Large deviations and a non-Markovian vanishing viscosity result

Christian Keller

University of Central Florida

March 2, 2021

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- 3 Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Background and motivation

Setting:

- $\Omega = C([0, T], \mathbb{R}^d)$ with d = 1 (for simplicity)
- P probability on $\mathcal{B}(\Omega)$
- $W = (W_t)_{0 \le t \le T}$ standard *P*-Wiener process on Ω
- $\mathbb{F} = \mathbb{F}^W$

Schilder's theorem in Laplace form

(see, e.g., Dupuis–Ellis (97), Boué–Dupuis (AOP, 98)). For every $h \in C_b(\Omega)$,

$$\lim_{n\to\infty} -\frac{1}{n}\log E\left[e^{-nh(W/\sqrt{n})}\right] = \inf_{x\in AC([0,T]) \text{ with } x(0) = 0} \left\{\int_0^T \left|x'(t)\right|^2 \ dt + h(x)\right\}.$$

Non-exponential Schilder theorem in Laplace form

(Backhoff-Veraguas–Lacker–Tangpi (AAP, 2020)). For every $h \in C_b(\Omega)$,

$$\lim_{n\to\infty} -\rho^{-\ell_n}[-h(W/\sqrt{n})] = \inf_{x\in AC([0,T]) \text{ with } x(0)=0} \left\{ \int_0^T \ell(t,x'(t)) dt + h(x) \right\}.$$

Here, $\ell_n(t, a) = \ell(t, a/\sqrt{n})$. (The operator $\rho^{-\ell_n}$ will be defined later.)

Applications of "large deviations" results and open problem

(Backhoff-Veraguas-Lacker-Tangpi (AAP, 2020))

Assume ℓ is coercive, i.e., $\lim_{|a|\to\infty} \frac{\ell(t,a)}{|a|} = \infty$.

- General (non-Markovian) case:
 - "Solutions" of BSDEs converge to value function of a calculus-of-variations problem with path-dependent terminal cost $h: \Omega \to \mathbb{R}$.
- Markovian case: Say $h(\omega) = \tilde{h}(\omega_T)$. Vanishing viscosity result:

"Solutions" u_n of (possibly super-quadratic) HJB equation

$$\partial_t u_n + rac{1}{2n} \partial_{xx} u_n + \inf_{\mathbf{a} \in \mathbb{R}} \left[\ell(t, \mathbf{a}) + \mathbf{a} \cdot \partial_x u_n \right] = 0 \quad \text{on } (0, T) \times \mathbb{R}$$

$$u_n(T, x) = \tilde{h}(x) \quad \text{on } \mathbb{R},$$

converge pointwise to value function \boldsymbol{u} of a calculus-of-variations problem and "formally"

$$\partial_t u + \inf_{a \in \mathbb{R}} \left[\ell(t, a) + a \cdot \partial_x u \right] = 0 \quad \text{on } (0, T) \times \mathbb{R}$$

$$u(T, x) = \tilde{h}(x) \quad \text{on } \mathbb{R}.$$

Open problem: Is there a non-Markovian vanishing viscosity result in terms of (path-dependent) PDEs on $[0, T] \times \Omega$? (Recall that $\Omega = C([0, T])$.)

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- 3 Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- 3 Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

A simple BSDE

Fix (bounded) \mathcal{F}_T -measurable random variable $h: \Omega \to \mathbb{R}$, i.e., h = h(W).

• 1st try: Find a process $Y = (Y_t)_{0 \le t \le T}$ such that

$$dY_t = 0 \cdot dt$$
 on $[0, T], Y_T = h$.

Then $Y_t = h$, $t \in [0, T]$. Problem: Y is not \mathbb{F} -adapted.

• 2nd try: Possibly more useful solution would be $Y_t := E[h|\mathcal{F}_t]$. In this case,

$$dY_t = Z_t dW_t \quad \text{on } [0, T], \qquad Y_T = h, \tag{1}$$

for some process Z.

Solution of BSDE (1) is a pair (Y, Z) of \mathbb{F} -progressive processes. Interpretation from financial math point of view:

- W "price" process of underlying asset
- h contingent claim/ derivative
- Y price process of contingent claim
- Z replicating/ hedging strategy

Feynman-Kac

Consider the BSDE

$$dY_t = Z_t dW_t \quad \text{on } [0, T], \qquad Y_T = \tilde{h}(W_T).$$
 (2)

Assume that there is a $u \in C^{1,2}([0,T] \times \mathbb{R})$ such that

$$Y_t = u(t, W_t)$$
 for all $t \in [0, T]$.

