A crash course in
Dirichlet processes Part 1

Jason Swanson
UCF Probability Seminar Jan 26, 2021
I. Background and notation
(See Foundations of Modern Probability, Kallenberg (1997) for further details)

RANDOM MEASURES
(Ω, f, P) : Prob. sp.
(S, ζ) : m'ble sp.
$M(S)$: set of σ-finite measures on (S, S) A random measure ought to be a random variable taking values in $M(s)$. Need a σ-alg. on $M(s)$.

For $A \in \zeta, B \in \mathbb{R}, \leftarrow$ Bored o-alg, on \mathbb{R}

$$
C_{A, B}:=\{v \in M(S): v(A) \in B\} \subset M(S)
$$

$\tau_{\text {cylinder set }}$

$$
m(S):=\sigma\left(\left\{c_{A, B}: A \in S, B \in R\right\}\right)
$$

η a σ-alg. on $M(s)$
$M(s)$ is the smallest σ-alg. on $M(s)$ that maker the projections mible.

For $A \in \zeta$, define $\pi_{A}: M(s) \rightarrow \mathbb{R}$ by I projection onto A

$$
\pi_{A}(\nu)=\nu(A)
$$

$$
\begin{aligned}
& m(s)=\sigma\left(\left\{\pi_{A}: A \in \zeta\right\}\right) \\
& M_{1}(s)=\{v \in M(s): v(s)=1\}
\end{aligned}
$$

$\tau_{\text {probability measures on } S} S$

$$
M_{1}(s)=C_{s,\{1\}}\{1\} \in R \quad \therefore M_{1}(s) \in M(s)
$$

$$
m_{1}(s)=\left\{C \cap M_{1}(s): C \in m(s)\right\}
$$

U a o-aly. on $M_{1}(s)$;
it is $M(s)$ restricted to $M_{1}(s)$

A random measure on S is an $M(S)$-valued vandom variable, i.e. a function $\mu: \Omega \rightarrow M(s)$ that is $(F, m(s))$-mable. If $\mu(\Omega) \subset M_{1}(s)$, then μ is a random probability measure.

A random meas is a special case of a kernel".
(T, \mathcal{J}) : mise space
A kernel from T to S is a m'ble function $\mu: T \rightarrow M(S)$.
Notation: given $t \in T, A \in \zeta, \mu(t, A):=(\mu(t))(A)$.
Expel: $\begin{gathered}t \\ (0, \infty)\end{gathered} \stackrel{\mu}{\longmapsto} e^{-t s} d s \quad\binom{$ need to shoo this }{ is mine }
Laplace transform: $F(t)=\int_{[0,00)} f(s) \mu(t, d s)$

If μ is a kernel from T to S, then μ is a probability kernel if $\mu(T) \subset M_{1}(S)$.

A random (probability) measure is a (probability) kernel from Ω to S.

Checking measurability:
$\mu: T \rightarrow M(s)$ is $(I, m(s))$ - wible
iff $\pi_{A} 0 \mu$ is $(\mathcal{J}, \mathbb{R})$-m'ale $\forall A \in S$
iff $t \mapsto \mu(t, A)$ is (J, R)-mile $\forall A \in \zeta$

Alternative/equivalent formulation:
A kernel from T to S is a function
$\mu: T \times \zeta \rightarrow[0, \infty]$ such that

- $\mu(t,-)$ is a σ-finite meas. $\forall t \in T$, and
- $\mu(\cdot, A)$ is m'ble $\forall A \in \zeta$.

REGULAR CONDITIONAL DISTRIBUTIONS
X : an (S, S)-valued random variable
$\mathcal{L}(X)$: The distribution (or law) of X τ a prob. meas. on S

$$
\mu=\mathscr{L}(x) \Rightarrow
$$

- $P(X \in A)=\mu(A) \quad \forall A \in \zeta$
- $E[f(x)]=\int_{S} f(x) \mu(d x) \begin{aligned} & \text { whenever } \\ & f(x) \geqslant 0 \text { a.s. }\end{aligned}$ $f(x) \geqslant 0$ a.s.
or $E|f(x)|<\infty$

Can we do the same thing with conditioning? Is $P(X \in A \mid \mathcal{Y})$ a random prob. meas?
Can we get $E[f(x)[y]$ by integrating?
Typically, yes. But need hypotheses.

