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It seems an undisputed fact in the mathematical community that the long sought after
proof of Fermat’s Last Theorem has indeed been found. Though a member of the mathematical
community myself, | am in the unfortunate position of being unable to either dispute or attest to
the validity of thisclaim. | have been told that the amount of time required to obtain knowledge
enough to critique the proof would be measured in years. After my brief survey of the
mathematics involved, I'm reasonably convinced that thisistrue. It's unfortunate that the
solution to such a classic problem as this has come to us in a way understandable by only the
most learned experts. It isfor this reason that | write this paper. My hope is that it will serve as
an initial guide to anyone interested in learning what is necessary to verify for themselves the
validity of the proof of Fermat’s Last Theorem.

Fermat’s Last Theorem, until recently, was not atheorem at all, but a conjecture. The
challenge was to prove or disprove the claim that there are no non-zero integers x, y, z such that
x"+y"=Z"whenn3 3. A proof of this claim has been provided by Andrew Wiles. Thisclaimis
actually acorollary to alarger theorem that Wiles proved, namely that all semistable elliptic
curves are modular. This paper will provide avery brief sketch of what this means and how it
implies Fermat’s Last Theorem.

. The Projective Plane

Let K be afield and define arelation on K* — {0} by
(x,y,2 ~(x,y,2) iff $l 1 K" such that x,y,2=1(x,y,2)

It can be easily verified that this is an equivalence relation and the projective plane, PZ , is

defined to be the set of equivalence classesin K* — {0} under thisrelation. Now define P | P2
to be

P={al P} $(xy.21a,z! 0}
Sinceif (X, y,2 ~(X,Y, Z),thenz=0if and only if Z =0, it follows that, equivaently,
P={al P;:"(xy.21a,z! 0}

Now let p : P® K? be defined as

p(a)zté,z) , where (x,y,2)T a

z'z

To see that thisis awell defined function, let (x, v, 2), (X, Y, Z)] a and| 1 K" such that
X

Xy, 2 =] (X,y,2).Sncez1 0,1 =< 1fx1 0,then | ===2 1fx =0, thenx=1X = 0.
Z X Z

In either case, ﬁzil.Similarly, RS
z zZ z
(x, ¥, 21 a. Now supposep (a) =p (b). Then$ (x, v, 21 a, (X, Y, Z)I b such that

ll . Hence, p (@) is defined independently of the choice of
z



(5,1):(5,,—,).Sincez,21 0let] =21 K'. Then x=2=1x. Similarly y =1y, i.e.
z z Z Z z z

a =b and p isinjective. Now let (p, g)T K. If a denotes the equivalence class of (p, g, 1) in P,
then p (a) = (p, ) and p is surjective. Thus there is a one-to-one correspondence between K2 and

the proper subset, P1 P2 . Itisfor thisreason that P2 isthought of as an extension of K and
the pointsin P — P are called "the points at infinity".

. Curvesin the Projective Plane

The degree of amonomial is the sum of the powers of its variables. The total degree of a
polynomial is the maximum degree of the monomials of which it isasum. If the total degree of a
polynomial is equal to the degree of each of the monomials of which it is a sum, then that
polynomial is said to be homogeneous.

Let f (x, y) be apolynomial with coefficients in K. The cor responding homogeneous
polynomial is defined to be

F(x,y,z)zz”f(:z),

Z Z

where n isthe total degree of f. If cXy! is amonomial in f, then the corresponding term in fis
n—(

cXyiz"0*) Sincens i +j, f isindeed apolynomia andsincei +j+n—(i +j)=n, f is
indeed homogeneous and of degree n.

