A change of variable formula with Itô correction term*

Jason Swanson

Department of Mathematics University of Central Florida

Isaac Newton Institute, May 24, 2010

*Joint work with Chris Burdzy (University of Washington)

Classical Itô formula for Brownian motion:

$$g(B(t)) = g(B(0)) + \int_0^t g'(B(s)) \, dB(s) + \frac{1}{2} \int_0^t g''(B(s)) \, ds$$

Correction term due to $E|B(t + \Delta t) - B(t)|^2 = \Delta t$.

For a process F with $E|F(t+\Delta t)-F(t)|^4\approx \Delta t$, we construct an integral such that

$$g(F(t)) = g(F(0)) + \int_0^t g'(F(s)) \, dF(s) + \frac{1}{2} \int_0^t g''(F(s)) \, dB(s),$$

where B is a Brownian motion independent of F.

Classical Itô formula for Brownian motion:

$$g(B(t)) = g(B(0)) + \int_0^t g'(B(s)) \, dB(s) + \frac{1}{2} \int_0^t g''(B(s)) \, ds$$

Correction term due to $E|B(t + \Delta t) - B(t)|^2 = \Delta t$.

For a process F with $E|F(t+\Delta t)-F(t)|^4\approx \Delta t$, we construct an integral such that

$$g(F(t)) = g(F(0)) + \int_0^t g'(F(s)) dF(s) + \frac{1}{2} \int_0^t g''(F(s)) dB(s),$$

where B is a Brownian motion independent of F.

Definition of F

$$\partial_t u = \frac{1}{2} \partial_x^2 u + \dot{W}(x,t), \quad x \in \mathbb{R}; \qquad u(x,0) \equiv 0$$

$$\boxed{F(t) := u(x,t)}$$

F is a centered Gaussian process with covariance

$$\rho(s,t) = E[F(s)F(t)] = \frac{1}{\sqrt{2\pi}}(|t+s|^{1/2} - |t-s|^{1/2})$$

F is a bifractional Brownian motion, qualitatively similar to fractional Brownian motion (fBm) B^H with H = 1/4.

Quartic variation of F

Let
$$\Pi=\{0=t_0< t_1< t_2<\cdots\}$$
 with $t_j\uparrow\infty$ and $|\Pi|:=\sup_{j\in\mathbb{N}}(t_j-t_{j-1})<\infty.$

Define
$$V_{\Pi}(t) = \sum_{0 < t_j \le t} |F(t_j) - F(t_{j-1})|^4$$
.

Theorem (S 2007)

$$\lim_{|\Pi|\to 0} E \left[\sup_{0 < t < T} \left| V_{\Pi}(t) - \frac{6}{\pi} t \right|^2 \right] = 0, \quad \forall T > 0.$$

F is not a semimartingale; cannot construct classical stochastic integral. We construct an integral using Riemann sums.

$$\Delta t = n^{-1}$$
 $t_j = j\Delta t$ $\Delta F_j = F(t_j) - F(t_{j-1})$

Left-endpoint and right-endpoint Riemann sums diverge.

$$E\sum_{j=1}^{\lfloor nt \rfloor} F(t_{j-1}) \Delta F_j \approx -\frac{1}{\sqrt{2\pi}} \sum_{j=1}^{\lfloor nt \rfloor} \Delta t^{1/2} \approx -t \sqrt{\frac{n}{2\pi}}$$
 $E\sum_{j=1}^{\lfloor nt \rfloor} F(t_j) \Delta F_j \approx \frac{1}{\sqrt{2\pi}} \sum_{j=1}^{\lfloor nt \rfloor} \Delta t^{1/2} \approx t \sqrt{\frac{n}{2\pi}}$

Need a symmetric Riemann sum to generate cancellations

$$\Delta t = n^{-1}$$
 $t_j = j\Delta t$ $\Delta \mathcal{F}_j = \mathcal{F}(t_j) - \mathcal{F}(t_{j-1})$

