A change of variable formula with ltô correction term*

Jason Swanson

Department of Mathematics
University of Central Florida
Isaac Newton Institute, May 24, 2010
*Joint work with Chris Burdzy (University of Washington)

Classical Itô formula for Brownian motion:

$$
g(B(t))=g(B(0))+\int_{0}^{t} g^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} g^{\prime \prime}(B(s)) d s
$$

Correction term due to $E|B(t+\Delta t)-B(t)|^{2}=\Delta t$.
For a process F with $E|F(t+\Delta t)-F(t)|^{4} \approx \Delta t$, we construct an integral such that
$g(F(t))=g(F(0))+\int_{0}^{t} g^{\prime}(F(s)) d F(s)+\frac{1}{2} \int_{0}^{t} g^{\prime \prime}(F(s)) d B(s)$
where B is a Brownian motion independent of F.

Classical Itô formula for Brownian motion:

$$
g(B(t))=g(B(0))+\int_{0}^{t} g^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} g^{\prime \prime}(B(s)) d s
$$

Correction term due to $E|B(t+\Delta t)-B(t)|^{2}=\Delta t$.
For a process F with $E|F(t+\Delta t)-F(t)|^{4} \approx \Delta t$, we construct an integral such that
$g(F(t))=g(F(0))+\int_{0}^{t} g^{\prime}(F(s)) d F(s)+\frac{1}{2} \int_{0}^{t} g^{\prime \prime}(F(s)) d B(s)$,
where B is a Brownian motion independent of F.

Definition of F

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+\dot{W}(x, t), \quad x \in \mathbb{R} ; \quad u(x, 0) \equiv 0 \\
F(t):=u(x, t)
\end{gathered}
$$

F is a centered Gaussian process with covariance

$$
\rho(s, t)=E[F(s) F(t)]=\frac{1}{\sqrt{2 \pi}}\left(|t+s|^{1 / 2}-|t-s|^{1 / 2}\right)
$$

F is a bifractional Brownian motion, qualitatively similar to fractional Brownian motion (fBm) B^{H} with $H=1 / 4$.

Quartic variation of F

Let $\Pi=\left\{0=t_{0}<t_{1}<t_{2}<\cdots\right\}$ with $t_{j} \uparrow \infty$ and

$$
|\Pi|:=\sup _{j \in \mathbb{N}}\left(t_{j}-t_{j-1}\right)<\infty
$$

Define $V_{\Pi}(t)=\sum_{0<t_{j} \leq t}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|^{4}$.

Theorem (S 2007)

$$
\lim _{|\Pi| \rightarrow 0} E\left[\sup _{0 \leq t \leq T}\left|V_{\Pi}(t)-\frac{6}{\pi} t\right|^{2}\right]=0, \quad \forall T>0
$$

F is not a semimartingale; cannot construct classical stochastic integral. We construct an integral using Riemann sums.

$$
\Delta t=n^{-1} \quad t_{j}=j \Delta t \quad \Delta F_{j}=F\left(t_{j}\right)-F\left(t_{j-1}\right)
$$

Left-endpoint and right-endpoint Riemann sums diverge.

$$
\begin{aligned}
& E \sum_{j=1}^{\lfloor n t\rfloor} F\left(t_{j-1}\right) \Delta F_{j} \approx-\frac{1}{\sqrt{2 \pi}} \sum_{j=1}^{\lfloor n t\rfloor} \Delta t^{1 / 2} \approx-t \sqrt{\frac{n}{2 \pi}} \\
& E \sum_{j=1}^{\lfloor n t\rfloor} F\left(t_{j}\right) \Delta F_{j} \approx \frac{1}{\sqrt{2 \pi}} \sum_{j=1}^{\lfloor n t\rfloor} \Delta t^{1 / 2} \approx t \sqrt{\frac{n}{2 \pi}}
\end{aligned}
$$

Need a symmetric Riemann sum to generate cancellations

Proof methods

Heuristics and preliminaries

$$
\Delta t=n^{-1} \quad t_{j}=j \Delta t \quad \Delta F_{j}=F\left(t_{j}\right)-F\left(t_{j-1}\right)
$$