The equation f (x, y) = 0 definesacurve C = {(x, y)I K?: f (x, y) = O}. The projective
completion of Cisthe curve

C={al Pi:s(xy.91a,f(xy.2=0
Since" 1T K, f(Ix1y,12)=1"f(xy,2), it followsthat, equivalently,
C'={aT PZ:" (x,y,2)1 a, F(x,y,z)zo}

Now consider the function, p, given above. Letal C C Pand (x, Y, 2)1 a. Then
f(x,y,2)=0=2"f(p(a)). Sincez* 0, it followsthat p (a) T Cand, thus,p (C'G P)1 C.Now

let (p, g)f C and a denote the equivalence class of (p, g, 1) in PZ. Since f (p,a,1)=f(p,q) =0,
al C.ThusCI p(C' CP),i.e.p(C' C P)=C.Sincep isabijection, we consider C' C P to be
equivalent to C, with the equivalence class of (x, y, 1) in C' C P associated with the point

(x, Y)I C. The remaining points on C' are points at infinity.



1. Elliptic Curves

Let
f(xy) =y +axy+ay- X’- a,x’ - ax-a, alZ.
The curvef (x, y) = 0issingular if there is a simultaneous solution in C? to the equations

f f
f(x,y)=0 T xy =0 T .y =0.
x Ty

Any such solution is called a point of singularity. The curveisnonsingular if it is not singular.
If f (X, y) = 0isnonsingular, then the curve

E(Q) :{aT Pa" (x,y,2)1a, f(x,v,2) :O}

iscaled an dliptic curve.

V. The Discriminant

Let f (x, y) be asin section 1 and let g(x,y) = 4f (x,%) 1t follows that

g(x,y) = y*- 4x°- b,x* - 20,x- by, where
b, =a; +4a,

b, =2a, +aa,

by =a; +4a,

Now let h(x, y) = 11664g(> 2 3'02 y)— 6656f(x 3'02 y- 3alx+§féb2 1082, Then

h(x,y) = y*- x> +27c,x* +54c,, where
c, =b2 - 24b,
C=- b23+36b2b4 - 216b6

It followsthat h (x, y) = 0issingular if and only if f (x, y) = 0issingular.

PROOF

Let u(x,y) XD g v(x,y) =2 3a1X+29féb2 - 10835\ ote that

T, e T
g 0Y) Z 1296 (U0, ). v(x,)) - 6483, o0 (X YU Y)



and
h f
T x,y) =216 (u(x, y),vx, 1)
Ty iy
Now suppose the curve h (x, y) = 0issingular. Let (Xo, Yo) be a simultaneous solution to
h h
h(x,y) =0 Mxy =0 T ixy) =0
fix iy
It follows from the above equations that (u (Xo, Yo), V (Xo, Yo)) IS a Ssmultaneous solution to
f f
f(x)=0 Ty =0 T xy=0
fix iy

andf (x, y) =0issingular.

Now supposef (X, y) = Oissingular and let (xo, Yo) be a smultaneous solution to
f(xy)=0 T xy=0 T xy=0
fix iy

Let u' (x,y) =36x+ 3b,and vV (X, y) = 108a,x +216y +108as. Note that

o=l ) s

X\ 1( 6 O0yu(xy) 1 2b,
[y)‘z_la[-sai 1)(v‘(x, y))' ﬂ(lZas- albz)'

Now let (X1, y1) = (U' (Xo, Y0), V' (X0, Yo))- Then h (xq, y1) = 46656 f (u (X1, Y1), V (X1, Y1)). But
EHE S HE RN
Vi, ¥)) 216\-3a 1\y,) 24(12a,-ab,) \y)’

S0 h (X1, y1) = 46656 f (Xo, Yo) = 0. Similarly, :IIT]_:(XO’yO) =0 and ?]—;(XO,yO) =0.Thus, h(x,y) =

Thus,

Oissingular. [J

Now write

h(x,y) =y? - (X- i)(X- 5)(X- 1), I’l,I’Z,I’ST C.



It follows that h (x, y) = 0 isnonsingular if and only if ry, ry, r3 are distinct.

PROOF
Supposery, Iy, rz aredistinct and h (x, y) = 0issingular. Let (Xo, Yo) be a point of singularity.

