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It seems an undisputed fact in the mathematical community that the long sought after
proof of Fermat’s Last Theorem has indeed been found. Though a member of the mathematical
community myself, I am in the unfortunate position of being unable to either dispute or attest to
the validity of this claim. I have been told that the amount of time required to obtain knowledge
enough to critique the proof would be measured in years. After my brief survey of the
mathematics involved, I’m reasonably convinced that this is true. It’s unfortunate that the
solution to such a classic problem as this has come to us in a way understandable by only the
most learned experts. It is for this reason that I write this paper. My hope is that it will serve as
an initial guide to anyone interested in learning what is necessary to verify for themselves the
validity of the proof of Fermat’s Last Theorem.

Fermat’s Last Theorem, until recently, was not a theorem at all, but a conjecture. The
challenge was to prove or disprove the claim that there are no non-zero integers x, y, z such that
xn + yn = zn when n ≥ 3. A proof of this claim has been provided by Andrew Wiles. This claim is
actually a corollary to a larger theorem that Wiles proved, namely that all semistable elliptic
curves are modular. This paper will provide a very brief sketch of what this means and how it
implies Fermat’s Last Theorem.

I. The Projective Plane

Let K be a field and define a relation on K3 – {0} by

( , , ) ~ ( ' , ' , ' ) ( , , ) ( ' , ' , ' )*x y z x y z K x y z x y ziff such that ∃ ∈ =λ λ

It can be easily verified that this is an equivalence relation and the projective plane, P K
2 , is

defined to be the set of equivalence classes in K3 – {0} under this relation. Now define P ⊂ P K
2

to be

P x y z zK= ∈ ∃ ∈ ≠α α P2 0:  ( , , ) ,m r

Since if (x, y, z) ~ (x', y', z'), then z = 0 if and only if z' = 0, it follows that, equivalently,

P x y z zK= ∈ ∀ ∈ ≠α α P2 0:  ( , , ) ,m r

Now let π : P → K2 be defined as

π α αb g = F
HG

I
KJ ∈

x

z

y

z
x y z, ( , , ) ,  where 

To see that this is a well defined function, let (x, y, z), (x', y', z')∈α and λ∈K* such that

(x, y, z) = λ (x', y', z'). Since z' ≠ 0, λ =
z

z'
. If x' ≠ 0, then λ = =

x

x

z

z' '
. If x' = 0, then x = λx' = 0.

In either case, 
x

z

x

z
=

'

'
. Similarly, 

y

z

y

z
=

'

'
. Hence, π (α) is defined independently of the choice of

(x, y, z)∈α. Now suppose π (α) = π (β). Then ∃ (x, y, z)∈α, (x', y', z')∈β such that
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x

z

y

z

x

z

y

z
,

'

'
,

'

'
F
HG

I
KJ = F

HG
I
KJ . Since z, z' ≠ 0, let λ = ∈

z

z
K

'
* . Then x

zx

z
x= =

'

'
'λ . Similarly y = λy', i.e.

α = β and π is injective. Now let (p, q)∈K2. If α denotes the equivalence class of (p, q, 1) in P,
then π (α) = (p, q) and π is surjective. Thus there is a one-to-one correspondence between K2 and
the proper subset, P ⊂ P K

2 . It is for this reason that P K
2  is thought of as an extension of K2 and

the points in P K
2  – P are called "the points at infinity".

II. Curves in the Projective Plane

The degree of a monomial is the sum of the powers of its variables. The total degree of a
polynomial is the maximum degree of the monomials of which it is a sum. If the total degree of a
polynomial is equal to the degree of each of the monomials of which it is a sum, then that
polynomial is said to be homogeneous.

Let f (x, y) be a polynomial with coefficients in K. The corresponding homogeneous
polynomial is defined to be

~
, , ,f x y z z f

x

z

y

z
nb g = F

HG
I
KJ ,

where n is the total degree of f. If cxiy j is a monomial in f, then the corresponding term in 
~
f  is

cxiy jz n – (i + j). Since n ≥ i + j, 
~
f  is indeed a polynomial and since i + j + n – (i + j) = n, 

~
f  is

indeed homogeneous and of degree n.

