ∧ ¬(Sx ∧ Fx))

Let C = {P ∈ IT0
| P (S(t) | T0) exists and P satisfies (R10)}.
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Proposition 7.2.3. The condition C is consistent and PC(S(t) | T0) = 1/2.

Proof. Let A = {0, 1} and define ω0 = (A,Lω0) by Sω0 = {1}, Fω0 = {0}, and
tω0 = 0. Define ω1 similarly, but with tω1 = 1. Let Ω = {ω0, ω1}, Σ = PΩ,
and define P = (Ω,Σ,P), where P{ω0} = P{ω1} = 1/2. Since P ⊨ T0, we may
define P = ThP ⇃[T0,Th P]∈ IT0 . Note that P (S(t) | T0) = 1/2.

We will show that P satisfies (R10). Suppose that P (φ | X) = p and
Xπ ∈ anteP . If π is the identity, then P (φ | X) = P (φπ | Xπ). If π is
not the identity, then π = (S F ). Define h : P → Pπ by ωi 7→ ωπi′ , where
i′ = 1 − i. Since P{ωi} = 1/2 and Pπ{ωπi′} = P{ωi′} = 1/2, the function h
induces a measure space isomorphism. If g : A → A is given by g(i) = i′, then
ωπi′ = ωi′ ◦ π−1 = g ◦ ωi, so that ωi ≃ ωπi′ . Therefore, ω ≃ hω, P-a.s., and h is a
model isomorphism. By Theorems 7.1.7 and 5.3.24, this gives P (φπ | Xπ) = p.
Altogether, this shows P satisfies the principle of indifference, and so P ∈ C.
Therefore, C is consistent. The proof that PC(S(t) | T0) = 1/2 follows as in the
proof of Proposition 7.2.2.

7.2.4 Success is good

In this example, we again consider a single trial that can result in either success
or failure. This time, however, we include the qualitative information that
success is “good.” This produces an asymmetry between success and failure.
We will see that, because of this asymmetry, we can no longer conclude that
the probability of success is 1/2.

Let L = {t, S, F,G}, where t is a constant symbol, and S, F , and G are unary
relation symbol. We think of t as denoting the trial, S and F as denoting the
properties of success and failure, and G as denoting the property of “goodness.”

Let T0 be generated by the sentences

φ1 : ∀x((Sx ∨ Fx) ∧ ¬(Sx ∧ Fx))
φ2 : ∀x(Sx→ Gx)

Let C = {P ∈ IT0 | P (S(t) | T0) exists and P satisfies (R10)}.

Proposition 7.2.4. The condition C is consistent and C ⊬ (T0, S(t), 1/2).

Proof. Let A = {0, 1} and define ω0 = (A,Lω0) by Sω0 = Gω0 = {1},
Fω0 = {0}, and tω0 = 0. Define ω1 similarly, but with tω1 = 1. Let Ω = {ω0, ω1}
and Σ = PΩ. Fix p ∈ (0, 1) and define P = (Ω,Σ,P), where P{ω0} = 1 − p
and P{ω1} = p. Since P ⊨ T0, we may define P = ThP ⇃[T0,Th P]∈ IT0

. Note
that P (S(t) | T0) = p.

We will show that P satisfies (R10). Suppose that P (φ | X) = p and
Xπ ∈ anteP . We may assume that π is not the identity permutation. Since
there is only one constant symbol, we have tπ = t. First assume Gπ = F . Let
ζ = ∀x(Sx → Gx). Then ζπ = ∀x(Sπx → Fx). By Lemma 7.1.10, we must
have ζπΩ ̸= ∅, and so Sπ ̸= S. Therefore, Sπ = G and Fπ = S. But this implies
ζ−π = ∀x(Fx → Sx), so that P ζ−πΩ = 0, contradicting Lemma 7.1.10. Hence,
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Gπ ̸= F . By reversing the roles of π and π−1 in this argument, we may also
conclude that Fπ ̸= G.

Now assume Sπ = F , so that Fπ = S and Gπ = G. Then ζπ = ∀x(Fx →
Gx), which gives P ζπΩ = 0, again contradicting Lemma 7.1.10. Therefore,
Sπ ̸= F . It now follows that Fπ = F , Sπ = G, and Gπ = S. But this implies
ωπi = ωi, so that Pπ = P. Thus, by Theorem 7.1.7, we have P (φπ | Xπ) = p,
and P satisfies the principle of indifference. This shows that P ∈ C, so that C
is consistent. Since p was arbitrary, we have C ⊬ (T0, S(t), 1/2).

7.2.5 Goodness is independent

In Section 7.2.3, we considered a single trial, which could result in success
or failure. There, we used the principle of indifference to conclude that the
probability of success was 1/2. In Section 7.2.4, we added the assumption that
success is good. By doing so, we were no longer able to use the principle of
indifference.

This may feel counterintuitive. To assert that success is good seems quite
natural, and we might not expect this to invalidate our use of the principle of
indifference. One reason we might feel this way is that we may have an ingrained
sense that the property of goodness should not affect success or failure. But if
this is a fact we wish to assume, then we must make it explicit. In this example,
we will do exactly that. We will assume that whether or not t is a success is
independent of the fact that success is a good outcome.

Let L = {t, S, F,G} as in Section 7.2.4. Let T0 be generated by the sentence

φ : ∀x((Sx ∨ Fx) ∧ ¬(Sx ∧ Fx))

Let C be the set of P ∈ IT0
such that

(i) P (S(t) | T0) exists,

(ii) P satisfies the principle of indifference, and

(iii) S(t) and ∀x(Sx→ Gx) are independent given T0.

Proposition 7.2.5. The condition C is consistent and

PC(S(t) | T0,∀x(Sx→ Gx)) = 1/2. (7.2.1)

Proof. Let A = {0, 1} and define ω0 = (A,Lω0) by Sω0 = {1}, Fω0 = {0},
Gω0 = A, and tω0 = 0. Define ω1 similarly, but with tω1 = 1. Let Ω = {ω0, ω1},
Σ = PΩ, and define P = (Ω,Σ,P), where P{ω0} = P{ω1} = 1/2. Since P ⊨
T0, we may define P = ThP ⇃[T0,Th P]∈ IT0

. Note that P (S(t) | T0) = 1/2, so
that (i) holds. Also, P (∀x(Sx→ Gx) | T0) = 1, so that (iii) holds.

We will show that P satisfies (R10). Suppose that P (φ | X) = p and
Xπ ∈ anteP . We may assume that π is not the identity permutation. Since
there is only one constant symbol, we have tπ = t. First assume Sπ = G. Let
ζ = ∀x¬(Sx ∧ Fx). Then ζπ = ∀x¬(Gx ∧ Fπx). Since, for all ω ∈ Ω, we have
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Gω = A and (Fπ)ω ̸= ∅, this gives ζπΩ = ∅, contradicting Lemma 7.1.10. Hence,
Sπ ̸= G. Similarly, Fπ ̸= G. We must therefore have π = (S F ).

Define h : P → Pπ by ωi 7→ ωπi′ , where i
′ = 1 − i. Since P{ωi} = 1/2 and

Pπ{ωπi′} = P{ωi′} = 1/2, the function h induces a measure space isomorphism.
If g : A→ A is given by g(i) = i′, then ωπi′ = ωi′ ◦π−1 = g ◦ωi, so that ωi ≃ ωπi′ .
Therefore, ω ≃ hω, P-a.s., and h is a model isomorphism. By Theorems 7.1.7
and 5.3.24, this gives P (φπ | Xπ) = p. Altogether, this shows P satisfies the
principle of indifference, and so P ∈ C. Therefore, C is consistent.

Now let P ∈ C be arbitrary. Let π = (S F ). Then Tπ0 = T0, so that
P (S(t) | T0) = P (F (t) | T0), which implies P (S(t) | T0) = 1/2. Since P was
arbitrary, we have PC(S(t) | T0) = 1/2. Therefore, (iii) and the definition of
independence give (7.2.1).

7.2.6 Lowering the root

We will take one last look at the example of the single trial. As before, let
L = {t, S, F,G} as in Section 7.2.4. Let T0 be generated by the sentence

φ : ∀x((Sx ∨ Fx) ∧ ¬(Sx ∧ Fx))

Let C be the set of P ∈ IT0
such that

(i) P (S(t) | T0) exists,

(ii) P satisfies the principle of indifference, and

(iii) P (∀x(Sx→ Gx) | T0) = 1.

Recall that in the approach of Section 7.2.4, we could not use the principle of
indifference to determine the probability of success. The only difference between
that approach and the approach in this section is that here, we have moved the
sentence, ∀x(Sx→ Gx), out of the root and into TC . As we discussed in Section
4.2.6, this means we are making a semantically stronger assumption about the
sentence, ∀x(Sx → Gx). As we will see, this stronger assumption is enough to
allow us to use the principle of indifference.

Proposition 7.2.6. The condition C is consistent and PC(S(t) | T0) = 1/2.

Proof. If P is the inductive condition constructed in the first part of the proof
of Proposition 7.2.5, then P ∈ C. Hence, C is consistent. Let P ∈ C be arbitrary,
and let π = (S F ). Then Tπ0 = T0, so that P (S(t) | T0) = P (F (t) | T0), which
implies P (S(t) | T0) = 1/2. Since P was arbitrary, we have PC(S(t) | T0) =
1/2.

7.3 Examples with multiple objects

In this section, we give more elementary examples involving the principle of
indifference. Here, we will consider examples involving multiple objects.
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7.3.1 Three balls, two colors

Imagine an urn containing three balls, each of which is black or white. The urn
contains at least one white ball and at least one black ball. We will use the
principle of indifference to show that every possible color combination has the
same probability. The fact that there is at least one ball of each color is critical
to this example. As we will see in Section 7.3.2, removing this assumption
severely limits the inductive inferences that we can make.

Let L = {b1, b2, b3, C0, C1}, where the bk are constant symbols denoting the
balls, and C0 and C1 are unary predicate symbols denoting the colors black and
white, respectively. Let T0 be generated by the sentences

ζ1 : b1 ̸= b2 ∧ b1 ̸= b3 ∧ b2 ̸= b3

ζ2 : ∀x((C0x ∨ C1x) ∧ ¬(C0x ∧ C1x))

ζ3 : C0b1 ∨ C0b2 ∨ C0b3

ζ4 : C1b1 ∨ C1b2 ∨ C1b3

As in Example 4.3.8, let dk(n) denote the k-th binary digit of n, counting digits
from the right. For n ∈ {0, . . . , 7}, let

φn = Cd1(n)b1 ∧ Cd2(n)b2 ∧ Cd3(n)b3.

For example, 6 has the binary representation 110. Reading the digits right to
left, we have 0, 1, 1. Hence, the sentence φ6 asserts that ball b1 is black, ball b2
is white, and ball b3 is white. Let C be the set of P ∈ IT0

such that

(i) P (φn | T0) exists for n ∈ {0, . . . , 7}, and

(ii) P satisfies the principle of indifference.

Proposition 7.3.1. The condition C is consistent and PC(φn | T0) = 1/6 for
n ∈ {1, . . . , 6}.