Then, from

$$du(t, W_t) = \left[\partial_t + \frac{1}{2}\partial_{xx}\right]u(t, W_t) dt + \partial_x u(t, W_t) dW_t,$$

$$dY_t = 0 dt + Z_t dW_t,$$

one can deduce that $Z_t = \partial_x u(t, W_t)$ and that u solves the heat equation

$$\left[\partial_t + \frac{1}{2}\partial_{xx}\right]u(t,x) = 0 \quad \text{on } (0,T) \times \mathbb{R},$$

$$u(T,x) = \tilde{h}(x) \quad \text{on } \mathbb{R}.$$
(3)

Vice versa: If u solves (3), then $(Y, Z) := (u(t, W_t), \partial_x u(t, W_t))_{0 \le t \le T}$ solves (2).

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- 3 Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Nonlinear BSDEs and a nonlinear Feynman-Kac formula

Theorem (Pardoux–Peng (90), see also Zhang (2017))

Let $h \in L^2(\mathcal{F}_T, P)$ and let $f = f(t, y, z) : [0, T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be Borel with $f(\cdot, 0, 0) \in L^1$ and assume that there is an L > such that, for all $t \in [0, T]$, $y, \tilde{y}, z, \tilde{z} \in \mathbb{R}$,

$$|f(t,y,z)-f(t,\tilde{y},\tilde{z})| \leq L(|y-\tilde{y}|+|z-\tilde{z}|).$$

Then the BSDE

$$dY_t = -f(t, Y_t, Z_t) dt + Z_t dW_t \quad on [0, T], \qquad Y_T = h,$$
 (4)

has a unique solution $(Y, Z) \in \mathbb{L}^2(\mathbb{F}) \times \mathbb{L}^2(\mathbb{F})$.

Theorem (Peng (91), see also Ma-Yong (99))

Let $u \in C^{1,2}([0,T] \times \mathbb{R})$ solve

$$\left[\partial_t + \frac{1}{2}\partial_{xx}\right] u(t,x) + f(t,u(t,x),\partial_x u(t,x)) = 0 \qquad on (0,T) \times \mathbb{R},$$

$$u(T,x) = \tilde{h}(x) \quad on \mathbb{R}.$$
(5)

Then $(Y, Z) := (u(t, W_t), \partial_x u(t, W_t)_{0 \le t \le T} \text{ solves (4) with } h := \tilde{h}(W_T).$

Stochastic optimal control

Let $\ell: [0, T] \times \mathbb{R} \to \mathbb{R}$ and $\tilde{h}: \mathbb{R} \to \mathbb{R}$ be bounded and Borel.

Fix m > 0. Given $(t, x) \in [0, T) \times \mathbb{R}$, minimize

$$J(t,x,a(\cdot)) := E\left[\int_t^T \ell(s,a(s)) \, ds + \tilde{h}\left(X_T^{t,x,a(\cdot)}\right)\right]$$

over all $a(\cdot):[0,T]\times\Omega\to[-m,m]$ that are $\mathbb F$ -progressive subject to

$$dX_s^{t,x,a(\cdot)} = a(s) ds + dW_s$$
 on $[t, T]$, $X_t^{t,x} = x$.

The value function $V:[0,T]\times\mathbb{R}\to\mathbb{R}$ is defined by

$$V(t,x) := \inf_{a(\cdot)} J(t,x,a(\cdot)).$$

BSDE connection: Assume that $V \in C^{1,2}$. Then V solves HJB equation

$$\label{eq:continuous_equation} \left[\partial_t + \frac{1}{2} \partial_{xx} \right] V(t,x) + \inf_{|a| \leq m} \left[\ell(t,a) + a \cdot \partial_x V(t,x) \right] = 0, \qquad \text{on } (0,T) \times \mathbb{R},$$

$$V(T,x) = \tilde{h}(x) \quad \text{on } \mathbb{R}.$$

Moreover, by nonlinear Feynman-Kac, $(Y, Z) = (V(t, W_t), \partial_x V(t, W_t))_{0 \le t \le T}$ solves

$$dY_t = -\inf_{|a| < m} [\ell(t, a) + a \cdot Z_t] dt + Z_t dW_t \text{ on } [0, T], Y_T = \tilde{h}(W_T).$$