Let $\theta(t)=g(F(t), t)$ and $\bar{t}_{j}=\left(t_{j-1}+t_{j}\right) / 2$. We will consider

$$
\begin{aligned}
& I_{n}(g, t)=\sum_{j=1}^{\lfloor n t\rfloor} \theta\left(\bar{t}_{j}\right) \Delta F_{j} \xrightarrow{?} \int_{0}^{t} \theta(s) d F(s) \\
& I_{n}^{T}(g, t)=\sum_{j=1}^{\lfloor n t\rfloor} \frac{\theta\left(t_{j-1}\right)+\theta\left(t_{j}\right)}{2} \Delta F_{j} \xrightarrow{?} \int_{0}^{t} \theta(s) d^{T} F(s)
\end{aligned}
$$

Quadratic variation of F is infinite.
Define

$$
Q_{n}(t)=\sum_{j=1}^{\lfloor n t\rfloor}(-1)^{j} \Delta F_{j}^{2} \approx \sum_{\substack{j=1 \\ j \text { even }}}^{\lfloor n t\rfloor}\left(\Delta F_{j}^{2}-\Delta F_{j-1}^{2}\right)
$$

Terms have (approximately) mean 0 , variance Δt.

Theorem (S 2007)

If $Q_{n}(t)=\sum_{j=1}^{\lfloor n t\rfloor}(-1)^{j} \Delta F_{j}^{2}$, then $\left(F, Q_{n}\right) \rightarrow(F, \kappa B)$ in law in $D_{\mathbb{R}^{2}}[0, \infty)$, the Skorohod space of cadlag functions from $[0, \infty)$ to \mathbb{R}^{d}, where B is a standard Brownian motion independent of F, and

$$
\begin{aligned}
& \kappa=(\frac{4}{\pi}+\frac{2}{\pi} \sum_{j=1}^{\infty}(-1)^{j}(\underbrace{2 j^{1 / 2}-|j-1|^{1 / 2}+|j+1|^{1 / 2}}_{\text {derived from the covariance of } F})^{2})^{1 / 2} \\
& \approx 1.029
\end{aligned}
$$

We define $\llbracket F \rrbracket_{t}:=\kappa B(t)$ to be the alternating quadratic variation of F.

Key idea of proof:

Let $t=1$ and suppose $k=n^{1 / 4} \in \mathbb{N}$. If $s_{j}=j \Delta t^{1 / 4}$, then

$$
\sum_{j=1}^{\lfloor n t\rfloor}(-1)^{j} \Delta F_{j}^{2} \approx \sum_{i=1}^{k}(\underbrace{\sum_{j=\left\lfloor n s_{k-1}\right\rfloor}^{\left\lfloor n s_{k}\right\rfloor}(-1)^{j} \Delta F_{j}^{2}}_{\begin{array}{c}
\text { These terms are } \\
\text { asymptotically independent }
\end{array}})
$$

Theorem (main result, informal version)

If g is "nice enough", then $I_{n}(g, t)$ converges in law to a process $\int_{0}^{t} g(F(s), s) d F(s)$ satisfying

$$
\begin{aligned}
& g(F(t), t)=g(F(0), 0)+\int_{0}^{t} \partial_{t} g(F(s), s) d s \\
& \quad+\int_{0}^{t} \partial_{x} g(F(s), s) d F(s)+\frac{1}{2} \int_{0}^{t} \partial_{x}^{2} g(F(s), s) d \llbracket F \rrbracket_{s} . \quad(*)
\end{aligned}
$$

Definition

Let k and r be integers such that $0 \leq r \leq k$. We write $g \in C_{r}^{k, 1}(\mathbb{R} \times[0, \infty))$ if

- $g: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ is continuous.
- $\partial_{x}^{j} g$ exists and is cont. on $\mathbb{R} \times[0, \infty)$ for all $0 \leq j \leq k$.
- $\partial_{t} \partial_{x}^{j} g$ exists and is cont. on $\mathbb{R} \times(0, \infty)$ for all $0 \leq j \leq r$.
- $\overline{\lim } \sup \left|\partial_{t} \partial_{x}^{j} g(x, t)\right|<\infty$ for all cpct K and all $0 \leq j \leq r$. $t \rightarrow 0{ }_{x \in K}$
$C_{0}^{k, 1}=C^{k, 1}=$ functions with k spatial derivs, 1 time deriv
$g \in C_{1}^{k, 1} \Rightarrow \partial_{x} g \in C^{k-1,1}$
$g \in C_{2}^{k, 1} \Rightarrow \partial_{x} g \in C_{1}^{k-1,1}$ and $\partial_{x}^{2} g \in C^{k-2,1}$
!
etc.