Let $\theta(t)=g(F(t),t)$ and $\overline{t}_j=(t_{j-1}+t_j)/2$. We will consider

$$I_n(g,t) = \sum_{j=1}^{\lfloor nt \rfloor} \theta(\bar{t}_j) \Delta F_j \stackrel{?}{\longrightarrow} \int_0^t \theta(s) \, dF(s)$$

$$I_n^T(g,t) = \sum_{j=1}^{\lfloor nt \rfloor} \frac{\theta(t_{j-1}) + \theta(t_j)}{2} \Delta F_j \stackrel{?}{\longrightarrow} \int_0^t \theta(s) d^T F(s)$$

Quadratic variation of F is infinite.

Define

$$Q_n(t) = \sum_{j=1}^{\lfloor nt \rfloor} (-1)^j \Delta F_j^2 \approx \sum_{\substack{j=1 \ j \text{ even}}}^{\lfloor nt \rfloor} (\Delta F_j^2 - \Delta F_{j-1}^2).$$

Terms have (approximately) mean 0, variance Δt .

Theorem (S 2007)

If $Q_n(t) = \sum_{j=1}^{\lfloor nt \rfloor} (-1)^j \Delta F_j^2$, then $(F, Q_n) \to (F, \kappa B)$ in law in $D_{\mathbb{R}^2}[0, \infty)$, the Skorohod space of cadlag functions from $[0, \infty)$ to \mathbb{R}^d , where B is a standard Brownian motion independent of F, and

$$\kappa = \left(\frac{4}{\pi} + \frac{2}{\pi} \sum_{j=1}^{\infty} (-1)^{j} \underbrace{(2j^{1/2} - |j-1|^{1/2} + |j+1|^{1/2})^{2}}_{\text{derived from the covariance of } F}\right)^{1/2}$$

$$\approx 1.029.$$

We define $\llbracket F \rrbracket_t := \kappa B(t)$ to be the alternating quadratic variation of F.

Key idea of proof:

Let t = 1 and suppose $k = n^{1/4} \in \mathbb{N}$. If $s_j = j\Delta t^{1/4}$, then

$$\sum_{j=1}^{\lfloor nt \rfloor} (-1)^j \Delta F_j^2 \approx \sum_{i=1}^k \left(\underbrace{\sum_{j=\lfloor ns_{k-1} \rfloor}^{\lfloor ns_k \rfloor} (-1)^j \Delta F_j^2} \right)$$

These terms are asymptotically independent

Theorem (main result, informal version)

If g is "nice enough", then $I_n(g,t)$ converges in law to a process $\int_0^t g(F(s),s) \, dF(s)$ satisfying

$$g(F(t),t) = g(F(0),0) + \int_0^t \partial_t g(F(s),s) \, ds$$
$$+ \int_0^t \partial_x g(F(s),s) \, dF(s) + \frac{1}{2} \int_0^t \partial_x^2 g(F(s),s) \, d[F]_s. \quad (*)$$

Definition

Let k and r be integers such that $0 \le r \le k$. We write $g \in C_r^{k,1}(\mathbb{R} \times [0,\infty))$ if

- $g: \mathbb{R} \times [0, \infty) \to \mathbb{R}$ is continuous.
- $\partial_x^j g$ exists and is cont. on $\mathbb{R} \times [0, \infty)$ for all $0 \le j \le k$.
- $\partial_t \partial_x^j g$ exists and is cont. on $\mathbb{R} \times (0, \infty)$ for all $0 \le j \le r$.
- $\overline{\lim}_{t\to 0}\sup_{x\in K}|\partial_t\partial_x^j g(x,t)|<\infty$ for all cpct K and all $0\leq j\leq r$.

$$C_0^{k,1}=C^{k,1}=$$
 functions with k spatial derivs, 1 time deriv $g\in C_1^{k,1}\Rightarrow \partial_x g\in C^{k-1,1}$ $g\in C_2^{k,1}\Rightarrow \partial_x g\in C_1^{k-1,1}$ and $\partial_x^2 g\in C^{k-2,1}$ \vdots etc.

