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The Calculus of Differentials for the Weak
Stratonovich Integral
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Abstract The weak Stratonovich integral is defined as the limit, in law, of
Stratonovich-type symmetric Riemann sums. We derive an explicit expression for
the weak Stratonovich integral of f .B/with respect to g.B/, whereB is a fractional
Brownian motion with Hurst parameter 1/6, and f and g are smooth functions.
We use this expression to derive an Itô-type formula for this integral. As in the
case where g is the identity, the Itô-type formula has a correction term which is a
classical Itô integral and which is related to the so-called signed cubic variation of
g.B/. Finally, we derive a surprising formula for calculating with differentials. We
show that if dM D X dN; thenZ dM can be written as ZX dN minus a stochastic
correction term which is again related to the signed cubic variation.
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1 Introduction

IfX and Y are stochastic processes, then the Stratonovich integral ofX with respect
to Y can be defined as the ucp (uniformly on compacts in probability) limit, if it
exists, of the process

J. Swanson
University of Central Florida, Orlando, FL, USA
e-mail: jason@swansonsite.com

F. Viens et al. (eds.), Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor
of David Nualart, Springer Proceedings in Mathematics & Statistics 34,
DOI 10.1007/978-1-4614-5906-4 5, © Springer Science+Business Media New York 2013

95



96 J. Swanson

t 7!
X

tj�t

X.tj�1/CX.tj /

2
.Y.tj / � Y.tj�1//;

as the mesh of the partition ftj g goes to zero. If we specialize to the uniformly
spaced partition, tjDj=n, then we are interested in the Stratonovich-type symmetric
Riemann sums,

bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj / � Y.tj�1//; (5.1)

where bxc denotes the greatest integer less than or equal to x.
It is well-known (see [2, 4]) that if Y D BH , a fractional Brownian motion with

Hurst parameter H , and X D f .BH / for a sufficiently differentiable function f ,
then the Stratonovich integral of X with respect to Y exists for all H > 1=6 but
does not exist for H D 1=6. Moreover, if H > 1=6, then the Stratonovich integral
satisfies the classical Stratonovich change-of-variable formula, which corresponds
to the usual fundamental theorem of calculus.

In [6], we studied the case H D 1=6. There we showed that if Y D B D B1=6

and X D f .B/, where f 2 C1.R/, then the sequence of processes Eq. (5.1)
converges in law. We let

R t
0 f .B.s// dB.s/ denote a process with this limiting law,

and we referred to this as the weak Stratonovich integral. We also showed that
the weak Stratonovich integral with respect to B does not satisfy the classical
Stratonovich change-of-variable formula. Rather, it satisfies an Itô-type formula
with a correction term that is a classical Itô integral. Namely,

f .B.t// D f .B.0//C
Z t

0

f 0.B.s// dB.s/ � 1

12

Z t

0

f 000.B.s// dŒŒB��s ; (5.2)

where ŒŒB�� is what we called the signed cubic variation of B . That is, ŒŒB�� is the
limit in law of the sequence of processes

Pbntc
jD1.B.tj / � B.tj�1//3. It is shown

in [7] that ŒŒB�� D �W , where W is a standard Brownian motion, independent of
B , and � is an explicitly defined constant whose approximate numerical value is
� ' 2:322 [see Eq. (5.7) for the precise definition of �.]. The correction term above
is a standard Itô integral with respect to Brownian motion. Similar Itô-type formulas
with an Itô integral correction term were developed in [1, 5]. There, the focus
was on quartic variation processes and midpoint-style Riemann sums. A formula
similar to Eq. (5.2), but with an ordinary integral correction term, was established
in [3] for the Russo–Vallois symmetric integral with respect to finite cubic variation
processes.

The precise results in [1, 6], as well as in this paper, involve demonstrating the
joint convergence of all of the processes involved, with the type of convergence
being weak convergence as processes in the Skorohod space of càdlàg functions.
In Sect. 2, we establish the formal definition of the weak Stratonovich integral as
an equivalence class of sequences of càdlàg step functions, and we demonstrate in
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Theorem 2.1 the joint convergence in law of such sequences. For simplicity, we
omit discussion of these details in this introduction and only summarize the results
of Sect. 3, in which we derive our various change-of-variable formulas.

In Sect. 3, we extend the Itô-type formula (5.2) to the case Y D g.B/. We show
that the sequence of processes (5.1) converges in law to an integral satisfying the
Itô-type formula

'.Y.t// D '.Y.0//C
Z t

0

' 0.Y.s// dY.s/ � 1

12

Z t

0

' 000.Y.s// dŒŒY ��s ; (5.3)

where

ŒŒY ��t D
Z t

0

.g0.B.s///3 dŒŒB��s

is the limit, in law, of
Pbntc

jD1.Y.tj / � Y.tj�1//3. That is, ŒŒY �� is the signed cubic
variation of Y .