Proof. Let A = {1, 2, 3}. For n ∈ {0, . . . , 7}, define ωn = (A,Lωn) by bωn

k = k
and Cωn

j = {k | dk(n) = j}. Note that Cωn
0 = (Cωn

1 )c. Also note that ωn |≡ φm
if and only if m = n. Let Ω = {ω0, . . . , ω7}, Σ = PΩ, and define P = (Ω,Σ,P),
where P{ω0} = P{ω7} = 0, and P{ωn} = 1/6 for 1 ⩽ n ⩽ 6. Since P ⊨ T0, we
may define P = ThP ⇃[T0,Th P] ∈ IT0 . Then P (φ0 | T0) = P (φ7 | T0) = 0, and
P (φn | T0) = 1/6 for 1 ⩽ n ⩽ 6.

We will show that P satisfies (R10). Suppose that P (φ | X) = p and
Xπ ∈ anteP . First assume Cπ0 = C0. Let g : A → A be the bijection
that satisfies b−πk = bgk. Let σ be the permutation of {0, . . . , 7} such that
dk(σn) = dgk(n). Define h : P → Pπ by ωn 7→ ωπσn. Since σ0 = 0 and
σ7 = 7, we have Pπ{ωπσn} = P{ωσn} = P{ωn}. Hence, h induces a measure
space isomorphism. Also, ωπσn = ωσn ◦π−1 = g ◦ωn, so that ωπσn ≃ ωn, and h is
a model isomorphism. By Theorems 7.1.7 and 5.3.24, this gives P (φπ | Xπ) = p.

Now assume Cπ0 = C1. Define h : P → Pπ by ω7−n 7→ ωπσn. As above, h
induces a measure space isomorphism and ωπσn = ωσn ◦ π−1 = g ◦ ω7−n, so that
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again, P (φπ | Xπ) = p. This shows that P satisfies (R10), and therefore, C is
consistent.

Now let P ∈ C be arbitrary. Let π = (b1 b2). Then T0 is invariant under
π and φπ1 = φ2, so by the principle of indifference, P (φ1 | T0) = P (φ2 | T0).
Similarly, using π = (b2 b3), we have P (φ2 | T0) = P (φ4 | T0). Now let
π = (C0 C1). Then Tπ0 = T0 and φπn = φ7−n. Thus, P (φ3 | T0) = P (φ4 | T0),
P (φ5 | T0) = P (φ2 | T0), and P (φ6 | T0) = P (φ1 | T0). It follows that for some
p ∈ [0, 1], we have P (φn | T0) = p for all n ∈ {1, . . . , 6}. But T0 ⊢ ¬(φ0∨φ7), so

P (φ0 | T0) = P (φ7 | T0) = 0. Therefore,
∑6
n=1 P (φn | T0) = 1, which implies

p = 1/6.

7.3.2 Two balls, two colors

Now imagine an urn containing two balls, each of which is black or white. There
are four possible color combinations. Unlike the example in Section 7.3.1, we
will not be able to use the principle of indifference to show that each combination
has probability 1/4. The most we can conclude is that the probability of two
whites is the same as the probability of two blacks.

Let L = {b1, b2, C0, C1}, where the bk are constant symbols denoting the
balls, and C0 and C1 are unary predicate symbols denoting the colors black and
white, respectively. Let T0 be generated by the sentences

ζ1 : b1 ̸= b2

ζ2 : ∀x((C0x ∨ C1x) ∧ ¬(C0x ∧ C1x))

As in Example 4.3.8, let dk(n) denote the k-th binary digit of n, counting digits
from the right. For n ∈ {0, 1, 2, 3}, let

φn = Cd1(n)b1 ∧ Cd2(n)b2.

For example, 2 has the binary representation 10. Reading the digits right to
left, we have 0, 1. Hence, the sentence φ2 asserts that ball b1 is black, and ball
b2 is white. Let C be the set of P ∈ IT0

such that

(i) P (φn | T0) exists for n ∈ {0, 1, 2, 3}, and

(ii) P satisfies the principle of indifference.

Proposition 7.3.2. The condition C is consistent. Moreover, for any P ∈ C,
we have P (φ0 | T0) = P (φ3 | T0) and P (φ1 | T0) = P (φ2 | T0).

Proof. Let A = {1, 2}. For n ∈ {0, 1, 2, 3}, define ωn = (A,Lωn) by bωn

k = k and
Cωn
j = {k | dk(n) = j}. Note that Cωn

0 = (Cωn
1 )c. Also note that ωn |≡ φm if

and only if m = n. Let Ω = {ω0, . . . , ω7} and Σ = PΩ. Fix p ∈ (0, 1) and define
P = (Ω,Σ,P), where P{ω0} = P{ω3} = p/2, and P{ω1} = P{ω2} = (1 − p)/2.
Since P ⊨ T0, we may define P = ThP ⇃[T0,Th P] ∈ IT0

. Then P (φ0 | T0) =
P (φ3 | T0) = p/2, and P (φ1 | T0) = P (φ2 | T0) = (1 − p)/2. The proof that P
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satisfies (R10) follows as in the proof of Proposition 7.3.1. Hence, P ∈ C and C
is consistent.

Let P ∈ C be arbitrary. If π = (b1 b2), then T0 is invariant under π and
φπ1 = φ2. Hence, by the principle of indifference, P (φ1 | T0) = P (φ2 | T0).
Similarly, if π = (C0 C1), then T

π
0 = T0 and φ0 = φ3. Therefore, P (φ0 | T0) =

P (φ3 | T0).

Remark 7.3.3. The proof of Proposition 7.3.2 shows that C is indeterminate.
More specifically, for any p ∈ (0, 1), there exists P ∈ C such that P (φ0 | T0) =
P (φ3 | T0) = p/2, and P (φ1 | T0) = P (φ2 | T0) = (1 − p)/2. Therefore,
PC(φn | T0) does not exist for any n ∈ {0, 1, 2, 3}.

This example can be generalized to any finite number of black and white
balls. Suppose there are N balls and let ψm be the sentence which asserts
that exactly m of them are white. As above, the principle of indifference will
be unable to tell us the probabilities of ψm. The most it can say is that the
probability of ψm is the same as the probability of ψN−m.

7.3.3 Random numbers

In this example, we consider a constant that could equal either 0 or 1. We will
not include everything we know about the numbers 0 and 1, but we will include
the fact that 0 < 1. This creates an informational asymmetry, like the one
we encountered in Section 7.2.4. As such, the principle of indifference will not
provide us with the probability that this constant is equal to 0.

Let L = {c, 0, 1, <}, where c, 0, and 1 are constant symbols, and < is a
binary relation symbols. Let T0 be generated by the sentences

φ1 : 0 ̸= 1

φ2 : 0 < 1

φ3 : c = 0 ∨ c = 1

Let C = {P ∈ IT0
| P (c = 0 | T0) exists and P satisfies (R10)}.

Proposition 7.3.4. The condition C is consistent and C ⊬ (T0, c = 0, 1/2).

Proof. Let A = {0, 1}. Define ω0 = (A,Lω0) by 0ω0 = 0, 1ω0 = 1, <ω0 =
{(0, 1)}, and cω0 = 0. Define ω1 similarly, but with cω1 = 1. Let Ω = {ω0, ω1}
and Σ = PΩ. Let p ∈ (0, 1) and define P = (Ω,Σ,P) so that P{ω0} = p and
P{ω1} = 1 − p. Since P ⊨ T0, we may define P = ThP ⇃[T0,Th P]. Then
P ∈ IT0

and P (c = 0 | T0) = p.
We will show that P satisfies (R10). Suppose that P (φ | X) = p and

Xπ ∈ anteP . Note that <π = < for all permutations π. First assume that
0π = 1. Then (0 < 1)π = (1 < 1π). But ω |̸≡ (1 < s) for all ω ∈ Ω and s ∈ L, so
this contradicts Lemma 7.1.10. Hence, 0π ̸= 1. By reversing the roles of π and
π−1 in this argument, we may also conclude that 1π ̸= 0.

It follows that if cπ = c, then π is the identity. We may therefore assume
that cπ = 0 or cπ = 1. Suppose that cπ = 0, so that π = (c 0). We will apply
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Proposition 7.1.11 with ζ = (0 < 1). In this case, B = B′ = ζπΩ = {ω0}. Hence,
the function h : PB → Pπ

B′ that maps ωi to ω
π
i it induces a measure space

isomorphism. Moreover, ω0 = ωπ0 , so h is a model isomorphism. Proposition
7.1.11 therefore implies P (φπ | Xπ) = p. A similar argument gives the same
result in the case that cπ = 1. This shows that P satisfies (R10), so that C is
consistent. Since p was arbitrary, we have C ⊬ (T0, c = 0, 1/2).

7.3.4 Random numbers and definitions

In this example, we again consider a constant c that could equal 0 or 1. This
time, however, we will expand our language by defining d = 1−c. After making
this seemingly harmless addition, we will be able to infer that c equals 0 with
probability 1/2.

This result may seem counterintuitive. It feels as if introducing a defined
constant should not affect the probabilities of a pre-existing constant. But this
feeling is rooted in the intuition that c is the original constant, and d is defined
in terms of c. However, in the expanded language, it is impossible to tell which
of c and d is the original constant. They are simply two constants related by
d = 1− c and c = 1− d. As such, when we refer to c in the expanded language,
we are equally ignorant about whether c is the original random number, or its
inversion. Therefore, the probability that c equals 0 in the expanded language
should be the average of its probabilities in the original language, which is
1/2. We will return to this idea at the end of the section, after formalizing the
example.

Let L and T0 be as in Section 7.3.3. That is, L = {c, 0, 1, <} and T0 is
generated by

φ1 : 0 ̸= 1

φ2 : 0 < 1

φ3 : c = 0 ∨ c = 1

Let d be a constant symbol and define

δ(y) : c = 0 ∧ y = 1 ∨ c = 1 ∧ y = 0

Then T0 ⊢ ξ, where ξ = ∃!y δ(y), so that θ = (y = d↔ δ(y)) is legitimate in T0.
Let L′ = {c, d, 0, 1, <} and define T ′

0 = T0 + θ ⊆ (L′)0, so that T ′
0 is a

definitorial extension as in Definition 6.1.6. Let

C = {P ′ ∈ IT ′
0
| P ′(c = 0 | T ′

0) exists and P
′ satisfies (R10)}.

Proposition 7.3.5. The condition C is consistent and PC(c = 0 | T ′
0) = 1/2.