Then E—h(xo, Yo) =2y, =0. Since h (%, 0) = 0, it follows that Xl {r1, ra, rs}. Without loss of
y

generality, assume xp = r;. Then
h
%(rl,O) =-(r-r)(r-r)=0.

But this cannot be sincery, r, r3 are distinct.

Now suppose h (x, y) = 0 isnonsingular and, without loss of generality, that r; =r,. Let
(X0, Yo) = (r1, 0). Then h (r1, 0) =0, %(rl,O) =0, and %(rl,O) =-(r,- r,)(r,-r)=0,snce
r1 = r,. But this cannot be since h (x, y) = 0 isnonsingular. [

Let d = (r1 —r2)(r1 —r3)*(r2—r3)% Then h (x, y) = Oissingular if and only if d = 0. It can be
verified that

1 1 1
detf r, r, g [=(rg-n)(rs-r)r,-r),
rl2 r22 r32
o that
1 1 1)1 r r? 3 s, s,
d=det|r, r, r,1r, r/|=det|s, s, s,
N S Al (e R R 0 S, S; S,

wheres, =1/ +r) +r, for LEi £4.1f a =ry+ 12+ 713, b =r1rp+r1r3 +ror3, and g = rrors, then it
can be verified algebraicaly that

s,=a
s,=a’-2b
s,=a’- Jab+3y
s,=a"- 4a’b+2b”*+4ag.
Now since

x* - 27¢,X- 54c, = (X- r)(X- 1,)(X- 15) = X3 - (1, +1, +1,)X° + (11, + 10, +1,0) X [,



it followsthat a =0, b = -27¢4, and g = 54¢s. Hence,

3 0 S4c,
d=deff 0 54c, 162c, |=78732(c3- ¢).
54c, 162c, 1458c’

Thedicriminant D of the curvef (x, y) = O isdefined to be
D=-blh, - 8o - 27h + 9b,b,b,

where b, =a’a, +4a,a, - a,a,a, +a,a; - & . It can be verified that 4b, =b)b, - b . Using this
equality, it can be verified that

1728D=c; - .
Hence, f (x, y) = 0issingular iff h (x,y) =0issngular iff d=0iff D=0.
V. Typesof Singularities
Letf (x,y) beasinsectionIll and h (X, y) beasin section IV. Suppose h (X, y) = 0issingular. Let

P = (xo, Yo) be apoint of singularity. From section 1V, we may state, without loss of generality,
that P = (r4, 0), where

h(X, Y) = y2 - (X' 1)2(X' rz)

If P' = (X1, y1) is another, distinct, point of singularity, then, since TT_;(XP y,) =2y, =0,

P' = (x4, 0). Since, h(x,,0) =- (%, - ,)?(x,- r,) =0 and x; * ry, P' = (r2, 0). But, then, since
h
0=, 1) =0

wefindthat r, =r;and P =P'. Thus, h (X, y) = 0 has at most one point of singularity.

If f (x, y) = 0 has two points of singularity, say (X1, Y1) and (X2, ¥2), then u' (X1, y1) = U’ (X, y2) and
V' (X1, Y1) =V (X2, ¥2), Where U', V' are asiin section IV. But from the vector equations in section
IV, thisimpliesthat (x1, y1) = (X2, ¥2) and f (X, y) = 0 has at most one point of singularity.

Now let f (X, y) = 0 be singular and (o, Yo) its point of singularity. Let g (X, y) =f (X + Xo, Y + Yo).
Then

gx,y) =y’ +a'xy+a'y- x*- a,'x* - a,"x- a'



Since (0, 0) is the point of singularity for g (X, y)=0, we have g (0, 0) = —a¢' = 0,
E(O,O) =a,'=0, and E(O,O) =-a,'=0. Hence,
iy fix

g(x,y) = y2+a,'xy- xX*- a,'x* =(y- ax)(y- bx)- x}, a,biC.

