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B = B1/6 s fractional Brownian motion:

E[B(s)B(t)] = %(tl/3 +sM3 st

tk = tk,n = k/n
Sh is the vector space of stochastic processes {L(t) : t > 0} of
the form

B
L= Mgt M € Fo
k=0

Note that L(t) = A«. Let §(L) = L(t;) — L(tj_1) forj > 1. Since
t € [tk k1) iff [Nt] =k, we may write

[ntJ
L(t) = L(0) + > (L)
j=1
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Example 1

If X = f(B), where f € C™, then we define
A = ko X (1)Lt ,4)» OF €quivalently,

[nt]
AX (1) = X(0) + ) (X(t) = X(t-1)).

j=1

Since X is continuous a.s., we have /\?,‘ — X uniformly on
compacts a.s. When f is the identity, we have

[nt]
AR () = (B(f) —B(t_1)).

i=1
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Example 2

If L € S, then we define V(L) € Sy by V(L)(t) = S/ (5 (L))%.
For example, if X = f(B), where f € C°, then

[nt]
VAD() =D (X(4) = X(t-1))°,

j=1

and o
V(AR = (B(4) - B(4-1))>.

j=1

[Nualart and Ortiz-Latorre, 2008] show that V (AB) converges in
law to kKW, where « > 0 is an explicit constant, and W is a
standard Brownian motion, independent of B.
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Example 3

IfL, T € Sy, then we define Lo T € Sy by

L .
omyn =3 I W ) 50y

(N o AR)(E) = 5——~(B(t) ~B(t-1))
j=1
M f(B(t_q)) +f(B
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Example 3

[nt]
(s o n)t) = 3 (O IO g4y gy )

In [Nourdin, Réveillac, S, 2010], we showed that AX o AB
converges in law to

K

F(B(1) ~F(BO) + 15 | F/(BS)dW(s)

where F/ = f.
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S is the vector space of sequences A = {A}72; such that
o An € Sn,

e An(0) converges in probability, and

e there exists o1, ¢3, ps € C> such that

5](/\n) = /\n(tj) - An(tj—l)
= 01(5)ABj 0 + 3(3)ABY, + ¢s(4) 4B, (T)
+ O(|ABj,n|7)-

B(t—1) + B(Y)

Here, §; = 5

and ABj,n = B(tj) — B(tj_l).

Jason Swanson The calculus of differentials for the weak Stratonovich integral



Example 1

If X = f(B), where f € C*, then we define A* = {AX}.
In this case,
G(AR) = X(4) = X(t-1)
=f(B(Y)) —f(B(4-1))
1 1
= 1'(4)ABjn + 51" (4)ABS, + £y T (4)ABY,
+O(‘ABJ,I’I‘7)7
soNt € S.

Recall that the sequence AX converges uniformly on compacts
a.s. In fact, every sequence in S converges, at least in law.

Jason Swanson The calculus of differentials for the weak Stratonovich integral



Lemma (S, 2011)

If A € S, then there are unique functions ¢, A and @3 A that
satisfy (T).

Let A € S. Define Z5(0) = lim A, (0), and
Za(t) = ZA(0) + PA(B(1))
t
e [ (an = gein ) EBE)AW(S)

where
° (D;\ = Q1A and q)/\(O) =0,

3
2_ 9 1/3 111/3 1/33
ok —4Z(|r—|—1| +r =1 2/r|¥3)3 > 0, and
rez
e W is a standard Brownian motion, independent of B.
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Theorem (S, 2011)
IfAQ, .. AM e S then

1
B,AY, LA™Y (B, Iy, -, Tpm)

in law in Dpm11[0, 00), the Skorohod space of cadlag functions
from [0, oo) to RM*L,

e Both of the previously cited convergence results can be seen
as special cases of this.

e We now have a space of sequences S. Each sequence
A € S is associated to a process Z(t).

e If X =f(B), where f € C®, then AX € S, and it is easy to
verify that Z,x (t) = X(t). We therefore identify X with AX.

e To complete the development of the weak Stratonovich
integral, we will define an equivalence relation on S.
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For A,© € S, let A = © if Ay — ©, — 0 uniformly on compacts in
probability (ucp). This is an equivalence relation. Let [A] denote
the equivalence class of A. Let [S] = {[A] : A € S}.

As before, we identify X = f(B) with NX = [AX].

Lemma (S, 2011)

Let A\,© € S. Then A = © if and only if
e An(0) — ©,(0) — 0 in probability, and
° p1A =10 aNd p3A = p30.

Recall that the process Zx(t) is defined in terms of lim Ap(0),
1A, and @3 A. Hence, if N = [A] € [S], then we may define
In(t) = Za(t). Again, note that Zyx (t) = X(t).

