A crash course in
Dirichlet processes Part 3

Jason Swanson
UCF Probability Seminar
April b. 2021

REVIEW +
(S, S) is a standard Bored space if \exists a metric d on S st. (S, d) is complete and separable, and $\zeta=\mathbb{B}(S)$.

Every standard Bored sp. is Bore isomorphic to one of

- (\mathbb{R}, R)
- ($N, P(N))$
- $(\{0,1, \ldots, n-1\}, P(\{0,1, \ldots, n-1\}))$
(Thu. 8.3.6, Measure Theory. $2^{\text {nd }}$ ed., Conn 2013)

Standard Borel spaces are important for us.
They give us:

- De Finetti
exchangeable \Leftrightarrow conditionally ci.i.d.
- Glivenko-Cantelli-Varadarajan exchangeable $\Rightarrow \frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}} \xrightarrow{\text { weakly }} \mu$ abs., where $X \mid \mu \sim \mu^{\infty}$
- regular conditional distributions

$$
E[f(x) \mid \mathcal{H}]=\int f(x) \mathcal{L}(x \mid \mathscr{L} ; d x)
$$

From now on, we fix a metric d so that (S, d) is complete, separable, and $\zeta=\mathscr{B}(S)$.
$M_{1}(s)$: set of prob. measures on (s, ζ)
$m_{1}(s)$: σ-alg. generated by projections
\hat{d} : Prohorov metric on $M_{1}(s)$
(metrizes weak convergence)
$\mathscr{B}\left(M_{1}(s)\right)$: Basel σ-alg. on $\left(M_{1}(s), \hat{d}\right)$
$m_{1}(s) \subset \mathbb{B}\left(M_{1}(s)\right)$ (pf at end)
Why work with $B(M,(S))$?

If (S, d) is complete and separable, then $\left(M_{1}(s), \hat{d}\right)$ is complete and separable; hence, $\left(M_{1}(s), B\left(M_{1}(s)\right)\right)$ is a standard Bored space.
(Thu. 3.1.7, Markov Processes, Ethier\&Kurtz 1986)

Dirichlet processes
$\rho \in M_{1}(s)$ (base measure)
$K>0$ (stability constant)
$\lambda \sim A(k \rho)$ (Dir. proc. on S with parameter kp)

$$
(\lambda(\underbrace{\left.\left.B_{0}\right), \ldots, \lambda\left(B_{d}\right)\right)} \sim \operatorname{Dir}_{\text {L }}\left(\operatorname{kg}\left(B_{0}\right), \ldots, k \rho\left(B_{d}\right)\right)
$$

$\tau_{\text {Dirichlet distribution }}$
$\lambda=\sum_{k=1}^{\infty} R_{k} \delta_{u_{k}}$ (Sethuraman stick breaking construction) Li.i.d. $u_{k} \sim \rho$
random positive weights that sum to 1
λ is a random measure, ie.

$$
\lambda: \Omega \rightarrow M_{1}(s) \text { is }\left(\mathcal{F}, m_{1}(s)\right) \text { - mible }
$$

λ is also (F, $\left.\mathcal{B}\left(M_{1}(s)\right)\right)$-wible. (pf at end)

We will consider $\lambda \sim \theta(k \rho)$ as an $\left(M_{1}(s), B\left(M_{1}(s)\right)\right)$ - val. riv.

Therefore, $\theta(k \rho)$ (the law of λ) is a prob. meas. on a standard Borel space.

This is important if we want to construct $\pi \sim A\left(K^{\prime} A(k \rho)\right)$, which is a Dir. proc. on $M_{1}(S)$.
(We want our Dir. processes to be on standard Bored spaces.)

Sequence of bent coins

世直 HHHHT
（世4）HHTHH HTTHH
－Machine seems to produce coins weighted toward heads
－ 24 out of 35 flips are heads
－ 6 out of 7 coins have majority H ．
－Even if all coins had prob．of heads $0.6, \mathrm{eg}$ ．，still 43% chance of at least 1 coin in 7 getting 4 tails in 5 flips．
－Intuitively，Coin 5＇s flips should matter more than other coins．How to balance？

$$
\left\{X_{i j}: i, j \in \mathbb{N}\right\}:\{0,1\} \text {-val. r.v.s }
$$

$X_{i j}$: result of $j^{\text {th }}$ flip of $i^{\text {th }}$ coin ($0=$ tails, $1=$ heads)

$$
X_{i}=\left\{X_{i j}: j \in \mathbb{N}\right\}, \quad X=\left\{X_{i}: i \in \mathbb{N}\right\}
$$

