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Introduction and setu| o L
P Heuristics and preliminaries

Alternating quadratic variation

Classical 1t6 formula for Brownian motion:

a(B(1)) = / g'(B(s)) dB(s / 9

Correction term due to E|B(t + At) — B(t)]? =
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Introduction and setu| o L
P Heuristics and preliminaries

Alternating quadratic variation

Classical 1t6 formula for Brownian motion:

9(B(1)) = /g(B ))dB(s /g

Correction term due to E|B(t + At) — B(t)]? =

For a process F with E|F (t + At) — F(t)[* ~ At, we construct
an integral such that

a(F (1) = /g ))dF(s) + = /g (F(s)) dB(s),

where B is a Brownian motion independent of F.
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Introduction and setu| o L
P Heuristics and preliminaries

Alternating quadratic variation

Definition of F

1 .
8tu:§83u +W(x,t), xeR; u(x,00=0

F(t) :=u(x,1)]

F is a centered Gaussian process with covariance

pls.t) = EIFSIFU] = —=(t+ 2 jt=s[?)

F is a bifractional Brownian motion, qualitatively similar to
fractional Brownian motion (fBm) B" with H = 1/4.
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Introduction and setu| o L
P Heuristics and preliminaries

Alternating quadratic variation

Quatrtic variation of F

LetNM={0=ty <ty <ty <---} withtj T oo and

M| :=sup(fj — 1) < oo.
jeN

Define Vn(t) = Y [F(f) — F(t_1)[*.
o<t<t

Theorem (S 2007)

2
lim E[ sup Vn(t)—gt ]:0, vT > 0.
s

M—0 [o<t<T

F is not a semimartingale; cannot construct classical stochastic
integral. We construct an integral using Riemann sums.
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P Heuristics and preliminaries

Alternating quadratic variation

At=n"' t=jAt AF=F()—F(t_1)

Left-endpoint and right-endpoint Riemann sums diverge.

[nt] [nt]
EZF(tj_l)AF, ——ZAtl/z 1/27r

j=1
[nt] LntJ

EY F()A ZAtl/vat,/
j=1

Need a symmetric Riemann sum to generate cancellations
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Introduction and setu| o L
P Heuristics and preliminaries

Alternating quadratic variation

At=n"' t=jAt AF=F()—F(t_1)

Let 0(t) = g(F(t),t) and t; = (tj_1 + t)/2. We will consider

[nt] - , t
In(g,t) = Ze(t,-)AF,- AN / 0(s)dF (s)
=1 °

T (g.1) = % 0(ti—1) + 6(t)

t
?
5 AF; H/O 0(s)dTF(s)
j=1
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P Heuristics and preliminaries

Alternating quadratic variation

Quadratic variation of F is infinite.

Define
nt) [nt)
Qn(t) =D (-1)AF? ~ Y (AF? — AF? ).
j=1 j=1
j even

Terms have (approximately) mean 0, variance At.
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Alternating quadratic variation

Theorem (S 2007)

If Qn(t) = ZjLitlj(—l)jAsz, then (F,Qn) — (F,xB) inlaw in
Dg2[0, o), the Skorohod space of cadlag functions from [0, co)
to RY, where B is a standard Brownian motion independent of

F, and
4 200 j(n;l/2 R 1/2 R 1/2\2 42
o= (2423 -0i@V2 - - 124+ 1927)
=1

derived from the covariance of F

~ 1.029.

We define [F]: := xB(t) to be the alternating quadratic
variation of F.
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Alternating quadratic variation

Key idea of proof:

Lett = 1 and suppose k = n¥/4 € N. If s; = jAt/4, then

Lnt]

Z(—l)jAsz ~ Z Z (—1)jAFj2
j=1 i

k [nsi |
i=1 \ j=[nsx_4]

These terms are
asymptotically independent
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Theorem (main result, informal version)

If g is “nice enough”, then I(g,t) converges in law to a process
5 9( s)dF(s) satisfying

a(F (.0 =9(F(0).0) + | #9(F(5).9)ds
il 2
/axg F(5),5)dF (s) + 2/0 %9(F(5),5)d[Fls. ()
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Definition

Let k and r be integers such that 0 < r < k. We write

g € CEYR x [0,00)) if
@ g: R x [0,00) — R is continuous.
@ 8k exists and is cont. on R x [0,00) forall 0 <j < k.
@ 0,0kg exists and is cont. on R x (0,00) forall0 <j <.