Proof. Let A = {0, 1}. For i ∈ {0, 1}, define ωi = (A,Lωi) by 0ωi = 0,
1ωi = 1, <ωi = {(0, 1)}, and cωi = i. Let Ω = {ω0, ω1}, Σ = PΩ, and define
P = (Ω,Σ,P) so that P{ω0} = P{ω1} = 1/2. Note that P is the L-model
defined in the proof of Proposition 7.3.4, where p = 1/2. Also note that ω |≡ ξ
for all ω ∈ Ω. Since P ⊨ T0, we may define P = ThP ⇃[T0,Th P].
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Let ω′
i = (A, (L′)ω

′
i) be given by sω

′
i = sωi for s ∈ L and dω

′
i = i′, where

i′ = 1 − i. Let Ω′ = {ω′
0, ω

′
1}, Γ = PΣ′, and define P ′ = (Ω′,Γ,Q) so that

Q{ω′
0} = Q{ω′

1} = 1/2. Note that P ′ is the L′-model defined above Lemma
6.1.2. By Corollary 6.1.11, we have P ′ = ThP ′ ⇃[T ′

0,Th P′], where P
′ is the

definitorial extension of P given in Theorem 6.1.10. Note that P ′ ∈ IT ′
0
and

P ′(c = 0 | T ′
0) = 1/2.

We will show that P ′ satisfies (R10). Suppose that P ′(φ | X) = p and
Xπ ∈ anteP ′. As in the proof of Proposition 7.3.4, we have 0π ̸= 1 and
1π ̸= 0. First assume π = (c 0). As in the proof of Proposition 7.3.4, we can
use Proposition 7.1.11 with ζ = (0 < 1) to conclude that P ′(φπ | Xπ) = p. A
similar argument covers the cases where π is (c 1), (d 0), or (d 1). If π = (c d),
then (ω′

i)
π = ω′

i′ , so that (P ′)π ≃ P ′, which also gives P ′(φπ | Xπ) = p. This
covers the case that π is a transposition.

Now suppose π is a 3-cycle. Assume π = (0 c d). Then B = ζπΩ = {ω′
0}

and B′ = ζ−πΩ = {ω′
1}. Since (ω′

1)
π = ω′

0, it follows from Proposition 7.1.11
that P ′(φπ | Xπ) = p. A similar argument covers the cases where π is (0 d c),
(1 c d), or (1 d c).

Finally, suppose π affects every constant symbol. If π = (c 0)(d 1), then
(ω′
i)
π = ω′

i, so that (P ′)π = P, which gives P ′(φπ | Xπ) = p. A similar
argument covers π = (c 1)(d 0). The remaining possibility is that π is a 4-cycle.
Assume π = (0 c 1 d). As above, we have B = {ω′

0} and B′ = {ω′
1}, so that

Proposition 7.1.11 gives P ′(φπ | Xπ) = p. A similar argument covers the case
π = (0 d 1 c). Altogether, this shows that P ′ satisfies (R10), so that C is
consistent.

Now let P ′ ∈ C be arbitrary. Let π = (c d). Then T ′
0 is invariant under π.

Hence, P ′(c = 0 | T ′
0) = P ′(d = 0 | T ′

0). But d = 0 ≡T ′
0
c = 1. Therefore,

P ′(c = 0 | T ′
0) = P ′(c = 1 | T ′

0), which gives P ′(c = 0 | T ′
0) = 1/2.

This example can be generalized to a constant c that could equal 0, 1, or 2.
That is, let L = {c, 0, 1, 2} and let T0 be generated by

φ1 : 0 ̸= 1 ∧ 0 ̸= 2 ∧ 1 ̸= 2

φ2 : 0 < 1 ∧ 0 < 2 ∧ 1 < 2

φ3 : c = 0 ∨ c = 1 ∨ c = 2

As in Section 7.3.3, we cannot use the principle of indifference to determine
P (c = n | T0). But we can create a definitorial expansion T ′

0 using

θd = (y = d↔ c = 0 ∧ y = 1 ∨ c = 1 ∧ y = 0 ∨ c = 2 ∧ y = 2).

Informally, d = f(c), where f interchanges 0 and 1. As above, we could then use
the principle of indifference to conclude that P ′(c = 0 | T ′

0) = P ′(c = 1 | T ′
0).

It is tempting to think we can iterate this process. That is, suppose we
create a definitorial expansion T ′′

0 of T ′
0 using

θe = (y = e↔ c = 0 ∧ y = 2 ∨ c = 1 ∧ y = 1 ∨ c = 2 ∧ y = 0).
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Informally, e = g(c), where g interchanges 0 and 2. We might now expect that
the principle of indifference gives P ′′(c = n | T ′′

0 ) = 1/3. But it does not. In
fact, even our previous inference is no longer valid. That is, we can no longer
even conclude that P ′′(c = 0 | T ′′

0 ) = P ′′(c = 1 | T ′′
0 ). This is because T ′′

0 is
no longer invariant under π = (c d). In particular, T ′′

0 ⊢ d = 0 → e = 1, but
T ′′
0 ⊬ c = 0 → e = 1.

Remark 7.3.6. This example shows that definitorial extensions do not preserve
the principle of indifference. It is possible for P to satisfy (R10), but for its
definitorial extension P ′ to not satisfy it. The converse is also possible. In other
words, Theorem 6.1.10 is another theorem that would fail if we included (R10)
in the definition of an inductive theory.

The juxtaposition of Propositions 7.3.4 and 7.3.5 may seem counterintuitive.
On the one hand, in L, we cannot infer the probability that c = 0. On the other
hand, by passing to L′, whose only difference is that it includes the defined
constant d, we are suddenly able to infer that c = 0 with probability 1/2. It
seems that we must have added some new information by passing to L′. But
clearly we did not. It is the nature of a definitorial extension that it adds no new
logical information. The explanation is not that we have added new information.
Rather, we have altered the very meaning of c, in the way described in Section
6.1.6.

It is tempting to think that a constant symbol such as c stands for some
object. From that point of view, it must stand for the same object in both
L and L′. And in that case, it makes no sense to say that we altered the
meaning of c. But syntactically, c does not stand for anything. Standing for an
object is a semantic notion. What c stands for is relative to the model we are
using, and even then, it can vary from structure to structure within that model.
Syntactically speaking, c is not denoting an object. Rather, it is a primitive
symbol that gains its meaning from the deductive and inductive facts that use
it.

In L′, we have changed those facts from T0 to T ′
0. The meaning of c in T ′

0 is
not necessarily the same as in T0. To see this more clearly, simply rename c and
d in L′ to c′ and d′. It is then no longer surprising that P ′(c′ = 0 | T ′

0) = 1/2.
After all, in T ′

0, it is impossible to tell which of c′ and d′ is the original constant
from L, and which of them is defined in terms of that original constant. We are
indifferent about those two possibilities. Therefore, P ′(c′ = 0 | T ′

0) should be
the average of P (c = 0 | T0) and P (c = 1 | T0), which is 1/2. By analogy with
measure-theoretic probability, it is as if we started with a {0, 1}-valued random
variable X, defined Y = 1−X, and then let (X ′, Y ′) be a random permutation
of (X,Y ). In that case, if (X ′, Y ′) = (X,Y ) and (X ′, Y ′) = (Y,X) are equally
likely, then P (X ′ = 0) = 1/2, regardless of the distribution of X.
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7.4 Indifference and exchangeability

For the remainder of this chapter, we will look at how the principle of indifference
relates to real inductive theories. For simplicity, and to match the intuition of
measure-theoretic probability models, we will take the approach presented in
Theorem 6.4.6. Namely, we will operate under the standing assumption that
ZFC is strictly satisfiable. This assumption will be in effect for the remainder
of this chapter.

In this short section, we show that, in the context of a measure-
theoretic probability model, exchangeability is a special case of the principle
of indifference. This result is given below in Theorem 7.4.2. In order to prove
it, we first establish Lemma 7.4.1, which we be useful several times throughout
the remainder of this chapter.

7.4.1 Permutations of real inductive theories

Let P ⊆ LIS be a real inductive theory in ZFC. Let π be an L-permutation such
that ∈π = ∈. Define π′ : L→ L by

sπ
′
=


s if s ∈ LZFC,

sπ if s /∈ LZFC and sπ /∈ LZFC, and

(sπ)π if s /∈ LZFC and sπ ∈ LZFC.

Lemma 7.4.1. Suppose X,Xπ ∈ anteP . Then the function π′ is an L-
permutation that fixes LZFC. Moreover, if Xπ′ ∈ anteP and π′ satisfies (R10),
then π satisfies (R10).

Proof. Assume X,Xπ ∈ anteP . By construction, the function π′ fixes LZFC

and preserves the type and arity of extralogical symbols. The fact that π′ is a
bijection is a consequence of the following:

if s ∈ LZFC and sπ ̸= s, then s−π /∈ LZFC and sπ /∈ LZFC. (7.4.1)

To see this, let s ∈ LZFC with sπ ̸= s. Since ∈π = ∈, we have s ̸= ∈. Hence, s is
an explicitly defined constant symbol. Let δ(y) be its defining formula, and let
δrd(y) be its reduction to L{∈}, so that the only extralogical symbol in δrd(y) is
∈. Let ζ = ∀y(y = s ↔ δrd(y)), so that ZFC ⊢ ζ. By Lemma 7.1.10, if P ⊨ P ,
then ψΩ ⊆ ζ−πΩ a.s., which implies P ⊨ (X, ζ−π, 1). Hence, P (ζ−π | X) = 1.
It follows that P (ζ ∧ ζ−π | X) = 1. But ζ−π = ∀y(y = s−π ↔ δrd(y)), so that
ZFC ⊢ ζ ∧ ζ−π ↔ s = s−π. Therefore P (s = s−π | X) = 1. A similar argument
shows that P (ζπ | Xπ) = 1 and P (s = sπ | Xπ) = 1. Finally, note that if
s, s′ ∈ LZFC \ {∈}, then ZFC ⊢ s ̸= s′. Hence, s−π /∈ LZFC and sπ /∈ LZFC.

Now assume Xπ′ ∈ anteP and π′ satisfies (R10). Using the facts that
∈π = ∈, every s ∈ LZFC \ {∈} is a constant symbol, and P (s = sπ | Xπ) = 1 for
all s ∈ LZFC \ {∈}, it follows by term induction and formula induction that

P (θπ
′
↔ θπ | Xπ) = 1 for all θ ∈ L0. (7.4.2)
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A similar argument shows that P (θ−π
′ ↔ θ−π | X) = 1 for all θ ∈ L0. Applying

this to θπ gives P ((θπ)−π
′ ↔ θ | X) = 1. But π′ satisfies (R10), so this gives

P (θπ ↔ θπ
′
| Xπ′

) = 1 for all θ ∈ L0. (7.4.3)

To show that π satisfies (R10), suppose that P (φ | X) = p. Since π′ satisfies
(R10), we have P (φπ

′ | Xπ′
) = p. Also, (7.4.3) gives P (φπ ↔ φπ

′ | Xπ′
) = 1.

Hence, Proposition 3.2.14 implies P (φπ | Xπ′
) = p.

Let θ ∈ Xπ. Then (θ−π)π
′ ∈ Xπ′

, so that P ((θ−π)π
′ | Xπ′

) = 1. As
it was for φ above, this gives P ((θ−π)π | Xπ′

) = 1. But (θ−π)π = θ.
Hence, P (θ | Xπ′

) = 1 for all θ ∈ Xπ. By the rule of deductive extension,
P ( · | Xπ′

, Xπ) = P ( · | Xπ′
). In particular, P (φπ | Xπ′

, Xπ) = p. On the
other hand, the analogous argument using (7.4.2) shows that P (θ | Xπ) = 1
for all θ ∈ Xπ′

. The rule of deductive extension therefore also shows that
P ( · | Xπ′

, Xπ) = P ( · | Xπ). Hence, P (φπ | Xπ) = p.

