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Background and motivation

Setting:
@ Q= C([0, T],RY) with d = 1 (for simplicity)
@ P probability on B(2)

@ W = (W;)o<i<7 standard P-Wiener process on Q
e F=F"

Schilder’s theorem in Laplace form
(see, e.g., Dupuis—Ellis (97), Boué—Dupuis (AOP, 98)). For every h € Cp(),

.
lim —flogE[ -"”<W/ﬁ>] = inf {/ X' ()] dt+h(x)}.
n— 0o x€AC([0,T]) with x(0) = 0 0

Non-exponential Schilder theorem in Laplace form
(Backhoff-Veraguas—Lacker—Tangpi (AAP, 2020)). For every h € Cp(£2),

I|m _p_[n[ h(W/Vn)] = x€AC([0, T])Wlthx —0{/ X t))dt—|—h(X)}

Here, £,(t,a) = £(t,a/+/n). (The operator p~ " will be defined later.)
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Applications of “large deviations" results and open problem

(Backhoff-Veraguas—Lacker—Tangpi (AAP, 2020))
Assume / is coercive, i.e.,| lim (ta) =0
|a]— oo |a\

@ General (non-Markovian) case:
“Solutions" of BSDEs converge to value function of a calculus-of-variations
problem with path-dependent terminal cost h: @ — R.

@ Markovian case: Say h(w) = h(wr).

Vanishing viscosity result:
“Solutions" u, of (possibly super-quadratic) HIB equation

1

2n

Otln + 5—=OxxUn + igﬂfQ{ [¢(t,a) +a-Oxus)=0 on(0,T) xR
a

un(T,x) = h(x) onR,

converge pointwise to value function u of a calculus-of-variations problem and
“formally”

o+ igﬂf{ [((t,a)+a-0xul =0 on(0,T) xR
a
u(T,x) = h(x) onR.

Open problem: Is there a non-Markovian vanishing viscosity result in terms of
(path-dependent) PDEs on [0, T] x Q7 (Recall that @ = C({[0, T]).)
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@ BSDEs
@ A simple BSDE and the Feynman-Kac formula
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A simple BSDE

Fix (bounded) Fr-measurable random variable h: Q — R, i.e., h = h(W).
@ 1sttry: Find a process Y = (Y:)o<i<T such that

dY;=0-dt on[0,T], Yr=h.

Then Yy = h, t € [0, T]. Problem: Y is not F-adapted.
@ 2nd try: Possibly more useful solution would be Y; := E[h|F;]. In this case,

dY:i = 2ZdW;| on]0, T], Yr =h, (1)
for some process Z.

Solution of BSDE (1) is a pair (Y, Z) of F-progressive processes.
Interpretation from financial math point of view:

o W “price" process of underlying asset

@ h contingent claim/ derivative

@ Y price process of contingent claim

o Z replicating/ hedging strategy
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Consider the BSDE
dYi=ZdW; on[0,T], Yr=h(Wr). 2
Assume that there is a u € C"?([0, T] x R) such that
Y = u(t, W) forall t € [0, T].
Then, from
du(t, W) = {at + %axx} u(t, W) dt + dyu(t, We) dWi,
dY;=0dt+ Z dW;,

one can deduce that Z; = du(t, W;) and that u solves the heat equation
|:8t + %axx] U(t, X) == 0 on (0, T) X R,
u(T,x)=h(x) onR.

Vice versa: If u solves (3), then (Y, Z) := (u(t, W;), Oxu(t, Wr))o<i<T Solves (2).
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@ BSDEs

@ Nonlinear BSDEs and stochastic optimal control
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Nonlinear BSDEs and a nonlinear Feynman-Kac formula

Theorem (Pardoux—Peng (90), see also Zhang (2017))

Leth e L3(Fr,P) and letf = f(t,y,z) : [0, T] x R x R — R be Borel with f(-,0,0) € L'
and assume that there is an L > such that, forallt € [0, T], ¥, ¥, z, Z € R,

If(t,y,2) = f(t,y,2)| < L(ly =yl + |z - 2).
Then the BSDE
aYi=—f(t, Y1, Z) dt + ZdW; on]0, T], Yr = h, (4)

has a unique solution (Y, Z) € 1L.2(F) x L?(F).

A

Theorem (Peng (91), see also Ma—Yong (99))
Letu e C"([0, T] x R) solve

{at + %axx} u(t, x) + £(t, u(t, X), Beu(t, X)) =0 on (0, T) x R,

u(T,x) = h(x) onR.