X_{1}, X_{2}, \ldots exchangeable
For fixed $i, X_{i 1}, X_{i 2}, \ldots$ exchangeable $\theta_{i}:[0,1]$-va l.r.v.
$X_{i 1}, X_{i 2} \ldots$ cond. i.i.d. given θ_{i} with $P\left(X_{i j}=1 \mid \theta_{i}\right)=\theta_{i}$

$$
\frac{1}{m} \sum_{j=1}^{m} X_{i j} \xrightarrow{m \rightarrow \infty} \theta_{i} \quad \text { a.s. }
$$

So $\theta_{i}=f\left(X_{i}\right)$ for some mible f (that doesn't depend on i)
$\therefore \theta_{1}, \theta_{2}, \ldots$ exchargeable
$\omega: M_{1}([0,1])$-val. r.v.
$\theta_{1}, \theta_{2}, \ldots$ cond. i.i.d. given ω

$$
P\left(\theta_{i} \in A \mid \sigma\right)=\sigma(A)
$$

Let $\bar{\omega}$ be a Dirichlet proress.

Must choose a base measure ρ on $[0,1]$ and a stability constant $k>0$ s.t.

$$
\bar{\omega} \sim \theta(k \rho) .
$$

For simplicity, let ρ be uniform.
[A uniform r.v. is a Dirichlet process on $\{0,1\}$.
So $\omega \sim D(k D(\alpha))$.]

$$
P\left(X_{k, m+1}=1 \mid X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right)=?
$$

$$
(1 \leq k \leq n)
$$

First issues:
(i) $P\left(X_{11}=1, X_{21}=1 \mid \theta_{1}, \theta_{2}\right) \stackrel{?}{=} P\left(X_{11}=1 \mid \theta_{1}\right) P\left(X_{21}=1 \mid \theta_{2}\right)$
(ii) $P\left(X_{11}=1 \mid \omega, \theta_{1}\right) \stackrel{?}{=} P\left(X_{11}=1 \mid \theta_{1}\right)$

Not immediately obvious.
(i) $P\left(X_{11}=1, X_{21}=1 \mid \theta_{1}, \theta_{2}\right) \stackrel{?}{=} P\left(X_{11}=1 \mid \theta_{1}\right) P\left(X_{21}=1 \mid \theta_{2}\right)$
(ii) $P\left(X_{11}=1 \mid \omega, \theta_{1}\right) \stackrel{?}{=} P\left(X_{11}=1 \mid \theta_{1}\right)$

Conjecture:

$$
\begin{aligned}
& P\left(X_{i j}=a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n \mid \theta_{1}, \theta_{2}, \ldots\right) \\
&=\prod_{\substack{\leq i \leq n \\
i \leq j \leq m}} P\left(X_{i j}=a_{i j} \mid \theta_{i}\right) \text { (ideas at end) }
\end{aligned}
$$

Implies (i) (condition inside on $\mathcal{F}_{\infty}^{\theta}$)
Implies (ii) since

$$
\varpi=\lim \frac{1}{n} \sum_{j=1}^{n} \delta_{\theta_{j}} \in \sigma\left(\theta_{1}, \theta_{2}, \ldots\right)
$$

With the conjecture established (or assumed), can prove:

$$
\begin{array}{r}
P\left(X_{k, m+1}=1 \mid X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right) \\
=E\left[\theta_{k} \mid X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right]
\end{array}(1 \leq k \leq n)
$$

Pf sketch:

$$
A:=\left\{X_{i j}=a_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

Let $\mu_{i}(a)=\left\{\begin{array}{cl}\theta_{i} & \text { if } a=1, \\ 1-\theta_{i} & \text { if } a=0 .\end{array}\right.$

$$
\begin{aligned}
P\left(X_{k, m+1}\right. & =1, A)=E\left[P\left(X_{k, m+1}=1, A \mid \theta_{1}, \theta_{2}, \ldots\right)\right] \\
& =E\left[\left(\prod_{i=1}^{n} \prod_{j=1}^{m} \mu_{i}\left(a_{i j}\right)\right) \theta_{k}\right]
\end{aligned}
$$