The equation f (x, y) = 0 defines a curve C = {(x, y)∈K2 : f (x, y) = 0}. The projective
completion of C is the curve

C x y z f x y zK' : ( , , ) ,
~

( , , )= ∈ ∃ ∈ =α αP2 0n s

Since ∀λ∈K*, 
~

( , , )
~

( , , )f x y z f x y znλ λ λ λ= , it follows that, equivalently,

C x y z f x y zK' : ( , , ) ,
~

( , , )= ∈ ∀ ∈ =α αP2 0n s

Now consider the function, π, given above. Let α ∈ C' ∩ P and (x, y, z)∈α. Then
~

, , ( )f x y z z fnb g b g= =0 π α . Since z ≠ 0, it follows that π (α) ∈ C and, thus, π (C' ∩ P) ⊂ C. Now

let (p, q)∈C and α denote the equivalence class of (p, q, 1) in PK
2 . Since 

~
f (p, q, 1) = f (p, q) = 0,

α∈C'. Thus C ⊂ π (C' ∩ P), i.e. π (C' ∩ P) = C. Since π is a bijection, we consider C' ∩ P to be
equivalent to C, with the equivalence class of (x, y, 1) in C' ∩ P associated with the point
(x, y)∈C. The remaining points on C' are points at infinity.
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III. Elliptic Curves

Let

f x y y a xy a y x a x a x a ai( , ) ,= + + − − − − ∈2
1 3

3
2

2
4 6 Z .

The curve f (x, y) = 0 is singular if there is a simultaneous solution in C2 to the equations

f x y
f

x
x y

f

y
x y( , ) ( , ) ( , )=

∂
∂

=
∂
∂

=0 0 0 .

Any such solution is called a point of singularity. The curve is nonsingular if it is not singular.
If f (x, y) = 0 is nonsingular, then the curve

E x y z f x y z( ) : ( , , ) ,
~

( , , )Q PQ= ∈ ∀ ∈ =α α2 0n s

is called an elliptic curve.

IV. The Discriminant

Let f (x, y) be as in section III and let g x y f x
y a x a

( , ) ( , )=
− −

4
2
1 3 . It follows that

g x y y x b x b x b( , ) = − − − −2 3
2

2
4 64 2 , where

b a a2 1
2

24= +
b a a a4 4 1 32= +
b a a6 3

2
64= +

Now let h x y g
x b y

f
x b y a x a b a

( , ) ( , ) ( , )=
−

=
− − + −

11664
3

36 108
46656

3

36

3 9 108

216
2 2 1 1 2 3 . Then

h x y y x c x c( , ) = − + +2 3
4

2
627 54 , where

c b b4 2
2

424= −
c b b b b6 2

3
2 4 636 216= − + −

It follows that h (x, y) = 0 is singular if and only if f (x, y) = 0 is singular.

PROOF

Let u x y
x b

( , ) =
− 3

36
2  and v x y

y a x a b a
( , ) =

− + −3 9 108

216
1 1 2 3 . Note that

∂
∂

=
∂
∂

−
∂
∂

h

x
x y

f

x
u x y v x y a

f

y
u x y v x y( , ) ( ( , ), ( , )) ( ( , ), ( , ))1296 648 1
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and

∂
∂

=
∂
∂

h

y
x y

f

y
u x y v x y( , ) ( ( , ), ( , ))216

Now suppose the curve h (x, y) = 0 is singular. Let (x0, y0) be a simultaneous solution to

h x y
h

x
x y

h

y
x y( , ) ( , ) ( , )=

∂
∂

=
∂
∂

=0 0 0

It follows from the above equations that (u (x0, y0), v (x0, y0)) is a simultaneous solution to

f x y
f

x
x y

f

y
x y( , ) ( , ) ( , )=

∂
∂

=
∂
∂

=0 0 0

and f (x, y) = 0 is singular.

Now suppose f (x, y) = 0 is singular and let (x0, y0) be a simultaneous solution to

f x y
f

x
x y

f

y
x y( , ) ( , ) ( , )=

∂
∂

=
∂
∂

=0 0 0

Let u' (x, y) = 36x + 3b2 and v' (x, y) = 108a2x +216y +108a3. Note that

u x y

v x y a

x

y

b

a

' ( , )

' ( , )

F
HG

I
KJ =

F
HG

I
KJ
F
HG

I
KJ +

F
HG

I
KJ36

1 0

3 6
3

362

2

3

.