If a = b, then the singular point (X, Yo) isacusp, otherwise it isanode. In the case of anode, if
a, bl Q, then the node is a split case, otherwise it is a nonsplit case.

VI.  TheGroup Operation on Elliptic Curves

Let E (Q) be an dliptic curve given by an equation f (X, y) = 0 asin section |11 and denote the
point at infinity on the elliptic curve by O. The following method will be used to add pointsin

E (Q):

() P+0=0+P=P,foralPl E(Q)

(i)  if P, Pol E(Q)—{O},thenlet | = PP, if P, P, and let | betheline tangent to the
curve a Py if Py = P,. If | isvertical, then P, + P, = O. Otherwise, P; + P, = (X, —y) where
(%, y) isthe point of intersection of | and E (Q) distinct from P, and Px.

Under this operation, it can shown that E (Q) forms an abelian group. The point O is the identity

element and if P = (x, ), then —P = (x, —y). Given aprime p, let E [p]={PI E (Q): pP = O}.It can

be shown that |E [p]| = p* and that E [p] is a subgroup of E (Q) isomorphicto Z / pZ ~ Z | pZ.

VII. Reduction Modulo p

Let pbeaprimeand f (x, y) beasin section I11. Since each a1 Z, we can reduce the coefficients
modulo p and consider f (X, y) asapolynomial in Fp=Z / pZ. The curvef (x,y) =0is

. . . . .= 2 .
nonsingular if there are no simultaneous solutionsin F; to the equations

f f
f(x,y)=0 T xy)=0 T x.y) =0.
x Ty

Any such solution is called a point of singularity and it can be shown that there exists at most
one such point. When

g(x,y) =(y- ax)(y- bx)- x*, a,bl F,

is constructed as in section V, the point of singularity isacuspif a =b andisanodeifa® b. If
itisanode and a, bl F,, the node is a split case, otherwise it is a nonsplit case.

The curve

E(Fp)z{aT P (x,y,21 a, F(x,y,z)zo}



isan elliptic curveif the curvef (x, y) = Oisnonsingular. It can be shown by methods similar to
those used in section 1V (care must be taken for the case pl {2,3}) that E (Fp) is an dliptic curve
if and only if p|D.

If E (Fp) isan elliptic curve, then E (Q) is said to have good reduction at p. If E (Fp) isnot an
elliptic curve, then the curvef (x,y) =0in Fs has a point of singularity. If this point isanode, E

issaid to have multiplicative reduction at p. If it isacusp, E has additive reduction at p.
VIII. Minimal Equations

Letrl Q.1fr O, writer = p"u/v, where GCD (p, u) = GCD (p, V) = 1. Then the p-adic norm
of r is defined to be ||, = p™". We define [0}, = 0. A number rT Q isp-integral if |r|, £ 1.

Let E (Q) be an dliptic curve given by an equation f (x, y) = 0 in the form shown in section I11.
An admissible change of variablesis one of the form

X = UX'+r y = WPy'+su’X'+t

whereu, r, s, tt Qandu! 0. The equation, f (X, y) = 0, is said to be minimal for the prime p if
the power of p dividing D cannot be decreased by making an admissible change of variables with
the property that the new coefficients are p-integral. The equation, f (x, y) = 0issaidto bea
global minimal Weler strass equation if it isminimal for all primes and its coefficients are
integers. Two elliptic curves related by an admissible change of variables are said to be

isomor phic.

It can be shown that for any elliptic curve, E (Q), given be an equation f (X, y) = 0 of theformin
section |11, there exists an admissible change of variables such that the resulting equation is a
globa minimal Weierstrass equation.

IX.  TheConductor

Let E (Q) be an dliptic curve given by aglobal minimal Weierstrass equation f (x, y) = 0. The
conductor of E is defined to be

N = C) P
p prime
where
0 if E has good reduction at p
n(p) =41 if E has multiplicative reduction at p

32 if E has additive reduction at p.