Then (Y, Z) := (u(t, W), dxu(t, Wi)o<i<T Solves (4) with h := h(Wr).
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Stochastic optimal control

Let/:[0,T] x R — Rand h: R — R be bounded and Borel.
Fix m > 0. Given (t,x) € [0, T) x R, minimize

r
J(t,x,a(-)) = E U (s, a(s))ds+h (x;vX’a('))]
t

over all a(-) : [0, T] x Q — [—m, m] that are F-progressive subject to
dXi %) = a(s)ds + dWs on[t, T], X' =x.

The value function V : [0, T] x R — R is defined by

V(t,x):= ir(n;J(t, x,a(-)).
al-

BSDE connection: Assume that V € C'2. Then V solves HJB equation

{8, + %&(X} V(t, x)+ ‘ i|n<f [¢(t,a) +a-oxV(t,x)] =0, on (0, 7) xR,
al<m

V(T,x) = h(x) onR.
Moreover, by nonlinear Feynman-Kac, (Y, Z) = (V(t, W;), 0x V(t, W;))o<i<T solves
dY; = — | i‘n<f [¢(t,a) + a- Z] dt + Z dW; on [0, T], Y7 = h(Wr).
al<m
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@ BSDEs

@ Quadratic and super-quadratic BSDEs
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Quadratic and super-quadratic BSDEs

Consider BSDE

dY, = —f(t, Y, Z)dt + Z.dW;, on[0,T], Yr=h. 6)

Quadratic BSDE: |f(t,y, z)| < C(1 + |z|?)
Well-posedness of solutions (Kobylanski, AOP, 2000)

Super-quadratic BSDE: lim|;|_, M =00

2|

@ lll-posedness of solutions (Delbaen—Hu—-Bao, PTRF, 2011)
@ Well-posedness of minimal supersolutions (Drapeau—Heyne—Kupper, AOP, 2013)

(Y,Z) € L3(F) x L3(F) supersolution of (6) if Y is cadlag, [ Z dW a supermartingale,
° Ys> Y+ [F[-f(r, Y, Z)] dr + [ Z dW;, and
e Yr > h

(Y, Z) minimal supersolution of (6) if
e (Y,2) supersolution of (6) = Y < V.
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e Path-dependent calculus and path-dependent PDEs
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e Path-dependent calculus and path-dependent PDEs
@ PPDEs
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Subject of study

PPDE

—dw — F(t,w,u,d,u,8,u) =0 on[0,T) x Q,
u(T,w) = h(w) onQ.

@ Q path space:
C([0, T),R?), D([0, T],RY), C([0, T], H), ...

@ F=F(tw,y,z,~) Hamiltonian
@ u=u(t,w):[0, T] x Q — R non-anticipating, i.e.,

u(t,w) = u(t,w.At) =" u(t, {ws}s<t)
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Subject of study

PPDE

—0w — F(t,w,u,8,u,05,u) =0 on[0,T) x Q,
u(T,w) = h(w) onQ.

@ Q path space:
C([0, T),R?), D([0, T],RY), C([0, T], H), ...

@ F=F(tw,y,z,~) Hamiltonian
@ u=u(t,w):[0, T] x Q — R non-anticipating, i.e.,

u(t,w) = u(t,w.At) =" u(t, {ws}s<t)

WARNING: Don’t confuse PPDE with stochastic (or rough) PDE

u(t,x7w):uo+/0tF[~--]ds+/0tG[---]dws
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e Path-dependent calculus and path-dependent PDEs

@ Motivation
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Motivation and applications |

Intrinsic mathematical:
@ Very few results available for PDEs on those (infinite-dimensional) path spaces
@ In contrast: Large literature for PDEs on Hilbert space
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Motivation and applications |

Intrinsic mathematical:
@ Very few results available for PDEs on those (infinite-dimensional) path spaces
@ In contrast: Large literature for PDEs on Hilbert space

Optimal control of delay equations and/or with path-dependent terminal cost:

Minimize J(t,w, a(-)) := sup Xt’w'a(')(s)‘
s<t

subject to x = x“<2) solving

x'(s) = f(x(s—1),a(s)) on (t, T),
x =won[0,1].

Formally, value function v(t,w) := inf4.y J(t,w, a(-)) solves
—ov — ir;f [flw(s—1))dwv] =0,

V(T,w) = sup |w(s)].
s<T
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Motivation and applications |l

Pricing of path-dependent options in mathematical finance:
u(t,w) == E €],

where ¢ is a functional of Brownian motion B, e.g.,
&(©) = max {sup |w(8)|, sup |B(S,<IJ)\} for Py,-a.e. &.
s<t t<s<T
Formally, u solves
1.
— |Owu+ anu =0,

U(T7 ) = §
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e Path-dependent calculus and path-dependent PDEs

@ Path derivatives
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Path derivatives: 1st order case

‘ Q = C([0, T],R) from now on. ‘

Kim (since 1980s), Lukoyanov (since late 1990s).

