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Classical Itô formula for Brownian motion:

g(B(t)) = g(B(0)) +

∫ t

0
g′(B(s)) dB(s) +

1
2

∫ t

0
g′′(B(s)) ds

Correction term due to E |B(t + ∆t)− B(t)|2 = ∆t .

For a process F with E |F (t + ∆t)− F (t)|4 ≈ ∆t , we construct
an integral such that

g(F (t)) = g(F (0)) +

∫ t

0
g′(F (s)) dF (s) +

1
2

∫ t

0
g′′(F (s)) dB(s),

where B is a Brownian motion independent of F .
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Definition of F

∂tu =
1
2
∂2

x u + Ẇ (x , t), x ∈ R; u(x , 0) ≡ 0

F (t) := u(x , t)

F is a centered Gaussian process with covariance

ρ(s, t) = E [F (s)F (t)] =
1√
2π

(|t + s|1/2 − |t − s|1/2)

F is a bifractional Brownian motion, qualitatively similar to
fractional Brownian motion (fBm) BH with H = 1/4.
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Quartic variation of F

Let Π = {0 = t0 < t1 < t2 < · · · } with tj ↑ ∞ and

|Π| := sup
j∈N

(tj − tj−1) < ∞.

Define VΠ(t) =
∑

0<tj≤t

|F (tj)− F (tj−1)|4.

Theorem (S 2007)

lim
|Π|→0

E
[

sup
0≤t≤T

∣∣∣∣VΠ(t)− 6
π

t

∣∣∣∣2] = 0, ∀T > 0.

F is not a semimartingale; cannot construct classical stochastic
integral. We construct an integral using Riemann sums.
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∆t = n−1 tj = j∆t ∆Fj = F (tj)− F (tj−1)

Left-endpoint and right-endpoint Riemann sums diverge.

E
bntc∑
j=1

F (tj−1)∆Fj ≈ − 1√
2π

bntc∑
j=1

∆t1/2 ≈ −t

√
n

2π

E
bntc∑
j=1

F (tj)∆Fj ≈
1√
2π

bntc∑
j=1

∆t1/2 ≈ t

√
n

2π

Need a symmetric Riemann sum to generate cancellations
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∆t = n−1 tj = j∆t ∆Fj = F (tj)− F (tj−1)

Let θ(t) = g(F (t), t) and t j = (tj−1 + tj)/2. We will consider

In(g, t) =

bntc∑
j=1

θ(t j)∆Fj
?−→
∫ t

0
θ(s) dF (s)

IT
n (g, t) =

bntc∑
j=1

θ(tj−1) + θ(tj)
2

∆Fj
?−→
∫ t

0
θ(s) dT F (s)
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Quadratic variation of F is infinite.

Define

Qn(t) =

bntc∑
j=1

(−1)j∆F 2
j ≈

bntc∑
j=1

j even

(∆F 2
j −∆F 2

j−1).

Terms have (approximately) mean 0, variance ∆t .
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Theorem (S 2007)

If Qn(t) =
∑bntc

j=1 (−1)j∆F 2
j , then (F , Qn) → (F , κB) in law in

DR2 [0,∞), the Skorohod space of cadlag functions from [0,∞)
to Rd , where B is a standard Brownian motion independent of
F , and

κ =

(
4
π

+
2
π

∞∑
j=1

(−1)j(2j1/2 − |j − 1|1/2 + |j + 1|1/2︸ ︷︷ ︸
derived from the covariance of F

)2
)1/2

≈ 1.029.

