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B = B1/6 is fractional Brownian motion:

E [B(s)B(t)] =
1
2
(t1/3 + s1/3 − |t − s|1/3).

tk = tk ,n = k/n.
Sn is the vector space of stochastic processes {L(t) : t ≥ 0} of
the form

L =
∞∑

k=0

λk1[tk ,tk+1), λk ∈ FB
∞.

Note that L(tk ) = λk . Let δj(L) = L(tj)− L(tj−1) for j ≥ 1. Since
t ∈ [tk , tk+1) iff bntc = k , we may write

L(t) = L(0) +

bntc∑
j=1

δj(L).
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Example 1

If X = f (B), where f ∈ C∞, then we define
ΛX

n =
∑∞

k=0 X (tk )1[tk ,tk+1), or equivalently,

ΛX
n (t) = X (0) +

bntc∑
j=1

(X (tj)− X (tj−1)).

Since X is continuous a.s., we have ΛX
n → X uniformly on

compacts a.s. When f is the identity, we have

ΛB
n (t) =

bntc∑
j=1

(B(tj)− B(tj−1)).
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Example 2

If L ∈ Sn, then we define V (L) ∈ Sn by V (L)(t) =
∑bntc

j=1 (δj(L))3.
For example, if X = f (B), where f ∈ C∞, then

V (ΛX
n )(t) =

bntc∑
j=1

(X (tj)− X (tj−1))
3,

and

V (ΛB
n )(t) =

bntc∑
j=1

(B(tj)− B(tj−1))
3.

[Nualart and Ortiz-Latorre, 2008] show that V (ΛB
n ) converges in

law to κW , where κ > 0 is an explicit constant, and W is a
standard Brownian motion, independent of B.
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Example 3

If L, T ∈ Sn, then we define L ◦ T ∈ Sn by

(L ◦ T )(t) =

bntc∑
j=1

L(tj−1) + L(tj)
2

(T (tj)− T (tj−1)).

For example, if X = f (B), where f ∈ C∞, then

(ΛX
n ◦ ΛB

n )(t) =

bntc∑
j=1

X (tj−1) + X (tj)
2

(B(tj)− B(tj−1))

=

bntc∑
j=1

f (B(tj−1)) + f (B(tj))
2

(B(tj)− B(tj−1)).
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Example 3

(ΛX
n ◦ ΛB

n )(t) =

bntc∑
j=1

f (B(tj−1)) + f (B(tj))
2

(B(tj)− B(tj−1))

In [Nourdin, Réveillac, S, 2010], we showed that ΛX
n ◦ ΛB

n
converges in law to

F (B(t))− F (B(0)) +
κ

12

∫ t

0
F ′′′(B(s)) dW (s),

where F ′ = f .
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S is the vector space of sequences Λ = {Λn}∞n=1 such that

• Λn ∈ Sn,

• Λn(0) converges in probability, and

• there exists ϕ1, ϕ3, ϕ5 ∈ C∞ such that

δj(Λn) := Λn(tj)− Λn(tj−1)

= ϕ1(βj)∆Bj,n + ϕ3(βj)∆B3
j,n + ϕ5(βj)∆B5

j,n (T)

+ O(|∆Bj,n|7).

Here, βj =
B(tj−1) + B(tj)

2
and ∆Bj,n = B(tj)− B(tj−1).
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Example 1

If X = f (B), where f ∈ C∞, then we define ΛX = {ΛX
n }.

In this case,

δj(Λ
X
n ) = X (tj)− X (tj−1)

= f (B(tj))− f (B(tj−1))

= f ′(βj)∆Bj,n +
1

24
f ′′′(βj)∆B3

j,n +
1

5!24 f (5)(βj)∆B5
j,n

+ O(|∆Bj,n|7),

so ΛX ∈ S.

Recall that the sequence ΛX converges uniformly on compacts
a.s. In fact, every sequence in S converges, at least in law.
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Lemma (S, 2011)

If Λ ∈ S, then there are unique functions ϕ1,Λ and ϕ3,Λ that
satisfy (T).