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Quadratic and super-quadratic BSDEs

Consider BSDE

$$dY_t = -f(t, Y_t, Z_t) dt + Z_t dW_t$$
 on $[0, T], Y_T = h.$ (6)

Quadratic BSDE: $|f(t, y, z)| \le C(1 + |z|^2)$

Well-posedness of solutions (Kobylanski, AOP, 2000)

Super-quadratic BSDE:
$$\lim_{|z| \to \infty} \frac{|f(t, y, z)|}{|z|^2} = \infty$$

- Ill-posedness of solutions (Delbaen–Hu–Bao, PTRF, 2011)
- Well-posedness of minimal supersolutions (Drapeau–Heyne–Kupper, AOP, 2013)

 $(Y,Z)\in \mathbb{L}^2(\mathbb{F})\times \mathbb{L}^2(\mathbb{F})$ supersolution of (6) if Y is càdlàg, $\int Z\,dW$ a supermartingale,

- $Y_s \ge Y_t + \int_t^s [-f(r, Y_r, Z_r)] dr + \int_t^s Z_r dW_r$, and
- $Y_T > h$.
- (Y, Z) minimal supersolution of (6) if
 - (\tilde{Y}, \tilde{Z}) supersolution of (6) $\implies Y \leq \tilde{Y}$.

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Subject of study

PPDE

$$-\partial_t u - F(t, \omega, u, \partial_\omega u, \partial^2_{\omega\omega} u) = 0 \quad \text{on } [0, T) \times \Omega,$$
$$u(T, \omega) = h(\omega) \quad \text{on } \Omega.$$

• Ω path space:

$$C([0, T], \mathbb{R}^d), D([0, T], \mathbb{R}^d), C([0, T], H), \dots$$

- $F = F(t, \omega, y, z, \gamma)$ Hamiltonian
- $u = u(t, \omega) : [0, T] \times \Omega \to \mathbb{R}$ non-anticipating, i.e.,

$$u(t,\omega) = u(t,\omega_{\cdot \wedge t})$$
 "=" $u(t,\{\omega_s\}_{s \leq t})$

Subject of study

PPDE

$$-\partial_t u - F(t, \omega, u, \partial_\omega u, \partial^2_{\omega\omega} u) = 0 \quad \text{on } [0, T) \times \Omega,$$
$$u(T, \omega) = h(\omega) \quad \text{on } \Omega.$$

• Ω path space:

$$C([0, T], \mathbb{R}^d), D([0, T], \mathbb{R}^d), C([0, T], H), \dots$$

- $F = F(t, \omega, y, z, \gamma)$ Hamiltonian
- $u = u(t, \omega) : [0, T] \times \Omega \to \mathbb{R}$ non-anticipating, i.e.,

$$u(t,\omega) = u(t,\omega_{\cdot \wedge t})$$
 "=" $u(t,\{\omega_s\}_{s \leq t})$

WARNING: Don't confuse PPDE with stochastic (or rough) PDE

$$u(t,x,\omega) = u_0 + \int_0^t F[\cdots] ds + \int_0^t G[\cdots] d\omega_s$$

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Motivation and applications I

Intrinsic mathematical:

- Very few results available for PDEs on those (infinite-dimensional) path spaces
- In contrast: Large literature for PDEs on Hilbert space

Motivation and applications I

Intrinsic mathematical:

- Very few results available for PDEs on those (infinite-dimensional) path spaces
- In contrast: Large literature for PDEs on Hilbert space

Optimal control of delay equations and/or with path-dependent terminal cost:

Minimize
$$J(t, \omega, a(\cdot)) := \sup_{s \le t} \left| x^{t, \omega, a(\cdot)}(s) \right|$$

subject to $x = x^{t,\omega,a(\cdot)}$ solving

$$x'(s) = f(x(s-1), a(s)) \text{ on } (t, T),$$

 $x = \omega \text{ on } [0, t].$

Formally, value function $v(t,\omega) := \inf_{a(\cdot)} J(t,\omega,a(\cdot))$ solves

$$\begin{aligned} -\partial_t v - \inf_{a} \left[f(\omega(s-1)) \, \partial_\omega v \right] &= 0, \\ v(T,\omega) &= \sup_{s \le T} |\omega(s)| \, . \end{aligned}$$