There are algorithms for determining the exact value of n (p) in the additive case. It should be
noted that in thiscase, if p> 3, n(p) = 2



X. Semistable Elliptic Curves

Let E (Q) be an dlliptic curve given by an equation f (x, y) = 0 of the form in section I11. Let
E' (Q) be an isomorphic eliptic curve given by a global minimal Weierstrass equation with

conductor N. If for all primesp suchthat p|N, p°J N, i.e. Nissquarefreg, then E (Q) issaid to
be semistable.

XI. The L-function

Let E (Q) be an dliptic curve given by aglobal minima Weierstrass equation, f (x,y) =0. Let p
beaprime. If p|D, definea,=p+1—|E(Fp) | Ifp|D,let PI F_p2 be the point of singularity
on the curvef (x, y) = 0 and define

0 if Pisacusp
a,=+<1 if Pisasgplit case of anode
-1 if P isanonsplit case of anode
Let
0 if p|D
o = ifpl
P {p if p|D

The L-function of E isdefined to be

L(E,9= O { ! }

-s -2s
p prime 1- app +epp

We can then write

= g s ~2s\N ~ g 3 (n n-mom - (m+n)s
L(E,s9= QO [a (app - eppz)}: O [aa(mjap epp< )]
p

pprime_n=0 prime[ n=0 m=0
Now " nl N, define
A ={i, )T 2% j20i+]=n]

and

a.= & [ e
T a % Tp
.1\



Then

L(E,9= O [1+é a, p‘”s]

p prime n=1

Now definea; =1and" nl N, with n= p*p®..- p™ being the unique factorization of n, define
R It then follows that

L(E,s)=£1+ﬁ+ af + af +)

2> (2 ()
ey B $ 4.
[1+3S+(32)3+(33)3+ )
1By F L & +)

[1 2 3\ S
5 (5 (5)

1+

a8, % +as+az(ae)+...
23 33 (22)3 53 23 33
S

S

n

7 o

XIl. Modular Forms

Let H={z1 C:Imz>0!} denote the complex upper half plane and

ab -
G=SI_2(Z)={£C d):a,b,c,dl Z and ad - bczl}

denote the special linear group. If g1 Gand ZI H, define gz::Z—:Z. It can be verified that if
z

Zl H, then gz H and qi(¢ 2) = (@) z Now for each NI N, define
a b).
C%(N)z{(c d)l Gc° 0(mod N)}.

Letki Z, let NI N, andlet f: H® C be aholomorphic function that satisfies the condition

f(92) =(cz+d)*f (2, "zl H,gl G(N).

10



1 1),
Since [O JI G(N), it followsthat f (z+ 1) = f (2 and f has a Fourier expansion

2piz

¥
f(2= qaq", Wwhereq=¢e
n=-¥

If a, =0for dl n<0, thenfiscaled amodular form of weight k on Gy(N). The number, N, is
called the level of f. If, in addition, ap = 0, f is called a cusp form.

XIIl. Old and New Forms

The set of modular forms of weight k and level N is denoted M(N). Now let f, gi My (N) and
h(2) =f (2 + g (2. It follows that for al g1 Gy(N)

h(g2) = f(g2) +9(g2) = (cz+d)"(f (2 + 9(2)) = (cz+d)“h(2)
and hi M(N). Also, if fl M(N), Wi C, and h (2) = wf (2), then for all g1 Go(N)
h(g2) =wf (g2) = (cz+d)“wf (2) = (cz+d)“h(2)
and again hi M(N). Hence, the set M(N) is a complex vector space.
Let N befixed and di Z be given such that 1 < d < N and d | N. Define the set
0, =M, (d)E {9(2):9(2) = f (d'2) for somef T M, (d)}, wheredd'= N
It follows that Og1 My(N).