Definition

Given $g \in C_{3}^{8,1}$, choose $G \in C_{4}^{9,1}$ such that $\partial_{x} G=g$. Let B be a standard Brownian motion independent of F. Define

$$
\begin{aligned}
& \int g(F, s) d F=\int_{0}^{t} g(F(s), s) d F(s) \\
&:=G(F(t), t)-G(F(0), 0)-\int_{0}^{t} \partial_{t} G(F(s), s) d s \\
&-\frac{\kappa}{2} \int_{0}^{t} \partial_{\chi}^{2} G(F(s), s) d B(s) .
\end{aligned}
$$

By definition, then, for every $g \in C_{4}^{9,1}$, the Itô formula (*) holds. The issue is therefore whether $I_{n}(g, t) \rightarrow \int g(F, s) d F$.

Theorem (S 2007)

$\left(F, Q_{n}\right) \rightarrow(F, \kappa B)$ in law in $D_{\mathbb{R}^{2}}[0, \infty)$, where B is a standard Brownian motion independent of F.

Theorem (Burdzy, S 2010)

If $g \in C_{3}^{8,1}$, then $\left(F, Q_{n}, I_{n}(g, \cdot)\right) \rightarrow\left(F, \kappa B, \int g(F, s) d F\right)$ in law in $D_{\mathbb{R}^{3}}[0, \infty)$, where B is a standard $B M$, independent of F.
(Note: The B that appears in the second component of the limit is the same B used in the definition of $\int g(F, s) d F$.)

The method of proof (based in part on (Kurtz, Protter 1991)) actually gives something somewhat stronger.

Theorem (Burdzy, S 2010)

If $g \in C_{3}^{8,1}$, then $\left(F, Q_{n}, I_{n}(g, \cdot)\right) \rightarrow\left(F, \kappa B, \int g(F, s) d F\right)$ in law in $D_{\mathbb{R}^{3}}[0, \infty)$, where B is a standard $B M$, independent of F.

Define $\mathcal{F}_{t}=\sigma\{W(A): A \subset \mathbb{R} \times[0, t], m(A)<\infty\}$, where m is Lebesgue measure. Suppose:

- $\left\{W_{n}(\cdot)\right\} \subset D_{\mathbb{R}^{d}}[0, \infty)$
- $W_{n}(t) \in \mathcal{F}_{t} \vee \mathcal{G}_{t}^{n}$, where \mathcal{G}_{t}^{n} is independent of \mathcal{F}_{t}
- $\left(W_{n}, F, Q_{n}\right) \rightarrow(W, F, \kappa B)$ in law in $D_{\mathbb{R}^{d+2}}[0, \infty)$.

Then $\left(W_{n}, F, Q_{n}, I_{n}(g, \cdot)\right) \rightarrow\left(W, F, \kappa B, \int g(F, s) d s\right)$
in law in $D_{\mathbb{R}^{d+3}}[0, \infty)$.

Example

Let $W_{n}=I_{n}(\widetilde{g}, \cdot)$ and $W=\int \widetilde{g}(F, s) d F$.
By the main result, $\left(W_{n}, F, Q_{n}\right) \rightarrow(W, F, \kappa B)$.
Therefore, by the extended main result,

$$
\left(W_{n}, F, Q_{n}, I_{n}(g, \cdot)\right) \rightarrow\left(W, F, \kappa B, \int g(F, s) d s\right)
$$

i.e.
$\left(F, Q_{n}, I_{n}(\widetilde{g}, \cdot), I_{n}(g, \cdot)\right) \rightarrow\left(F, \kappa B, \int \widetilde{g}(F, s) d F, \int g(F, s) d F\right)$.
The two Riemann sums converge jointly, and the same Brownian motion appears in their correction terms

Theorem (Burdzy, S 2010)

If $g \in C_{2}^{6,1}$, then $I_{n}^{T}(g, \cdot)$ converges ucp (uniformly on compacts in probability) to a process $\int_{0}^{t} g(F(s), s) d^{\top} F(s)$.
Moreover, if $g \in C_{3}^{7,1}$, then

$$
\begin{aligned}
& g(F(t), t)=g(F(0), 0)+\int_{0}^{t} \partial_{t} g(F(s), s) d s \\
& \quad+\int_{0}^{t} \partial_{x} g(F(s), s) d^{T} F(s) .
\end{aligned}
$$

This is the classical Stratonovich change of variable formula.
There is no correction term.