Motivation and applications II

Pricing of path-dependent options in mathematical finance:

$$u(t,\omega) := \mathbb{E}_{t,\omega}[\xi],$$

where ξ is a functional of Brownian motion B, e.g.,

$$\xi(\tilde{\omega}) = \max \left\{ \sup_{s \le t} |\omega(s)| \,, \, \sup_{t < s \le T} |B(s, \tilde{\omega})| \right\} \text{ for } \mathbb{P}_{t, \omega}\text{-a.e. } \tilde{\omega}.$$

Formally, u solves

$$-\left[\partial_t u + \frac{1}{2}\partial^2_{\omega\omega} u\right] = 0,$$

$$u(T, \cdot) = \xi.$$

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Path derivatives: 1st order case

$$\Omega = C([0, T], \mathbb{R})$$
 from now on.

Kim (since 1980s), Lukoyanov (since late 1990s).

Definition

 $u:[0,T]\times\Omega\to\mathbb{R}$ is in $\mathcal{C}^{1,1}$ if u is non-anticipating, continuous, and

 \exists functions $\partial_t u$, $\partial_{\omega} u$: $[0, T] \times \Omega \to \mathbb{R}$ non-anticipating and continuous:

$$\forall \omega \in AC([0, T]) : \forall s \leq t :$$

$$u(t,\omega) - u(s,\omega) = \int_{s}^{t} \left[\partial_{t} u(r,\omega) + \partial_{\omega} u(r,\omega) \, \omega'(r) \right] dr.$$

Example: If f and g are smooth and

$$u(t,\omega) = f(t,\omega(t)) + \int_0^t g(s,\omega(s)) ds$$

then

$$\partial_t u(t,\omega) = \frac{\partial}{\partial t} f(t,\omega(t)) + g(t,\omega(t)), \qquad \partial_\omega u(t,\omega) = \frac{\partial}{\partial x} f(t,\omega(t)).$$

Path derivatives: 2nd order case

Dupire (2009) and, in 2010s, Cont, Fournié, Ekren, K., Touzi, Zhang, etc.

Definition

 $u:[0,T]\times\Omega\to\mathbb{R}$ is in $\mathcal{C}^{1,2}$ if u is non-anticipating, continuous, and

 \exists functions $\partial_t u$, $\partial_\omega u$, $\partial^2_{\omega\omega} u$: $[0,T] \times \Omega \to \mathbb{R}$ non-anticipating and continuous:

 \forall Itô semimartingale X, i.e., $dX_t = b_t dt + \sigma_t dW_t$: $\forall s \leq t$:

$$u(t,X) - u(s,X) = \int_{s}^{t} \left[\partial_{t} u(r,X) + \partial_{\omega} u(r,X) b_{r} + \frac{1}{2} \partial_{\omega\omega}^{2} u(r,X) \sigma_{r}^{2} \right] dr$$
$$+ \int_{s}^{t} \left[\partial_{\omega}(r,X) \sigma_{r} \right] dW_{r}$$

- Introduction
- BSDEs
 - A simple BSDE and the Feynman-Kac formula
 - Nonlinear BSDEs and stochastic optimal control
 - Quadratic and super-quadratic BSDEs
- Path-dependent calculus and path-dependent PDEs
 - PPDEs
 - Motivation
 - Path derivatives
 - Viscosity solutions

Viscosity solutions: 1st order standard PDEs

Crandall-Lions (TAMS, 1983).

Definition

 $u:[0,T]\times\mathbb{R}\to\mathbb{R}$ continuous is a viscosity subsolution of

$$-\partial_t u(t,x) - \tilde{F}(t,\partial_x u(t,x)) = 0$$
 at (t,x) ,

if, for each test function $\varphi \in \underline{\mathcal{A}}u(t,x)$,

$$-\partial_t \varphi(t,x) - \tilde{F}(t,\partial_x \varphi(t,x)) \leq 0.$$

The test function space is defined by

$$\underline{\mathcal{A}}u(t,x) := \left\{ \varphi \in C^{1,2}([0,T] \times \mathbb{R}) : \\ 0 = (\varphi - u)(t,x) = \inf_{(s,y)} (\varphi - u)(s,y) \right\}$$

Viscosity solutions: 1st order PPDEs

Lukoyanov (2007) and Bayraktar-K. (JFA, 2018).

Fix $L \ge 0$. Assume $|F(t,z) - F(t,\tilde{z})| \le L|z - \tilde{z}|$.