A m'ble space (S, S) is a (standard) Bored space if \exists a bijection $\varphi: S \rightarrow \mathbb{R}$ such that φ is (ζ, \mathbb{R})-mible and φ^{-1} is (\mathbb{R}, ζ)-middle.

A m'ble subset of a complete, separable metric space is a standard Bore space.
key hypothesis
(s, φ) : Bored sp.
X : S-valued random var.
(T, \mathcal{J}) : mible sp.
Y : T-valued random var.
Theorem \exists a kernerility) μ from T to S such that

$$
P(X \in A \mid Y)=\mu_{\eta}(Y, A) \text { ass. } \forall A \in S
$$

the regular conditional distribution of X given Y.

Notation: $\mathscr{L}(X \mid Y):=\mu(Y)$

$$
\begin{aligned}
\mu(Y) & =\mathscr{L}(X \mid Y) \Rightarrow \\
& \cdot P(X \in A \mid Y)=\mu(Y, A) \text { ass, } \forall A \in S \\
& \cdot E[f(X) \mid Y]=\int_{S} f(x) \mu(Y, d x) \text { a.s. }
\end{aligned}
$$

whenever $E|f(x)|<\infty$.
What about $X \mid y$?
Surprisingly, $X \mid H$ is a special case of $X(Y$.

I: sub σ all. of \mathcal{F}

$$
(T, J):=(\Omega, \mathbb{I})
$$

Y : identity function

$$
P(X \in A \mid \mathscr{L})=P(X \in A \mid Y)
$$

So \exists a prob. kernel μ from Ω to S (ie. a random prob. meas.) such that

$$
P(X \in A \mid \mathcal{Y})=\mu_{\uparrow}(A) \text { ass. } \forall A \in S
$$

\uparrow regular conditional distribution of X given \&
Notation: $\mathscr{L}(X \mid \mathcal{Z}):=\mu$

$$
\begin{aligned}
\mu & =\mathscr{L}(X \mid \mathcal{H}) \Rightarrow \\
& \cdot P(X \in A \mid \mathcal{H})=\mu(A) \text { a.s. } \forall A \in S \\
& \cdot E[f(X) \mid \mathcal{Z}]=\int_{S} f(x) \mu(d x) \text { a.s. }
\end{aligned}
$$

whenever $E|f(x)|<\infty$.

Helpful result:
If $y \in \mathcal{Z}$, then

$$
E[f(x, y) \mid y]=\int_{S} f(x, y) \mu(d x),
$$

where $\mu=\mathcal{L}(X \mid \mathcal{I})$.

- Treat y like a constant (since it is known), then integrate w.r.t. the (regular) conditional distribution of X given \mathcal{Y}.
- When $X \& \mathcal{L}$ are indep., $\mathscr{L}(x \mid y)=\mathcal{L}(X)$ and this result is familiar to undergrads.

Final bit of notation:
If μ, ν are complex measures (e.g. finite signed measures), then $\mu \propto v$ means $\exists c>0$ such that

$$
\mu=c \nu
$$

Exp: X_{1}, X_{2}, \ldots id $\operatorname{Exp}(\lambda)$

$$
\begin{aligned}
& d Z\left(X_{j}\right) \propto e^{-\lambda x} d x \\
& d \mathscr{Z}\left(x_{1}+\cdots+X_{n}\right) \propto x^{n-1} e^{-\lambda x} d x
\end{aligned}
$$

notationally simpler to omit normalizing constant
II. Laplace's sunrise problem

Take a pressed penny from a museum.
Flip it repeatedly.
X_{n} : result of $n^{\text {th }}$ flip $(0=$ tails, $1=$ heads $)$
Assumptions:
$S=\{0,1\}, \quad \zeta=P(S)$ (power set)
X_{n} is an S-valued random var.
x_{1}, x_{2}, \ldots are exchangeable:

$$
\left(X_{1, \ldots}, X_{n}\right) \stackrel{d}{=}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