Regularization method (Russo, Vallois, et al)

Recall that $\Delta t=n^{-1}, t_{j}=j \Delta t, \theta(t)=g(F(t), t)$, and

$$
\Delta F_{j}=F\left(t_{j}\right)-F\left(t_{j-1}\right) .
$$

$$
\begin{aligned}
I_{n}^{T}(g, t) & :=\sum_{j=1}^{\lfloor n t\rfloor} \frac{\theta\left(t_{j-1}\right)+\theta\left(t_{j}\right)}{2} \Delta F_{j} \\
I_{n, \varepsilon}^{T}(g, t) & :=\frac{\Delta t}{\varepsilon} \sum_{j=1}^{\lfloor n t\rfloor} \frac{\theta\left(t_{j-1}\right)+\theta\left(t_{j-1}+\varepsilon\right)}{2}\left(F\left(t_{j-1}+\varepsilon\right)-F\left(t_{j-1}\right)\right)
\end{aligned}
$$

Note that $\varepsilon=\Delta t=1 / n$ implies $I_{n, \varepsilon}^{T}=I_{n}^{T}$.

Regularization method (Russo, Vallois, et al)

$$
I_{n, \varepsilon}^{T}(g, t):=\frac{\Delta t}{\varepsilon} \sum_{j=1}^{\lfloor n t\rfloor} \frac{\theta\left(t_{j-1}\right)+\theta\left(t_{j-1}+\varepsilon\right)}{2}\left(F\left(t_{j-1}+\varepsilon\right)-F\left(t_{j-1}\right)\right)
$$

$\lim _{\varepsilon \rightarrow 0} \lim _{\Delta t \rightarrow 0} I_{n, \varepsilon}^{T}(g, t)$

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{t} \frac{\theta(s)+\theta(s+\varepsilon)}{2}(F(s+\varepsilon)-F(s)) d s \\
& =: \int_{0}^{t} \theta(s) d^{\circ} F(s) \quad \text { (the symmetric integral) }
\end{aligned}
$$

Main result

Regularization method (Russo, Vallois, et al)

$$
\int_{0}^{t} \theta(s) d^{\circ} F(s):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{t} \frac{\theta(s)+\theta(s+\varepsilon)}{2}(F(s+\varepsilon)-F(s)) d s
$$

Theorem (Gradinaru, Nourdin, Russo, Vallois 2005; Cheridito, Nualart 2005)
If $g \in C^{6}(\mathbb{R})$, then

$$
g\left(B^{1 / 4}(t)\right)=g\left(B^{1 / 4}(0)\right)+\int_{0}^{t} g^{\prime}\left(B^{1 / 4}(s)\right) d^{\circ} B^{1 / 4}(s) .
$$

In fact, this is true for B^{H} with any $H>1 / 6$.

Regularizing the midpoint sums

Recall that $\Delta t=n^{-1}, t_{j}=j \Delta t, \bar{t}_{j}=\left(t_{j-1}+t_{j}\right) / 2$, $\theta(t)=g(F(t), t)$, and $\Delta F_{j}=F\left(t_{j}\right)-F\left(t_{j-1}\right)$.

$$
\begin{aligned}
I_{n}(g, t) & :=\sum_{j=1}^{\lfloor n t\rfloor} \theta\left(\bar{t}_{j}\right) \Delta F_{j} \\
I_{n, \varepsilon}(g, t) & :=\frac{\Delta t}{2 \varepsilon} \sum_{j=1}^{\lfloor n t\rfloor} \theta\left(\bar{t}_{j}\right)\left(F\left(\bar{t}_{j}+\varepsilon\right)-F\left(\bar{t}_{j}-\varepsilon\right)\right)
\end{aligned}
$$

Note that $\varepsilon=\frac{1}{2} \Delta t=1 /(2 n)$ implies $I_{n, \varepsilon}=I_{n}$.