Definition

Given $g \in C_3^{8,1}$, choose $G \in C_4^{9,1}$ such that $\partial_x G = g$. Let B be a standard Brownian motion independent of F. Define

$$\int g(F,s) dF = \int_0^t g(F(s),s) dF(s)$$

$$:= G(F(t),t) - G(F(0),0) - \int_0^t \partial_t G(F(s),s) ds$$

$$- \frac{\kappa}{2} \int_0^t \partial_x^2 G(F(s),s) dB(s).$$

By definition, then, for every $g \in C_4^{9,1}$, the Itô formula (*) holds. The issue is therefore whether $I_p(g,t) \to \int g(F,s) dF$.

Theorem (S 2007)

 $(F,Q_n) \to (F,\kappa B)$ in law in $D_{\mathbb{R}^2}[0,\infty)$, where B is a standard Brownian motion independent of F.

Theorem (Burdzy, S 2010)

If $g \in C_3^{8,1}$, then $(F, Q_n, I_n(g, \cdot)) \to (F, \kappa B, \int g(F, s) \, dF)$ in law in $D_{\mathbb{R}^3}[0, \infty)$, where B is a standard BM, independent of F. (Note: The B that appears in the second component of the limit is the same B used in the definition of $\int g(F, s) \, dF$.)

The method of proof (based in part on (Kurtz, Protter 1991)) actually gives something somewhat stronger.

Theorem (Burdzy, S 2010)

If $g \in C_3^{8,1}$, then $(F, Q_n, I_n(g, \cdot)) \to (F, \kappa B, \int g(F, s) dF)$ in law in $D_{\mathbb{R}^3}[0, \infty)$, where B is a standard BM, independent of F.

Define $\mathcal{F}_t = \sigma\{W(A) : A \subset \mathbb{R} \times [0, t], m(A) < \infty\}$, where m is Lebesgue measure. Suppose:

- $\{W_n(\cdot)\}\subset D_{\mathbb{R}^d}[0,\infty)$
- $W_n(t) \in \mathcal{F}_t \vee \mathcal{G}_t^n$, where \mathcal{G}_t^n is independent of \mathcal{F}_t
- ullet $[(W_n, F, Q_n) o (W, F, \kappa B)]$ in law in $D_{\mathbb{R}^{d+2}}[0, \infty)$.

Then $(W_n, F, Q_n, I_n(g, \cdot)) \to (W, F, \kappa B, \int g(F, s) ds)$ in law in $D_{\mathbb{R}^{d+3}}[0, \infty)$.

Example

Let $W_n = I_n(\widetilde{g}, \cdot)$ and $W = \int \widetilde{g}(F, s) dF$. By the main result, $(W_n, F, Q_n) \to (W, F, \kappa B)$. Therefore, by the extended main result,

$$(W_n, F, Q_n, I_n(g, \cdot)) \rightarrow \left(W, F, \kappa B, \int g(F, s) ds\right),$$

i.e.

$$(F, Q_n, I_n(\widetilde{g}, \cdot), I_n(g, \cdot)) \rightarrow \left(F, \kappa B, \int \widetilde{g}(F, s) dF, \int g(F, s) dF\right).$$

The two Riemann sums converge jointly, and the same Brownian motion appears in their correction terms

Theorem (Burdzy, S 2010)

If $g \in C_2^{6,1}$, then $I_n^T(g,\cdot)$ converges ucp (uniformly on compacts in probability) to a process $\int_0^t g(F(s),s) d^T F(s)$. Moreover, if $g \in C_3^{7,1}$, then

$$g(F(t),t) = g(F(0),0) + \int_0^t \partial_t g(F(s),s) ds$$

$$+ \int_0^t \partial_x g(F(s),s) d^T F(s).$$

This is the classical Stratonovich change of variable formula. There is no correction term.