This result is actually just one of the two main corollaries of our central result (see
Corollary 3.1). To motivate the other results, consider the following. Formulas such
as Eqs. (5.2) and (5.3) are typically referred to as change-of-variable formulas. They
have the same structure as Itô’s rule, which is also generally referred to as a change-
of-variable formula. In elementary calculus, we perform a change-of-variable when
we convert an integral with respect to one variable into an integral with respect to
another. In Itô’s stochastic calculus, we may wish to convert an integral with respect
to one semimartingale into an integral with respect to another. Strictly speaking,
Itô’s rule is not sufficient for this purpose. Itô’s rule simply tells us how to expand a
function of a semimartingale into a sum of integrals. In order to convert one integral
into another, we must combine Itô’s rule with a theorem that says

if M D
Z
X dY , then

Z
Z dM D

Z
ZX dY .

Or, in differential form,

if dM D X dY , then Z dM D ZX dY . (5.4)

For Itô integrals, this theorem is usually proved very early on in the construction of
the integral. It is also true for the classical Stratonovich integral for semimartingales
as well as for ordinary Lebesgue–Stieltjes integrals. In fact, in the theory of
Lebesgue–Stieltjes integration, it is often this result which is called the change-
of-variable formula.

In terms of the calculus of differentials, Itô’s rule tells us that ifM D f .Y /, then
dM D f 0.Y / dY C 1

2
f 00.Y / d hY i, where hY i is the quadratic variation of Y , and

Eq. (5.4) tells us that it is permissible to substitute this expression into Z dM , so
that Z dM D Zf 0.Y / dY C 1

2
Zf 00.Y / d hY i.

In this paper, we will show that Eq. (5.4) is not true for the weak Stratonovich
integral. A very simple example which illustrates this is the following. First, let
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us note that when the integral is defined as a limit of Stratonovich-type symmetric
Riemann sums, it is always the case that

R
� d� D 1

2
�2, for any process � . Let us

therefore define M D 1
2
B2, so that dM D B dB . On the other hand,

Z
M dM D 1

2
M2 D 1

8
B4:

Using Eq. (5.2), we have

1

8
B4 D

Z
1

2
B3 dB � 1

12

Z
3B dŒŒB�� D

Z
MB dB � 1

4

Z
B dŒŒB��:

It follows that, in this example, Eq. (5.4) does not hold for the weak Stratonovich
integral. Instead, we have that dM D B dB , whereas M dM D MB dB �
1
4
B dŒŒB��.

The second main corollary of our central result is that the weak Stratonovich
integral satisfies a rule analogous to Eq. (5.4) but with a correction term (see
Corollary 3.2). Namely, suppose X D f .B/, Y D g.B/, and Z D h.B/, where
f; g; h 2 C1.R/. Then the weak Stratonovich integral satisfies the following
rule for calculating with differentials:

If dM D X dY , then Z dM D ZX dY � 1

4
.f 0g0h0/.B/ dŒŒB��. (5.5)

We actually prove a slightly more general rule; see Eq. (5.18).
Both Eqs. (5.3) and (5.5) will be demonstrated as corollaries of the following

general result. With X and Y as above,

Z t

0

X.s/ dY.s/ D ˆ.B.t//�ˆ.B.0//C 1

12

Z t

0

.f 00g0�f 0g00/.B.s// dŒŒB��s ; (5.6)

where ˆ 2 C1.R/ is chosen to satisfy ˆ0 D fg0. See Theorem 3.1 for the precise
statement. Theorem 3.1 is actually formulated more generally for integrators of
the form Y CV , where V D R

�.B/ dŒŒB��. This generalization is necessary to make
sense of

R
Z dM in Eq. (5.5), since if M D R

X dY , then according to Eq. (5.6),
M is not a function of B but is rather the sum of a function of B and a process V
which is in an integral against ŒŒB��.