OTOH,

$$
\begin{aligned}
E\left[\theta_{k} 1_{A}\right] & =E\left[E\left[\theta_{k} 1_{A} \mid \theta_{1}, \theta_{2}, \ldots\right]^{2}\right] \\
& =E\left[\left(\prod_{i=1}^{n} \prod_{j=1}^{m} \mu_{i}\left(a_{i j}\right)\right) \theta_{k}\right] .
\end{aligned}
$$

So it's enough to understand

$$
\mathcal{L}\left(\theta_{1}, \ldots, \theta_{n} \mid X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right)
$$

Explicit formulas for

$$
\mathcal{L}\left(\theta_{1}, \ldots, \theta_{n} \mid X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right)
$$

are not tractable. (See Antoniak (1974) and Bercy and Christensen (1979); even the case $n=2$ occupies nearly a page in the latter paper.) How to estimate?

$$
\mathcal{L}\left(\theta_{k}\left(\theta_{1}, \ldots, \theta_{k-1}, X_{k 1}, \ldots, X_{k m}\right)\right.
$$

is manageable.
Regard original problem as a Bayesian missing data problem.

Approaches:
(i) Gibbs sampler (German\& German 1984)
(ii) data augmentation (Tanner \& Wong 1987))
(iii) Sequential imputation and \rightarrow avoids iteration importance sampling (Kong, Lin, Wong 1994; Lin 1996)
topic of Part 4, if there ever is a Part 4

Thu: $M_{1}(s) \subset \mathscr{B}\left(M_{1}(s)\right)$
Pf sketch:

- Suffices to show $\pi_{A}(V)=v(A)$ is Borel-mible
- $\mathcal{L}=\left\{A \in \zeta: \pi_{A}\right.$ is Borel-mible $\}$ is a λ-system
- Suffices to show \mathcal{L} contains open sets
- Let $U \subset S$ be open. Choose cont. $f_{n} \uparrow 1_{u}$ p.w.
eeg. https://math.stackexchange.com/a/294845
- $\varphi_{n}(v):=\int f_{n} d v$ is cont., \therefore mable
- $\varphi_{n} \rightarrow \pi_{A}$ pew., $\therefore \pi_{A}$ mible.

Thm: If $\lambda \in \mathbb{A}(\mathrm{kg})$, then $\lambda: \Omega \rightarrow M_{1}(\mathrm{~s})$ is $\left(f, B\left(M_{1}(s)\right)\right)$ - mible.

Pf sketch:

- $(x, y) \in(0,1)^{n} \times S^{n} \longmapsto \frac{\sum_{k=1}^{n} x_{k} \delta_{y_{k}}}{\sum_{k=1}^{n} x_{k}} \in M_{1}(S)$ cont., \therefore wible
$\therefore \frac{\sum_{k=1}^{n} R_{k} \delta_{u_{k}}}{\sum_{k=1}^{n} R_{k}}$ is $\left(\mathcal{F}, B\left(M_{1}(s)\right)\right)$-mible
- λ is ($\left.\mathcal{F}, G\left(M_{1}(s)\right)\right)$-mible
(pointuise limit of m'ble functions)

Conjecture:

$$
\begin{aligned}
& P\left(X_{i j}=a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n \mid \theta_{1}, \theta_{2}, \ldots\right) \\
&=\prod_{\substack{\leq i \leq n \\
i \leq j \leq m}} P\left(X_{i j}=a_{i j} \mid \theta_{i}\right)
\end{aligned}
$$

Pf sketch that doesu't work:

- X is a "separately exchangeable"
array of r.v.'s (the distribution of $\left\{X_{i j}: i, j \in A\right\}$ is invariant under separate permutations of i and j).
- By a result of Aldous ard Hoover, \exists m'ble $f:[0,1]^{4} \rightarrow \mathbb{R}$ and indep. $U(0,1)$ r.v.'s $\alpha, \xi_{i}, \eta_{j}, \zeta_{i j}$ such that $X_{i j}=f\left(\alpha, \xi_{i}, \eta_{j}, \zeta_{i j}\right)$ a.s.
\qquad
* Proved independently by Aldous and Hoover between 1979 and 1985. Also appears as Cor. 7.23 in Probabilistic Symmetries and Invariance Principles by Kallenberg (2005). The version here is taken from Multivariate Sampling and the Estimation Problem for Exchangeable Arrays, Kallenberg, Journal of Theoretical Probability, Vol.12, No. 3 (1999)