Regularization method (Russo, Vallois, et al)

Recall that
$$\Delta t = n^{-1}$$
, $t_j = j\Delta t$, $\theta(t) = g(F(t), t)$, and $\Delta F_j = F(t_j) - F(t_{j-1})$.

$$I_n^T(g,t) := \sum_{j=1}^{\lfloor nt \rfloor} \frac{\theta(t_{j-1}) + \theta(t_j)}{2} \Delta F_j$$

$$I_{n,\varepsilon}^{\mathsf{T}}(g,t) := rac{\Delta t}{arepsilon} \sum_{j=1}^{\lfloor nt \rfloor} rac{ heta(t_{j-1}) + heta(t_{j-1} + arepsilon)}{2} (\mathsf{F}(t_{j-1} + arepsilon) - \mathsf{F}(t_{j-1}))$$

Note that $\varepsilon = \Delta t = 1/n$ implies $I_{n,\varepsilon}^T = I_n^T$.

Regularization method (Russo, Vallois, et al)

$$I_{n,\varepsilon}^{\mathsf{T}}(g,t) := rac{\Delta t}{arepsilon} \sum_{j=1}^{\lfloor nt
floor} rac{ heta(t_{j-1}) + heta(t_{j-1} + arepsilon)}{2} (\mathsf{F}(t_{j-1} + arepsilon) - \mathsf{F}(t_{j-1}))$$

$$\begin{split} & \lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} I_{n,\varepsilon}^{T}(g,t) \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{0}^{t} \frac{\theta(s) + \theta(s+\varepsilon)}{2} (F(s+\varepsilon) - F(s)) \, ds \\ & =: \int_{0}^{t} \theta(s) \, d^{\circ}F(s) \quad \text{(the symmetric integral)} \end{split}$$

Regularization method (Russo, Vallois, et al)

$$\int_0^t \theta(s) \, d^\circ F(s) := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \frac{\theta(s) + \theta(s+\epsilon)}{2} (F(s+\epsilon) - F(s)) \, ds$$

Theorem (Gradinaru, Nourdin, Russo, Vallois 2005; Cheridito, Nualart 2005)

If $g \in C^6(\mathbb{R})$, then

$$g(B^{1/4}(t)) = g(B^{1/4}(0)) + \int_0^t g'(B^{1/4}(s)) d^{\circ}B^{1/4}(s).$$

In fact, this is true for B^H with any H > 1/6.

Regularizing the midpoint sums

Recall that
$$\Delta t = n^{-1}$$
, $t_j = j\Delta t$, $\bar{t}_j = (t_{j-1} + t_j)/2$, $\theta(t) = g(F(t), t)$, and $\Delta F_j = F(t_j) - F(t_{j-1})$.

$$I_n(g,t) := \sum_{j=1}^{\lfloor nt \rfloor} \theta(\overline{t}_j) \Delta F_j$$

$$I_{n,arepsilon}(g,t) := rac{\Delta t}{2arepsilon} \sum_{j=1}^{\lfloor nt
floor} heta(ar{t}_j) (m{F}(ar{t}_j + arepsilon) - m{F}(ar{t}_j - arepsilon))$$

Note that $\varepsilon = \frac{1}{2}\Delta t = 1/(2n)$ implies $I_{n,\varepsilon} = I_n$.