2 Notation and Definitions

2.1 Basic Notation

Let B D B1=6 be a fractional Brownian motion with Hurst parameter H D 1=6.
That is, B is a centered Gaussian process, indexed by t � 0, such that
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EŒB.s/B.t/� D 1

2
.t1=3 C s1=3 � jt � sj1=3/:

For compactness of notation, we will sometimes write Bt instead of B.t/ and
similarly for other processes. Given a positive integer n, let tj D tj;n D j=n. We
shall frequently have occasion to deal with the quantity

ˇj D ˇj;n D B.tj�1/C B.tj /

2
:

Let �Bj;n D B.tj / � B.tj�1/ and B�.T / D sup0�t�T jB.t/j.
Let � > 0 be defined by

�2 D 3

4

X

r2Z
.jr C 1j1=3 C jr � 1j1=3 � 2jr j1=3/3: (5.7)

Let D
Rd Œ0;1/ denote the Skorohod space of càdlàg functions from Œ0;1/ to R

d .
Throughout the paper, “)” will denote convergence in law. The phrase “uniformly
on compacts in probability” will be abbreviated “ucp.” If Xn and Yn are càdlàg
processes, we shall writeXn � Yn orXn.t/ � Yn.t/ to mean thatXn�Yn ! 0 ucp.

2.2 The Space ŒS�

Recall that for fixed n, we defined tk D k=n. Let Sn denote the vector space of
stochastic processes fL.t/ W t � 0g of the form L D P1

kD0 �k1Œtk ;tkC1/, where each
�k 2 FB1. Note that �k D L.tk/. Given L 2 Sn, let ıj .L/ D L.tj / � L.tj�1/, for
j � 1. Since t 2 Œtk ; tkC1/ if and only if bntc D k, we may write

L.t/ D L.0/C
bntcX

jD1
ıj .L/:

Definition 2.1. Let S denote the vector space of sequences ƒ D fƒng1
nD1

such that:

(i) ƒn 2 Sn.
(ii) ƒn.0/ converges in probability.

(iii) There exist '1; '3; '5 2 C1.R/ such that

ıj .ƒn/ D '1.ˇj /�Bj;n C '3.ˇj /�B
3
j;n C '5.ˇj /�B

5
j;n CRj;n; (5.8)

where for each T;K > 0, there exists a finite constant CT;K such that

jRj;nj1fB�.T /�Kg � CT;K j�Bj;nj7;
whenever j=n � T .
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If X D f .B/, where f 2 C1.R/, then we define

ƒX
n D

1X

kD0
X.tk/1Œtk ;tkC1/;

andƒX D fƒX
n g1

nD1. Note that the map X 7! ƒX is linear.

Lemma 2.1. If X D f .B/, where f 2 C1.R/, then ƒX 2 S and ƒX
n ! X

uniformly on compacts a.s.

Proof. Since X is continuous a.s., we have that ƒX
n ! X uniformly on compacts

a.s. Clearly,ƒX
n 2 Sn and ƒX

n .0/ D X.0/ for all n, so that Definition 2.1(i) and (ii)
hold. For a; b 2 R, we use the Taylor expansion

f .b/� f .a/ D f 0.x/.b�a/C 1

24
f 000.x/.b�a/3C 1

5Š24
f .5/.x/.b�a/5 C h.a; b/.b � a/7;

where x D .a C b/=2 and jh.a; b/j � M.a; b/ D supx2Œa^b;a_b� jg.7/.x/j. For a
derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].

Taking a D B.tj�1/ and b D B.tj / gives

ıj .ƒ
X
n / D f .B.tj // � f .B.tj�1//

D f 0.ˇj /�Bj;n C 1

24
f 000.ˇj /�B3

j;n C 1

5Š24
f .5/.ˇj /�B

5
j;n CRj;n;

(5.9)

where jRj;nj � M.B.tj�1/; B.tj //j�Bj;nj7. If j=n � T and B�.T /�K ,
then B.tj�1/; B.tj / 2 Œ�K;K�, which implies M.B.tj�1/; B.tj // � supx2Œ�K;K�
jg.7/.x/j < 1, and this verifies Definition 2.1 (iii) showing that ƒX 2 S. ut

We may now identify X D f .B/ with ƒX 2 S and will sometimes abuse
notation by writing X 2 S. In this way, we identify the space of smooth functions
of B with a space of sequences in such a way that each sequence converges a.s. to
its corresponding process. What we see next is that every sequence in S converges
to a stochastic process, at least in law.

Theorem 2.1. Let ƒ.1/; : : : ; ƒ.m/ 2 S. For 1 � k � m, choose '1;k; '3;k; '5;k 2
C1.R/ satisfying Eq. (5.8) for ƒ.k/ and let I.k/.0/ be the limit in probability of
ƒ
.k/
n .0/ as n ! 1. Let ˆk 2 C1.R/ satisfy ˆ0

k D '1;k and ˆk.0/ D 0. Let W be
a Brownian motion independent of B , and let � > 0 be given by Eq. (5.7). Define

I.k/.t/ D I.k/.0/Cˆk.B.t//C �

Z t

0

�
'3;k � 1

24
' 00
1;k

�
.B.s// dW.s/;

where this last integral is an Itô integral. Then .B;ƒ
.1/
n ; : : : ; ƒ

.m/
n / )