Regularizing the midpoint sums

$$
I_{n, \varepsilon}(g, t):=\frac{\Delta t}{2 \varepsilon} \sum_{j=1}^{\lfloor n t\rfloor} \theta\left(\bar{t}_{j}\right)\left(F\left(\bar{t}_{j}+\varepsilon\right)-F\left(\bar{t}_{j}-\varepsilon\right)\right)
$$

$\lim _{\varepsilon \rightarrow 0} \lim _{\Delta t \rightarrow 0} I_{n, \varepsilon}(g, t)$

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} \theta(s)(F(s+\varepsilon)-F((s-\varepsilon) \vee 0)) d s \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{t} \frac{\theta(s)+\theta(s+\varepsilon)}{2}(F(s+\varepsilon)-F(s)) d s \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{\Delta t \rightarrow 0} I_{n, \varepsilon}^{T}(g, t)
\end{aligned}
$$

For simplicity, assume $g(x, t)=g(x)$.
Using

$$
g\left(x+h_{1}\right)-g\left(x+h_{2}\right)=\sum_{p=1}^{4} \frac{1}{p!} g^{(p)}(x)\left(h_{1}^{p}-h_{2}^{p}\right)+\text { rem },
$$

we have

$$
\begin{aligned}
g\left(F\left(t_{2 j}\right)\right) & -g\left(F\left(t_{2 j-2}\right)\right) \\
\quad & =\sum_{p=1}^{4} \frac{1}{p!} g^{(p)}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{p}-(-1)^{p} \Delta F_{2 j-1}^{p}\right)+\text { rem } .
\end{aligned}
$$

We use the notation $X(t) \approx Y(t)$ to mean $X-Y \rightarrow 0$ ucp. Then

$$
\begin{aligned}
& g(F(t)) \approx g(F(0))+\sum_{j=1}^{\lfloor n t / 2\rfloor}\left(g\left(F\left(t_{2 j}\right)\right)-g\left(F\left(t_{2 j-2}\right)\right)\right) \\
& \approx g(F(0))+I_{n / 2}(g, t) \\
& \quad+\sum_{p=2}^{4} \sum_{j=1}^{\lfloor n t / 2\rfloor} \frac{1}{p!} g^{(p)}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{p}-(-1)^{p} \Delta F_{2 j-1}^{p}\right)
\end{aligned}
$$

We first verify that the $p=4$ term vanishes.

Recall that $\sum_{0<t_{j} \leq t}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|^{4} \xrightarrow{\text { ucp }} \frac{6}{\pi} t$.

- $V_{n}(t)=\sum_{j=1}^{\lfloor n t / 2\rfloor} \Delta F_{2 j}^{4} \xrightarrow{\text { ucp }} \frac{3}{\pi} t$.
- $E\left[T_{t}\left(V_{n}\right)\right]$ is uniformly bounded as $\Delta t \rightarrow 0$, where $T_{t}\left(V_{n}\right)$ is the total variation of V_{n} on $[0, t]$.

Recall that $\sum_{0<t_{j} \leq t}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|^{4} \xrightarrow{\text { ucp }} \frac{6}{\pi} t$.

- $V_{n}(t)=\sum_{j=1}^{\lfloor n t / 2\rfloor} \Delta F_{2 j}^{4} \xrightarrow{\text { ucp }} \frac{3}{\pi} t$.
- $E\left[T_{t}\left(V_{n}\right)\right]$ is uniformly bounded as $\Delta t \rightarrow 0$, where $T_{t}\left(V_{n}\right)$ is the total variation of V_{n} on $[0, t]$.

$$
\sum_{j=1}^{\lfloor n t / 2\rfloor} g^{(4)}\left(F\left(t_{2 j-1}\right)\right) \Delta F_{2 j}^{4} \xrightarrow{\text { ucp }} \frac{3}{\pi} \int_{0}^{t} g^{(4)}(F(s)) d s
$$

Recall that $\sum_{0<t_{j} \leq t}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|^{4} \xrightarrow{\text { ucp }} \frac{6}{\pi} t$.