Regularizing the midpoint sums

$$I_{n,arepsilon}(g,t) := rac{\Delta t}{2arepsilon} \sum_{j=1}^{\lfloor nt
floor} heta(ar{t}_j) (extit{ extit{F}}(ar{t}_j + arepsilon) - extit{ extit{F}}(ar{t}_j - arepsilon))$$

$$\begin{split} &\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} I_{n,\varepsilon}(g,t) \\ &= \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \theta(s) (F(s+\varepsilon) - F((s-\varepsilon) \vee 0)) \, ds \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^t \frac{\theta(s) + \theta(s+\varepsilon)}{2} (F(s+\varepsilon) - F(s)) \, ds \\ &= \lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} I_{n,\varepsilon}^T(g,t) \end{split}$$

For simplicity, assume g(x, t) = g(x). Using

$$g(x + h_1) - g(x + h_2) = \sum_{p=1}^{4} \frac{1}{p!} g^{(p)}(x) (h_1^p - h_2^p) + \text{rem},$$

we have

$$g(F(t_{2j})) - g(F(t_{2j-2}))$$

$$= \sum_{p=1}^{4} \frac{1}{p!} g^{(p)}(F(t_{2j-1})) (\Delta F_{2j}^p - (-1)^p \Delta F_{2j-1}^p) + \text{rem}.$$

We use the notation $X(t) \approx Y(t)$ to mean $X - Y \rightarrow 0$ ucp. Then

$$egin{split} g(F(t)) &pprox g(F(0)) + \sum_{j=1}^{\lfloor nt/2 \rfloor} \left(g(F(t_{2j})) - g(F(t_{2j-2}))
ight) \ &pprox g(F(0)) + I_{n/2}(g,t) \ &+ \sum_{p=2}^4 \sum_{j=1}^{\lfloor nt/2 \rfloor} rac{1}{p!} g^{(p)}(F(t_{2j-1})) (\Delta F_{2j}^p - (-1)^p \Delta F_{2j-1}^p) \end{split}$$

We first verify that the p = 4 term vanishes.

Recall that
$$\sum_{0 < t_j \le t} |F(t_j) - F(t_{j-1})|^4 \xrightarrow{\text{ucp}} \frac{6}{\pi}t$$
.

• $E[T_t(V_n)]$ is uniformly bounded as $\Delta t \to 0$, where $T_t(V_n)$ is the total variation of V_n on [0, t].

$$\sum_{j=1}^{\lfloor nt/2 \rfloor} g^{(4)}(F(t_{2j-1})) \Delta F_{2j}^4 \xrightarrow{\text{ucp}} \frac{3}{\pi} \int_0^t g^{(4)}(F(s)) ds$$

$$\sum_{j=1}^{\lfloor nt/2 \rfloor} g^{(4)}(F(t_{2j-1})) (\Delta F_{2j}^4 - \Delta F_{2j-1}^4) \xrightarrow{\text{ucp}} 0$$

Recall that
$$\sum_{0 < t_j \le t} |F(t_j) - F(t_{j-1})|^4 \xrightarrow{\text{ucp}} \frac{6}{\pi}t$$
.

• $E[T_t(V_n)]$ is uniformly bounded as $\Delta t \to 0$, where $T_t(V_n)$ is the total variation of V_n on [0, t].

$$\sum_{j=1}^{\lfloor nt/2\rfloor} g^{(4)}(F(t_{2j-1})) \Delta F_{2j}^4 \xrightarrow{\text{ucp}} \frac{3}{\pi} \int_0^t g^{(4)}(F(s)) \, ds$$

$$\sum_{i=1}^{\lfloor n\tau/2 \rfloor} g^{(4)}(F(t_{2j-1}))(\Delta F_{2j}^4 - \Delta F_{2j-1}^4) \xrightarrow{\text{ucp}} 0$$

Recall that
$$\sum_{0 < t_j \le t} |F(t_j) - F(t_{j-1})|^4 \xrightarrow{\text{ucp}} \frac{6}{\pi}t$$
.