.B; I.1/; : : : ; I.m// in D
RmC1 Œ0;1/ as n ! 1.
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Proof. By Definition 2.1, we may write

ƒ
.k/
n .t/ D ƒ

.k/
n .0/C

bntcX

jD1
'1;k.ˇj /�Bj;nC

bntcX

jD1
'3;k.ˇj /�B

3
j;nC

bntcX

jD1
'5;k.ˇj /�B

5
j;nCRn.t/;

where Rn.t/ D Pbntc
jD1 Rj;n. Let R�

n .T / D sup0�t�T jRn.t/j � PbnT c
jD1 jRj;nj. Let

" > 0 and chooseK such that P.B�.T / > K/ < ". Then

P.R�
n .T / > "/ � P.B�.T / > K/C P

�
CT;K

bnT cX

jD1
j�Bj;nj7 > "

�
:

Since B has a nontrivial 6-variation (see Theorem 2.11 in [6]), we havePbnT c
jD1 j�Bj;nj7 ! 0 a.s. Hence, for n sufficiently large, we have P.R�

n .T / >

"/ < 2", which gives Rn ! 0 ucp.
As in the proof of Theorem 2.13 in [6], we may assume without loss of generality

that each 'i;k has compact support. By Lemma 5.1 in [6], if ' 2 C1.R/ has compact
support, then

Pbntc
jD1 '.ˇj /�B5

j;n ! 0 ucp. Thus,

ƒ.k/
n .t/ � I.k/.0/C

bntcX

jD1
'1;k.ˇj /�Bj;n C

bntcX

jD1
'3;k.ˇj /�B

3
j;n:

Similarly, by Eq. (5.9),

ˆk.B.t// �
bntcX

jD1
.ˆk.B.tj //�ˆk.B.tj�1///

�
bntcX

jD1
'1;k.ˇj /�Bj;n C 1

24

bntcX

jD1
' 00
1;k.ˇj /�B

3
j;n:

Therefore,

ƒ.k/
n .t/ � I.k/.0/Cˆk.B.t//C

bntcX

jD1
 k.ˇj /�B

3
j;n;

where  k D '3;k � 1
24
' 00
1;k . Let Vn. ; t/ D Pbntc

jD1  .ˇj /�B3
j;n and Jk.t/ D

�
R t
0  k.B.s// dW.s/. By Lemma 5.2 and Theorem 2.13 in [6], we have

.B; Vn. 1/; : : : ; Vn. m// ) .B; J1; : : : ; Jm/, in D
RmC1 Œ0;1/ as n ! 1, which

implies .B;ƒ.1/
n ; : : : ; ƒ

.m/
n / ) .B; I.1/; : : : ; I.m//. ut

We now define an equivalence relation on S byƒ � ‚ if and only ifƒn�‚n !
0 ucp.
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Lemma 2.2. If ƒ 2 S, then there exist unique functions '1; '3 which satisfy
Eq. (5.8). If we denote these unique functions by '1;ƒ and '3;ƒ, then ƒ � ‚ and
only if both of the following conditions hold:

(i) ƒn.0/�‚n.0/ ! 0 in probability.
(ii) '1;ƒ D '1;‚ and '3;ƒ D '3;‚.

Proof. Let ƒ 2 S. Let f'1; '3; '5g and fe'1;e'3;e'5g be two sets of functions, each
of which satisfies Eq. (5.8). Let I.0/ be the limit in probability ofƒn.0/ as n ! 1.
Let ˆ; ê 2 C1.R/ satisfy ˆ0 D '1, ê0 D e'1, and ˆ.0/ D ê.0/ D 0. Then, by
Theorem 2.1, ƒn converges in law in DRŒ0;1/ to

I.t/ D I.0/Cˆ.B.t//C �

Z t

0

�
'3 � 1

24
' 00
1

�
.B.s// dW.s/

D I.0/C ê.B.t//C �

Z t

0

�
e'3 � 1

24
e' 00
1

�
.B.s// dW.s/:

Hence, EŒI.t/ � I.0/ j FB1� D ˆ.B.t// D ê.B.t// a.s. for all t � 0, which
implies ˆ D ê, and hence, '1 D e'1. It follows that

M.t/ D
Z t

0

.'3 � e'3/.B.s// dW.s/ D 0:

Hence, EŒM.t/2 j FB1� D R t
0

j.'3 � e'3/.B.s//j2 ds D 0 a.s. for all t � 0, which
implies '3 D e'3. This shows that there exist unique functions '1;ƒ; '3;ƒ which
satisfy Eq. (5.8).