We define [[F ]]t := κB(t) to be the alternating quadratic
variation of F .
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Key idea of proof:
 
 1/ 4k n=0s 1s ks 

1/t nΔ = 1/4 1/41/t nΔ =
1t 2t0

 
 

1nt t= = 
 

Let t = 1 and suppose k = n1/4 ∈ N. If sj = j∆t1/4, then

bntc∑
j=1

(−1)j∆F 2
j ≈

k∑
i=1

( bnskc∑
j=bnsk−1c

(−1)j∆F 2
j︸ ︷︷ ︸

These terms are
asymptotically independent

)
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Theorem (main result, informal version)

If g is “nice enough”, then In(g, t) converges in law to a process∫ t
0 g(F (s), s) dF (s) satisfying

g(F (t), t) = g(F (0), 0) +

∫ t

0
∂tg(F (s), s) ds

+

∫ t

0
∂xg(F (s), s) dF (s) +

1
2

∫ t

0
∂2

x g(F (s), s) d [[F ]]s. (∗)
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Definition

Let k and r be integers such that 0 ≤ r ≤ k . We write
g ∈ Ck ,1

r (R× [0,∞)) if

g : R× [0,∞) → R is continuous.

∂ j
xg exists and is cont. on R× [0,∞) for all 0 ≤ j ≤ k .

∂t∂
j
xg exists and is cont. on R× (0,∞) for all 0 ≤ j ≤ r .

lim
t→0

sup
x∈K

|∂t∂
j
xg(x , t)| < ∞ for all cpct K and all 0 ≤ j ≤ r .

Ck ,1
0 = Ck ,1 = functions with k spatial derivs, 1 time deriv

g ∈ Ck ,1
1 ⇒ ∂xg ∈ Ck−1,1

g ∈ Ck ,1
2 ⇒ ∂xg ∈ Ck−1,1

1 and ∂2
x g ∈ Ck−2,1

...
etc.
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Definition

Given g ∈ C8,1
3 , choose G ∈ C9,1

4 such that ∂xG = g. Let B be a
standard Brownian motion independent of F . Define∫

g(F , s) dF =

∫ t

0
g(F (s), s) dF (s)

:= G(F (t), t)−G(F (0), 0)−
∫ t

0
∂tG(F (s), s) ds

− κ

2

∫ t

0
∂2

x G(F (s), s) dB(s).

By definition, then, for every g ∈ C9,1
4 , the Itô formula (∗) holds.

The issue is therefore whether In(g, t) →
∫

g(F , s) dF .
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Theorem (S 2007)

(F , Qn) → (F , κB) in law in DR2 [0,∞), where B is a standard
Brownian motion independent of F .

Theorem (Burdzy, S 2010)

If g ∈ C8,1
3 , then (F , Qn, In(g, ·)) → (F , κB,

∫
g(F , s) dF ) in law

in DR3 [0,∞), where B is a standard BM, independent of F .
(Note: The B that appears in the second component of the limit
is the same B used in the definition of

∫
g(F , s) dF.)

The method of proof (based in part on (Kurtz, Protter 1991))
actually gives something somewhat stronger.
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Theorem (Burdzy, S 2010)

If g ∈ C8,1
3 , then (F , Qn, In(g, ·)) → (F , κB,

∫
g(F , s) dF ) in law

in DR3 [0,∞), where B is a standard BM, independent of F .

Define Ft = σ{W (A) : A ⊂ R× [0, t ], m(A) < ∞}, where m is
Lebesgue measure. Suppose:

{Wn(·)} ⊂ DRd [0,∞)

Wn(t) ∈ Ft ∨ Gn
t , where Gn

t is independent of Ft

(Wn, F , Qn) → (W , F , κB) in law in DRd+2 [0,∞).

Then (Wn, F , Qn, In(g, ·)) → (W , F , κB,
∫

g(F , s) ds)

in law in DRd+3 [0,∞).
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Example

Let Wn = In(g̃, ·) and W =
∫

g̃(F , s) dF .
By the main result, (Wn, F , Qn) → (W , F , κB).
Therefore, by the extended main result,

(Wn, F , Qn, In(g, ·)) →
(

W , F , κB,

∫
g(F , s) ds

)
,

i.e.

(F , Qn, In(g̃, ·), In(g, ·)) →
(

F , κB,

∫
g̃(F , s) dF ,

∫
g(F , s) dF

)
.

The two Riemann sums converge jointly, and the same
Brownian motion appears in their correction terms
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Theorem (Burdzy, S 2010)

If g ∈ C6,1
2 , then IT

n (g, ·) converges ucp (uniformly on compacts
in probability) to a process

∫ t
0 g(F (s), s) dT F (s).