• $E[T_t(V_n)]$ is uniformly bounded as $\Delta t \to 0$, where $T_t(V_n)$ is the total variation of V_n on [0, t].

$$\begin{split} & \sum_{j=1}^{\lfloor nt/2 \rfloor} g^{(4)}(F(t_{2j-1})) \Delta F_{2j}^4 \xrightarrow{\text{ucp}} \frac{3}{\pi} \int_0^t g^{(4)}(F(s)) \, ds \\ & \sum_{j=1}^{\lfloor nt/2 \rfloor} g^{(4)}(F(t_{2j-1})) (\Delta F_{2j}^4 - \Delta F_{2j-1}^4) \xrightarrow{\text{ucp}} 0 \end{split}$$

This leads to

$$egin{split} I_{n/2}(g',t) &pprox g(F(t)) - g(F(0)) \ &-rac{1}{2} \sum_{j=1}^{\lfloor nt/2
floor} g''(F(t_{2j-1})) (\Delta F_{2j}^2 - \Delta F_{2j-1}^2) \ &-rac{1}{6} \sum_{j=1}^{\lfloor nt/2
floor} g'''(F(t_{2j-1})) (\Delta F_{2j}^3 + \Delta F_{2j-1}^3). \end{split}$$

Similar analysis gives

$$egin{split} I_n^{\mathcal{T}}(g',t) &pprox g(F(t)) - g(F(0)) \ &-rac{1}{24} \sum_{i=1}^{\lfloor nt \rfloor} g'''(F(t_j)) (\Delta F_{j+1}^3 + \Delta F_j^3). \end{split}$$

Theorem (Burdzy, S 2010)

If
$$g \in C_0^{4,1}$$
, then

$$\sum_{j=1}^{\lfloor nt \rfloor} g(F(t_{j-1}), t_{j-1}) \Delta F_j^3 \xrightarrow{ucp} -\frac{3}{\pi} \int_0^t g'(F(s), s) \, ds,$$

$$\sum_{j=1}^{\lfloor nt \rfloor} g(F(t_j), t_j) \Delta F_j^3 \xrightarrow{ucp} \frac{3}{\pi} \int_0^t g'(F(s), s) \, ds.$$

- Note that $Z_n(t) = \sum_{j=1}^{\lfloor nt \rfloor} \Delta F_j^3 \xrightarrow{\text{ucp}} 0$, but $E[T_t(Z_n)]$ explodes.
- A corollary is that $\sum_{j=1}^{\lfloor nt \rfloor} g'''(F(t_j))(\Delta F_{j+1}^3 + \Delta F_j^3) \xrightarrow{\mathsf{ucp}} 0$.

Applying this to our Taylor expansions gives

$$I_n^T(g',t) \xrightarrow{\text{ucp}} g(F(t)) - g(F(0)),$$

and

$$I_{n/2}(g',t) pprox g(F(t)) - g(F(0)) \ - rac{1}{2} \sum_{j=1}^{\lfloor nt/2 \rfloor} g''(F(t_{2j-1})) (\Delta F_{2j}^2 - \Delta F_{2j-1}^2).$$

Third order backward Riemann sum:

$$X_n = \sum_{j=1}^{\lfloor nt \rfloor} g(F(t_j)) \Delta F_j^3$$
 $X = \frac{3}{\pi} \int_0^t g'(F(s)) ds$

We prove $E|X_n - X|^2 \to 0$ by showing:

- (1) $EX_n^2 \rightarrow EX^2$, and
- (2) $E[X_nX] \rightarrow EX^2$,

What follows is a sketch of the proof of (1).

$$EX_n^2 = \sum_{i=1}^{\lfloor nt \rfloor} \sum_{i=1}^{\lfloor nt \rfloor} E[g(F(t_i))\Delta F_i^3 g(F(t_j))\Delta F_j^3].$$

The 4-tuple $(F(t_i), \Delta F_i, F(t_j), \Delta F_j)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$E[g(F(t_i))\Delta F_i^3g(F(t_j))\Delta F_j^3]=f(\sigma_1,\ldots,\sigma_4,\rho_{12},\ldots,\rho_{34}).$$

$$\approx C\Delta t \cdot E[g(F(t_i))\Delta F_i^3 g'(F(t_j))]$$

$$\approx (C\Delta t)^2 \cdot E[g'(F(t_i))g'(F(t_j))].$$

$$EX_n^2 = \sum_{i=1}^{\lfloor nt \rfloor} \sum_{i=1}^{\lfloor nt \rfloor} E[g(F(t_i)) \Delta F_i^3 g(F(t_j)) \Delta F_j^3].$$