7.4.2 Exchangeability

Let ⟨Xi | i ∈ I⟩ be a collection of real-valued random variables defined on a
probability space, (S,Γ, ν). We say that ⟨Xi | i ∈ I⟩ are exchangeable if the
distribution of (Xi(1), . . . , Xi(n)) is unchanged by a finite permutation of I. More
specifically, let σ : I → I be a bijection with σ(i) = i for all but finitely many
i. Then

ν
⋂n
k=1{Xi(k) ∈ Vk} = ν

⋂n
k=1{Xσ(i(k)) ∈ Vk}, (7.4.4)

for all choices of n ∈ N, i(k) ∈ I, and Vk ∈ B(R).
Let ⟨Xi | i ∈ I⟩ be real-valued random variables on (S,Γ, ν). Without loss of

generality, we may assume S = RI , Γ =
⊗

i∈I B(R), and Xi(x) = xi. Recall our
standing assumption that ZFC is strictly satisfiable. Let P = (Ω,Σ,P) be the
model constructed in the proof of Theorem 6.4.6, and let P = ThP ⇃[ZFC,Th P].

Theorem 7.4.2. With notation as above, the inductive theory P satisfies the
principle of indifference if and only if ⟨Xi | i ∈ I⟩ are exchangeable.

Proof. Assume P satisfies the principle of indifference. Let σ : I → I be a
bijection with σ(i) = i for all but finitely many i. Let π be the signature
permutation that fixes everything in LZFC, and maps Xi to Xσ(i). Then ψ

π = ψ

for all ψ ∈ LZFC. In particular, ZFCπ = ZFC. Let φ =
∧n
k=1Xi(k) ∈ Vk. Then

φπ =
∧n
k=1Xσ(i(k)) ∈ Vk. By the principle of indifference,

P (
∧n
k=1Xi(k) ∈ Vk | ZFC) = P (

∧n
k=1Xσ(i(k)) ∈ Vk | ZFC).

Therefore, by (6.4.2), we have (7.4.4).
Now assume X is exchangeable. Let π be an L-permutation and suppose

P (φ | Y ) = p. Since ∈ is the only binary operation symbol in L, we have
∈π = ∈. By Lemma 7.4.1, it suffices to assume π fixes LZFC, and to show that
both Y π ∈ anteP and P (φπ | Y π) = p.
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Since π fixes LZFC, it only affects C = {Xi | i ∈ I}. Let σ : I → I
be the bijection defined by Xπ

i = Xσ(i) and define the bijection g : S → S

by (gx)σ(i) = xi. Note that both g and g−1 are measurable. We claim that
ν = ν ◦ g−1. To verify this, it suffices to check that ν B = ν g−1B, when B is a
cylinder set of the form

B =
⋂n
k=1{x ∈ S | xσ(i(k)) ∈ Vk}.

In this case, we have

g−1B =
⋂n
k=1{x ∈ S | (gx)σ(i(k)) ∈ Vk}

=
⋂n
k=1{x ∈ S | xi(k) ∈ Vk},

so that ν B = ν g−1B follows from (7.4.4). Hence, ν = ν ◦ g−1, so that g is a
pointwise isomorphism from (S,Γ, ν) to itself.

Let h : S → Ω be the function in the proof of Theorem 6.4.6 that maps
x ∈ S to ωx ∈ Ω. Let Pπ = (Ωπ,Σπ,Q) and let hπ : Ω → Ωπ be the function
that maps ω to ωπ. Then Pπ is the measure space image of (S,Γ, ν) under
hπ ◦ h. But hπ ◦ h = h ◦ g and g is a pointwise isomorphism, so Pπ is the
measure space image of (S,Γ, ν) under h. By the definition of P, this means
Pπ = P.

Now, since P (φ | Y ) = p exists, we have P ⊨ (Y, φ, p). By Theorem
7.1.7 and P = Pπ, it follows that P ⊨ (Y π, φπ, p). Therefore, Y π ∈ anteP
P (φπ | Y π) = p.

7.5 Examples on an interval

In this section, we present examples of the principle of indifference that involve
an interval on the real line.

7.5.1 The interval [0, 1]

In our first example, we have a real number c, about which we know only that
c ∈ [0, 1]. We then ask what the principle of indifference has to say about the
distribution of c. At first glance, we might expect the principle to assign c a
uniform distribution, based on the fact that we are somehow “equally ignorant”
about where c lies in the interval [0, 1]. A little further thought, however, quickly
reveals that this cannot be the case. The principle of indifference requires an
informational symmetry, encoded in the permutation π. In the coin flip of
Section 7.2.2, for example, we obtained the probability 1/2 by interchanging
the symbols for heads and tails. We could do this because our background
information, T0, was symmetric with respect to this interchange.

In this case, however, our background information, T0, will contain ZFC,
and the individual numbers in [0, 1] are most certainly not interchangeable with
respect to ZFC. For instance, in ZFC, we know that 0 is the additive identity and
1 is the multiplicative identity. That sentence is no longer true if we interchange
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0 and 1. To say that c = 0 is a qualitatively different assertion than to say that
c = 1.

In this way, the present example is less like the coin flip of Section 7.2.2
and more like the random number (either 0 or 1) in Section 7.3.3. In that
example, the principle of indifference did not narrow down the probabilities
at all. Every possible value for the probability of 0 was consistent with the
principle of indifference. Similarly, here, every possible distribution on c will be
consistent with it.

To state this result, let LZFC be the logical signature of ZFC, given by
(6.4.1). Let c be a constant symbol not in LZFC, let L = LZFC ∪ {c}, and
define T0 = ZFC + c ∈ [0, 1]. Let C be the inductive condition consisting of all

inductive theories P ⊆ LIS with root T0 such that

(i) c is Borel given T0, and

(ii) P satisfies the principle of indifference.

Let ν be an arbitrary Borel probability measure on R. Fix an LZFC-structure
ω0 such that ω0 |≡ ZFC. For each r ∈ R, define ω = ωr to be the L-expansion
of ω0 given by cω = rω0 . Let Ω = {ωr | r ∈ R} and let h : R → Ω denote the
map r 7→ ωr. Let Pν = (Ω,Σ,P) be the measure space image of (R,B(R), ν)
under the function h.

If ν[0, 1] = 1, then Pν ⊨ T0, so may define the complete inductive theory
Pν = ThPν ⇃[T0,Th Pν ]. By Theorem 6.4.6, we have P (c ∈ V | T0) = ν V for
all V ∈ B(R). In particular, c is Borel given T0 under Pν .

Proposition 7.5.1. For any such ν, we have Pν ∈ C.

Proof. Suppose Pν(φ | X) exists and let π be an L-permutation. As in the
proof of Theorem 7.4.2, we may assume the permutation π fixes all of LZFC.
Since there is only one symbol in L \ LZFC, the permutation π is the identity.
Therefore, it is trivially the case that Pν(φ

π | Xπ) = Pν(φ | X).

7.5.2 A point on a rod

Introduction

In this example, we consider a rigid rod of some unspecified length, and we let c
be a point that lies somewhere along the length of the rod. We then ask what,
if anything, the principle of indifference has to say about the distribution of the
point c.

A common approach to a problem like this would be to replace the rod with
the interval [0, 1]. If we do that, then we have our answer, according to the
preceding example: the principle of indifference says nothing. But we should
ask ourselves why we feel justified in replacing the rod with [0, 1]. When we
do so, we are introducing qualitative differences between points on the rod that
were not there originally. In other words, we are making assumptions that are
not indicated by the statement of the problem.
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Instead of replacing the rod with [0, 1], we should represent it by [0, 1]. For
instance, we could replace the rod with a smooth manifold with boundary, and
give it a Riemannian metric that indicates it has no curvature. If we did that,
then we would see informational symmetries that are not there when we simply
replace the rod with [0, 1].

Taking this approach would require us to formulate, in ZFC, a number of
new and complicated definitions. While this is certainly doable, we will avoid
these complications by simply replacing our rod with a subset M of the real
line, and assuming that M can be parameterized by some affine linear function
on [0, 1]. We then let c be an element of M .

To talk about the distribution of c, we need to have names for subsets of M .
For this, we will let c0 and c1 be the endpoints of M , arbitrarily labeled, and
name the Borel subsets of M relative to c0. That is, if B is a Borel subset of
[0, 1], then B∗ will be the image of B when [0, 1] is mapped to M in a way that
sends 0 to c0 and 1 to c1.

Notation in ZFC

To make this precise, we first establish some new shorthand in LZFC, the
language of ZFC. Let δ(u, v, y) ∈ LZFC be given by

δ(u, v, y) = (u ̸∈ R ∨ v ̸∈ R) ∧ y = ∅
∨ u ∈ R ∧ v ∈ R ∧ y ∈ RR ∧ (∀x ∈ R)(y(x) = u · x+ v).

Then ZFC ⊢ ∀uv∃!y δ(u, v, y). Hence, we could explicitly define the function
symbol F by y = Fuv ↔ δ(u, v, y), and then let fuv be shorthand for the term
Fuv. We do not, in fact, add the symbol F to our extralogical signature, but
instead regard both F and fuv as shorthand. We also adopt the shorthand,
dom(f) and f Img(z), given by

dom(f) = {x ∈ R | (∃y ∈ R)(x, y) ∈ f},
f Img(z) = {f(x) | x ∈ z ∩ dom(f)}.

Extralogical symbols and assumptions

To talk about our rod, we add new extralogical symbols to LZFC, the signature
of ZFC. Let E = {B ∈ B([0, 1]) | ∅ ⊂ B ⊂ [0, 1]} and let

C = {M, c, c0, c1} ∪ {B∗ | B ∈ E}

be a set of distinct constant symbols not in LZFC. Let L = LZFCC.
In the language L, we want to build T0, the assumptions we will be making

in our setup of the problem. Using φM (u, v) = (u ̸= 0 ∧M = f Img
uv ([0, 1])),

define the following sentences in L:

φ1 : (∃uv ∈ R)φM (u, v)

φ2 : c ∈M

φ3 : (∃uv ∈ R)(φM (u, v) ∧ c0 = v ∧ c1 = u+ v)
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Also, for any B ∈ E , define

φB(x) : (∃uv ∈ R)(φM (u, v) ∧ c0 = v ∧ x = f Img
uv (B))

Then let T0 = ZFC+ {φ1, φ2, φ3} ∪ {φB(B∗) | B ∈ E}.
The sentence φ1 says that M is a “rod.” That is, M can be parameterized

by the interval [0, 1]. Another way to think of this is thatM is a closed interval,
but its location, length, and orientation are left unspecified.

The sentence φ2 says that c is an element ofM . This is the only information
about c contained in T0.

The sentence φ3 says that c0 and c1 are the two distinct endpoints ofM . But
it does not specify which is the left endpoint and which is the right. Thinking
of M as a rod, it does not even make sense to ask which end is left and which
is right, for the orientation of the rod is arbitrary. It therefore makes sense that
we would not include such information in T0.