$$
\begin{aligned}
& \text { - } \frac{1}{m} \sum_{j=1}^{m} X_{i j} \longrightarrow \theta_{i} \text { a.s. } \\
& \text { - } \frac{1}{m} \sum_{j=1}^{m} X_{i j} \\
& \quad=\frac{1}{m} \sum_{j=1}^{m} f\left(\alpha, \xi_{i}, \eta_{j}, \zeta_{i j}\right) \rightarrow \int_{0}^{1} \int_{0}^{1} f\left(\alpha, \xi_{i}, x, y\right) d x d y \text { a.s. } \\
& \text { - } \therefore \theta_{i}=\int_{0}^{1} \int_{0}^{1} f\left(\alpha, \xi_{i}, x, y\right) d x d y \text { a.s. } \\
& \quad \Rightarrow \theta_{i} \in \sigma\left(\alpha, \xi_{i}\right) \\
& \text { - } P\left(X_{i j}=a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n \mid \theta_{1}, \theta_{2}, \ldots\right) \\
& =E\left[P\left(X_{i j}=a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n \mid \alpha, \xi_{1}, \xi_{2} \ldots\right) \mid \theta_{1}, \theta_{2}, \ldots\right]
\end{aligned}
$$

- Given $\alpha, \xi_{1}, \xi_{2}, \ldots$, the $X_{i j}$'s are indep. \leftarrow NO!

$$
\begin{aligned}
\therefore P\left(X_{i j}=a_{i j}, 1 \leq i \leq m, 1\right. & \left.\leq j \leq n \mid \alpha, \xi_{1}, \xi_{2} \ldots\right) \\
& =\prod_{\substack{\leq \leq i \leq m \\
1 \leq j \leq m}} P\left(X_{i j}=a_{i j} \mid \alpha, \xi_{1}, \xi_{2}, \ldots\right)
\end{aligned}
$$

- $P\left(X_{i j}=1 \mid \alpha_{1} \xi_{1}, \xi_{2}, \ldots\right)=E\left[X_{i j} \mid \alpha, \xi_{1}, \xi_{2}, \ldots\right]$

$$
\begin{aligned}
& =E\left[f\left(\alpha, \xi_{i}, \eta_{j}, \zeta_{i j}\right) \mid \alpha, \xi_{1}, \xi_{2}, \ldots\right] \\
& =\int_{0}^{1} \int_{0}^{1} f\left(\alpha, \xi_{i}, x, y\right) d x d y=\theta_{i}=P\left(x_{i j}=1 \mid \theta_{i}\right)
\end{aligned}
$$

Thus, $P\left(X_{i j}=0 \mid \alpha, \xi_{1}, \xi_{2}, \ldots\right)=1-\theta_{i}=P\left(X_{i j}=O \mid \theta_{i}\right)$

- Put it all together...

How to fix?
$X_{1 j}, X_{2 j}, X_{3 j}, \ldots$ cond indep. given $\bar{\omega}$

$$
\begin{aligned}
\therefore \quad & \frac{1}{n} \sum_{i=1}^{n} X_{i j} \rightarrow E\left[X_{i j} \mid \bar{\omega}\right] \\
& =E\left[E\left[X_{i j} \mid \theta_{1}, \theta_{2}, \ldots\right] \mid \bar{\omega}\right] \\
& =E\left[E\left[X_{i j} \mid \alpha, \xi_{1}, \xi_{2}, \ldots\right] \mid \bar{\omega}\right] \\
& =E\left[\theta_{i} \mid \bar{\omega}\right] \\
& =\int_{0}^{1} x \tau_{0}(d x)
\end{aligned}
$$

OTOH,
$X_{1 j}, X_{2 j}, X_{3 j}, \ldots$ cord. indep. given α, η_{j}

$$
\begin{aligned}
& \therefore \frac{1}{n} \sum_{i=1}^{n} X_{i j} \rightarrow E\left[X_{i j}\left(\alpha, \eta_{j}\right]\right. \\
&=\int_{0}^{1} \int_{0}^{1} f\left(\alpha, x, \eta_{j}, y\right) d x d y \\
& \therefore \int_{0}^{1} \int_{0}^{1} f\left(\alpha, x, \eta_{j}, y\right) d x d y=\int_{0}^{1} x \omega(d x) \quad \forall j .
\end{aligned}
$$

Perhaps can show it's possible to choose η_{j} so they don't depend on j. Then they're absorbed into α :

$$
x_{i j}=\tilde{f}\left(\alpha_{1} \xi_{i}, \xi_{i j}\right)
$$