° ﬁsup 10,0k g(x,t)| < oo for all cpct K and all 0 < j < r.
—UxeK

C('j’l = Cck1 = functions with k spatial derivs, 1 time deriv
g e Ckt = g e CK-1E
g € C¥' = o9 e CK"1t and 929 € Ck-21

etc.
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Main result

Extended main result
Results

Trapezoid sums
Comparison with regularization

Given g € C5*, choose G e C;** such that %G = g. Let B be a
standard Brownian motion independent of F. Define

/g(F,s)dF :/0 g(F(s),s)dF (s)
— G(F(t),t) — G(F(0),0) /t 2G(F(s),s)ds
—/az F(s),s)dB(s).

By definition, then, for every g € C9 ! the [t6 formula (x) holds.
The issue is therefore whether I( — [g(F,s)dF.
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Theorem (S 2007)

(F,Qn) — (F,xB) in law in Dy2[0, o0), where B is a standard
Brownian motion independent of F.

Theorem (Burdzy, S 2010)

Ifg € C3*, then (F,Qn, In(9,-)) — (F, B, [ g(F,s)dF) in law
in Dg3[0, c0), where B is a standard BM, independent of F.
(Note: The B that appears in the second component of the limit
is the same B used in the definition of [ g(F,s)dF.)

The method of proof (based in part on (Kurtz, Protter 1991))
actually gives something somewhat stronger.
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Theorem (Burdzy, S 2010)

If g € C3*, then (F,Qn, In(9,-)) — (F, B, [g(F,s)dF) in law
in Dgs[0, 00), where B is a standard BM, independent of F.

Define 7t = c{W(A) : AC R x [0,t],m(A) < oo}, where m is
Lebesgue measure. Suppose:

@ {Wn(-)} C Dga[0,00)

@ Wi(t) € 7t vV G, where G is independent of F;

® [ (Wn,F,Qn) — (W, F,kB)|in law in Dgo:2[0, 00).

Then|(Wn,F,Qn,In(9,-)) — (W,F,xB, [g(F,s)ds)
in law in Dga+3[0, 00).
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Main result
Extended main result

Results :
Trapezoid sums

Comparison with regularization

Let Wy = In(g,-) and W = [g(F,s)dF.
By the main result, (Wn,F,Qn) — (W, F,xB).
Therefore, by the extended main result,

(Wh,F,Qn,In(g9,-)) — <W,F,/§B,/g(F,S)dS>,
i.e.
(F. Qu 1n(@, ), In(g, ) — (F,F;B,/§(F,s)dF,/g(F,s)dF>.

The two Riemann sums converge jointly, and the same
Brownian motion appears in their correction terms
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Main result

Extended main result
Results

Trapezoid sums
Comparison with regularization

Theorem (Burdzy, S 2010)

Ifg € Cg’l, then 1T (g, -) converges ucp (uniformly on compacts
in probability) to a process fé g(F(s),s)dTF(s).
Moreover, if g € CJ'%, then

g(F(t),t) = g(F(0),0) + /0 &9 (F(s).s)ds

/axg s)dTF(s).

This is the classical Stratonovich change of variable formula.
There is no correction term.
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Regularization method (Russo, Vallois, et al)

Recall that At = n~1, t; = jAt, 6(t) = g(F(t),t), and
AR, = F () — F ()

17 (g,t) := % 04-2) 0) \p,

. 2
=1
At L0 ) + 01 + <)
j—1 i—1
lhe(@.t) = — >~ (F(t_1+¢2) — F(t_1))
j=1

Note that e = At = 1/n implies I _ = I7.
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Regularization method (Russo, Vallois, et al)

(g t) At % 9(t171)+0(tj,1+6)

2

(F(t-1+e) —F(t-1))
=1

lim I|m IT t
e—0 At— (g )

_ Jim 1/0 W(F(s+s)— F(s))ds

t
::/ 0(s)d°F(s) (the symmetric integral)
0
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Main result
Extended main result
Trapezoid sums

Results

Comparison with regularization

Regularization method (Russo, Vallois, et al)

/te(s)doF(s) — lim 1/t O(8)+ 95 +2) (s 4 o) — F(s))ds
0 0

e—0 € 2

Theorem (Gradinaru, Nourdin, Russo, Vallois 2005; Cheridito,

Nualart 2005)
If g € C8(R), then

g(BY4(t)) = 9(B**(0)) + /t g'(BY*(s)) d°BY*(s).
0

In fact, this is true for BH with any H > 1/6.

<
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Regularizing the midpoint sums

Recall that At =n=1, t; = jAt, = (1 +1)/2,
0(t) = g(F(t),t), and AF; = F(tj) — F(tj,l).