The sentence φB(B∗) defines the symbol B∗ so that B∗ is the representative
of B in M , relative to c0. For instance, if B = [0, 1/2], then B∗ is the subset of
M that extends from c0 to the midpoint of M .

Inductive hypotheses and conclusion

Now let C be the inductive condition consisting of all inductive theories P ⊆ LIS

with root T0 such that

(i) P (c ∈ B∗ | T0) exists for all B ∈ E , and

(ii) P satisfies the principle of indifference.

Theorem 7.5.2. The condition C is consistent. Moreover, if P ∈ C, then

P (c ∈ B∗ | T0) = P (c ∈ (ρB)∗ | T0), (7.5.1)

for all B ∈ B([0, 1]), where ρ : [0, 1] → [0, 1] is given by ρr = 1− r.

The proof of Theorem 7.5.2 will be given at the end of this subsection.
Proving consistency is what will require the most work. This consistency proof
will show, in fact, that (7.5.1) is the only restriction on the distribution of c. In
particular, the principle of indifference does not require the distribution to be
uniform. This is because the only points on the rod that are interchangeable
with respect to T0 are points that are equidistant from the ends. To say that
c lies twice as far from one endpoint than the other is a qualitatively different
statement than saying that c lies at the midpoint. These two locations are not
symmetric with respect to everything we know about the rod.

A model for the rod

Our proof of consistency will utilize an L-model, P = (Ω,Σ,P), which we
construct as follows. Let ν0 be a probability measure on (R,B(R)) such that
ν0[0, 1] = 1 and ν0 is continuous. That is, ν0{r} = 0 for all r ∈ R. Let
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S = R×R× {0, 1} and Γ = B(R)⊗B(R)⊗P{0, 1}, and define the probability
measure ν on (S,Γ) by

ν B ×B′ × {n} = (1/2)(ν B)(ν B′).

Let ω0 be an LZFC-structure such that ω0 |≡ ZFC. If x = (r, t, n) ∈ S, then let
ω = ωx be the L-expansion of ω0 defined by Mω = [t, t+ 1]

ω0 , cω = t+ rω0 ,

cω0 =

{
tω0 if n = 0,

t+ 1ω0 if n = 1,
cω1 =

{
t+ 1ω0 if n = 0,

tω0 if n = 1,

and

Bω∗ =

{
τtB

ω0 if n = 0,

τtρB
ω0 if n = 1,

where τt : R → R and ρ : R → R are defined by τtr = t+ r and ρr = 1− r.
Let Ω = {ωx | x ∈ S}, let h : S → Ω denote the function x 7→ ωx, and let

P be the measure space image of (S,Γ, ν) under h.

Lemma 7.5.3. With notation as above, we have P ⊨ T0.

Proof. Since each ω ∈ Ω is an extension of ω0, we have P ⊨ ZFC. Note that
ω |≡ φM [1ω0 , tω0 ] for all ω ∈ Ω. Hence, (φ1)Ω = Ω, so that P ⊨ φ1. Also,
h−1(φ2)Ω = [0, 1]× R× {0, 1}, so that P(φ2)Ω = ν0[0, 1] = 1. Thus, P ⊨ φ2.

Note that

ω0 |≡ (x = f Img
uv (B))[τtB

ω0 , 1ω0 , tω0 ], (7.5.2)

ω0 |≡ (x = f Img
uv (B))[τtρB

ω0 ,−1ω0 , t+ 1ω0 ], (7.5.3)

for all B ∈ E . Fix B ∈ E . Let x = (r, t, 0) and ω = ωx. Then ω |≡ φM [1ω0 , tω0 ],
ω |≡ c0 = t, and ω |≡ c1 = 1 + t. Also, by (7.5.2) and the definition of Bω∗ ,
we have ω |≡ (B∗ = f Img

uv (B))[1ω0 , tω0 ]. It therefore follows that ω |≡ φ3 and
ω |≡ φB(B∗). Similarly, if x = (r, t, 1) and ω = ωx, then ω |≡ φM [−1ω0 , t+ 1ω0 ],
ω |≡ c0 = t+ 1, and ω |≡ c1 = −1 + t+ 1. This time using (7.5.3) and the
definition of Bω∗ , we have ω |≡ (B∗ = f Img

uv (B))[−1ω0 , t+ 1ω0 ]. Therefore, in
this case also, we obtain ω |≡ φ3 and ω |≡ φB(B∗).

Narrowing down the permutations

By Lemma 7.5.3, we may define the inductive theory P = ThP ⇃[T0,Th P].
We will show that C is consistent by showing that P ∈ C. The difficult part
of proving this is showing that P satisfies the principle of indifference. In
preparation for this, we first prove two lemmas that narrow down the possible
permutations that need to be checked.

Lemma 7.5.4. If P (φ | X) = p and Xπ ∈ anteP , then sπ = s for all s ∈ LZFC

and π{c, c0, c1} = {c, c0, c1}.
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Proof. Assume Mπ ∈ LZFC. Let s = Mπ. By the argument following (7.4.1),
we have P (s =M | X) = 1. Note that

h−1(s =M)Ω = {(r, t, n) ∈ S | sω0 = [t, t+ 1]
ω0}.

Since t ̸= t′ implies ZFC ⊢ [t, t+ 1] ̸= [t′, t′ + 1], and since ω0 |≡ ZFC, there can

be at most one t ∈ R such that sω0 = [t, t+ 1]
ω0 . Hence, we may choose t0 ∈ R

such that h−1(s = M)Ω ⊆ R × {t0} × {0, 1}. Since ν0{t0} = 0, this implies
P(s = M)Ω = ν h−1(s = M)Ω = 0. Therefore, P (s = M | T0) = 0. By (3.2.5)
and deductive transitivity, P (s =M | X) = 0, a contradiction. This shows that
Mπ /∈ LZFC. Similar arguments show that sπ /∈ LZFC for all s ∈ C. That is,
if s /∈ LZFC, then sπ /∈ LZFC. By contraposition, if s ∈ LZFC, then s−π ∈ LZFC.
Hence, by (7.4.1), we have sπ = s for all s ∈ LZFC.

Now assume cπ /∈ {c, c0, c1}. By the above, cπ /∈ LZFC. Hence, either
cπ = M or cπ = B∗ for some B ∈ E . In either case, ω |≡ cπ ̸∈ R for all ω ∈ Ω.
Therefore, (cπ ∈ R)Ω = ∅. Now, note that T0 ⊢ c ∈ R. Let δ(y) ∈ L{∈} be
a reduced defining formula for R, so that ZFC∞ ⊢ ∀y(y = R ↔ δ(y)). Then
ζ ∈ T0, where ζ = ∃y(δ(y) ∧ c ∈ y). We then have ζπ = ∃y(δ(y) ∧ cπ ∈ y),
so that T0 ⊢ ζπ ↔ cπ ∈ R. It follows that ζπΩ = (cπ ∈ R)Ω = ∅, P-a.s. Thus,
P ζπΩ = 0, contradicting Lemma 7.1.10. This shows that cπ ∈ {c, c0, c1}. Similar
arguments show that cπ0 ∈ {c, c0, c1} and cπ1 ∈ {c, c0, c1}. We therefore have
π{c, c0, c1} = {c, c0, c1}.

Remark 7.5.5. The above proof relies on the fact that ν0 is a continuous
measure. Since we are only concerned with the relative positioning of M and
c, we are free to randomize the location of M . By choosing a ν0 which is
continuous, we are randomizing M so that it has probability 0 of sitting at
any fixed location. This allows us to narrow down the possible permutations
in the principle of indifference, and thereby simplify our proofs. Without this
construction, the results still hold, but the proofs would be more complicated.
Namely, we would need to consider the possible that M and B are interchanged
for some interval B.

In Section 7.2.2, we saw how to deal with this extra complication in the finite
setting. There, we needed to deal with the possibility that the symbol for the
result of the coin toss, c, was interchanged with one of the symbols for heads
and tails.

Lemma 7.5.6. Let P (φ | X) = p and Xπ ∈ anteP . Assume π is not the
identity. Then sπ = s for all s ∈ L, except for the following:

(a) cπ0 = c1,

(b) cπ1 = c0, and

(c) Bπ∗ = (ρB)∗ for all B ∈ E.

Proof. By Lemma 7.5.4, we have sπ = s for all s ∈ LZFC. We first show that
Mπ = M . Let s = Mπ and assume s ̸= M . By Lemma 7.5.4, we have s = B∗
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for some B ∈ E . Let ζ = B∗ ⊆ M ∧ B∗ ̸= M ∈ T0. By Lemma 7.5.4, we
must have M−π = B′

∗ for some B′ ∈ E . Then ζ−π = M ⊆ B′
∗ ∧M ̸= B′

∗. But
ω |≡ ¬M ⊆ B′

∗ for all ω ∈ Ω. Therefore, ζ−πΩ = ∅, contradicting Lemma 7.1.10.
Hence, Mπ =M .

We next show that cπ = c. Let s = cπ and assume s ̸= c. By Lemma 7.5.4,
we have s ∈ {c0, c1}. Suppose s = c0. Let

φ(x, y) = (∃uv ∈ R)(u ̸= 0 ∧ y = f Img
uv ([0, 1]) ∧ (x = u ∨ x = u+ v)).

Then φ(x, y) says that x is an endpoint of y. Therefore, ζ = φrd(c0,M) ∈ T0.
Since ζ−π = φrd(c,M), we have

h−1ζ−πΩ = {(r, t, n) ∈ S | r = 0 or r = 1}
= {0} × R× {0, 1} ∪ {1} × R× {0, 1}.

Since ν0 is continuous, this gives P ζ−πΩ = ν h−1ζ−πΩ = 0, contradicting Lemma
7.1.10. Hence, s ̸= c0. A similar argument shows s ̸= c1. Thus, c

π = c.
We next show that cπ0 = c1. Assume not. Then, by Lemma 7.5.4, we have

cπ0 = c0 and cπ1 = c1. We will show that Bπ∗ = B∗ for all B ∈ E , contradicting
the assumption that π is not the identity permutation. Let B ∈ E and let
s = Bπ∗ . Since Mπ = M , Lemma 7.5.4 implies s = B′

∗ for some B′ ∈ E .
Note that φrd

B (x) ∈ L{∈,M, c0}. Let ζ = φrd
B (B∗) ∈ T0. Since Mπ = M and

cπ0 = c0, we have ζπ = φrd
B (B′

∗). Lemma 7.1.10 implies ζπΩ ̸= ∅. Hence, we
may choose x = (r, t, n) ∈ S such that ω |≡ ζπ, where ω = ωx. Therefore,
there exists a and b in the domain of ω such that ω |≡ φM [a, b], cω0 = b, and
ω |≡ (B′

∗ = f Img
uv (B))[a, b]. By the construction of ω, we have

ω |≡ (∀uv ∈ R)(φM (u, v) → u = 1 ∨ u = −1).

