A crash course in Dividulet processes

Part 2

Jason Swanson UCF Probability Seminar Feb 9, 2021 Loose ends Notation:

of $\mu = L(X)$, then $L(X; A) := \mu(A).$ • If $\mu = L(X|Y)$, then

 $\mathcal{L}(X|\mathcal{H};A) = \mu(A)$ · X~ µ means µ = L(X)

· X (I ~ M eans M = L(X I I)

"Bayesian/frequentist combo"

S: separable metric sp., S=Bs X= {Xn: nEHZ: S-val. stock. process

Tun (De Finetti * + Glivento-Cantelli-Varadarajan **)

If X is exchangeable, then, with probability one,

In Zi=1 Sx; converges weakly to a random measure u.

Moreover, L(X)u) = u.

* Thm. 9.16, Foundations of Modern Probability, Kallenberg (1997)

** Thm. 11.4.1, Real Analysis and Probability, Dudley (2004)

III. An asymmetric die

S = P(S)S= {0,1,-.., d},

S-val. stoch. proc. X = {Xn: n = H3:

Assure X is exchangeable. Let u be the unique vardom meas. on S

such that L(X/M)=Mo.

is (F, M,(s)) - m'ble $\mu: \Omega \rightarrow M_1(s)$

M,(S) isomorphic to a d-simplex

SIMPLICES

$$\Delta^d = \{ t \in \mathbb{R}^{d+1} : t_j \ge 0, \sum_{o}^d t_j = 1 \}$$
 $\{ t = (t_o, t_i, ..., t_d) \in \mathbb{R}^{d+1} \}$
 $\{ t = (t_o, t_i, ..., t_d) \in \mathbb{R}^{d+1} \}$
 $\{ t = (t_o, t_i, ..., t_d) \in \mathbb{R}^{d+1} \}$
 $\{ t = (t_o, t_i, ..., t_d) \in \mathbb{R}^{d+1} \}$

Calculating:
For
$$t = (t_0, t_1, ..., t_d)$$
 and $k \in \{0, 1, ..., d\}$,
let $\hat{t}_k = (t_0, ..., t_{k+1}, ..., t_d)$

$$\Delta_c^d = \{ t \in \mathbb{R}^d : t_j \geqslant 0, \sum_{o}^{d-1} t_j \leq 1 \}$$

1 corner d-simplex

 $\int_{\Delta^d} f(t) dt$ $= \int_{\Delta^d_c} f(t_0, ..., t_{k-1}, (-\sum_{j \neq k} t_j, t_{k+1}, ..., t_d) \int_{1+d} d\hat{t}_k$

$$\int_{\Delta^2}^{2} t_0^2 t_1^5 t_2^3 dt = \sqrt{3} \int_{\Delta_c}^{2} t_0^2 t_1^5 (1 - t_0 - t_1)^3 dt_1 dt_2$$

$$\int_{\Delta^2}^{2} t_0^5 t_1^5 t_2^3 dt = \sqrt{3} \int_{\Delta_c}^{2} t_0^5 (1 - t_0 - t_1)^3 dt_1 dt_2$$

$$\int_{\Delta_c}^{2} t_0^5 t_1^5 t_2^5 dt = \sqrt{3} \int_{\Delta_c}^{2} t_0^5 (1 - t_0 - t_1)^3 dt_1 dt_2$$

$$\int_{\Delta_c}^{2} t_0^5 t_1^5 t_2^5 dt = \sqrt{3} \int_{\Delta_c}^{2} t_0^5 (1 - t_0 - t_1)^3 dt_1 dt_2$$

$$(0,0), (1,0), (0,1)$$

$$= \sqrt{3} \int_{0}^{1-t_{1}} t_{0}^{2} + t_{0}^{5} + t_{0}$$

$$= \sqrt{3} \int_{0}^{1} \int_{6}^{1-t_{0}} t_{0}^{2} (1-t_{0}-t_{2})^{5} t_{2}^{3} dt_{2} dt_{0}$$

= ... etc.

$$\mu: \Omega \to M_1(s)$$
, $S = \{0,1,...,d\}$

Define $Q: M_1(s) \to \Delta^d$ by

 $Q(v) = (v(\{03\}),...,v(\{d3\}))$
 $Q(v) = (v(\{03\}),...,v(\{d3\})$
 $Q(v) = (v$

 $\forall n \in \mathbb{N}, \ \forall k \in \{0, ..., d\},$ $P(X_n = k \mid \theta) = \theta_k$ $P(X_n = k \mid \theta) = ? \quad Again, \ basic calculations...$ $N_n \in \mathbb{N}. \quad \mathbb{N}_d : o \leq a$

L(O|X,,..,Xn;dt) & to ti ... to L(+;dt), where $N_k = |\{X_j : X_j = k_j\}|$ Divichlet distribution, a.k.a. the multivariate beta distribution

DIRICHLET DISTRIBUTION

The Dirichlet distribution with parameter α ,

denoted by Dir(α), is the probability measure

on Δ^d proportional to $t_o^{\alpha,-1}t_i^{\alpha,-1}\cdots t_d^{\alpha,-1}dt$

If $\theta = (\theta_0, ..., \theta_d) \sim \text{Dir}(\alpha_0, ..., \alpha_d)$.