[nt]
= 0(t)AF
j_
[nt]
_ At _
Ine(g,1) : Ze F(tj+e)—F( —¢))

Note that e = 3At = 1/(2n) implies I, . = In.
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Main result

Extended main result
Trapezoid sums

Comparison with regularization

Results

Regularizing the midpoint sums

I
Ine(g,t) : 29 F(tj+¢) —F(tj —¢))
lim lim In.(9,1)
t
_8'1‘%215/0 8(s)(F(s +2) — F((s —2) v 0))
:mi/o W(F(s+e)—F(s))ds
= lim lim IrTa(g t)
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Taylor expansions
Third order integrals

Proof methods Itd correction term

For simplicity, assume g(x,t) = g(x).

Using
21
g(x +h1) —g(x +hz) =" oi g® (x)(h® —hd) + rem,
p=1""
we have
g(F(tz)) — 9(F(tz-2))
4
1
=3 — g®)(F(tj_1))(AF) — (—1)PAFS ) +rem.
p! i j
p=1
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Taylor expansions

Third order integrals
Proof methods Itd correction term

We use the notation X (t) ~ Y (t) to mean X —Y — 0 ucp. Then

Lnt/2]
g(F(1) = g(F(0))+ > (9(F(ty)) — 9(F(tz-2)))
j=1
~ g(F(0)) + In/2(9,t)
4 |nt/2]

> —'g(p) (tzi-1))(AFZ — (-1)PAF_y)

p=2 j=1

We first verify that the p = 4 term vanishes.
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Taylor expansions

Third order integrals
Proof methods Itd correction term

Recall that > |F(t) — F(ti_q)[* =% % .
o<t <t
[nt/2] 3
® Vit Z AFg =2

° E[Tt(Vn)] is uniformly bounded as At — O,
where T;(Vy) is the total variation of Vj on [0, t].
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Taylor expansions
Third order integrals

Proof methods Itd correction term

6
Recall that > |F(t) — F(ti_q)[* = —t
o<t <t
Lnt/2] 3
® Vit Z AF4 ucp

° E[Tt(Vn)] is uniformly bounded as At — O,
where T;(Vy) is the total variation of Vj on [0, t].

[nt/2] 3
Z g t2] ;] ﬂ
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Taylor expansions

Third order integrals
Proof methods Itd correction term

6
Recall that ) — F(t_q)|* 22, 2t
E IF(t) — F(t—1)| ﬂt

o<t <t

nt/2] 3,
@ Vp(t Z ARy =5 uee

° E[Tt(Vn)] is uniformly bounded as At — O,
where T;(Vy) is the total variation of Vj on [0, t].

[nt/2] 3
Z g t2] ;] ﬂ

Lnt/2J
Z 9@ (F(ty-1))(AF5 — AFS 1) =50
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Taylor expansions

Third order integrals
Proof methods Itd correction term

This leads to

ln/2(9't) = g(F(t)) — g(F(0))

1 [nt/2]
-3 > g"(F(ty-1))(AFZ — AFZ 1)

i=1

1 [nt/2]

— 5 2 9"(F(ty-1))(AF3 + AF ).
i=1

Similar analysis gives

7 (9',t) ~ 9(F (1)) — g(F(0))
Int)
~ %2 > 9" (FG))AFS, + AFP).
=1
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Taylor expansions
Third order integrals

Proof methods Itd correction term

Theorem (Burdzy, S 2010)
Ifg e Cg’l, then

& uwp 3 [!
> 9(F (1), 4 AR 2 > /o g/(F(S),S)ds,
j=1

& up 3 [
S g(F (), 4)AF? 22 W/O g'(F(s),s)ds.
=1

@ Note that Zn(t) = 32"} AF3 “®, 0, but E[T((Zn)]
explodes.

@ A corollary is that thitlj g”’(F(tj))(AFj?jrl + A,:js) uer o
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Taylor expansions
Third order integrals

Proof methods Itd correction term

Applying this to our Taylor expansions gives

ucp

I3 (g',t) = g(F(t)) — 9(F(0)),

and

ln/2(9',t) = g(F(t)) — g(F(0))
1 [nv2l
Z 9"(F(ty-1))(AFZ — AFZ ;).
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

Third order backward Riemann sum:
[nt] t
3 3 /
Zg )AF X:/g(F(s))ds
0

™

We prove E |X, — X|?> — 0 by showing:

(1) EX2 — EX?2, and

(2) E[XnX] — EX?,

What follows is a sketch of the proof of (1).
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

[nt] [nt]
EXZ =Y ) E[g(F(t))AF3g(F())AF]].

i=1j=1
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

[nt] [nt]
EXZ =Y ) E[g(F(t))AF3g(F())AF]].