Hence, a ∈ {1ω0 ,−1ω0}.
Suppose n = 0. Then b = cω0 = tω0 . If a = −1ω0 , then

ω |≡ (M = f Img
uv ([0, 1]))[−1ω0 , tω0 ],

which implies Mω = [t− 1, t]
ω0 . But Mω = [t, t+ 1]

ω0 , and so we have

a = 1ω0 . Thus, ω |≡ (B′
∗ = f Img

uv (B))[1ω0 , tω0 ]. But ω0 |≡ (τt = fuv)[1
ω0 , tω0 ]

and also ω0 |≡ τt
Img(B) = τtB. Hence, ω |≡ B′

∗ = τtB, which gives
(B′

∗)
ω = τtB

ω0 . On the other hand, by the definition of ω, and since n = 0, we
have (B′

∗)
ω = (τtB

′)ω0 . Therefore, (τtB
′)ω0 = τtB

ω0 , which implies τtB
′ = τtB,

so that B′ = B. Hence, s = B′
∗ = B∗. A similar proof in the case n = 1 also

yields s = B∗. Thus, B
π
∗ = B∗, completing the proof that cπ0 = c1.

By Lemma 7.5.4, we must have cπ1 = c0, so that both (a) and (b) hold. For
(c), let B ∈ E and let s = Bπ∗ . As above, s = B′

∗ for some B′ ∈ E . Also as
above, let ζ = φrd

B (B∗) ∈ T0. Then ω |≡ ζπ if and only if ω |≡ φB(B∗)
π, and

φB(B∗)
π = (∃uv ∈ R)(φM (u, v) ∧ c1 = v ∧B′

∗ = f Img
uv (B)).

The above argument, with c1 in place of c0, shows that B
′ = ρB.
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Proof of main result

With all of the above preparation, we are now ready to prove Theorem 7.5.2.

Proof of Theorem 7.5.2. Let P be the inductive theory defined above. Since

(c ∈ B∗)Ω = B × R× {0} ∪ ρB × R× {1},

we have P (c ∈ B∗ | T0) = P(c ∈ B∗)Ω = (ν0B + ν0 ρB)/2. Hence, P satisfies
(i) in the definition of C. Suppose P (φ | X) = p and Xπ ∈ anteP . If π is the
identity, then it is trivially the case that P (φπ | Xπ) = p. Assume π is not the
identity. Define g : S → S by g(r, t, n) = (r, t, 1 − n). Then g is a pointwise
isomorphism from (S,Γ, ν) to itself. Recall that h is the function that maps
x = (r, t, n) to ωx. Recall also the function hπ, used in Section 7.1.4 in the
construction of Pπ. By Lemma 7.5.6, we have hπ = h ◦ g ◦ h−1. Thus, Ωπ = Ω
and

P ◦ h−1
π = P ◦ h ◦ g ◦ h−1 = ν ◦ g ◦ h−1 = ν ◦ h−1 = P,

so that Pπ = P. By Theorem 7.1.7, we have P ⊨ (Xπ, φπ, p), so that
P (φπ | Xπ) = p. This shows that P satisfies (ii), and hence, P ∈ C. Therefore,
C is consistent.

Now let P ∈ C. Let π be the permutation described in Lemma 7.5.6. Since π
fixes LZFC, we have ZFCπ = ZFC. Since Mπ =M and cπ = c, we have φπ1 = φ1

and φπ2 = φ2. Now,

ZFC, u ∈ R, v ∈ R ⊢ (φM (u, v) ∧ c0 = v ∧ c1 = u+ v)

↔ (φM (−u, u+ v) ∧ c1 = u+ v ∧ c0 = −u+ (u+ v)).

Therefore, ZFC∞ ⊢ φπ3 ↔ φ3. Similarly,

ZFC, u ∈ R, v ∈ R, φ3 ⊢ (φM (u, v) ∧ c0 = v ∧B∗ = f Img
uv (B))

↔ (φM (−u, u+ v) ∧ c1 = u+ v ∧ (ρB)∗ = f Img
−u,u+v(B)).

Therefore, ZFC, φ3 ⊢ φB(B∗)
π ↔ φB(B∗). Altogether, this implies Tπ0 = T0, so

that

P (c ∈ B∗ | T0) = P ((c ∈ B∗)
π | T0) = P (c ∈ (ρB)∗ | T0),

by the principle of indifference.

7.5.3 Adding a defined constant

Let us return to example of Section 7.5.1, in which we have a constant c, about
which we only know that c ∈ [0, 1]. We saw that in this case, the principle of
indifference has nothing to say about the distribution of c.

From here, let us proceed as in Section 7.3.4. That is, let us expand our
language by defining d = 1− c. After making this seemingly harmless addition,
we turn our attention back to c, and ask again what the principle of indifference
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has to say. This time, we find the same result that we obtained in (7.5.1). That
is, the distribution of c must be symmetric under the reflection r 7→ 1− r.

However, as in Section 7.3.4, this result is misleading. In adding d to our
language, we are also compelled to expand T0 to a larger theory T ′

0 which
includes the definition of d. In the expanded theory T ′

0, the implicit meaning
of c has changed. In T ′

0, we can no longer determine which of c and d is the
original number, and which is its reflection. Just as in Section 7.3.4, it is as if c
is equally likely to be the original as it is to be the reflection. It is no surprise,
then, that c must have a symmetric distribution.

In other words, by adding d, we have changed the problem. We no longer
have a single unknown number in [0, 1]. We now have two unknown numbers
that are reflections of one another, and we are unable to definitively identify
the original. We have simultaneously added information (by adding a second
number) and lost information (by losing track of which was the original). So
although (7.5.1) still holds, the situation is not the same. In this case, (7.5.1)
is answering a different question.

To make this precise, let c and d be constant symbols not in LZFC and let
L = LZFC ∪ {c, d}. Let f(r) = 1− r and define

T0 = ZFC+ {c ∈ [0, 1], d = f(c)}.

Note that we did not bother to express things in terms of a definitorial extension.
It is the case, however, that T0 is a definitorial extension of ZFC + c ∈ [0, 1],
and d is defined by ∀y(y = d↔ y = f(c)).

Let C be the inductive condition consisting of all inductive theories P ⊆ LIS

with root T0 such that

(i) c is Borel given T0, and

(ii) P satisfies the principle of indifference.

Proposition 7.5.7. The condition C is consistent. Moreover, if P ∈ C, then

P (c ∈ V | T0) = P (c ∈ f Img(V ) | T0), (7.5.4)

for all V ∈ B([0, 1]).

Proof. Let S = [0, 1] and Γ = B([0, 1]). Let ν be a probability measure on (S,Γ)
such that ν ρV = ν V for all V ∈ Γ, and ν is continuous. That is, ν{r} = 0 for
all r ∈ S. Let ω0 be an LZFC-structure such that ω0 |≡ ZFC. For each r ∈ S,
let ω = ωr be the L-expansion of ω0 given by cω = rω0 and dω = 1− rω0 .
Let Ω = {ωr | r ∈ S}, let h : S → Ω denote the function r 7→ ωr, and let
P = (Ω,Σ,P) be the measure space image of (S,Γ, ν) under h. Then P ⊨ T0,
so we may define the inductive theory P = ThP ⇃[T0,Th P].

By construction, c is Borel given T0. Suppose P (φ | X) = p and Xπ ∈
anteP . If π is the identity, then it is trivially the case that P (φπ | Xπ) = p.
Assume, then, that π is not the identity.

Let s = cπ. Assume s ∈ LZFC. By the argument following (7.4.1), we
have P (s = c | X) = 1. Note that h−1(s = c)Ω = {r ∈ S | sω0 = rω0}.
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Since r ̸= r′ implies ZFC ⊢ r ̸= r′, and since ω0 |≡ ZFC, there can be at
most one r ∈ R such that sω0 = rω0 . Since ν is continuous, this implies
P (s = c | T0) = ν h−1(s = c)Ω = 0, which contradicts P (s = c | X) = 1.
This shows that s /∈ LZFC. Similarly, dπ /∈ LZFC. It follows from (7.4.1) that
sπ = s for all s ∈ L∞. Also, since π is not the identity, we have cπ = d and
dπ = c.

Now define g : S → S by gr = 1 − r. Then g is a pointwise isomorphism
from (S,Γ, ν) to itself and hπ = h◦ g ◦h−1. As in the proof of Theorem 7.5.2, it
follows that Pπ = P. Hence, by Theorem 7.1.7, we have P ⊨ (Xπ, φπ, p), so
that P (φπ | Xπ) = p. This shows that P satisfies the principle of indifference,
and hence, P ∈ C. Therefore, C is consistent.

Now let P ∈ C. Let π be the permutation described above. Then Tπ0 = T0,
so that

P (c ∈ V | T0) = P ((c ∈ V )π | T0) = P (d ∈ V | T0),

by the principle of indifference. But T0 ⊢ d ∈ V ↔ c ∈ f Img(V ). Hence, (7.5.4)
follows from the rule of logical implication and Proposition 3.2.14.

There is nothing special about the function f(r) = 1 − r in this example.
What is essential is that f is measurable and f ◦ f = ι, where ι is the identity.
For example, let

f(x) =

{
1− 2x if 0 ⩽ x ⩽ 1

3 ,
1
2 − 1

2x if 1
3 < x ⩽ 1.

If we change the definition of d from d = 1 − c to d = f(c), then we can
adapt the above proof so that we obtain (7.5.4) in this case as well. However,
the resulting distribution of c would no longer be symmetric under reflection.
Instead, it would be symmetric under f . In particular, after defining d = f(c),
the principle of indifference would tell us that

P (c ∈ [0, 1/3] | T0) = P (c ∈ [1/3, 1] | T0) = 1/2.

This is decidedly different from the situation obtained when f(r) = 1 − r. We
can therefore see clearly that the act of defining d is not a harmless one. As
described above and in Section 7.3.4, when we introduce d via definition, we
change the background assumptions in T0, which in turn changes the meaning
of c. The principle of indifference, therefore, can produce different distributions
for c, depending on the definition of d.

7.6 Examples in the plane

In this section, we present examples of the principle of indifference that are
situated in the Euclidean plane, R2.
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7.6.1 A point on a circle

In our first example in this section, we consider a circle of some unspecified
diameter, and we let c be a point that lies somewhere along the circumference
of the circle. As with a point on a rod in Section 7.5.2, we do not simply
want to replace the circle in the statement of the problem with the unit circle,
S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. Instead, we want to replace the circle with
a subset M ⊆ R2 that can be parameterized in the usual way by the radian
angles in [0, 2π).

To make this precise, define e : R× R2 → R2 by

e(θ, r) =

(
cos θ − sin θ
sin θ cos θ

)(
r1
r2

)
,

so that e rotates r counterclockwise by an angle of θ radians. For t ∈ R2 and
B ⊆ R2, let t+ B = {t+ r | r ∈ B}. For θ ∈ R, let [θ] = θ − 2π ⌊θ/2π⌋, where
⌊θ/2π⌋ is the greatest integer less than or equal to θ/2π. Then [θ] ∈ [0, 2π) and
e([θ], r) = e(θ, r) for all r ∈ R2.