Let ƒ;‚ 2 S and define � D ƒ�‚. Note that ƒn �‚n ! 0 ucp if and only if
�n ) 0 in DRŒ0;1/.

First assume (i) and (ii) hold. Then �n.0/ ! 0 in probability, so by Theorem 2.1,
�n converges in law in DRŒ0;1/ to

ˆ�.B.t//C �

Z t

0

�
'3;� � 1

24
' 00
1;�

�
.B.s// dW.s/;

where ˆ0
� D '1;� and ˆ�.0/ D 0. But from Eq. (5.8), we see that '1;� D '1;ƒ �

'1;‚ D 0 and '3;� D '3;ƒ � '3;‚ D 0. Hence, �n ) 0 andƒ � ‚.
Now assume ƒ � ‚. Then �n ! 0 ucp, so by Theorem 2.1, for all t � 0,

I.t/ D I.0/Cˆ�.B.t//C �

Z t

0

�
'3;� � 1

24
' 00
1;�

�
.B.s// dW.s/ D 0;

where I.0/ is the limit in probability of ƒn.0/�‚n.0/ as n ! 1 and ˆ0
� D '1;�

with ˆ�.0/ D 0. Thus, I.0/ D 0, which shows that (i) holds. And as above, we
obtain '1;� D '3;� D 0, which shows that (ii) holds. ut
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Let Œƒ� denote the equivalence class of ƒ under this relation, and let ŒS� denote
the set of equivalence classes. If N D Œƒ� 2 ŒS�, then we define '1;N D '1;ƒ,
'3;N D '3;ƒ, IN .0/ D limƒn.0/, and

IN .t/ D IN .0/CˆN.B.t//C �

Z t

0

�
'3;N � 1

24
' 00
1;N

�
.B.s// dW.s/; (5.10)

where ˆ0
N D '1;N and ˆN .0/ D 0. Notice that by Theorem 2.1, if N1; : : : ; Nm 2

ŒS� and ƒ.k/ 2 Nk are arbitrary, then .B;ƒ.1/
n ; : : : ; ƒ

.m/
n / ) .B; IN1 ; : : : ; INm/ in

D
RmC1 Œ0;1/.
It is easily verified that ŒS� is a vector space under the operations cŒN � D ŒcN �

and ŒM �C ŒN � D ŒM CN� and that N 7! IN is linear and injective. This gives us
a one-to-one correspondence between ŒS� and processes of the form Eq. (5.10).

If X D f .B/, where f 2 C1.R/, then we define NX D ŒƒX � 2 ŒS�. We may
now identify X with NX and will sometimes abuse notation by writing X 2 ŒS�. It
may therefore be necessary to deduce from context whether X refers to the process
f .B/, the sequence ƒX D fƒX

n g, or the equivalence class NX D ŒƒX �. Typically,
there will be only one sensible interpretation, but when ambiguity is possible, we
will be specific.

Note that, using Eq. (5.9), we obtain '1;X D f 0, '3;X D 1
24
f 000, IX.0/ D X.0/ D

f .0/, and ˆX D f � f .0/. Hence, by Eq. (5.10), we have IX.t/ D X.t/. Because
of this and because of the one-to-one correspondence between N 2 ŒS� and the
process IN .t/ in Eq. (5.10), we will sometimes abuse notation and write N.t/ D
Nt D IN .t/. Again, when there is a possible ambiguity as to whether N refers to
an element of ŒS� or to the process IN , we will be specific.

2.3 The Signed Cubic Variation

If ƒ 2 S, we define V ƒ
n .t/ D Pbntc

jD1.ıj .ƒn//
3 and V ƒ D fV ƒ

n g. Since ıj .V ƒ
n / D

.ıj .ƒn//
3, it is easy to see from Eq. (5.8) that V ƒ 2 S, '1;V ƒ D 0 and '3;V ƒ D '31;ƒ.

Hence, if ƒ � ‚, then V ƒ � V ‚. We may therefore define the signed cubic
variation of N D Œƒ� 2 ŒS� to be ŒV ƒ� 2 ŒS�. We denote the signed cubic variation
of N by ŒŒN ��. We then have '1;ŒŒN �� D 0, '3;ŒŒN �� D '31;N , and IŒŒN ��.0/ D 0, so that by
Eq. (5.10),

ŒŒN ��t D IŒŒN ��.t/ D �

Z t

0

.'1;N .B.s///
3 dW.s/:

For example, suppose X D f .B/, where f 2 C1.R/. Then ŒŒX�� D ŒŒNX ��. Since
NX D ŒƒX �, we have ŒŒNX �� D ŒV ƒX �. Note that V ƒX D fV ƒX

n g and

V ƒX

n .t/ D
bntcX

jD1
.ıj .ƒ

X
n //

3 D
bntcX

jD1
.X.tj / �X.tj�1//3:
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In other words, ŒŒX�� is the equivalence class in S of the above sequence of sums of
cubes of increments ofX . By Theorem 2.1, ŒŒX��t D IŒŒX��.t/ is the stochastic process
which is the limit in law of this sequence. Since '1;X D f 0, we have '1;ŒŒX�� D 0 and
'3;ŒŒX�� D .f 0/3, so that

ŒŒX��t D IŒŒX��.t/ D �

Z t

0

.f 0.B.s///3 dW.s/:

In particular, taking f .x/ D x gives ŒŒB��t D �W .