and $k \in \{0, ..., d\}$, then $\theta_k \sim \text{Beta}(\alpha_k, \sum_{i \neq k} \alpha_i)$.

$$\mathcal{L}(\theta) = \operatorname{Tir}(\alpha) \implies \mathcal{L}(\theta; dt) \propto t_0^{\alpha_0 - 1} - t_d^{\alpha_0 - 1} dt$$

$$\mathcal{L}(\theta) = \operatorname{Dir}(\omega) \Rightarrow \mathcal{L}(\theta; dt) \propto t_0^{N_1} - t_d^{N_d} dt$$

 $\Rightarrow \mathcal{L}(\theta) = \operatorname{Dir}(\omega) \Rightarrow \mathcal{L}(\theta; dt) \propto t_0^{N_1} - t_d^{N_d} \mathcal{L}(\theta; dt)$

$$\Rightarrow \mathcal{L}(\theta \mid X_1, ..., X_n; dt) \propto t_0^{N_0} t_1^{N_1} ... t_d^{N_d} \mathcal{L}(\theta; dt)$$

$$= t_0^{\alpha_0 + N_0 - 1} ... t_d^{\alpha_d + N_d - 1} dt$$

where $N_k = |\{X_j : X_j = k_j\}|$

$$\mathcal{L}(\theta) = \text{Dir}(\alpha_0, ..., \alpha_d)$$

$$\Rightarrow \mathcal{L}(\theta | X_1, ..., X_n) = \text{Dir}(\alpha_0 + N_0, ..., \alpha_d + N_d)$$

IV Random object generator (5,5): standard Borel space objects from S.

Imagine a machine that produces random

X= {Xn: nEHZ: S-val. stoch. proc.

Assure X is exchangeable. Let je be the unique vardom meas. on S such that L(X/M) = Mo.

 $\mu: \Omega \rightarrow M_1(s)$ is $(\mathcal{F}, \mathcal{M}, (s))$ - m'ble

What distribution to put on u?

Je is a random prob. neas. on (5,5) For each AES, $\mu(A)$ is a r.v. So qu(A): AES3 is a stoch. proc.

What finite-dimensional distributions do we want? If EBo,..., Ba3 is a m'ble partition of S, we want the random vector

(µ(Bo), · - · , µ(Ba)) to have a Dirichlet distribution.

(But with what parameters?)

Definition Let (S, S) be a m'ble Sp. and $\lambda = \{\lambda(A): A \in S\}$ a stoch. proc. indexed by S. Let d be a nonzero, finite meas. on (S,S). Then I is a Dirichlet process on (S, S) with parameter & if, wherever {Bo,..., Ba} is a m'ble partition of S, we have $\mathcal{L}(\lambda(B_0),...,\lambda(B_d)) = Dir(\alpha(B_0),...,\alpha(B_d))$

Think about observing only $\widetilde{X}_n = \sum_{k=0}^d k \mathbf{1}_{B_k}(X_n)$

First defined by Tom Ferguson (1973).

- (i) Do Dirichlet processes exist? (yes)
 - could maybe show with appropriate version of Kolmogorov extension theorem
 - we will see the explicit "stick-breaking" construction
- (ii) Does the parameter & uniquely determine the finite-dimensional distributions, {\(\(\lambda(\lambda)\),...,\(\lambda(\lambda)\); deN, A; \(\varepsilon\)? (yes)
 - calculations w/ Dirichlet dist. See Ferguson
- (iii) Is every Dirichlet process a random measure? (yes)
 - will be seen from construction

Sethuraman stick-breaking construction

We will construct a random prob. neas. on (5,8) of the form

random positive weights.

That Sum to 1

(created by "breaking a stick"
of length 1)

 U_1, U_2, \dots iid

 $L(U_k) \propto \alpha$

Assume $\alpha(S) = 1$ $\mathcal{L}(R_i) = \text{Unif }(o, i)$ $\mathcal{L}(R_2|R_i) = \text{Unif }(o, i-R_i)$ $\mathcal{L}(R_3|R_1,R_2) = \text{Unif }(o, i-R_1-R_2)$

 $L(R_3|R_1,R_2) = Unif(0, 1-R_1-R_2)$ $L(R_3|R_1,R_2) = Unif(0, 1-R_2)$ $L(R_4|R_1,...,R_{k-1}) = Unif(0, 1-\sum_{i=1}^{k-1} R_i)$

The Rx's are positive and sum to 1.

Construction w/o conditioning: V., V2, -- iid Unit (0,1) Recursive: $R_{i} = V_{i}$

R2 = (1-R,) V2

R3 = (1-R1-R2) V3

 $R_{k} = (1 - \sum_{i=1}^{k-1} R_{i}) V_{k}$

Explicit:

For general $\alpha(s) \in (0, \infty)$,

Change Ulief (0,1) to Beta (1, a(s))

lim >=?

$$\lambda = \sum_{k=1}^{\infty} R_k S_{u_k}$$

· For fixed w, $\lambda(\omega)$ is a discrete prob. meas.