Thus,

x

y a

u x y

v x y

b

a a b

F
HG

I
KJ =

−
F
HG

I
KJ
F
HG

I
KJ −

−
F
HG

I
KJ

1

216

6 0

3 1
1

24

2

121

2

3 1 2

' ( , )

' ( , )
.

Now let (x1, y1) = (u' (x0, y0), v' (x0, y0)). Then h (x1, y1) = 46656 f (u (x1, y1), v (x1, y1)). But

u x y

v x y a

x

y

b

a a b

x

y

( , )

( , )
1 1

1 1 1

1

1

2

3 1 2

0

0

1

216

6 0

3 1
1

24

2

12

F
HG

I
KJ =

−
F
HG

I
KJ
F
HG

I
KJ −

−
F
HG

I
KJ =

F
HG

I
KJ ,

so h (x1, y1) = 46656 f (x0, y0) = 0. Similarly, 
∂
∂

=
h

x
x y( , )0 0 0  and 

∂
∂

=
h

y
x y( , )0 0 0 . Thus, h (x, y) =

0 is singular. �

Now write

h x y y x r x r x r r r r( , ) ( )( )( ), , ,= − − − − ∈2
1 2 3 1 2 3 C .
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It follows that h (x, y) = 0 is nonsingular if and only if r1, r2, r3 are distinct.

PROOF
Suppose r1, r2, r3 are distinct and h (x, y) = 0 is singular. Let (x0, y0) be a point of singularity.

Then 
∂
∂

= =
h

y
x y y( , )0 0 02 0. Since h (x0, 0) = 0, it follows that x0∈{r1, r2, r3}. Without loss of

generality, assume x0 = r1. Then

∂
∂

= − − − =
h

x
r r r r r( , ) ( )( )1 1 2 1 30 0 .

But this cannot be since r1, r2, r3 are distinct.

Now suppose h (x, y) = 0 is nonsingular and, without loss of generality, that r1 = r2. Let

(x0, y0) = (r1, 0). Then h (r1, 0) = 0, 
∂
∂

=
h

y
r( , )1 0 0 , and 

∂
∂

= − − − =
h

x
r r r r r( , ) ( )( )1 1 2 1 30 0 , since

r1 = r2. But this cannot be since h (x, y) = 0 is nonsingular. �
Let d = (r1 – r2)

2(r1 – r3)
2(r2 – r3)

2. Then h (x, y) = 0 is singular if and only if d = 0. It can be
verified that

det ( )( )( )

1 1 1

1 2 3

1
2

2
2

3
2

3 2 3 1 2 1r r r

r r r

r r r r r r

F

H
GG

I

K
JJ = − − − ,

so that

d r r r

r r r

r r

r r

r r

=
F

H
GG

I

K
JJ
F

H
GGG

I

K
JJJ

=
F

H
GG

I

K
JJdet det

1 1 1 1

1

1

3

1 2 3

1
2

2
2

3
2

1 1
2

2 2
2

3 3
2

1 2

1 2 3

2 3 4

σ σ
σ σ σ
σ σ σ

where σ i
i i ir r r= + +1 2 3  for 1 ≤ i ≤ 4. If α = r1 + r2 + r3, β = r1r2 + r1r3 + r2r3, and γ = r1r2r3, then it

can be verified algebraically that

σ α

σ α β

σ α αβ γ

σ α α β β αγ

1

2
2

3
3

4
4 2 2

2

3 3

4 2 4

=

= −

= − +

= − + + .
Now since

x c x c x r x r x r x r r r x r r r r r r x r r r3
4 6 1 2 3

3
1 2 3

2
1 2 1 3 2 3 1 2 327 54− − = − − − = − + + + + + −( )( )( ) ( ) ( ) ,
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it follows that α = 0, β = –27c4, and γ = 54c6. Hence,

d

c

c c

c c c

c c=
F

H
GG

I

K
JJ = −det ( )

3 0 54

0 54 162

54 162 1458

78732
4

4 6

4 6 4
2

4
3

6
2 .