Moreover, if g ∈ C7,1
3 , then

g(F (t), t) = g(F (0), 0) +

∫ t

0
∂tg(F (s), s) ds

+

∫ t

0
∂xg(F (s), s) dT F (s).

This is the classical Stratonovich change of variable formula.
There is no correction term.
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Regularization method (Russo, Vallois, et al)

Recall that ∆t = n−1, tj = j∆t , θ(t) = g(F (t), t), and
∆Fj = F (tj)− F (tj−1).

IT
n (g, t) :=

bntc∑
j=1

θ(tj−1) + θ(tj)
2

∆Fj

IT
n,ε(g, t) :=

∆t
ε

bntc∑
j=1

θ(tj−1) + θ(tj−1 + ε)

2
(F (tj−1 + ε)− F (tj−1))

Note that ε = ∆t = 1/n implies IT
n,ε = IT

n .
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Regularization method (Russo, Vallois, et al)

IT
n,ε(g, t) :=

∆t
ε

bntc∑
j=1

θ(tj−1) + θ(tj−1 + ε)

2
(F (tj−1 + ε)− F (tj−1))

lim
ε→0

lim
∆t→0

IT
n,ε(g, t)

= lim
ε→0

1
ε

∫ t

0

θ(s) + θ(s + ε)

2
(F (s + ε)− F (s)) ds

=:

∫ t

0
θ(s) d◦F (s) (the symmetric integral)
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Regularization method (Russo, Vallois, et al)

∫ t

0
θ(s) d◦F (s) := lim

ε→0

1
ε

∫ t

0

θ(s) + θ(s + ε)

2
(F (s + ε)− F (s)) ds

Theorem (Gradinaru, Nourdin, Russo, Vallois 2005; Cheridito,
Nualart 2005)

If g ∈ C6(R), then

g(B1/4(t)) = g(B1/4(0)) +

∫ t

0
g′(B1/4(s)) d◦B1/4(s).

In fact, this is true for BH with any H > 1/6.
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Regularizing the midpoint sums

Recall that ∆t = n−1, tj = j∆t , t j = (tj−1 + tj)/2,
θ(t) = g(F (t), t), and ∆Fj = F (tj)− F (tj−1).

In(g, t) :=

bntc∑
j=1

θ(t j)∆Fj

In,ε(g, t) :=
∆t
2ε

bntc∑
j=1

θ(t j)(F (t j + ε)− F (t j − ε))

Note that ε = 1
2∆t = 1/(2n) implies In,ε = In.
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Regularizing the midpoint sums

In,ε(g, t) :=
∆t
2ε

bntc∑
j=1

θ(t j)(F (t j + ε)− F (t j − ε))

lim
ε→0

lim
∆t→0

In,ε(g, t)

= lim
ε→0

1
2ε

∫ t

0
θ(s)(F (s + ε)− F ((s − ε) ∨ 0)) ds

= lim
ε→0

1
ε

∫ t

0

θ(s) + θ(s + ε)

2
(F (s + ε)− F (s)) ds

= lim
ε→0

lim
∆t→0

IT
n,ε(g, t)
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For simplicity, assume g(x , t) = g(x).
Using

g(x + h1)− g(x + h2) =
4∑

p=1

1
p!

g(p)(x)(hp
1 − hp

2) + rem,

we have

g(F (t2j))− g(F (t2j−2))

=
4∑

p=1

1
p!

g(p)(F (t2j−1))(∆F p
2j − (−1)p∆F p

2j−1) + rem.
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We use the notation X (t) ≈ Y (t) to mean X −Y → 0 ucp. Then

g(F (t)) ≈ g(F (0)) +

bnt/2c∑
j=1

(g(F (t2j))− g(F (t2j−2)))

≈ g(F (0)) + In/2(g, t)

+
4∑

p=2

bnt/2c∑
j=1

1
p!

g(p)(F (t2j−1))(∆F p
2j − (−1)p∆F p

2j−1)

We first verify that the p = 4 term vanishes.
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Recall that
∑

0<tj≤t

|F (tj)− F (tj−1)|4
ucp−−→ 6

π
t .