The 4-tuple $(F(t_i), \Delta F_i, F(t_j), \Delta F_j)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$E[g(F(t_i))\Delta F_i^3g(F(t_j))\Delta F_j^3]=f(\sigma_1,\ldots,\sigma_4,\rho_{12},\ldots,\rho_{34}).$$

$$\approx C\Delta t \cdot E[g(F(t_i))\Delta F_i^3 g'(F(t_j))]$$

$$\approx (C\Delta t)^2 \cdot E[g'(F(t_i))g'(F(t_j))].$$

 $EX_n^2 = \sum_{i=1}^{\lfloor nt\rfloor} \sum_{i=1}^{\lfloor nt\rfloor} E[g(F(t_i))\Delta F_i^3 g(F(t_j))\Delta F_j^3].$

The 4-tuple $(F(t_i), \Delta F_i, F(t_j), \Delta F_j)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$E[g(F(t_i))\Delta F_i^3g(F(t_j))\Delta F_j^3]=f(\sigma_1,\ldots,\sigma_4,\rho_{12},\ldots,\rho_{34}).$$

$$\approx C\Delta t \cdot E[g(F(t_i))\Delta F_i^3 g'(F(t_j))]$$

$$\approx (C\Delta t)^2 \cdot E[g'(F(t_i))g'(F(t_j))].$$

Proof sketch for third order integrals

Backward integral

$$EX_n^2 = \sum_{i=1}^{\lfloor nt \rfloor} \sum_{i=1}^{\lfloor nt \rfloor} E[g(F(t_i)) \Delta F_i^3 g(F(t_j)) \Delta F_j^3].$$

The 4-tuple $(F(t_i), \Delta F_i, F(t_j), \Delta F_j)$ is Gaussian with mean zero. The expectation is a function of the variances and covariances:

$$E[g(F(t_i))\Delta F_i^3g(F(t_j))\Delta F_j^3]=f(\sigma_1,\ldots,\sigma_4,\rho_{12},\ldots,\rho_{34}).$$

$$\approx C\Delta t \cdot E[g(F(t_i))\Delta F_i^3 g'(F(t_j))]$$

$$\approx (C\Delta t)^2 \cdot E[g'(F(t_i))g'(F(t_j))].$$

$$\begin{aligned} EX_n^2 &= \sum_{i=1}^{\lfloor nt \rfloor} \sum_{j=1}^{\lfloor nt \rfloor} E[g(F(t_i)) \Delta F_i^3 g(F(t_j)) \Delta F_j^3] \\ &\approx \sum_{i=1}^{\lfloor nt \rfloor} \sum_{j=1}^{\lfloor nt \rfloor} (C \Delta t)^2 \cdot E[g'(F(t_i)) g'(F(t_j))] \\ &= E \bigg| C \sum_{i=1}^{\lfloor nt \rfloor} g'(F(t_j)) \Delta t \bigg|^2 \rightarrow E \bigg| C \int_0^t g'(F(s)) \, ds \bigg|^2. \end{aligned}$$

Calculation reveals that $C = 3/\pi$.

$$\begin{split} \sum_{j=1}^{\lfloor nt \rfloor} g(F(t_{j-1})) \Delta F_j^3 &\approx \sum_{j=1}^{\lfloor nt \rfloor} g(F(t_j)) \Delta F_j^3 - \sum_{j=1}^{\lfloor nt \rfloor} g'(F(t_j)) \Delta F_j^4 \\ &\rightarrow \frac{3}{\pi} \int_0^t g'(F(s)) \, ds - \frac{6}{\pi} \int_0^t g'(F(s)) \, ds \\ &= -\frac{3}{\pi} \int_0^t g'(F(s)) \, ds \end{split}$$