PROOF
Let gl Oq. Assume gl My(d). Since Go(N) I Gy(d), it follows easily that gi M(N). Now assume
gl M(d). Let fi Mi(d) be given such that g (2) = f (d'2). Let g1 Go(N) I Go(d) be given. Then

009 = o 1) 2. f[M

= , wherec= Nd".
cz+d cz+d dd'"(d'z) +d

a bd").
Since ad - bd'dd"'=ad - bc=1, it follows that [dd" q )I Go(d). Thus,

9(92) = (dd"(d'2) +d)" f (d'2) = (cz+d)* 9(2)
and gl My(N).J

Now let O = UOd . The subspace of M(N) spanned by the vectorsin O is called the space of

1<d<N,d|N
old forms.

11



Let GI Gbe asubgroup. Two points, zi, zl H are G-equivalent if $g1 G suchthat z =gz. A
closed region F I H isafundamental domain for G if every I H is G-equivalent to apoint in
F, but no two distinct points z, z in the interior of F are G-equivalent.

The Petersson inner product on the space, My(N), is defined as
(f.0)=]_f(Do(@)y* *dxay

wherez=x + iy and F is afundamental domain for G(N).

A modular form, fT My(N), is said to be anew form if there exists an old form, g T M(N), such
that (f,g)=0.

X1V. Finite Dimensionality
Define S(N) = {f T M(N): fisacusp form}. It can be easily verified that S(N) is a subspace. In
fact, M (N) (and, thus, S¢(N)) is finite dimensional. For our purposes, we will be interested in the

dimension of S(N) when k = 2. There is a complex formula for computing dim S(N), which, in
the case when N is prime, reduces to

dms,(N)y=N*L M M

12 4 3
where
2 if N° 1(mod4)
m, =<0 if N° 3(mod4)
1 ifN=2
and

2 if N° 1(mod?3)
if N © 2(mod3)
if N=3

o

n'}s:

[ —

An application of thisformulafor the case N = 2 shows that dim $(2) =0, i.e. $(2) = A&

12



XV. HeckeOperators

Let N and k be fixed and consider the space Mi(N). The hecke oper ator s are functions
¥ .
T Mi(N) ® M(N), mi N whereif f(2)=g a,q", with q = e®? then

n=0

T.(H)@=abg"

n=0

where

a, g d“* ifn=0
d>0,d|m

b, =<a, ifn=1

leci’?( d')"lanm,dz ifn>1

¥
Let f(2) =& a,g" begiven. If there exists a sequence of complex numbers, {I m}?:l, such that
n=0

Tm (f) =1 nf, thenfisan eigenform.
XVI. Modular Formsvs. Elliptic Curves

Let fl S(N) be anew eigenform. Write

¥
f(2)=Q aq", with q=e*?.

n=1

By multiplying f by an appropriate constant, if necessary, we can make a; = 1. Thisiscalled
normalizing the form f. If, after the normalization, each al Z, then there exists an elliptic curve,
E (Q) given by an equation with integer coefficients, whose conductor is N and whose L-function
has coefficients, a;, that are precisely those in the Fourier expansion of f. An eliptic curve
formed in this fashion is called modular.

XVII. Shimura-Taniyama-Waeil

The Shimura-Taniyama-Weil conjectureisthis: Let E (Q) be an dliptic curve whose equation
has integer coefficients. Let N be the conductor of E, and for each n let a, be the number
appearing in the L-function of E. Then there exists a cusp form of weight 2, level N, which isa

¥ .
new eigenform, and (when normalized) has Fourier expansion equal to g a,q" , with g = €2
n=1

Andrew Wiles proved that this conjecture is true under the added assumption that the elliptic
curve in question is semistable.

13



XVIIIl.TheFrey Curve

Suppose $ u, v, Wi Z" and prime g3 5 such that u? + v + wf = 0. Suppose further that u, v, w are
relatively prime, u® —1(mod 4) and vis even. Let

f(xy) =y* - x(x- uf)(x+v%)

The elliptic curve given by f (X, y) = Ois called the Frey curve. By making the admissible
change of variables x = 4x, y = 8y' + 4x, f (X, y) = 0 becomes g (x, y) = 0, where

vi-ui-1 uv)“
X2+( ) .