The dicriminant ∆ of the curve f (x, y) = 0 is defined to be

∆ = − − − +b b b b b b b2
2

8 4
3

6
2

2 4 68 27 9

where b a a a a a a a a a a8 1
2

6 2 6 1 3 4 2 3
2

4
24= + − + − . It can be verified that 4 8 2 6 4

2b b b b= − . Using this
equality, it can be verified that

1728 4
3

6
2∆ = −c c .

Hence, f (x, y) = 0 is singular iff h (x, y) = 0 is singular iff d = 0 iff ∆ = 0.

V. Types of Singularities

Let f (x, y) be as in section III and h (x, y) be as in section IV. Suppose h (x, y) = 0 is singular. Let
P = (x0, y0) be a point of singularity. From section IV, we may state, without loss of generality,
that P = (r1, 0), where

h x y y x r x r( , ) ( ) ( )= − − −2
1

2
2

If P' = (x1, y1) is another, distinct, point of singularity, then, since 
∂
∂

= =
h

y
x y y( , )1 1 12 0 ,

P' = (x1, 0). Since, h x x r x r( , ) ( ) ( )1 1 1
2

1 20 0= − − − =  and x1 ≠ r1, P' = (r2, 0). But, then, since

∂
∂

= − − =
h

x
r r r( , ) ( )2 2 1

20 0,

we find that r2 = r1 and P = P'. Thus, h (x, y) = 0 has at most one point of singularity.

If f (x, y) = 0 has two points of singularity, say (x1, y1) and (x2, y2), then u' (x1, y1) = u' (x2, y2) and
v' (x1, y1) = v' (x2, y2), where u', v' are as in section IV. But from the vector equations in section
IV, this implies that (x1, y1) = (x2, y2) and f (x, y) = 0 has at most one point of singularity.

Now let f (x, y) = 0 be singular and (x0, y0) its point of singularity. Let g (x, y) = f (x + x0, y + y0).
Then

g x y y a xy a y x a x a x a( , ) ' ' ' ' '= + + − − − −2
1 3

3
2

2
4 6
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Since (0, 0) is the point of singularity for g (x, y)=0, we have g (0, 0) = –a6' = 0,
∂
∂

= =
g

y
a( , ) '0 0 03 , and 

∂
∂

= − =
g

x
a( , ) '0 0 04 . Hence,

g x y y a xy x a x y x y x x( , ) ' ' ( )( ) , ,= + − − = − − − ∈2
1

3
2

2 3α β α β C .

If α = β, then the singular point (x0, y0) is a cusp, otherwise it is a node. In the case of a node, if
α, β∈Q, then the node is a split case, otherwise it is a nonsplit case.

VI. The Group Operation on Elliptic Curves

Let E (Q) be an elliptic curve given by an equation f (x, y) = 0 as in section III and denote the
point at infinity on the elliptic curve by O. The following method will be used to add points in
E (Q):

(i) P + O = O + P = P, for all P∈E (Q)

(ii) if P1, P2∈E (Q) – {O}, then let l P P= 1 2  if P1 ≠ P2 and let l be the line tangent to the
curve at P1 if P1 = P2. If l is vertical, then P1 + P2 = O. Otherwise, P1 + P2 = (x, –y) where
(x, y) is the point of intersection of l and E (Q) distinct from P1 and P2.

Under this operation, it can shown that E (Q) forms an abelian group. The point O is the identity
element and if P = (x, y), then –P = (x, –y). Given a prime p, let E [p]={P∈E (Q): pP = O}.It can
be shown that |E [p]| = p2 and that E [p] is a subgroup of E (Q) isomorphic to Z / pZ × Z / pZ.

VII. Reduction Modulo p

Let p be a prime and f (x, y) be as in section III. Since each ai∈Z, we can reduce the coefficients
modulo p and consider f (x, y) as a polynomial in Fp = Z / pZ. The curve f (x, y) = 0 is

nonsingular if there are no simultaneous solutions in Fp

2
 to the equations

f x y
f

x
x y

f

y
x y( , ) ( , ) ( , )=

∂
∂

=
∂
∂

=0 0 0 .

Any such solution is called a point of singularity and it can be shown that there exists at most
one such point. When

g x y y x y x x p( , ) ( )( ) , ,= − − − ∈α β α β3 F

is constructed as in section V, the point of singularity is a cusp if α = β and is a node if α ≠ β. If
it is a node and α, β∈Fp, the node is a split case, otherwise it is a nonsplit case.