Let Λ ∈ S. Define IΛ(0) = lim Λn(0), and

IΛ(t) = IΛ(0) + ΦΛ(B(t))

+ κ

∫ t

0

(
ϕ3,Λ −

1
24

ϕ′′
1,Λ

)
(B(s)) dW (s),

where

• Φ′
Λ = ϕ1,Λ and ΦΛ(0) = 0,

• κ2 =
3
4

∑
r∈Z

(|r + 1|1/3 + |r − 1|1/3 − 2|r |1/3)3 > 0, and

• W is a standard Brownian motion, independent of B.
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Theorem (S, 2011)

If Λ(1), . . . ,Λ(m) ∈ S, then

(B,Λ
(1)
n , . . . ,Λ

(m)
n ) → (B, IΛ(m) , . . . , IΛ(m))

in law in DRm+1 [0,∞), the Skorohod space of càdlàg functions
from [0,∞) to Rm+1.

• Both of the previously cited convergence results can be seen
as special cases of this.

• We now have a space of sequences S. Each sequence
Λ ∈ S is associated to a process IΛ(t).

• If X = f (B), where f ∈ C∞, then ΛX ∈ S, and it is easy to
verify that IΛX (t) = X (t). We therefore identify X with ΛX .

• To complete the development of the weak Stratonovich
integral, we will define an equivalence relation on S.
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For Λ,Θ ∈ S, let Λ ≡ Θ if Λn −Θn → 0 uniformly on compacts in
probability (ucp). This is an equivalence relation. Let [Λ] denote
the equivalence class of Λ. Let [S] = {[Λ] : Λ ∈ S}.

As before, we identify X = f (B) with NX = [ΛX ].

Lemma (S, 2011)

Let Λ,Θ ∈ S. Then Λ ≡ Θ if and only if

• Λn(0)−Θn(0) → 0 in probability, and

• ϕ1,Λ = ϕ1,Θ and ϕ3,Λ = ϕ3,Θ.

Recall that the process IΛ(t) is defined in terms of lim Λn(0),
ϕ1Λ, and ϕ3,Λ. Hence, if N = [Λ] ∈ [S], then we may define
IN(t) = IΛ(t). Again, note that INX (t) = X (t).

It can be shown that the mapping N 7→ IN(·) is one-to-one. We
sometimes write N(t) instead of IN(t).
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Example 2 (signed cubic variation)

If Λ ∈ S, let VΛ = {V (Λn)}, where V (Λn)(t) =
∑bntc

j=1 (δj(Λn))
3.

Then VΛ ∈ S with ϕ1,VΛ = 0 and ϕ3,VΛ = ϕ3
1,Λ.

If Λ ≡ Θ, then VΛ ≡ VΘ. Hence, if N = [Λ] ∈ [S], then we define
the signed cubic variation of N to be [[N]] := [VΛ]. We also write
[[N]]t for I[[N]](t).

If X = f (B), then X = NX = [ΛX ], so [[X ]] = [VΛX
] is the

equivalence class in S of the sequence of sums,

V (ΛX
n )(t) =

bntc∑
j=1

(X (tj)− X (tj−1))
3,

and

[[X ]]t = κ

∫ t

0
(f ′(B(s)))3 dW (s),

which is the limit in law of the above sequence.
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Example 3 (weak Stratonovich integral)

Let Θn,Λn ∈ Sn. Recall that

(Θn ◦ Λn)(t) =

bntc∑
j=1

Θn(tj−1) + Θn(t)
2

(Λn(tj)− Λn(tj−1)).

Lemma (S, 2011)

Let X = f (B), where f ∈ C∞, and Λ ∈ S. Then
X ◦ Λ := {ΛX

n ◦ Λn}∞n=1 ∈ S. Moreover, if Λ ≡ Θ, then
X ◦ Λ ≡ X ◦Θ.

If N = [Λ] ∈ [S], then, by the lemma, we may define the weak
Stratonovich integral of X with respect to N by X ◦ N := [X ◦ Λ].
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Example 3 (weak Stratonovich integral)

We adopt the notation
∫

X dN = X ◦ N and∫ t
0 X (s) dN(s) = (X ◦ N)t = IX◦N(t).