2.4 The Weak Stratonovich Integral

If ƒn;‚n 2 Sn, then we define

.ƒn ı‚n/.t/ D
bntcX

jD1

ƒn.tj�1/Cƒn.tj /

2
ıj .‚n/:

If ƒ;‚ 2 S, then we define ƒ ı‚ D fƒn ı‚ng1
nD1.

Lemma 2.3. If X D f .B/, where f 2 C1.R/ and ƒ 2 S, then ƒX ı ƒ 2 S.
Moreover, if ƒ � ‚, then ƒX ıƒ � ƒX ı‚.

Proof. Clearly,ƒX
n ıƒn 2 Sn andƒX

n ıƒn.0/ D 0 for all n, so that Definition 2.1(i)
and (ii) hold. For a; b 2 R, we use the Taylor expansion

f .b/C f .a/

2
D f .x/C 1

8
f 00.x/.b�a/2C 1

4Š24
f .4/.x/.b�a/4Ch.a; b/.b�a/6;

where x D .a C b/=2 and jh.a; b/j � M.a; b/ D supx2Œa^b;a_b� jg.6/.x/j. For a
derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].

Taking a D B.tj�1/ and b D B.tj / gives

ƒX
n .tj�1/CƒX

n .tj /

2
D f .B.tj�1//C f .B.tj //

2

D f .ˇj /C 1

8
f 00.ˇj /�B2

j;n C 1

4Š24
f .4/.ˇj /�B

4
j;n CRj;n;

where for each T;K > 0, there exists a finite constant CT;K such that

jRj;nj1fB�.T /�Kg � CT;K j�Bj;nj6;

whenever j=n � T . Choose '5 2 C1.R/ such that

ıj .ƒn/ D '1;ƒ.ˇj /�Bj;n C '3;ƒ.ˇj /�B
3
j;n C '5.ˇj /�B

5
j;n C eRj;n;
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where for each T;K > 0, there exists a finite constant eCT;K such that

jeRj;nj1fB�.T /�Kg � eCT;K j�Bj;nj7;

whenever j=n � T . Then

ıj .ƒ
X
n ıƒn/ D ƒX

n .tj�1/CƒX
n .tj /

2
ıj .ƒn/

D .f '1;ƒ/.ˇj /�Bj;n C
�
1

8
f 00'1;ƒ C f '3;ƒ

�
.ˇj /�B

3
j;n

C h.ˇj /�B
5
j;n C bRj;n;

for an appropriately chosen smooth function h, and with bRj;n satisfying Defini-
tion 2.1(iii).

It follows thatƒX ıƒ 2 S and that '1;ƒX ıƒ D f '1;ƒ and '3;ƒXıƒ D 1
8
f 00'1;ƒC

f '3;ƒ. This implies that if ƒ � ‚, then ƒX ıƒ � ƒX ı‚. ut
If X D f .B/, where f 2 C1.R/, and N D Œƒ� 2 ŒS�, we may now define

X ı N D ŒƒX ı ƒ�. Note that if Y D g.B/, where g 2 C1, and M 2 ŒS�, then
.X C Y / ıN D X ıN C Y ıN and X ı .N CM/ D X ıN CX ıM . From the
proof of Lemma 2.3, we have

IXıN .0/ D 0; (5.11)

'1;XıN D f '1;N ; (5.12)

'3;XıN D 1

8
f 00'1;N C f '3;N : (5.13)

We may use these formulas, together with Eq. (5.10), to calculate IXıN , given f ,
'1;N , and '3;N .

We now adopt some more traditional notation. If X D f .B/, where f 2 C1,
and N 2 ŒS�, then

Z
X dN D X ıN 2 ŒS�;

and
Z t

0

X.s/ dN.s/ D .X ıN/t D IXıN .t/:

As we noted earlier, there is a one-to-one correspondence between ŒS� and processes
of the form Eq. (5.10). We may therefore go back and forth between the above two
objects according to what is more convenient at the time. We will use the shorthand
notation dM D X dN to denote the equalityM D R

X dN .
Before investigating our change-of-variable formulas, let us first consider some

examples.