The curve

E x y z f x y zp p
( ) : ( , , ) ,

~
( , , )F PF= ∈ ∀ ∈ =α α2 0o t
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is an elliptic curve if the curve f (x, y) = 0 is nonsingular. It can be shown by methods similar to
those used in section IV (care must be taken for the case p∈{2,3}) that E (Fp) is an elliptic curve
if and only if p/| ∆ .

If E (Fp) is an elliptic curve, then E (Q) is said to have good reduction at p. If E (Fp) is not an
elliptic curve, then the curve f (x, y) = 0 in Fp

2  has a point of singularity. If this point is a node, E

is said to have multiplicative reduction at p. If it is a cusp, E has additive reduction at p.

VIII. Minimal Equations

Let r∈Q. If r ≠ 0, write r = pnu / v, where GCD (p, u) = GCD (p, v) = 1. Then the p-adic norm
of r is defined to be |r|p = p–n. We define |0|p = 0. A number r∈Q is p-integral if |r|p ≤ 1.

Let E (Q) be an elliptic curve given by an equation f (x, y) = 0 in the form shown in section III.
An admissible change of variables is one of the form

x u x r y u y su x t= + = + +2 3 2' ' '

where u, r, s, t∈Q and u ≠ 0. The equation, f (x, y) = 0, is said to be minimal for the prime p if
the power of p dividing ∆ cannot be decreased by making an admissible change of variables with
the property that the new coefficients are p-integral. The equation, f (x, y) = 0 is said to be a
global minimal Weierstrass equation if it is minimal for all primes and its coefficients are
integers. Two elliptic curves related by an admissible change of variables are said to be
isomorphic.

It can be shown that for any elliptic curve, E (Q), given be an equation f (x, y) = 0 of the form in
section III, there exists an admissible change of variables such that the resulting equation is a
global minimal Weierstrass equation.

IX. The Conductor

Let E (Q) be an elliptic curve given by a global minimal Weierstrass equation f (x, y) = 0. The
conductor of E is defined to be

N pn p

p

= ∏ ( )

 prime

where

n p

E p

E p

E p

( )

.

=
≥

R
S|
T|

0

1

2

if  has good reduction at 

if  has multiplicative reduction at 

if  has additive reduction at 

There are algorithms for determining the exact value of n (p) in the additive case. It should be
noted that in this case, if p > 3, n (p) = 2.
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X. Semistable Elliptic Curves

Let E (Q) be an elliptic curve given by an equation f (x, y) = 0 of the form in section III. Let
E' (Q) be an isomorphic elliptic curve given by a global minimal Weierstrass equation with
conductor N. If for all primes p such that p | N, p N2 /| , i.e. N is squarefree, then E (Q) is said to
be semistable.

XI. The L-function

Let E (Q) be an elliptic curve given by a global minimal Weierstrass equation, f (x, y) = 0. Let p

be a prime. If p/| ∆ , define ap = p + 1 – | E (Fp) |. If p | ∆, let P p∈F
2
 be the point of singularity

on the curve f (x, y) = 0 and define

a

P

P

P
p =

−

R
S|
T|

0

1

if  is a cusp

1 if  is a split case of a node

if  is a nonsplit case of a node

Let

ε p

p

p p
=

/
RST
0 if 

if 

|

|

∆
∆

The L-function of E is defined to be

L E s
a p pp

s
p

s
p

( , ) =
− +

L
NMM

O
QPP− −∏ 1

1 2ε prime

.

We can then write

L E s a p p
n

m
a pp

s
p

s n

np
p
n m

p
m m n s

m

n

np

( , ) ( )= −
L
NM

O
QP =

F
HG

I
KJ

L
NM

O
QP

− −

=

∞
− − +

==

∞

∑∏ ∑∑∏ε ε2

0 00

d i
 prime  prime

.

Now ∀n∈N, define

A i j i j i j nn = ∈ ≥ ≥ + =( , ) : ,Z2 0m r

and

a
i

j
a

p p
i j

p
j

i j A

n

n

=
F
HG
I
KJ

−

∈
∑ ε

( , )

.
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Then

L E s a p
p

ns

np

n( , ) = +
L
NM

O
QP

−

=

∞

∑∏ 1
1 prime

.