- $V_{n}(t)=\sum_{j=1}^{\lfloor n t / 2\rfloor} \Delta F_{2 j}^{4} \xrightarrow{\text { ucp }} \frac{3}{\pi} t$.
- $E\left[T_{t}\left(V_{n}\right)\right]$ is uniformly bounded as $\Delta t \rightarrow 0$, where $T_{t}\left(V_{n}\right)$ is the total variation of V_{n} on $[0, t]$.

$$
\begin{aligned}
& \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{(4)}\left(F\left(t_{2 j-1}\right)\right) \Delta F_{2 j}^{4} \xrightarrow{\text { ucp }} \frac{3}{\pi} \int_{0}^{t} g^{(4)}(F(s)) d s \\
& \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{(4)}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{4}-\Delta F_{2 j-1}^{4}\right) \xrightarrow{\text { ucp }} 0
\end{aligned}
$$

This leads to

$$
\begin{aligned}
& I_{n / 2}\left(g^{\prime}, t\right) \approx g(F(t))-g(F(0)) \\
& -\frac{1}{2} \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{\prime \prime}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) \\
& \quad-\frac{1}{6} \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{\prime \prime \prime}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{3}+\Delta F_{2 j-1}^{3}\right) .
\end{aligned}
$$

Similar analysis gives

$$
\begin{aligned}
& I_{n}^{T}\left(g^{\prime}, t\right) \approx g(F(t))-g(F(0)) \\
&-\frac{1}{24} \sum_{j=1}^{\lfloor n t\rfloor} g^{\prime \prime \prime}\left(F\left(t_{j}\right)\right)\left(\Delta F_{j+1}^{3}+\Delta F_{j}^{3}\right) .
\end{aligned}
$$

Theorem (Burdzy, S 2010)

If $g \in C_{0}^{4,1}$, then

$$
\begin{gathered}
\sum_{j=1}^{\lfloor n t\rfloor} g\left(F\left(t_{j-1}\right), t_{j-1}\right) \Delta F_{j}^{3} \xrightarrow{\text { ucp }}-\frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s), s) d s, \\
\quad \sum_{j=1}^{\lfloor n t\rfloor} g\left(F\left(t_{j}\right), t_{j}\right) \Delta F_{j}^{3} \xrightarrow{u c p} \frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s), s) d s .
\end{gathered}
$$

- Note that $Z_{n}(t)=\sum_{j=1}^{\lfloor n t\rfloor} \Delta F_{j}^{3} \xrightarrow{\text { ucp }} 0$, but $E\left[T_{t}\left(Z_{n}\right)\right]$ explodes.
- A corollary is that $\sum_{j=1}^{\lfloor n t\rfloor} g^{\prime \prime \prime}\left(F\left(t_{j}\right)\right)\left(\Delta F_{j+1}^{3}+\Delta F_{j}^{3}\right) \xrightarrow{\text { ucp }} 0$.

Applying this to our Taylor expansions gives

$$
I_{n}^{T}\left(g^{\prime}, t\right) \xrightarrow{\text { ucp }} g(F(t))-g(F(0)),
$$

and

$$
\begin{aligned}
I_{n / 2}\left(g^{\prime}, t\right) \approx g(F(t))- & g(F(0)) \\
& -\frac{1}{2} \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{\prime \prime}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) .
\end{aligned}
$$

Proof sketch for third order integrals

Backward integral

Third order backward Riemann sum:

$$
X_{n}=\sum_{j=1}^{\lfloor n t\rfloor} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3} \quad X=\frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s)) d s
$$

We prove $E\left|X_{n}-X\right|^{2} \rightarrow 0$ by showing:
(1) $E X_{n}^{2} \rightarrow E X^{2}$, and
(2) $E\left[X_{n} X\right] \rightarrow E X^{2}$,

What follows is a sketch of the proof of (1).

Proof sketch for third order integrals

Backward integral

$$
E X_{n}^{2}=\sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor} E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]
$$

The 4-tuple $\left(F\left(t_{i}\right), \Delta F_{i}, F\left(t_{j}\right), \Delta F_{j}\right)$ is Gaussian with mean zero.
The expectation is a function of the variances and covariances:

$$
E\left[g\left(F\left(t_{i}\right)\right) \wedge F^{3} g\left(F\left(t_{j}\right)\right) \wedge F_{j}^{3}\right]=f\left(\sigma_{1}, \ldots, \sigma_{4}, \rho_{12}, \ldots, \rho_{34}\right)
$$

Differentiate under the expectation and expand in a Taylor series. Then the above becomes

$$
\begin{aligned}
& \approx C \Delta t \cdot E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g^{\prime}\left(F\left(t_{j}\right)\right)\right] \\
& \approx(C \Delta t)^{2} \cdot E\left[g^{\prime}\left(F\left(t_{i}\right)\right) g^{\prime}\left(F\left(t_{j}\right)\right)\right]
\end{aligned}
$$