\forall permutations σ of $\{1, \ldots, n\}$

By de Finett's theorem (see Tum. 9.16 in Rallenberg): \exists a random prob. meas. μ on $S=\{0,1\}$ such that
τ de Finetti says nothing about the distribution of μ

$$
\mathscr{L}\left(X_{1}, \ldots, X_{n} \mid \mu\right)=\mu^{n} \quad \forall n
$$

More concisely:

$$
\begin{aligned}
& X:=\left(X_{1}, X_{2}, \ldots\right)\left(\text { an }\left(S^{\infty}, \zeta^{\infty}\right) \text {-val.r.v. }\right) \\
& \mathcal{L}(X \mid \mu)=\mu^{\infty}
\end{aligned}
$$

$\mathscr{L}(X \mid \mu)=\mu^{\infty}$ means:

- X_{1}, X_{2}, \ldots are conditionally i.i.d. given μ.
- $\mathcal{L}\left(X_{n} \mid \mu\right)=\mu \quad \forall n$
i.e. $P\left(X_{n} \in A \mid \mu\right)=\mu(A)$ a.s. $\forall n, \forall A$
μ is the (unknown) distribution of each X_{n}. If we knew this distribution, flips would be i.i.d. Without knowing μ, flips are dependent as we learn from flip to flip.

To complete the model we must choose a distribution for μ.
This is our "prior" on the unknown μ, based on whatever we may know about the pressed penny before flipping it.
μ is an $M_{1}(s)$-val. r.v.

$$
\mathscr{L}(\mu) \in M_{1}\left(M_{1}(S)\right)
$$

We must choose an element of $M_{1}\left(M_{1}(S)\right)$ to be our prior.

SIMPLIFYING μ
μ is an $M_{1}(s)$-val. r.v.

$$
S=\{0,1\}, \quad S=P(S)
$$

Define $\varphi: M_{1}(s) \rightarrow[0,1]$ by

$$
\varphi(\nu)=\nu(\xi \mid\})
$$

- φ is bijective Bore $\sigma-a l$. \quad on $[0,1]$
- φ is $\left(m_{1}(s), \mathcal{B}_{[0,1]}\right)$-wible $\varphi=\pi_{\varepsilon, 1}$ is a projection
- φ^{-1} is $\left(\mathbb{B}_{[0,1]} M_{1}(s)\right)$ - mible To check, use $M_{1}(s)=\sigma$ (cylinder sets)

Define $\theta=\varphi(\mu)=\mu(\{\mid\})$
θ is a $[0,1]$-val. riv.

$$
\begin{aligned}
& \sigma(\theta)=\sigma(\mu) \\
& P\left(x_{1}=x_{1}, \ldots, x_{n}=x_{n} \mid \theta\right)=P\left(x_{1}=x_{1}, \ldots, x_{n}=x_{n} \mid \mu\right) \\
&=\mu\left(x_{1}\right) \mu\left(x_{2}\right) \cdots \mu\left(x_{n}\right) \\
&=\theta^{a}(1-\theta)^{b} \quad \theta \text { is the unknown }
\end{aligned}
$$

$a=\left|\left\{j: x_{j}=1\right\}\right|$
$b=\left|\left\{j: x_{j}=0\right\}\right|$
probability of heads.
We must choose a prior distribution for θ.

$$
\begin{aligned}
& \mathcal{L}(\mu) \in M_{1}\left(M_{1}(\{0,1\})\right) \\
& \mathcal{L}(\theta) \in M_{1}([0,1])
\end{aligned}
$$

We must choose a prob. meas. on $[0,1]$ as our prior on θ.
Any will do, but suppose we choose one with a density.