Now define a1 = 1 and ∀n∈N, with n p p pm m
k
mk= 1 2

1 2 L  being the unique factorization of n, define
a a a an p p pm m

k
mk=

1
1

2
2 L . It then follows that

L E s
a a a

a a a

a a a

a a a a a a

a

n

s s s

s s s

s s s

s s s s s s

n
s

n

( , )
( ) ( )

( ) ( )

(5 ) (5 )

( )

= + + + +
F
HG

I
KJ

× + + + +
F
HG

I
KJ

× + + + +
F
HG

I
KJ

×

= + + + + + F
HG

I
KJ +

=
=

∞

∑

1
2 2 2

1
3 3 3

1
5

1
2 3 2 5 2 3

2 2
2

2
3

3 3
2

3
3

5 5
2

5
3

2 3 2
2

5 2 3

1

2 3

2 3

2 3

2

L

L

L

L

L

XII. Modular Forms

Let H z z= ∈ >C:Im 0l q  denote the complex upper half plane and

Γ = =
F
HG

I
KJ ∈ − =

RST
UVW

SL
a b

c d
a b c d ad bc2 1( ) : , , ,Z Z and 

denote the special linear group. If γ ∈Γ and z∈H, define γ z
az b

cz d
=

+
+

. It can be verified that if

z∈H, then γ z∈H and γ1(γ2 z) = (γ1γ2) z. Now for each N∈N, define

Γ Γ0 0( ) : (mod )N
a b

c d
c N=

F
HG

I
KJ ∈ ≡

RST
UVW

.

Let k∈Z, let N∈N, and let f: H → C be a holomorphic function that satisfies the condition

f z cz d f z z H Nk( ) ( ) ( ), , ( )γ γ= + ∀ ∈ ∈Γ0 .
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Since 
1 1

0 1 0

F
HG

I
KJ ∈Γ ( )N , it follows that f (z + 1) = f (z) and f has a Fourier expansion

f z a q q en
n

n

iz( ) ,= =
=−∞

∞

∑ where 2π

If an = 0 for all n < 0, then f is called a modular form of weight k on ΓΓ0(N). The number, N, is
called the level of f. If, in addition, a0 = 0, f is called a cusp form.

XIII. Old and New Forms

The set of modular forms of weight k and level N is denoted Mk(N). Now let f, g∈Mk(N) and
h (z) = f (z) + g (z). It follows that for all γ ∈Γ0(N)

h z f z g z cz d f z g z cz d h zk k( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )γ γ γ= + = + + = +

and h∈Mk(N). Also, if f∈Mk(N), w∈C, and h (z) = wf (z), then for all γ ∈Γ0(N)

h z wf z cz d wf z cz d h zk k( ) ( ) ( ) ( ) ( ) ( )γ γ= = + = +

and again h∈Mk(N). Hence, the set Mk(N) is a complex vector space.

Let N be fixed and d∈Z be given such that 1 < d < N and d | N. Define the set

O M d g z g z f d z f M d dd Nd k k= ∪ = ∈ =( ) ( ): ( ) ( ' ) ( ) ' for some ,  where l q .

It follows that Od ⊂ Mk(N).

PROOF
Let g∈Od. Assume g∈Mk(d). Since Γ0(N) ⊂ Γ0(d), it follows easily that g∈Mk(N). Now assume
g∉Mk(d). Let f∈Mk(d) be given such that g (z) = f (d'z). Let γ ∈Γ0(N) ⊂ Γ0(d) be given. Then

g z g
az b

cz d
f

ad z bd

cz d
f

a d z bd

dd d z d
c Nd( )

' ' ( ' ) '

' ' ( ' )
' 'γ =

+
+

F
HG

I
KJ =

+
+

F
HG

I
KJ =

+
+

F
HG

I
KJ =,  where .

Since ad bd dd ad bc− = − =' ' ' 1, it follows that 
a bd

dd d

'

' '

F
HG

I
KJ ∈Γ0(d). Thus,

g z dd d z d f d z cz d g zk k( ) ( ' ' ( ' ) ) ( ' ) ( ) ( )γ = + = +

and g∈Mk(N).�

Now let O Od
d N d N

=
< <1 , |
∪ . The subspace of Mk(N) spanned by the vectors in O is called the space of

old forms.
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Let G ⊂ Γ be a subgroup. Two points, z1, z2∈H are G-equivalent if ∃γ ∈G such that z2 = γ z1. A
closed region F ⊂ H is a fundamental domain for G if every z∈H is G-equivalent to a point in
F, but no two distinct points z1, z2 in the interior of F are G-equivalent.