Proof sketch for third order integrals

Backward integral

$$
E X_{n}^{2}=\sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor} E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]
$$

The 4-tuple $\left(F\left(t_{i}\right), \Delta F_{i}, F\left(t_{j}\right), \Delta F_{j}\right)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$
E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]=f\left(\sigma_{1}, \ldots, \sigma_{4}, \rho_{12}, \ldots, \rho_{34}\right)
$$

Differentiate under the expectation and expand in a Taylor series. Then the above becomes

$$
\begin{aligned}
& \approx C \wedge t \cdot E\left[g\left(F\left(t_{i}\right)\right) \wedge F_{i}^{3} g^{\prime}\left(F\left(t_{j}\right)\right)\right] \\
& \approx(C \Delta t)^{2} \cdot E\left[g^{\prime}\left(F\left(t_{i}\right)\right) g^{\prime}\left(F\left(t_{j}\right)\right)\right]
\end{aligned}
$$

Proof sketch for third order integrals

Backward integral

$$
E X_{n}^{2}=\sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor} E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]
$$

The 4-tuple $\left(F\left(t_{i}\right), \Delta F_{i}, F\left(t_{j}\right), \Delta F_{j}\right)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$
E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]=f\left(\sigma_{1}, \ldots, \sigma_{4}, \rho_{12}, \ldots, \rho_{34}\right)
$$

Differentiate under the expectation and expand in a Taylor series. Then the above becomes

$$
\approx C \Delta t \cdot E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g^{\prime}\left(F\left(t_{j}\right)\right)\right]
$$

Proof sketch for third order integrals

Backward integral

$$
E X_{n}^{2}=\sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor} E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]
$$

The 4-tuple ($\left.F\left(t_{i}\right), \Delta F_{i}, F\left(t_{j}\right), \Delta F_{j}\right)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$
E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right]=f\left(\sigma_{1}, \ldots, \sigma_{4}, \rho_{12}, \ldots, \rho_{34}\right)
$$

Differentiate under the expectation and expand in a Taylor series. Then the above becomes

$$
\begin{aligned}
& \approx C \Delta t \cdot E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g^{\prime}\left(F\left(t_{j}\right)\right)\right] \\
& \approx(C \Delta t)^{2} \cdot E\left[g^{\prime}\left(F\left(t_{i}\right)\right) g^{\prime}\left(F\left(t_{j}\right)\right)\right] .
\end{aligned}
$$

Proof sketch for third order integrals

Backward integral

$$
\begin{aligned}
E X_{n}^{2} & =\sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor} E\left[g\left(F\left(t_{i}\right)\right) \Delta F_{i}^{3} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}\right] \\
& \approx \sum_{i=1}^{\lfloor n t\rfloor} \sum_{j=1}^{\lfloor n t\rfloor}(C \Delta t)^{2} \cdot E\left[g^{\prime}\left(F\left(t_{i}\right)\right) g^{\prime}\left(F\left(t_{j}\right)\right)\right] \\
& =E\left|C \sum_{j=1}^{\lfloor n t\rfloor} g^{\prime}\left(F\left(t_{j}\right)\right) \Delta t\right|^{2} \rightarrow E\left|C \int_{0}^{t} g^{\prime}(F(s)) d s\right|^{2} .
\end{aligned}
$$

Calculation reveals that $C=3 / \pi$.

Proof sketch for third order integrals

 Forward integral$$
\begin{aligned}
\sum_{j=1}^{\lfloor n t\rfloor} g\left(F\left(t_{j-1}\right)\right) \Delta F_{j}^{3} & \approx \sum_{j=1}^{\lfloor n t\rfloor} g\left(F\left(t_{j}\right)\right) \Delta F_{j}^{3}-\sum_{j=1}^{\lfloor n t\rfloor} g^{\prime}\left(F\left(t_{j}\right)\right) \Delta F_{j}^{4} \\
& \rightarrow \frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s)) d s-\frac{6}{\pi} \int_{0}^{t} g^{\prime}(F(s)) d s \\
& =-\frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s)) d s
\end{aligned}
$$