It can be shown that the mapping N — Zy/(-) is one-to-one. We
sometimes write N(t) instead of Zy (t).
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Example 2 (signed cubic variation)

IFA €S, let VA = {V(An)}, where V (An)(t ) S (G (Aa))2.
Then V" € S with o1 ya = 0 and g3y = 3 4.

If A= O, then VA = V®. Hence, if N = [A] € [S], then we define
the signed cubic variation of N to be [N] := [V/]. We also write
IIN]]t for IIIN]I(t)'

If X = f(B), then X = NX = [AX], so [X] = [VN]is the
equivalence class in S of the sequence of sums,

[nt]
VA =D (X () — X(4-1))°,

j=1
and .
[X]c = /0 ((B(s)))* dW(s),

which is the limit in law of the above sequence.
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Example 3 (weak Stratonovich integral)

Let ©,, An € Sh. Recall that

[nt] _
@non)) =3 P EOD 00y gy )

Lemma (S, 2011)

Let X =f(B), wheref € C>*,and A € S. Then
X oA :={Af oAn}2, € S. Moreover, if A = ©, then
XoA=Xo00.

If N = [A] € [S], then, by the lemma, we may define the weak
Stratonovich integral of X with respectto N by X o N := [X o A].
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Example 3 (weak Stratonovich integral)

We adopt the notation [ X dN = X oN and
Jo X(8)dN(s) = (X o N): = Ton (1)-

As an example of this definition, let Y = g(B), where g € C*°.
Recall that we identify Y with NY & [S]. Then

[XdY =X oY =XoNY is the equivalence class in S of the
sequence of Riemann sums

[nt] _ _
> 2O X0 v g v ),

i=1

And fg X(s)dY (s) is the stochastic process Zy.y (t), which is
the limit in law of this sequence.
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Example 3 (weak Stratonovich integral)

If X = f(B), then from the proof of the previous lemma, we

obtain
Ixon(0) =0,
P1,XoN = f‘Pl,Nv
1

P3 XN = 8f”901,N +fosn.

From these, we can compute fg X(s)dN(s).

It can also be verified that if X = f(B) and Y = g(B), where
f,g € C>®,and M,N € [S], then

(X4+Y)oN=XoN+YoN,
Xo(M+N)=XoM+XoN.
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Decomposition of N € [S]

Each n € 78 is identified with the equivalence class of the
constant process 7(t) = 7.

Lemma (S, 2011)

Each N € [S] can be written uniquely as N =n + Y + V, where
€ FB,Y =g(B) with Y(0) = 0, and V = [ 6(B)d[B], where
g,0 € C*.

Note that fo s))d[B]s = “fo 6(B(s))dW (s), so every
element of N can be uniquely decomposed into a smooth
function of B and a Brownian martingale.

Lemma (S, 2011)

Let X =f(B), where f € C>, and V as above. Then

/x dv = /xe(B)d[[B]].
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Change-of-variable formulas
Theorem (S, 2011)

LetN € [S]and X =f(B), wheref € C>®. Write N =n+Y +V,
where Y =g(B) and V = [6(B)d[B], with g,f € C*>. Then

/XdN— /(f” g )d|[B]]+/XdV, (D)

where ¢’ = fg’ and ®(0) =

e Note that [ X dN € [S], and (D) gives the decomposition of
J X dN into a smooth function of B and a Brownian
martingale.

e Equation (D) expresses equality in [S]. Hence, if we choose
any sequence from the class on the left and any sequence
from the class on the right, then their difference will converge
to zero ucp. This is a stronger statement than simply
asserting that the two sequences have the same limiting law.
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Change-of-variable formulas

Corollary (S, 2011)

LetY =g(B), where g € C>, and let ¢ € C*. Then

p(Y (1) Z@(Y(O))Jr/o ¢'(Y(s))dY (s)

1 t

33, (Y () IV,

The case Y = B was proved in [Nourdin, Réveillac, S, 2010]
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Change-of-variable formulas

Corollary (S, 2011)

LetN € [S], X =f(B),and Z = h(B) where f,h € C™. Let
M = [ X dN. Write N =71+ g(B +f98)d|[B]] with

g,0 € C*°. Then

/z dm = /zx dN —i/(f’g’h’)(B)d[[B]].

Moreover, the above correction term is a “weak triple
covariation” in the following sense: If Y = g(B) and V = {V,},
where

[nt]
t) =Y (X(4) = X(G-2))(Y () = Y (4-2)(Z () — Z(4-1)),
ji=1

thenV € S and [V] = [(f'g’h’)(B) d[B].
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