i=1j=1
The 4-tuple (F(t), AF;, F(t;), AF;) is Gaussian with mean zero.
The expectation is a function of the variances and covariances:

E[g(F(ti))AFi3g(F(tj))AFj3] = f(O’l, ey, 04,012, - - - 7p34).
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

[nt] [nt]
EXZ =Y ) E[g(F(t))AF3g(F())AF]].

i=1j=1
The 4-tuple (F(t), AF;, F(t;), AF;) is Gaussian with mean zero.
The expectation is a function of the variances and covariances:
E[g(F(tl))AF|Sg(F(tj))AFJS] - f(017 -y 04,P125 - - - 7p34)‘

Differentiate under the expectation and expand in a Taylor
series. Then the above becomes

~ CAt -E[g(F (t))AF g’ (F(4))]
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

nt] [nt]
EXZ =Y "> E[g(F(t)AF3g(F(t))AF]].

i=1j=1
The 4-tuple (F(t), AF;, F(t;), AF;) is Gaussian with mean zero.
The expectation is a function of the variances and covariances:
E[g(F(tl))AF|Sg(F(tj))AFJS] - f(017 -y 04,P125 - - - 7p34)‘

Differentiate under the expectation and expand in a Taylor
series. Then the above becomes

~ CAt-E[g(F(t))AF’g'(F ()]
~ (CAt)* - E[g'(F(t))g'(F(4))]-
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Backward integral

[nt] [nt]
EXZ =Y ) E[g(F(t))AF3g(F(t))AF]

i=1j=1
[nt] [nt]
~ ) > (Caty-E[g'(F(t)g'(F(4))]

i=1j=1
—>E‘/g

[nt)
= E'CZg (F(4))At

Calculation reveals that C = 3/.
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Taylor expansions
Third order integrals
Proof methods Itd correction term

Proof sketch for third order integrals

Forward integral

[t [nt)] [nt)

Zg(F(tjfl))AF-%Z F(4)AFE - Zg () AF
j=1

— /g ds—/g
-2 [yFeos
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Taylor expansions
Third order integrals

Proof methods Itd correction term

Recall that third order integrals give us

lh/2(9",t) ~ g(F(t)) — 9(F(0))

1 [nv/2l
~3 > g"(F(ty-1))(AFZ — AFZ ).
ji=1
Also recall that
[nt/2]
. 2 2
Bn(t) := ,; (AFZ — AFZ_, )T’ [F]t = «B(t)
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Taylor expansions

Third order integrals
Proof methods Itd correction term

Define
[nt/2]
Bn(t) := ) (AF — AF5 ;) — — [F]t = xB(t),
j=1
Fn(t) := F(|nt]/n).
Then
nt/2]

> g"(F(ty-1))(AFZ — AFZ 4)

=1
/an —))dBn(s /gF(SdB)
|nlaw
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Taylor expansions

Third order integrals
Proof methods Itd correction term

[ o Eals D aats) o [ 4 dB0s)

(Kurtz, Protter 1991): Yes, if...
@ B, is a martingale, and

@ E[By]: is uniformly bounded as At — 0,
where [By] is the quadratic variation of By,.
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Taylor expansions
Third order integrals

Proof methods Itd correction term

Int/2]
Bn(t) = Y (AFZ — AFZ ;) jumps at every time 2jAt.
=1

B is not “close enough” to a martingale to apply the tools in
(Kurtz, Protter 1991).

m3|mt/2]
Bn(t):= Y  (AF - AFZ ), wherem = [n%/4].
j=1
@ If n'/4 e N, then B,, jumps at times 2j At/4,
@ By (t) = Bn(t) at the jump times.
e B, — B, —% 0.
@ B, is “close enough” to a martingale.
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Taylor expansions
Third order integrals

Proof methods Itd correction term

We therefore have

[ 9" Fa(s)aBa(s) v [ 0" (F(s)) cB(s)

in law

But we still need

/0 0"(Fa(s—)) d(Bn — Ba)(s) —=

ucp

Complicated by the fact that B, — B, — 0, but E[T¢(Bn — Bp)]
explodes.
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Taylor expansions
Third order integrals

Proof methods Itd correction term

This is similar to the situation with third order integrals:
o Zn(t) = Y/ AF3 %, 0, but E[Ti(Z,)] explodes.

/ 9(Fn(s—)) dZn(s )“—C&_i/o g'(F(s))ds

The same methods (but much more complicated calculations)
are used to analyze the remainder term for the second order
sums and show that

/0 0"(Fa(s—))d(Bn — Bn)(s) — 0.
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