Definition

u:[0,T] x Q — RisinC"'if uis non-anticipating, continuous, and

3 functions d:u, d.u : [0, T] x 2 — R non-anticipating and continuous:
Yw € AC([0, T]): Vs < t:

u(t,w) — u(s,w) = /St [Oru(r,w) + duu(r,w)w'(r)] dr.

Example: If f and g are smooth and

u(t,w) = f(t,w(t)) + /Otg(s,w(s)) ds
then

ot w) = gf(t,w(t)) Faltw(t),  duutw) = %f(t,w(t)).
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Path derivatives: 2nd order case

Dupire (2009) and, in 2010s, Cont, Fournié, Ekren, K., Touzi, Zhang, etc.

Definition

u:[0,T] x Q — RisinC"2if uis non-anticipating, continuous, and

3 functions d:u, dw, U, B2, U : [0, T] x 2 — R non-anticipating and continuous:
V 1t6 semimartingale X, i.e., dX; = b dt + or dW;: Vs < t :

t
u(t, X) — u(s, X) = / [a,u(r, X) + d.u(r, X) by + %a%wu(r, X) af} dr
S

+ / 0. X) 0] W,
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e Path-dependent calculus and path-dependent PDEs

@ Viscosity solutions

Christian Keller (UCF) Large deviations & non-Markovian vanishing viscosity



Viscosity solutions: 1st order standard PDEs

Crandall-Lions (TAMS, 1983).

Definition

u: [0, T] x R — R continuous is a viscosity subsolution of
—owu(t, x) — F(t,0xu(t, x)) = 0 at (t,x),

if, for each test function ¢ € Au(t, x),

—drp(t, x) — F(t, dxp(t, X)) < 0.

The test function space is defined by
Au(t, x) = {g@ € C"%([0, T] x R) :

0=(p—u)(t,x) = inf (o~ 0)(s.y) }
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Viscosity solutions: 1st order PPDEs

Lukoyanov (2007) and Bayraktar—K. (JFA, 2018).
Fix L > 0. Assume |F(t,z) — F(t,z)| < L|z — Z|.

Definition

u: [0, T] x Q2 — R non-anticipating, continuous is a viscosity L-subsolution of
—owu(t,w) — F(t,0,u(t,w)) =0 at (t,w),
if, for each test function ¢ € Au(t,w),

—0rp(t,w) — F(t, 0wp(t,w)) < 0.

The test function space is defined by

ALu(t,w) == {cp €C?:0=(p—u)t,w) = inf (o — u)(s, X)},

(s, X)E[t, TIx XL(t,w)
where the (compact) set X*(t,w) is defined by

XL(t,w) = {X cQ: X|[0,t] = w|[0,[] and X|[[,T] S AC([t, T]) with tiugt ‘X/(S)‘ < L}
=s=<
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Viscosity solutions: 2nd order PPDEs: Part 1

Ekren—-K.—Touzi—Zhang (AOP, 2014), Ekren—Touzi—Zhang (AOP, 2016ab),
Ren—Rosestolato (SIMA, 2020), etc.
Fix L > 0. Assume |F(t,z,v) — F(t,2,5%)| < L(|lz— 2| + |y — A])-

Definition
u: [0, T] x Q — R non-anticipating, continuous is a viscosity P‘-subsolution of

—0wu(t,w) — F(t, 0o u(tw), B2, u(t,w)) = 0 at (t,w),

if, for each test function ¢ € APLu(t, w),

_af(p(ta L/J) - F(tv 8WU(tW),aiw§0(t,W)) < 0.

The test function space is defined by
APLU(Lw) = {(p ec?:

0=(p—u)(tw)=inf  inf E[(p-u)rX)]}
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Viscosity solutions: 2nd order PPDEs: Part 2

The test function space is defined by
APLu(t,w) = {cp ec?:

0=(p=u)(tw)=inf  inf E[(p-u)rX)]},

where
o 7' ={all [t, T]-valued stopping times},
@ X canonical process on Q, i.e., X;(®) = @(t),
@ and the P*(t,w) is defined by

PHt,w) == {all probability measures P on Q such that, P-a.s.,

X|[0’[] = w|[0,,] and
X|i, 1 is an Ité-semimartingale of the form
dXs = bs ds + o5 dWs

with [|b]|ee < L and [|o]|e < \ﬂ}
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