X,y) = 2 xy- X°-
g(x,y) =y +xy 2 6

The congruences show that the coefficients are integers and, in fact, the equation g (x, y) =0isa
globa minimal Weierstrass equation. To compute the dicriminant D of g (x, y) = 0, we note that

a =1 b, =v?- u’
(uv)*
aS:O b4:-
vi-ui-1 °
8= b, =0
_ (uw)s _ (uw)*
AT %= "5s
a;=0

Thus,

D= (WX - u)® (W)™ _ ()™

((v*- uh)* +4(uv)?)

256 64 256
2q 2q
_(w) (VO +u%)? = (uvw)
256 256

It can be shown that the Frey curve is semistable so that its conductor is

N:C)p.

pluvw

XIX. Ribet'sTheorem

Let f T S(N) be anormalized, new eigenform and write

¥
f(2)=Q aq", whereq =e*?.

n=1

14



Let E (Q) be an dliptic curve with dicriminant D, conductor N, and L-function

¥
L(Eg=8 .

n=1

Write D=pp5™=---pi*, N = C) p’* and fix aprime, |. As remarked in section IV, E[l] isa
pID

2-dimensional vector space. If there is no 1-dimensional subspace of E [I] which is |eft fixed by

the action of the Galois group G = Ga (Q(E [I])/Q), where Q(E [l]) isthe smallest field

containing the rationals and the coordinates of the pointsin E [1], then E[l] is said to be

irreducible. If E [I] isirreducible, then Ribet's theorem states that there exists fil S(Ny), where

N

Op
pID.b =1,
p

N, =

XX. Fermat'sLast Theorem

There are no non-zero integers x, y, zsuch that x" + y" = Z'whenn 3 3.

PROOF

Proofs of the specific casesn = 3 and n = 4 are available elsewhere. Assume there are non-zero
integersx, y, zand an integer n 3 3 such that X" + y" = Z". Since the theorem is true for the cases
n=3andn =4, theremust beaprimeq3 5suchthat g|n. Let n=qd, sothat u? + v +wi =0,
whereu =x, v=y", w=— 7. After dividing through by common factors, if necessary, we can
assume u, v, w are relatively prime. Hence, exactly one of them is even. Of the other two, one
must be congruent to —1 modulo 4. After renaming the variables, if necessary, we may assume
u° —1 (mod 4) and v is even. From section XVIII, the Frey curve,

a_ 9. q
y2+xy=x3+v - 1x2-(LjLV6)x

is semistable. So by section X V|11, there exists anew eigenform f T S(N), where N = C) p.It

pluvw

can be shown that on this curve, E [q] is irreducible. Now

(uw)® =~ _(29-8 ifp=2
D= = O p*, whereb = P
o5p QP whereb, =,

Pl
Hence, by section X1X, there exists fil S(N1), where

N
N =——=
O

pID.glb,

2.

But in section X1V, it was noted that $(2) = A/
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The proof given here for Fermat’s Last Theorem is hardly a proof at all. Many of the
facts given in this paper were stated without proof and, more importantly, no mention has been
made of the method Wiles employed to show that al semistable elliptic curves are modular.
This, of course, was his mgor contribution and what you see hereis avery brief sketch of some
of the mathematics involved in determining that this fact implies Fermat’s Last Theorem. This
paper is meant as a guide, both for myself and the interested reader. The next step in my
investigation of thistopic will be to study the points of finite order on elliptic curves and their
respective Galois representations.

It is undoubtedly an ominous task to try to learn all that is necessary to verify the work of
the many mathematicians that have contributed to this proof, but the alternative is to smply
accept that it is valid on the authority of the experts. In any intellectual discipline, especially in
mathematics and the sciences, this is a dangerous habit indeed and | would encourage anyone
with the drive and interest to pursue this knowledge for themselves.
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