The Petersson inner product on the space, Mk(N), is defined as

f g f z g z y dxdyk

F
, ( ) ( )= −z 2

where z = x + iy and F is a fundamental domain for Γ0(N).

A modular form, f ∈Mk(N), is said to be a new form if there exists an old form, g ∈Mk(N), such
that f g, = 0 .

XIV. Finite Dimensionality

Define Sk(N) = {f ∈Mk(N): f is a cusp form}. It can be easily verified that Sk(N) is a subspace. In
fact, Mk(N) (and, thus, Sk(N)) is finite dimensional. For our purposes, we will be interested in the
dimension of Sk(N) when k = 2. There is a complex formula for computing dim S2(N), which, in
the case when N is prime, reduces to

dim ( )S N
N

2
2 31

12 4 3
=

+
− −

µ µ
,

where

µ 2

2 1 4

0 3 4

1 2

=
≡
≡
=

R
S|
T|

if 

if 

if 

N

N

N

(mod )

(mod )

and

µ 3

2 1 3

0 2 3

1 3

=
≡
≡
=

R
S|
T|

if 

if 

if 

N

N

N

(mod )

(mod )

An application of this formula for the case N = 2 shows that dim S2(2) = 0, i.e. S2(2) = ∅.
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XV. Hecke Operators

Let N and k be fixed and consider the space Mk(N). The hecke operators are functions

Tm: Mk(N) → Mk(N), m∈N where if f z a qn
n

n

( ) =
=

∞

∑
0

, with q = e2πiz, then

T f z b qm n
n

n

( )( ) =
=

∞

∑
0

where

b

a d n

a n

d a n

n

k

d d m

m

k

nm d
d n m

=

=

=

>

R

S
|||

T
|||

−

>

−

∑

∑

0
1

0

1

0

1

12

, |

/
| ( , )

if 

if 

if 
GCD

Let f z a qn
n

n

( ) =
=

∞

∑
0

 be given. If there exists a sequence of complex numbers, λ m m
l q =

∞

1
, such that

Tm (f ) = λm f, then f is an eigenform.

XVI. Modular Forms vs. Elliptic Curves

Let f∈S2(N) be a new eigenform. Write

f z a q q en
n

n

iz( ) ,= =
=

∞

∑
1

2 with π .

By multiplying f by an appropriate constant, if necessary, we can make a1 = 1. This is called
normalizing the form f. If, after the normalization, each ai∈Z, then there exists an elliptic curve,
E (Q) given by an equation with integer coefficients, whose conductor is N and whose L-function
has coefficients, ai, that are precisely those in the Fourier expansion of f. An elliptic curve
formed in this fashion is called modular.

XVII. Shimura-Taniyama-Weil

The Shimura-Taniyama-Weil conjecture is this: Let E (Q) be an elliptic curve whose equation
has integer coefficients. Let N be the conductor of E, and for each n let an be the number
appearing in the L-function of E. Then there exists a cusp form of weight 2, level N, which is a

new eigenform, and (when normalized) has Fourier expansion equal to a qn
n

n=

∞

∑
1

, with q = e2πiz.

Andrew Wiles proved that this conjecture is true under the added assumption that the elliptic
curve in question is semistable.
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XVIII. The Frey Curve

Suppose ∃ u, v, w∈Z* and prime q ≥ 5 such that uq + vq + wq = 0. Suppose further that u, v, w are
relatively prime, u ≡ – 1(mod 4) and v is even. Let

f x y y x x u x vq q( , ) ( )( )= − − +2

The elliptic curve given by f (x, y) = 0 is called the Frey curve. By making the admissible
change of variables x = 4x', y = 8y' + 4x', f (x, y) = 0 becomes g (x, y) = 0, where

g x y y xy x
v u

x
uv

x
q q q

( , )
( )

= + − −
− −

+2 3 21

4 16
.