106 J. Swanson

Example 2.1. Let X D f .B/ and Y D g.B/, where f; g 2 C1.R/. Then
Z
X dY D X ı Y D X ıNY D ŒƒX ıƒY �;

andƒX ıƒY D fƒX
n ıƒY

n g, where

.ƒX
n ıƒY

n /.t/ D
bntcX

jD1

ƒX
n .tj�1/CƒX

n .tj /

2
ıj .ƒ

Y
n /

D
bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj /� Y.tj�1//:

In other words,
R
X dY is the equivalence class in S of the above sequence of

Stratonovich-type symmetric Riemann sums. Also,
R t
0
X.s/ dY.s/ D IXıY .t/, so

that by Theorem 2.1,
R t
0 X.s/ dY.s/ is the stochastic process which is the limit in

law of this sequence.

Example 2.2. Again let X D f .B/ and Y D g.B/, where f; g 2 C1.R/. Then
Z
X dŒŒY �� D X ı ŒŒY �� D ŒƒX ı V ƒY �

andƒX ı V ƒY D fƒX
n ı V ƒY

n g, where

.ƒX
n ı V ƒY

n /.t/ D
bntcX

jD1

ƒX
n .tj�1/CƒX

n .tj /

2
ıj .V

ƒY

n /

D
bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj /� Y.tj�1//3:

In other words,
R
X dŒŒY �� is the equivalence class in S of the above sequence of

sums, and
R t
0
X.s/ dŒŒY ��s D IXıŒŒY ��.t/ is the limit in law of this sequence. Recall

that '1;ŒŒY �� D 0 and '3;ŒŒY �� D .g0/3. Hence, by Eqs. (5.12) and (5.13), we have
'1;XıŒŒY �� D f '1;ŒŒY �� D 0 and '3;XıŒŒY �� D 1

8
f 00'1;ŒŒY �� C f '3;ŒŒY �� D f .g0/3, so that by

Eq. (5.10), we have

Z t

0

X.s/ dŒŒY ��s D �

Z t

0

f .B.s//.g0.B.s///3 dW.s/: (5.14)

Example 2.3. For one last example, let X D f .B/, Y D g.B/, and Z D h.B/,
where f; g; h 2 C1.R/, and let N D R

Y dZ. Then

Z
X dN D X ıN D X ı ŒƒY ıƒZ� D ŒƒX ı .ƒY ıƒZ/�;
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and

.ƒX
n ı .ƒY ıƒZ/n/.t/ D .ƒX

n ı .ƒY
n ıƒZ

n //.t/

D
bntcX

jD1

X.tj�1/CX.tj /

2

Y.tj�1/CY.tj /
2

.Z.tj /�Z.tj�1//:

Hence,
R
X dN is the equivalence class in S of the above sequence of sums, andR t

0
X.s/ dN.s/ is the limit in law of this sequence.

3 Change-of-Variable Formulas

We have already identified smooth functions of B with their corresponding se-
quences in S, as well as with their equivalence classes in ŒS�. In this section, it will
be helpful to do the same for FB1-measurable random variables, which can serve as
initial values for the stochastic processes we are considering.

Let � be an FB1-measurable random variable, let ƒ�
n.t/ D � for all t � 0, and

let ƒ� D fƒ�
ng. Since ıj .ƒ

�
n/ D 0 for all j and n, we have that ƒ� 2 S. We may

therefore identify � with ƒ� 2 S and also with N� D Œƒ�� 2 ŒS�. Note, then, that
'1;� D '3;� D 0 and �.t/ D N�.t/ D IN�.t/ D � for all t � 0. Note also thatR
X d� D 0.
We begin with the following result, which tells us that every element of ŒS� has

a unique decomposition into the sum of a smooth function of B and an integral
against ŒŒB��.

Lemma 3.1. Each N 2 ŒS� can be written as N D � C Y C V , where � is an
FB1-measurable random variable, Y D g.B/ for some g 2 C1.R/, and V DR
�.B/ dŒŒB�� for some � 2 C1.R/.
Suppose N D e� C eY C eV is another such representation, with eY D eg.B/ and

eV D R e�.B/ dŒŒB��. Let c D g.0/ � eg.0/. Then e� D �C c, eg D g � c, and e� D � .
In particular, there is a unique such representation with g.0/ D 0.

An explicit representation is given by � D N.0/ D IN .0/, � D '3;N � 1
24
' 00
1;N

and g chosen so that g0 D '1;N and g.0/ D 0.