Vn(t) =

bnt/2c∑
j=1

∆F 4
2j

ucp−−→ 3
π

t .

E [Tt(Vn)] is uniformly bounded as ∆t → 0,
where Tt(Vn) is the total variation of Vn on [0, t ].

bnt/2c∑
j=1

g(4)(F (t2j−1))∆F 4
2j

ucp−−→ 3
π

∫ t

0
g(4)(F (s)) ds

bnt/2c∑
j=1

g(4)(F (t2j−1))(∆F 4
2j −∆F 4

2j−1)
ucp−−→ 0
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Introduction and setup
Results

Proof methods

Taylor expansions
Third order integrals
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This leads to

In/2(g
′, t) ≈ g(F (t))− g(F (0))

− 1
2

bnt/2c∑
j=1

g′′(F (t2j−1))(∆F 2
2j −∆F 2

2j−1)

− 1
6

bnt/2c∑
j=1

g′′′(F (t2j−1))(∆F 3
2j + ∆F 3

2j−1).

Similar analysis gives

IT
n (g′, t) ≈ g(F (t))− g(F (0))

− 1
24

bntc∑
j=1

g′′′(F (tj))(∆F 3
j+1 + ∆F 3

j ).
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Theorem (Burdzy, S 2010)

If g ∈ C4,1
0 , then

bntc∑
j=1

g(F (tj−1), tj−1)∆F 3
j

ucp−−→ −3
π

∫ t

0
g′(F (s), s) ds,

bntc∑
j=1

g(F (tj), tj)∆F 3
j

ucp−−→ 3
π

∫ t

0
g′(F (s), s) ds.

Note that Zn(t) =
∑bntc

j=1 ∆F 3
j

ucp−−→ 0, but E [Tt(Zn)]
explodes.

A corollary is that
∑bntc

j=1 g′′′(F (tj))(∆F 3
j+1 + ∆F 3

j )
ucp−−→ 0.
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Applying this to our Taylor expansions gives

IT
n (g′, t)

ucp−−→ g(F (t))− g(F (0)),

and

In/2(g
′, t) ≈ g(F (t))− g(F (0))

− 1
2

bnt/2c∑
j=1

g′′(F (t2j−1))(∆F 2
2j −∆F 2

2j−1).
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Proof sketch for third order integrals
Backward integral

Third order backward Riemann sum:

Xn =

bntc∑
j=1

g(F (tj))∆F 3
j X =

3
π

∫ t

0
g′(F (s)) ds

We prove E |Xn − X |2 → 0 by showing:

(1) EX 2
n → EX 2, and

(2) E [XnX ] → EX 2,

What follows is a sketch of the proof of (1).
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EX 2
n =

bntc∑
i=1

bntc∑
j=1

E [g(F (ti))∆F 3
i g(F (tj))∆F 3

j ].

The 4-tuple (F (ti),∆Fi , F (tj),∆Fj) is Gaussian with mean zero.
The expectation is a function of the variances and covariances:

E [g(F (ti))∆F 3
i g(F (tj))∆F 3

j ] = f (σ1, . . . , σ4, ρ12, . . . , ρ34).

Differentiate under the expectation and expand in a Taylor
series. Then the above becomes

≈ C∆t · E [g(F (ti))∆F 3
i g′(F (tj))]

≈ (C∆t)2 · E [g′(F (ti))g
′(F (tj))].
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i g′(F (tj))]

≈ (C∆t)2 · E [g′(F (ti))g
′(F (tj))].
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Backward integral

EX 2
n =

bntc∑
i=1

bntc∑
j=1

E [g(F (ti))∆F 3
i g(F (tj))∆F 3

j ].

The 4-tuple (F (ti),∆Fi , F (tj),∆Fj) is Gaussian with mean zero.
The expectation is a function of the variances and covariances:

E [g(F (ti))∆F 3
i g(F (tj))∆F 3

j ] = f (σ1, . . . , σ4, ρ12, . . . , ρ34).