The congruences show that the coefficients are integers and, in fact, the equation g (x, y) = 0 is a
global minimal Weierstrass equation. To compute the dicriminant ∆ of g (x, y) = 0, we note that

a b v u

a b
uv

a
v u

b

a
uv

b
uv

a

q q

q

q q

q q

1 2

3 4

2 6

4 8

2

6

1

0
8

1

4
0

16 256

0

= = −

= = −

=
− −

=

= − = −

=

( )

( ) ( )

Thus,

∆ =
−

+ = − +

= + =

( ) ( ) ( ) ( )
(( ) ( ) )

( )
( )

( )
.

uv v u uv uv
v u uv

uv
v u

uvw

q q q q q
q q q

q
q q

q

2 2 3 2
2

2
2

2

256 64 256
4

256 256

It can be shown that the Frey curve is semistable so that its conductor is

N p
p uvw

= ∏
|

.

XIX. Ribet's Theorem

Let f ∈S2(N) be a normalized, new eigenform and write

f z a q q en
n

n

iz( ) = =
=

∞

∑
1

2,  where π .
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Let E (Q) be an elliptic curve with dicriminant ∆, conductor N, and L-function

L E s
a

n
n
s

n

( , ) =
=

∞

∑
1

.

Write ∆ = p p pp p pr
r1 2

1 2
α α αL , N p p

p

= ∏ β

|∆

 and fix a prime, l. As remarked in section IV, E [l] is a

2-dimensional vector space. If there is no 1-dimensional subspace of E [l] which is left fixed by
the action of the Galois group G = Gal (Q(E [l])/Q), where Q(E [l]) is the smallest field
containing the rationals and the coordinates of the points in E [l], then E[l] is said to be
irreducible. If E [l] is irreducible, then Ribet's theorem states that there exists f1∈S2(N1), where

N
N

p
p

l
p

p

1

1

=

=
∏

| , ,
|

∆ β
α

.

XX. Fermat's Last Theorem

There are no non-zero integers x, y, z such that xn + yn = zn when n ≥ 3.

PROOF
Proofs of the specific cases n = 3 and n = 4 are available elsewhere. Assume there are non-zero
integers x, y, z and an integer n ≥ 3 such that xn + yn = zn. Since the theorem is true for the cases
n = 3 and n = 4, there must be a prime q ≥ 5 such that q | n. Let n = qd, so that uq + vq + wq = 0,
where u = xd, v = yd, w = – zd. After dividing through by common factors, if necessary, we can
assume u, v, w are relatively prime. Hence, exactly one of them is even. Of the other two, one
must be congruent to –1 modulo 4. After renaming the variables, if necessary, we may assume
u ≡ –1 (mod 4) and v is even. From section XVIII, the Frey curve,

y xy x
v u

x
uv

x
q q q

2 3 21

4 16
+ = +

− −
−

( )

is semistable. So by section XVII, there exists a new eigenform f ∈S2(N), where N p
p uvw

= ∏
|

. It

can be shown that on this curve, E [q] is irreducible. Now

∆ = = =
− =

≠
RST∏( )

|

uvw
p

q p

q p

q

p uvw
p

p

2

256

2 8 2

2 2
β β,  where 

if 

if 
.

Hence, by section XIX, there exists f1∈S2(N1), where

N
N

p
p q p

1 2= =
∏
| , |∆ β

.

But in section XIV, it was noted that S2(2) = ∅.�
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The proof given here for Fermat’s Last Theorem is hardly a proof at all. Many of the
facts given in this paper were stated without proof and, more importantly, no mention has been
made of the method Wiles employed to show that all semistable elliptic curves are modular.
This, of course, was his major contribution and what you see here is a very brief sketch of some
of the mathematics involved in determining that this fact implies Fermat’s Last Theorem. This
paper is meant as a guide, both for myself and the interested reader. The next step in my
investigation of this topic will be to study the points of finite order on elliptic curves and their
respective Galois representations.

It is undoubtedly an ominous task to try to learn all that is necessary to verify the work of
the many mathematicians that have contributed to this proof, but the alternative is to simply
accept that it is valid on the authority of the experts. In any intellectual discipline, especially in
mathematics and the sciences, this is a dangerous habit indeed and I would encourage anyone
with the drive and interest to pursue this knowledge for themselves.
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