Recall that third order integrals give us

$$egin{split} I_{n/2}(g',t) &pprox g(F(t)) - g(F(0)) \ &-rac{1}{2} \sum_{j=1}^{\lfloor nt/2
floor} g''(F(t_{2j-1})) (\Delta F_{2j}^2 - \Delta F_{2j-1}^2). \end{split}$$

Also recall that

$$B_n(t) := \sum_{i=1}^{\lfloor nt/2 \rfloor} (\Delta F_{2j}^2 - \Delta F_{2j-1}^2) \xrightarrow[\text{in law}]{} \llbracket F
rbracket_t = \kappa B(t)$$

$$B_n(t) := \sum_{j=1}^{\lfloor nt/2 \rfloor} (\Delta F_{2j}^2 - \Delta F_{2j-1}^2) \xrightarrow[\text{in law}]{} \llbracket F \rrbracket_t = \kappa B(t),$$
 $F_n(t) := F(\lfloor nt \rfloor / n).$

Then

$$\begin{split} \sum_{j=1}^{\lfloor nt/2 \rfloor} g''(F(t_{2j-1}))(\Delta F_{2j}^2 - \Delta F_{2j-1}^2) \\ &= \int_0^t g''(F_n(s-)) \, dB_n(s) \xrightarrow[\text{in law}]{?} \kappa \int_0^t g''(F(s)) \, dB(s). \end{split}$$

$$\int_0^t g''(F_n(s-)) dB_n(s) \xrightarrow{?} \kappa \int_0^t g''(F(s)) dB(s)$$

(Kurtz, Protter 1991): Yes, if...

- B_n is a martingale, and
- E[B_n]_t is uniformly bounded as Δt → 0, where [B_n] is the quadratic variation of B_n.

$$B_n(t) = \sum_{j=1}^{\lfloor nt/2 \rfloor} (\Delta F_{2j}^2 - \Delta F_{2j-1}^2)$$
 jumps at every time $2j\Delta t$.

 B_n is not "close enough" to a martingale to apply the tools in (Kurtz, Protter 1991).

$$\overline{B}_n(t) := \sum_{j=1}^{m^3 \lfloor mt/2 \rfloor} (\Delta F_{2j}^2 - \Delta F_{2j-1}^2), \text{ where } m = \lfloor n^{1/4} \rfloor.$$

- If $n^{1/4} \in \mathbb{N}$, then \overline{B}_n jumps at times $2j\Delta t^{1/4}$.
- $\overline{B}_n(t) = B_n(t)$ at the jump times.
- $B_n \overline{B}_n \xrightarrow{\text{ucp}} 0$.
- \overline{B}_n is "close enough" to a martingale.

We therefore have

$$\int_0^t g''(F_n(s-)) d\overline{B}_n(s) \xrightarrow[\text{in law}]{} \kappa \int_0^t g''(F(s)) dB(s).$$

But we still need

$$\int_0^t g''(F_n(s-)) d(B_n - \overline{B}_n)(s) \stackrel{?}{\longrightarrow} 0.$$

Complicated by the fact that $B_n - \overline{B}_n \xrightarrow{\text{ucp}} 0$, but $E[T_t(B_n - \overline{B}_n)]$ explodes.

This is similar to the situation with third order integrals:

•
$$Z_n(t) = \sum_{j=1}^{\lfloor nt \rfloor} \Delta F_j^3 \xrightarrow{\text{ucp}} 0$$
, but $E[T_t(Z_n)]$ explodes.

The same methods (but much more complicated calculations) are used to analyze the remainder term for the second order sums and show that

$$\int_0^t g''(F_n(s-))\,d(B_n-\overline{B}_n)(s)\to 0.$$