In ZFC, we use R2 as shorthand for R × R. We extend + in ZFC so that it
also denotes vector addition in R2, and we extend · so that it also denotes scalar
multiplication. As we did for R and B(R), we add an explicitly defined symbol
r for each r ∈ R2, and an explicitly defined symbol V for each V ∈ B(R2). If
h : Rm → Rn is Borel measurable, where m,n ∈ {1, 2}, then we can explicitly
define h in ZFC.

We now create our extralogical signature L and our root T0 as we did in
Section 7.5.2. Define δ(u, v, w, y) ∈ LZFC by

δ(u, v, w, y) = (u ̸∈ R ∨ v ̸∈ R2 ∨ w ̸∈ R) ∧ y = ∅

∨ u ∈ R ∧ v ∈ R2 ∧ w ∈ R ∧ y ∈ (R2)R
2

∧ (∀x ∈ R)(y(x) = u · e(w, x) + v).

Then ZFC ⊢ ∀uvw∃!y δ(u, v, w, y). Hence, we could explicitly define the function
symbol F by y = Fuvw ↔ δ(u, v, w, y), and then let fuvw be shorthand for the
term Fuvw. We do not, in fact, add the symbol F to our extralogical signature,
but instead regard both F and fuvw as shorthand. We also adopt the shorthand,
dom(f) and f Img(z), given by

dom(f) = {x ∈ R2 | (∃y ∈ R2)(x, y) ∈ f},
f Img(z) = {f(x) | x ∈ z ∩ dom(f)}.

Let E = {B ∈ B(S1) | ∅ ⊂ B ⊂ S1} and let

C = {M, c} ∪ {B∗ | B ∈ E}

be a set of distinct constant symbols not in LZFC. Let L = LZFCC.
Let φc = c ∈M and

φM (u, v, w) = u > 0 ∧ w ∈ [0, 2π) ∧M = f Img
uvw(S1)).
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For B ∈ E , define

φB = (∃uw ∈ R)(∃v ∈ R2)

(φM (u, v, w) ∧ {(1, 0)}∗ = f Img
uvw({(1, 0)}) ∧B∗ = f Img

uvw(B)),

and let T0 = ZFC+ {φc} ∪ {φB | B ∈ E}.
In this presentation, we have streamlined our construction of T0, compared

to what was done in the rod example of Section 7.5.2. For instance, we do not
have a separate sentence which says that M is a circle. Rather, that fact is
contained in each sentence φB . The sentence φc says that c is a point on the
circle M . And the sentences φB say that B∗ is a Borel subset of M that is
geometrically related to {(1, 0)}∗ in the same way that B is related to {(1, 0)}.
In the rod example, we first named our endpoints and then named our Borel sets
relative to them. Here, we are first naming a point to serve as the initial and
terminal point of a parameterization, and then naming our Borel sets relative
to that point.

Now let C be the inductive condition consisting of all inductive theories
P ⊆ LIS with root T0 such that

(i) P (c ∈ B∗ | T0) exists for all B ∈ E , and

(ii) P satisfies the principle of indifference.

Proposition 7.6.1. The condition C is consistent and, for every B ∈ E, we
have PC(c ∈ B∗ | T0) = m(B), where m is the uniform measure on S1.

The proof of Proposition 7.6.1 will come at the end of this subsection.
The proof follows the same lines as the proof of Theorem 7.5.2. We first
prove consistency by building an L-model, P = (Ω,Σ,P), as follows. Let
ν0 be a probability measure on (S1,B(S1)) such that ν0 is continuous. That
is, ν0{r} = 0 for all r ∈ S1. Let S = S1 × S1 × [0, 2π), Γ = B(S), and
ν = ν0 × ν0 ×m0, where m0 is the uniform measure on [0, 2π).

Let ω0 be an LZFC-structure such that ω0 |≡ ZFC. If x = (r, t, θ) ∈ S, then
let ω = ωx be the L-expansion of ω0 defined by Mω = t+ S1ω0 , cω = t+ rω0 ,
and Bω∗ = t+ e(θ,B)

ω0 .
Let Ω = {ωx | x ∈ S}, let h : S → Ω denote the function x 7→ ωx, and let

P be the measure space image of (S,Γ, ν) under h.
By a proof similar to that of Lemma 7.5.3, we have P ⊨ T0. We may

therefore define the inductive theory P = ThP ⇃[T0,Th P].

Lemma 7.6.2. Let P (φ | X) = p and Xπ ∈ anteP . Then sπ = s for all
s ∈ LZFC ∪ {M, c} and there exists θ0 ∈ [0, 2π) such that Bπ∗ = e(θ0, B)∗ for all
B ∈ E.

Proof. Applying the methods used in the proof of Lemma 7.5.4 and the first
part of the proof of Lemma 7.5.6, we obtain that sπ = s for all s ∈ LZFC∪{M, c}.
Hence, we must have {(1, 0)}π∗ = B0

∗ for some B0 ∈ E . Let ζ = (∃!y ∈ R2)(y ∈
{(1, 0)}∗) ∈ T0. By Lemma 7.1.10, the set ζπΩ is nonempty. Choose ω ∈ ζπΩ.
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Then ω |≡ (∃!y ∈ R2)(y ∈ B0
∗). Write ω = ωx, where x = (r, t, θ) ∈ S.

Then there exists a unique b in the domain of ω0 such that b ∈ω0 (R2)ω0 and
b ∈ω0 (B0

∗)
ω = t+ e(θ,B0)

ω0 . Thus, ω0 |≡ (∃!y ∈ R2)(y ∈ t+ e(θ,B0)). This

implies |B0| = 1, so that we may write B0 = {r0} for some r0 ∈ S1. We
therefore have {(1, 0)}π∗ = {r0}∗.

Now let B ∈ E be arbitrary. Then Bπ∗ = B′
∗ for some B′ ∈ E . By Lemma

7.1.10, we may choose x = (r, t, θ) ∈ S such that ω = ωx |≡ φπB . Note that

φπB ≡ZFC (∃!uw ∈ R)(∃!v ∈ R2)

(φM (u, v, w) ∧ {r0}∗ = f Img
uvw({(1, 0)}) ∧B′

∗ = f Img
uv (B)).

Choose θ0 such that r0 = e(θ0, (1, 0)). Then

{r0}ω∗ = t+ e(θ, {r0})ω0 = t+ e([θ0 + θ], {(1, 0)})ω0 ,

so that
ω |≡ ({r0}∗ = f Img

uvw({(1, 0)}))[1ω0 , tω0 , [θ0 + θ]
ω0 ].

Since ω |≡ φπB , we must have

ω |≡ (B′
∗ = f Img

uv (B))[1ω0 , tω0 , [θ0 + θ]
ω0 ],

which implies
t+ e(θ,B′)

ω0 = t+ e([θ0 + θ], B)
ω0 ,

and therefore B′ = e(θ0, B).

Proof of Proposition 7.6.1. Let P be the inductive theory defined above. If
x = (r, t, θ), then

ωx |≡ c ∈ B∗ iff t+ rω0 ∈ω0 t+ e(θ,B)
ω0

iff ω0 |≡ t+ r ∈ t+ e(θ,B)

iff t+ r ∈ t+ e(θ,B)

iff r ∈ e(θ,B).

Thus, h−1(c ∈ B∗)Ω = {(r, t, θ) | r ∈ e(θ,B)}. Note that r ∈ e(θ,B) if and only
if e(−θ, r) ∈ B. Hence,

ν h−1(c ∈ B∗)Ω =

∫
S

1h−1(c∈B∗)Ω dν

=

∫
S1

∫ 2π

0

1B(e(−θ, r))m0(dθ) ν0(dr)

=

∫
S1
m(B) ν0(dr) = m(B).

Since P = ν ◦ h−1, it follows that P satisfies (i) in the definition of C.
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Suppose P (φ | X) = p and Xπ ∈ anteP . Let θ0 be as in Lemma 7.6.2
and define g : S → S by g(r, t, θ) = (r, t, [θ0 + θ]). We may use g as in the
proof of Theorem 7.5.2 to show that Pπ = P, so that Theorem 7.1.7 yields
P (φπ | Xπ) = p. This shows that P satisfies (ii), and hence, P ∈ C. Therefore,
C is consistent.

Now let P ∈ C be arbitrary. Given θ0 ∈ R, let π be the L-permutation
satisfying sπ = s for all s ∈ LZFC ∪ {M, c} and Bπ∗ = e(θ0, B)∗ for all B ∈ E .
Then Tπ0 = T0, so by the principle of indifference, we have

P (c ∈ B∗ | T0) = P (c ∈ e(θ0, B)∗ | T0) (7.6.1)

for all B ∈ E . Let us adopt the shorthand notation, ∅∗ = ∅ and S1∗ =M . Since
P (c ∈ B∗ | T0) exists for all B ∈ E , we may define m′ : B(S1) → [0, 1] by
m′(B) = P (c ∈ B∗ | T0). Note that if B,B′ ∈ B(S1) and B ∩ B′ = ∅, then
T0 ⊢ ¬(c ∈ B∗∧c ∈ B′

∗). Hence, Theorem 3.2.24 implies thatm′ is a probability
measure on (S1,B(S1)). By (7.6.1), we have m′(B) = m′(e(θ0, B)) for all
B ∈ B(S1) and all θ0 ∈ R. This impliesm′ = m, so that P (c ∈ B∗ | T0) = m(B).
Since P was arbitrary, PC(c ∈ B∗ | T0) = m(B).

7.6.2 Bertrand’s paradox

Introduction

In 1888, Joseph Bertrand posed the following problem (see [2]). Consider an
equilateral triangle inscribed in a circle. Let ℓ be a chord of the circle, chosen
at random. What is the probability that the chord is longer than a side of the
triangle?

It is considered a “paradox” because Bertrand presented three different
solutions, all purporting to use the principle of indifference, that gave three
different answers: 1/3, 1/2, and 1/4. Of course, this is only “paradoxical” if we
have the prior expectation that the principle of indifference ought to produce
a unique answer. We have already seen, however, that this is not always the
case. The principle of indifference is a tool that can narrow down the possible
distributions in certain circumstances, but it does not necessarily determine for
us a unique distribution. In the example of the rod from Section 7.5.2, for
instance, the principle tells us that the distribution must be symmetric under
reflection. But beyond that, it leaves open a whole range of possibilities.

Something similar happens with Bertrand’s chord. We will show below that,
according to the principle of indifference, the distribution of the chord must be
rotationally invariant. But beyond that, it has nothing more to say. Hence, all
three of Bertrand’s solutions (which are all rotationally invariant) are consistent
with the principle of indifference. But so are many distributions that Bertrand
did not consider. In fact, in Theorem 7.6.3, we show that for any p ∈ [0, 1], it
is consistent with the principle of indifference to say that the answer is p.
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Notation in ZFC

To precisely formulate the problem, we first establish some new notation and
shorthand. Let D = {(x, y) ∈ R2 | x2 + y2 ⩽ 1}. Using the notation of Section
7.6.1, define

φpar
D (x, u, v, w) : u > 0 ∧ w ∈ [0, 2π) ∧ x = f Img

uvw(D)

Then φpar
D (x, u, v, w) says that x is a disk in the plane and that u, v, and w are

the constants in a parameterization of x. Also define

φD(x) : (∃uw ∈ R)(∃v ∈ R2)φpar
D (x, u, v, w)

Then φD(x) simply says that x is a disk in the plane.
Let φtri(x) be a formula which says that x is a nondegenerate equilateral

triangle in the plane. The exact details of this formula are not relevant for our
purposes and will be omitted. In what follows, we will similarly omit the details
of other formulas whose descriptions are given only verbally.