• For fixed A, $\lambda(A) = \sum_{k=1}^{\infty} R_k I_A(U_k)$ is a random variable.

· So & is a probability kernel from Does every Dir. i.e. $\lambda:\Omega \rightarrow M_{s}(s)$ is m'ble proc. have at is a () is a random measure)

{\(\A): A \(\epsilon\) is a Dividulet process with parameter \(\alpha\)

A: Dirichlet process on (5,5) with parameter a = a pos. finite meas. on S

 χ : an M,(s)-valued r.V.

L(X): a prob. meas. on M,(S) L(X) & M, (M, (S))

 $Q(\alpha) := \mathcal{L}(\lambda)$ Notation:

I distribution of a Dir. proc. w/param. a

For $A \in M_1(S)$, $Q(\alpha; A) := \mathcal{L}(\lambda; A) = P(\lambda \in A)$ Cyble set of prob. measures

These are all synonymous: · > is a Dir. proc. w/ param. & · L(X) = D(a) • $\lambda \sim \emptyset(\alpha)$ $x = \alpha(S)$ $\rho = \frac{\alpha}{\alpha(s)}$ ("stability") prob. meas. on S ("base" meas.) $Q(\alpha) = Q(\kappa \rho)$

(Kp)

(An Hink of Dir. proc. as being determined by two parameters

Back to random object generator: X1, X2, ... exchangeable S-val. r.v.'s

X = { Xn: NEN3

 $L(X|\mu) = \mu^{\infty}$

Fix pos., finite meas. of

Assume $L(\mu) = Q(\alpha)$

 $\mathcal{L}(X_i) = ?$

$$P(X, \in A) = E[P(X, \in A \mid \mu)]$$

$$= E[\mu(A)]$$

$$\mathcal{L}(\mu(A), \mu(A^c)) = Dir(\alpha(A), \alpha(A^c))$$

$$L(\mu(A), \mu(A^c)) = Dir(\alpha(A), \alpha(A^c))$$

 $L(\mu(A)) = Beta(\alpha(A), \alpha(A^c))$

$$\mathcal{L}(\mu(A)) = \text{Beta}(\alpha(A), \alpha(A^{c}))$$

$$\mathcal{L}(\mu(A)) = \frac{\alpha(A)}{\alpha(A) + \alpha(A^{c})} = \frac{\alpha(A)}{\alpha(S)} = \beta(A)$$

$$\mathcal{L}(\mu(A)) = \frac{\alpha(A)}{\alpha(A) + \alpha(A^{c})} = \frac{\alpha(A)}{\alpha(S)} = \beta(A)$$

So
$$L(X_1) = P_{x_1} hase measure$$

$$L(X_{n+1}|X_1,...,X_n) = ?$$

 $L(\mu | X_1,...,X_n) = ?$

$$\mathcal{L}(\mu) = \mathcal{O}(\alpha)$$

$$\Rightarrow \mathcal{L}(\mu \mid X_1, ..., X_n) = \mathcal{O}(\alpha + \Sigma_1^n S_{X_i})$$

$$P(X_{n+i} \in A \mid X_1, ..., X_n)$$

$$= E[P(X_{n+1} \in A \mid \mu, X_1, ..., X_n) \mid X_1, ..., X_n]$$

$$= E[P(X_{n+1} \in A \mid \mathcal{U}) \mid X_{1}, ..., X_{n}]$$

$$= E[\mu(A) \mid X_{1}, ..., X_{n}]$$

$$=\frac{(\alpha+\Sigma^{\gamma}S_{X_{i}})(A)}{(\alpha+\Sigma^{\gamma}S_{X_{i}})(S)}$$

$$P(X_{n+1} \in A \mid X_1, ..., X_n) = \frac{(\alpha + \sum_{i=1}^{n} S_{X_i})(A)}{(\alpha + \sum_{i=1}^{n} S_{X_i})(S)}$$

$$\times O(A) + \sum_{i=1}^{n} S_{X_i}(A)$$

$$P(X_{n+1} \in A \mid X_1, ..., X_n) = \frac{1}{(\alpha + \sum_{i=1}^{n} S_{X_i})(S)}$$

$$= \frac{x p(A) + \sum_{i=1}^{n} S_{X_i}(A)}{x + n}$$

 $= \frac{\kappa}{\kappa + n} \rho(A) + \frac{n}{\kappa + n} \sum_{i=1}^{n} \sum_{k=1}^{n} (x_{i}(A))$ stability base preas.

empirical distribution

· K small: hearn quickly

· Klarge: learn slowly

I Sequence of mangled coins

The pressed penny machine is broken.

Every penny comes out different.

Get 10 pennies. Flip each 10 times.

First 9 pennies: 70 heads out of 90 flips. Seems the machine favors heads-heavy pennies.

10th penny, 1st 9 flips: all tails
Prob. of head on 10th flip?
Propensity of machine VS propensity of penny

Herated Dirichlet process (to be continued)