Differentiate under the expectation and expand in a Taylor
series. Then the above becomes

≈ C∆t · E [g(F (ti))∆F 3
i g′(F (tj))]

≈ (C∆t)2 · E [g′(F (ti))g
′(F (tj))].
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EX 2
n =

bntc∑
i=1

bntc∑
j=1

E [g(F (ti))∆F 3
i g(F (tj))∆F 3

j ]

≈
bntc∑
i=1

bntc∑
j=1

(C∆t)2 · E [g′(F (ti))g
′(F (tj))]

= E

∣∣∣∣C bntc∑
j=1

g′(F (tj))∆t

∣∣∣∣2 → E

∣∣∣∣C ∫ t

0
g′(F (s)) ds

∣∣∣∣2.
Calculation reveals that C = 3/π.
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bntc∑
j=1

g(F (tj−1))∆F 3
j ≈

bntc∑
j=1

g(F (tj))∆F 3
j −

bntc∑
j=1

g′(F (tj))∆F 4
j

→ 3
π

∫ t

0
g′(F (s)) ds − 6

π

∫ t

0
g′(F (s)) ds

= −3
π

∫ t

0
g′(F (s)) ds
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Recall that third order integrals give us

In/2(g
′, t) ≈ g(F (t))− g(F (0))

− 1
2

bnt/2c∑
j=1

g′′(F (t2j−1))(∆F 2
2j −∆F 2

2j−1).

Also recall that

Bn(t) :=

bnt/2c∑
j=1

(∆F 2
2j −∆F 2

2j−1) −−−→in law
[[F ]]t = κB(t)
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Define

Bn(t) :=

bnt/2c∑
j=1

(∆F 2
2j −∆F 2

2j−1) −−−→in law
[[F ]]t = κB(t),

Fn(t) := F (bntc/n).

Then

bnt/2c∑
j=1

g′′(F (t2j−1))(∆F 2
2j −∆F 2

2j−1)

=

∫ t

0
g′′(Fn(s−)) dBn(s)

?−−−→
in law

κ

∫ t

0
g′′(F (s)) dB(s).

Jason Swanson A change of variable formula with Itô correction term*
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∫ t

0
g′′(Fn(s−)) dBn(s)

?−−−→
in law

κ

∫ t

0
g′′(F (s)) dB(s)

(Kurtz, Protter 1991): Yes, if...

Bn is a martingale, and

E [Bn]t is uniformly bounded as ∆t → 0,
where [Bn] is the quadratic variation of Bn.
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Bn(t) =

bnt/2c∑
j=1

(∆F 2
2j −∆F 2

2j−1) jumps at every time 2j∆t .

Bn is not “close enough” to a martingale to apply the tools in
(Kurtz, Protter 1991).

Bn(t) :=

m3bmt/2c∑
j=1

(∆F 2
2j −∆F 2

2j−1), where m = bn1/4c.

If n1/4 ∈ N, then Bn jumps at times 2j∆t1/4.

Bn(t) = Bn(t) at the jump times.

Bn − Bn
ucp−−→ 0.

Bn is “close enough” to a martingale.
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We therefore have∫ t

0
g′′(Fn(s−)) dBn(s) −−−→

in law
κ

∫ t

0
g′′(F (s)) dB(s).

But we still need∫ t

0
g′′(Fn(s−)) d(Bn − Bn)(s)

?−→ 0.

Complicated by the fact that Bn − Bn
ucp−−→ 0, but E [Tt(Bn − Bn)]

explodes.
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This is similar to the situation with third order integrals:

Zn(t) =
∑bntc

j=1 ∆F 3
j

ucp−−→ 0, but E [Tt(Zn)] explodes.∫ t

0
g(Fn(s−)) dZn(s)

ucp−−→ −3
π

∫ t

0
g′(F (s)) ds

The same methods (but much more complicated calculations)
are used to analyze the remainder term for the second order
sums and show that∫ t

0
g′′(Fn(s−)) d(Bn − Bn)(s) → 0.
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