$$
d \mathscr{L}(\theta)=f(t) d t
$$

posterior distribution of θ given first n $\mathcal{L}\left(\theta \mid x_{1}, \ldots, x_{n}\right)=$? observations

Basic calculations give

$$
d \mathcal{L}\left(\theta \mid X_{1}, \ldots, X_{r}\right) \propto \underbrace{t^{N}(1-t)^{M} f(t) d t, ~}_{\text {beta distribution }}
$$

$$
\begin{aligned}
& N=\left|\left\{j: X_{j}=\mid\right\}\right|=\sum_{j=1}^{n} X_{j} \\
& M=\left|\left\{j: X_{j}=0\right\}\right|=n-N
\end{aligned}
$$

The beta distribution is a special case of the Dirichlet distribution.
The Dirichlet distribution is a discrete version of the Dirichlet process.

BETA DISTRIBUTION
The beta distribution with parameters $\alpha>0$ and $\beta>0$, denoted $\operatorname{Beta}(\alpha, \beta)$, is the probability measure on $[0,1]$ proportional to

$$
t^{\alpha-1}(1-t)^{\beta-1} d t
$$ distribution

If $\mu=\operatorname{Beta}(\alpha, \beta)$, then

$$
d \mu=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} t^{\alpha-1}(1-t)^{\beta-1} d t
$$

$$
=\frac{1}{\sum_{\text {beta function }}^{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1} d t}
$$

mean of $\operatorname{Beta}(\alpha, \beta)$ is $\frac{\alpha}{\alpha+\beta}$

$$
\begin{aligned}
& d \mathscr{L}(\theta)=f(t) d t \quad \Longrightarrow \\
& d \mathscr{L}\left(\theta \mid X_{1}, \ldots, X_{n}\right) \propto t^{N}(1-t)^{M} f(t) d t, \\
& N=\sum_{j=1}^{n} X_{j}, M=n-N
\end{aligned}
$$

If the prior is beta, then the posterior is beta.

$$
\begin{aligned}
& \mathscr{L}(\theta)=\operatorname{Beta}(\alpha, \beta) \Rightarrow \\
& d \mathscr{L}\left(\theta \mid X_{1}, \ldots, X_{n}\right) \propto t^{N}(1-t)^{M} t^{\alpha-1}(1-t)^{\beta-1} d t \\
&= t^{\alpha+N-1}(1-t)^{\beta+M-1} d t \\
& \Rightarrow \mathscr{L}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\operatorname{Beta}(\alpha+N, \beta+M)
\end{aligned}
$$

Expl Flip the pressed penny n times.
Suppose we get s heads. What is the probability of heads on the $(n+1)^{\text {th }}$ flip? Take $\mathscr{L}(\theta)$ to be uniform?

$$
\begin{aligned}
& P\left(X_{n+1}=1 \mid N=s\right)=? \\
& \begin{aligned}
& P\left(X_{n+1}=1 \mid N\right)=E\left[P\left(X_{n+1}=1 \mid \theta, N\right) \mid N\right] \\
&=E\left[P\left(X_{n+1}=1 \mid \theta\right) \mid N\right] \\
&=E[\theta \mid N] \\
&=E\left[E\left[\theta \mid X_{1}, \ldots, X_{n}\right] \mid N\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}(\theta)=\operatorname{Beta}(1,1) \Rightarrow \\
& \mathscr{L}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\operatorname{Beta}(1+N, 1+M)
\end{aligned}
$$

mean of $\operatorname{Beta}(\alpha, \beta)=\frac{\alpha}{\alpha+\beta}$

$$
\begin{aligned}
\therefore E\left[\theta \mid X_{1}, \ldots, X_{n}\right] & =\frac{N+1}{n+2} \leftarrow N+M=n \\
\therefore P\left(X_{n+1}=1 \mid N\right) & =E\left[E\left[\theta \mid X_{1}, \ldots, X_{n}\right] \mid N\right] \\
& =\frac{N+1}{n+2} \\
P\left(X_{n+1}=1 \mid N=s\right) & =\frac{s+1}{n+2},
\end{aligned}
$$