Let φseg(x) be a formula which says that x is a line segment in the plane
whose length is positive and finite. Let φins(x, y) = φtri(x) ∧ φD(y) ∧ ζ(x, y),
where ζ(x, y) is a formula which says that the triangle x is inscribed in the circle
that is the boundary of y. Similarly, let φch(x, y) = φseg(x) ∧ φD(y) ∧ ζ(x, y),
where ζ(x, y) is a formula which says that the endpoints of the line segment x
lie on the boundary of the disk y.

Define

δlen(x, y) : ¬φtri(x) ∧ ¬φseg(x) ∧ y = ∅ ∨ φtri(x) ∧ ζ(x, y) ∨ φseg(x) ∧ ζ ′(x, y)

Here, ζ(x, y) is a formula which says that y is the length of each side of the
equilateral triangle x, and ζ ′(x, y) is a formula which says that y is the length
of the line segment x. Then ZFC ⊢ ∀x∃!y δlen(x, y). We could therefore define
the function symbol F by y = Fx ↔ δlen(x, y) and let len(x) be shorthand
for the term Fx. We do not actually add F to our extralogical signature, and
instead leave both F and len(x) as shorthand. In this way, len(x) is a function
informally described by

len(x) =


the length of x if x is a line segment,

the length of a side of x if x is an equilateral triangle,

∅ otherwise.

A first pass at setting up the problem

Let C ′ = {D, τ, ℓ} and L′ = LZFCC
′. Define the deductive theory T ′

0 ⊆ (L′)0 by

T ′
0 = ZFC+ φD(D) + φins(τ,D) + φch(ℓ,D).

Then T ′
0 includes all facts in ZFC together with the following three assumptions:

D is a disk in the plane, τ is an equilateral triangle inscribed in D, and ℓ is a
chord of D.
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Define the inductive condition C′ as the set of inductive theories P ⊆ (L′)IS

with root T ′
0 such that

(i) P (len(ℓ) > len(τ) | T ′
0) exists, and

(ii) P satisfies the principle of indifference.

Let P ⊆ (L′)IS be any inductive theory with root T ′
0. Suppose P (φ | X) = p

and Xπ ∈ anteP . As in Remark 7.5.5, since we are only concerned with the
relative positions of D, τ , and ℓ, we may assume that P (D = B | T ′

0) = 0 for all
B ∈ B(R2). We may also make similar assumptions for τ and ℓ. It then follows
as in the proof of Lemma 7.6.2 that π must be the identity permutation, so that
P (φπ | Xπ) = p. In other words, every inductive theory in (L′)IS satisfies the
principle indifference. This means that the principle of indifference has nothing
to say in this setting. It offers no restrictions, so that P (len(ℓ) > len(τ) | T ′

0)
could be anything we like.

This, however, is misleading. We have omitted a critical assumption.
Namely, we failed to interpret the fact that the chord is “chosen at random.”
We will interpret this additional assumption as simply saying that the location
of the chord has a probability distribution. We leave the exact nature of this
distribution unspecified. To formulate this additional assumption, we must
expand our extralogical signature and our root.

The complete setup and conclusion

Let E = {B ∈ B(D) | ∅ ⊂ B ⊂ D} and let

C = C ′ ∪ {B∗ | B ∈ E} = {D, τ, ℓ} ∪ {B∗ | B ∈ E}.

Let L = LZFCC. For each B ∈ E , define

φB(x) : (∃uw ∈ R)(∃v ∈ R2)

(φpar
D (D,u, v, w) ∧ {(1, 0)}∗ = f Img

uvw({(1, 0)}) ∧B∗ = f Img
uvw(B))

Then let

T0 = T ′
0 + {φB(B∗) | B ∈ E}

= ZFC+ φD(D) + φins(τ,D) + φch(ℓ,D) + {φB(B∗) | B ∈ E}.

Our root, T0, says that all the facts in ZFC hold. It also says that D is a
disk in the plane, τ is an equilateral triangle inscribed in D, and ℓ is a chord
of D. Regarding the subsets of D, it says that {(1, 0)}∗ is a singleton set on
the boundary of D that serves as a fixed point of reference. The sets B∗ are
then Borel subsets of D that are geometrically related to {(1, 0)}∗ in the same
manner as B is related to {(1, 0)}.

Define
δmid(x, y) : ¬φseg(x) ∧ y = ∅ ∨ φseg(x) ∧ ζ(x, y)
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Here, ζ(x, y) is a formula which says that y is the midpoint of the line segment
x. Then T0 ⊢ ∃!y δmid(ℓ, y). We could therefore define the constant symbol c by
y = c↔ δmid(ℓ, y). We do not actually add c to our extralogical signature, but
instead leave it as shorthand. With this construction, c denotes the midpoint of
the segment ℓ. We can therefore talk about the location of ℓ using the sentence
c ∈ B∗, where B ∈ E .

Let

B1/2 = {(x, y) ∈ R2 |
√
x2 + y2 < 1/2} ∈ E .

Then T0 ⊢ len(ℓ) > len(τ) ↔ c ∈ B
1/2
∗ . Hence, for any inductive theory P ⊆ LIS

with root T0, we have

P (len(ℓ) > len(τ) | T0) = P (c ∈ (B1/2)∗ | T0), (7.6.2)

by Proposition 3.2.14.
Define the inductive condition C as the set of inductive theories P ⊆ LIS

with root T0 such that

(i) P (c ∈ B∗ | T0) exists for all B ∈ E , and

(ii) P satisfies the principle of indifference.

Our main result now follows. For this, recall the notation e(θ, r) from Section
7.6.1.

Theorem 7.6.3. The inductive condition C is consistent and every P ∈ C
satisfies

P (c ∈ B∗ | T0) = P (c ∈ e(θ,B)∗ | T0) (7.6.3)

for all B ∈ E and all θ ∈ R. Moreover, for every p ∈ [0, 1], there exists P ∈ C
such that

P (len(ℓ) > len(τ) | T0) = p.

Proof. We begin by proving consistency. Let T ⊆ R2 be the equilateral triangle
inscribed in D with one corner situated at (1, 0). Given r ∈ D with |r| < 1, let
Lr be the chord of D whose midpoint is r.

Let ν0 be a probability measure on (D,B(D)) such that ν0 is continuous.
That is, ν0{r} = 0 for all r ∈ D. Let S = D × D × [0, 2π), Γ = B(S), and
ν = ν0 × ν0 ×m0, where m0 is the uniform measure on [0, 2π).

Let ω0 be an LZFC-structure such that ω0 |≡ ZFC. If x = (r, t, θ) ∈ S, then
let ω = ωx be the L-expansion of ω0 defined by Dω = t+ Dω0 , τω = t+ Tω0 ,
ℓω = t+ Lrω0 , and Bω∗ = t+ e(θ,B)

ω0 .
Let Ω = {ωx | x ∈ S}, let h : S → Ω denote the function x 7→ ωx, and

let P = (Ω,Σ,P) be the measure space image of (S,Γ, ν) under h. By a proof
similar to that of Lemma 7.5.3, we have P ⊨ T0. We may therefore define the
inductive theory P = ThP ⇃[T0,Th P].

For each x = (r, t, θ) ∈ S and ω = ωx, it follows that ω |≡ c ∈ B∗ if and
only if r ∈ e(θ,B). Thus, h−1(c ∈ B∗)Ω = {(r, t, θ) | r ∈ e(θ,B)}. Since e is
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measurable, P (c ∈ B∗ | T0) = P(c ∈ B∗)Ω = ν h−1(c ∈ B∗)Ω exists, so that P
satisfies (i) in the definition of C.

Suppose P (φ | X) = p and Xπ ∈ anteP . Using methods like those in the
proofs of Lemmas 7.5.4 and 7.5.6, it follows that sπ = s for all s ∈ LZFC∪{D, τ, ℓ},
and there exists θ0 ∈ [0, 2π) such that Bπ∗ = e(θ0, B)∗ for all B ∈ E . Define
g : S → S by g(r, t, θ) = (r, t, [θ0 + θ]). As is the proofs of Theorem 7.5.2 and
Proposition 7.6.1, we can use g to show that Pπ = P. It therefore follows that
P (φπ | Xπ) = p, so that P satisfies the principle of indifference. Hence, P ∈ C
and C is consistent.

Now let P ∈ C be given. Fix θ0 ∈ R and B ∈ E . Let π be the L-permutation
such that sπ = s for all s ∈ LZFC ∪ {D, τ, ℓ}, and Bπ∗ = e(θ0, B)∗ for all B ∈ E .
Then Tπ0 = T0, so (7.6.3) follows immediately from the principle of indifference.

Finally, let p ∈ [0, 1]. By (7.6.2), it suffices to show that there exists P ∈ C
such that P (c ∈ (B1/2)∗ | T0) = p. Let ν0 be a continuous probability measure
on (D,B(D)) such that ν0(B

1/2) = p. Construct P as in the first part of this
proof. Since r ∈ e(θ,B) if and only if e(−θ, r) ∈ B, it follows that

P (c ∈ (B1/2)∗ | T0) = ν h−1(c ∈ (B1/2)∗)Ω

=

∫
D

∫ 2π

0

1B1/2(e(−θ, r))m0(dθ) ν0(dr).

But 1B1/2(e(−θ, r)) = 1B1/2(r), so P (c ∈ (B1/2)∗ | T0) = ν0(B
1/2) = p.
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admissible, 36
almost everywhere, 17
almost surely, 18
antecedent, 35
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generalized —, 52
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image of an —, 127

axiom, 32, 122

basis, 47
Bayes’ theorem, 41
Bertrand’s paradox, 214
Boolean

algebra, 16
function, 69
measure space, 17
σ-algebra, 16

bound renaming, 116

C-substitution, 117
cardinal, 15

limit —, 16
strongly inaccessible —, 16
successor —, 16
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central limit theorem, 174
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complete, 44
completeness

deductive —, 75, 132
for inductive conditions, 85
inductive —, 83
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conditional expectation, 179
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strongly —, 46
consequence relation, 71, 81, 85, 128
consequent, 35
consistent, 31, 48, 62, 121
continuity rule, see rule
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countable additivity, 43
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Dedekind cut, 161
definitorial extension, 148, 150
dependent, 97
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predicate —, 115
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dialog set, 96
distribution, 171, 172, 177
Dynkin system, see λ-system

entire, 36
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exchangeable, 200
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falsum, 28, 121
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prime —, 108
reduced —, 146

frame of reference, 139
natural —, 141
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ground term, see term
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independent, 97, 98

measure —, 99
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inductive condition, 62
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