Definition

 $u:[0,T]\times\Omega\to\mathbb{R}$ non-anticipating, continuous is a viscosity L-subsolution of

$$-\partial_t u(t,\omega) - F(t,\partial_\omega u(t,\omega)) = 0$$
 at (t,ω) ,

if, for each test function $\varphi \in \underline{\mathcal{A}}^L u(t, \omega)$,

$$-\partial_t \varphi(t,\omega) - F(t,\partial_\omega \varphi(t,\omega)) \leq 0.$$

The test function space is defined by

$$\underline{\mathcal{A}}^{L}u(t,\omega):=\Big\{\varphi\in\mathcal{C}^{1,2}:0=(\varphi-u)(t,\omega)=\inf_{(s,X)\in[t,T]\times\mathcal{X}^{L}(t,\omega)}(\varphi-u)(s,X)\Big\},$$

where the (compact) set $\mathcal{X}^{L}(t,\omega)$ is defined by

$$\mathcal{X}^L(t,\omega):=\{X\in\Omega:X|_{[0,t]}=\omega|_{[0,t]}\text{ and }X|_{[t,T]}\in \mathit{AC}([t,T])\text{ with }\sup_{t\leq s\leq t}\left|X'(s)\right|\leq L\}.$$

Viscosity solutions: 2nd order PPDEs: Part 1

Ekren-K.-Touzi-Zhang (AOP, 2014), Ekren-Touzi-Zhang (AOP, 2016ab), Ren-Rosestolato (SIMA, 2020), etc.

Fix $L \ge 0$. Assume $|F(t, z, \gamma) - F(t, \tilde{z}, \tilde{\gamma})| \le L(|z - \tilde{z}| + |\gamma - \tilde{\gamma}|)$.

Definition

 $u:[0,T]\times\Omega\to\mathbb{R}$ non-anticipating, continuous is a viscosity \mathcal{P}^L -subsolution of

$$-\partial_t u(t,\omega) - F(t,\partial_\omega u(t\omega),\partial^2_{\omega\omega} u(t,\omega)) = 0 \text{ at } (t,\omega),$$

if, for each test function $\varphi \in \underline{\mathcal{A}}^{\mathcal{P}^L}u(t,\omega)$,

$$-\partial_t \varphi(t,\omega) - F(t,\partial_\omega u(t\omega),\partial^2_{\omega\omega} \varphi(t,\omega)) \leq 0.$$

The test function space is defined by

$$\underline{\mathcal{A}}^{\mathcal{P}^{L}}u(t,\omega) := \Big\{ \varphi \in \mathcal{C}^{1,2} : \\ 0 = (\varphi - u)(t,\omega) = \inf_{\tau \in \mathcal{T}^{t}} \inf_{\mathbb{P} \in \mathcal{P}^{L}(t,\omega)} \mathbb{E}^{\mathbb{P}} \left[(\varphi - u)(\tau, X) \right] \Big\}.$$

Viscosity solutions: 2nd order PPDEs: Part 2

The test function space is defined by

$$\underline{\mathcal{A}}^{\mathcal{P}^{L}}u(t,\omega) := \left\{ \varphi \in \mathcal{C}^{1,2} : \\ 0 = (\varphi - u)(t,\omega) = \inf_{\tau \in \mathcal{T}^{t}} \inf_{\mathbb{P} \in \mathcal{P}^{L}(t,\omega)} \mathbb{E}^{\mathbb{P}} \left[(\varphi - u)(\tau, X) \right] \right\},$$

where

- $\mathcal{T}^t = \{ \text{all } [t, T] \text{-valued stopping times} \}$
 - X canonical process on Ω , i.e., $X_t(\tilde{\omega}) = \tilde{\omega}(t)$,
 - and the $\mathcal{P}^{L}(t,\omega)$ is defined by

$$\mathcal{P}^L(t,\omega):=\left\{ ext{all probability measures }\mathbb{P} ext{ on }\Omega ext{ such that, }\mathbb{P} ext{-a.s.,}
ight. \ X|_{[0,t]}=\omega|_{[0,t]} ext{ and} \ X|_{[t,\mathcal{T}]} ext{ is an Itô-semimartingale of the form} \ dX_s=b_s\,ds+\sigma_s\,dW_s \ ext{with }\|b\|_\infty\leq L ext{ and }\|\sigma\|_\infty\leq\sqrt{2L}.
ight\}$$