As an example of this definition, let Y = g(B), where g ∈ C∞.
Recall that we identify Y with NY ∈ [S]. Then∫

X dY = X ◦ Y = X ◦ NY is the equivalence class in S of the
sequence of Riemann sums

bntc∑
j=1

X (tj−1) + X (tj)
2

(Y (tj)− Y (tj−1)).

And
∫ t

0 X (s) dY (s) is the stochastic process IX◦Y (t), which is
the limit in law of this sequence.
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Example 3 (weak Stratonovich integral)

If X = f (B), then from the proof of the previous lemma, we
obtain

IX◦N(0) = 0,

ϕ1,X◦N = fϕ1,N ,

ϕ3,X◦N =
1
8

f ′′ϕ1,N + fϕ3,N .

From these, we can compute
∫ t

0 X (s) dN(s).

It can also be verified that if X = f (B) and Y = g(B), where
f , g ∈ C∞, and M, N ∈ [S], then

(X + Y ) ◦ N = X ◦ N + Y ◦ N,

X ◦ (M + N) = X ◦ M + X ◦ N.
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Decomposition of N ∈ [S]

Each η ∈ FB
∞ is identified with the equivalence class of the

constant process η(t) = η.

Lemma (S, 2011)

Each N ∈ [S] can be written uniquely as N = η + Y + V, where
η ∈ FB

∞, Y = g(B) with Y (0) = 0, and V =
∫

θ(B) d[[B]], where
g, θ ∈ C∞.

Note that
∫ t

0 θ(B(s)) d[[B]]s = κ
∫ t

0 θ(B(s)) dW (s), so every
element of N can be uniquely decomposed into a smooth
function of B and a Brownian martingale.

Lemma (S, 2011)

Let X = f (B), where f ∈ C∞, and V as above. Then∫
X dV =

∫
Xθ(B) d[[B]].
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Change-of-variable formulas

Theorem (S, 2011)

Let N ∈ [S] and X = f (B), where f ∈ C∞. Write N = η + Y + V,
where Y = g(B) and V =

∫
θ(B) d[[B]], with g, θ ∈ C∞. Then∫

X dN = Φ(B) +
1

12

∫
(f ′′g′ − f ′g′′)(B) d[[B]] +

∫
X dV , (D)

where Φ′ = fg′ and Φ(0) = 0.

• Note that
∫

X dN ∈ [S], and (D) gives the decomposition of∫
X dN into a smooth function of B and a Brownian

martingale.
• Equation (D) expresses equality in [S]. Hence, if we choose

any sequence from the class on the left and any sequence
from the class on the right, then their difference will converge
to zero ucp. This is a stronger statement than simply
asserting that the two sequences have the same limiting law.
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Change-of-variable formulas

Corollary (S, 2011)

Let Y = g(B), where g ∈ C∞, and let ϕ ∈ C∞. Then

ϕ(Y (t)) = ϕ(Y (0)) +

∫ t

0
ϕ′(Y (s)) dY (s)

− 1
12

∫ t

0
ϕ′′′(Y (s)) d[[Y ]].

The case Y = B was proved in [Nourdin, Réveillac, S, 2010]

Jason Swanson The calculus of differentials for the weak Stratonovich integral



Change-of-variable formulas

Corollary (S, 2011)

Let N ∈ [S], X = f (B), and Z = h(B), where f , h ∈ C∞. Let
M =

∫
X dN. Write N = η + g(B) +

∫
θ(B) d[[B]], with

g, θ ∈ C∞. Then∫
Z dM =

∫
ZX dN − 1

4

∫
(f ′g′h′)(B) d[[B]].

Moreover, the above correction term is a “weak triple
covariation” in the following sense: If Y = g(B) and V = {Vn},
where

Vn(t) =

bntc∑
j=1

(X (tj)− X (tj−1))(Y (tj)− Y (tj−1))(Z (tj)− Z (tj−1)),

then V ∈ S and [V] =
∫

(f ′g′h′)(B) d[[B]].
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