Recall that third order integrals give us

$$
\begin{aligned}
I_{n / 2}\left(g^{\prime}, t\right) \approx g(F(t)) & -g(F(0)) \\
& -\frac{1}{2} \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{\prime \prime}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) .
\end{aligned}
$$

Also recall that

$$
B_{n}(t):=\sum_{j=1}^{\lfloor n t / 2\rfloor}\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) \underset{\text { in law }}{\longrightarrow} \llbracket F \rrbracket_{t}=\kappa B(t)
$$

Define

$B_{n}(t):=\sum_{j=1}^{\lfloor n t / 2\rfloor}\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) \xrightarrow[\text { in law }]{\longrightarrow} \llbracket F \rrbracket_{t}=\kappa B(t)$,
$F_{n}(t):=F(\lfloor n t\rfloor / n)$.
Then

$$
\begin{aligned}
& \sum_{j=1}^{\lfloor n t / 2\rfloor} g^{\prime \prime}\left(F\left(t_{2 j-1}\right)\right)\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right) \\
& \quad=\int_{0}^{t} g^{\prime \prime}\left(F_{n}(s-)\right) d B_{n}(s) \xrightarrow[\text { in law }]{?} \kappa \int_{0}^{t} g^{\prime \prime}(F(s)) d B(s) .
\end{aligned}
$$

$$
\int_{0}^{t} g^{\prime \prime}\left(F_{n}(s-)\right) d B_{n}(s) \xrightarrow[\text { in law }]{?} \kappa \int_{0}^{t} g^{\prime \prime}(F(s)) d B(s)
$$

(Kurtz, Protter 1991): Yes, if...

- B_{n} is a martingale, and
- $E\left[B_{n}\right]_{t}$ is uniformly bounded as $\Delta t \rightarrow 0$, where $\left[B_{n}\right]$ is the quadratic variation of B_{n}.
$B_{n}(t)=\sum_{j=1}^{\lfloor n t / 2\rfloor}\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right)$ jumps at every time $2 j \Delta t$.
B_{n} is not "close enough" to a martingale to apply the tools in (Kurtz, Protter 1991).
$\bar{B}_{n}(t):=\sum_{j=1}^{m^{3}\lfloor m t / 2\rfloor}\left(\Delta F_{2 j}^{2}-\Delta F_{2 j-1}^{2}\right)$, where $m=\left\lfloor n^{1 / 4}\right\rfloor$.
- If $n^{1 / 4} \in \mathbb{N}$, then \bar{B}_{n} jumps at times $2 j \Delta t^{1 / 4}$.
- $\bar{B}_{n}(t)=B_{n}(t)$ at the jump times.
- $B_{n}-\bar{B}_{n} \xrightarrow{u c p} 0$.
- \bar{B}_{n} is "close enough" to a martingale.

We therefore have

$$
\int_{0}^{t} g^{\prime \prime}\left(F_{n}(s-)\right) d \bar{B}_{n}(s) \xrightarrow[\text { in law }]{ } \kappa \int_{0}^{t} g^{\prime \prime}(F(s)) d B(s)
$$

But we still need

$$
\int_{0}^{t} g^{\prime \prime}\left(F_{n}(s-)\right) d\left(B_{n}-\bar{B}_{n}\right)(s) \xrightarrow{?} 0 .
$$

Complicated by the fact that $B_{n}-\bar{B}_{n} \xrightarrow{\text { ucp }} 0$, but $E\left[T_{t}\left(B_{n}-\bar{B}_{n}\right)\right]$ explodes.

This is similar to the situation with third order integrals:

- $Z_{n}(t)=\sum_{j=1}^{\lfloor n t\rfloor} \Delta F_{j}^{3} \xrightarrow{\text { ucp }} 0$, but $E\left[T_{t}\left(Z_{n}\right)\right]$ explodes.
- $\int_{0}^{t} g\left(F_{n}(s-)\right) d Z_{n}(s) \xrightarrow{\text { ucp }}-\frac{3}{\pi} \int_{0}^{t} g^{\prime}(F(s)) d s$

The same methods (but much more complicated calculations) are used to analyze the remainder term for the second order sums and show that

$$
\int_{0}^{t} g^{\prime \prime}\left(F_{n}(s-)\right) d\left(B_{n}-\bar{B}_{n}\right)(s) \rightarrow 0
$$