Proof. Let N 2 ŒS�. Let � D N.0/ and � D '3;N � 1
24
' 00
1;N and choose g so that

g0 D '1;N and g.0/ D 0. Let Y D g.B/ and V D R
�.B/ dŒŒB��. To prove that

N D �C Y C V , it will suffice to show that

N.t/ D �.t/C Y.t/C V.t/

D N.0/C g.B.t//C
Z t

0

�.B.s// dŒŒB��s :

But this follows immediately from Eqs. (5.10) and (5.14).



108 J. Swanson

Now suppose N.t/ D e�Ceg.B.t//C R t
0

e�.B.s// dŒŒB��s . Then EŒN.t/ j FB1� D
�C g.B.t// D e�C eg.B.t// a.s., which gives � �e� C .g � eg/.B.t// D 0 a.s. for
all t � 0. Hence, there exists a constant c 2 R such that g � eg D c, and it follows
that e� D � C c. We then have M.t/ D R t

0
.� � e�/.B.s// dW.s/ D 0 a.s., so that

EŒM.t/2 j FB1� D R t
0 j.� � e�/.B.s//j2 ds D 0 a.s. for all t � 0, which implies

� D e� . ut
We next verify that processes of the form V D R

�.B/ dŒŒB�� behave as we would
expect them to in regards to integration.

Lemma 3.2. Let X D f .B/, where f 2 C1.R/, and let � 2 C1.R/. If dV D
�.B/ dŒŒB��, then X dV D X�.B/ dŒŒB��.

Proof. Let V D R
�.B/ dŒŒB��, U D R

X�.B/ dŒŒB��, and N D R
X dV . Since

N.0/ D U.0/ D 0, it will suffice to show that '1;U D '1;N and '3;U D '3;N . By
Example 2.2, '1;V D '1;U D 0, '3;V D � , and '3;U D f � . On the other hand,
by Eqs. (5.12) and (5.13), we have '1;N D f '1;V D 0 and '3;N D 1

8
f 00'1;V C

f '3;V Df � . ut
We finally present our main result for doing calculations with the weak

Stratonovich integral.

Theorem 3.1. Let N 2 ŒS� and write N D � C Y C V , where � is an
FB1-measurable random variable, Y D g.B/, and V D R

�.B/ dŒŒB�� for some
g; � 2 C1.R/. Let X D f .B/, where f 2 C1.R/. Then

Z
X dN D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB�� C

Z
X dV; (5.15)

where ˆ 2 C1.R/ is chosen so that ˆ0 D fg0 and ˆ.0/ D 0.

Remark 3.1. Since M D R
X dN 2 ŒS�, Lemma 3.1 tells us that M has a unique

decomposition into the sum of a smooth function of B and an integral against ŒŒB��.
Theorem 3.1 gives us a convenient formula for this decomposition.

Remark 3.2. Theorem 3.1 and the corollaries that are to follow express equalities
in the space ŒS�. Each side of Eq. (5.15) is an equivalence class of sequences of
Riemann sums that converge in law. The equivalence relation is such that if we
choose any sequence from the class on the left and any sequence from the class on
the right, then their difference will converge to zero ucp. Note that this is a stronger
statement than simply asserting that the two sequences have the same limiting law.

Proof of Theorem 3.1. Since
R
X dN D R

X d�CR
X dY CR

X dV and
R
X d� D

0, it follows from Eq. (5.14) that we need only show

Z t

0

X.s/ dY.s/ D ˆ.B.t//C �

12

Z t

0

.f 00g0 � f 0g00/.B.s// dW.s/: (5.16)
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By Eq. (5.10), we have

Z t

0

X.s/ dY.s/ D ˆM.B.t//C �

Z t

0

�
'3;M � 1

24
' 00
1;M

�
.B.s// dW.s/;

where M D X ı Y . Recall that '1;Y D g0 and '3;Y D 1
24
g000. By Eqs. (5.12) and

(5.13), we have '1;M D fg0 and '3;M D 1
8
f 00g0 C 1

24
fg000. Since ˆM.0/ D 0 and

ˆ0
M D '1;M D fg0, we have ˆM D ˆ, and we also have

'3;M � 1

24
' 00
1;M D 1

8
f 00g0 C 1

24
fg000 � 1

24
.fg0/00

D 1

8
f 00g0 C 1

24
fg000 � 1

24
f 00g0 � 1

12
f 0g00 � 1

24
fg000

D 1

12
.f 00g0 � f 0g00/;

and this verifies Eq. (5.16). ut
Corollary 3.1. Let Y D g.B/, where g 2 C1.R/, and let ' 2 C1. Then

'.Y.t// D '.Y.0//C
Z t

0

' 0.Y.s// dY.s/� 1

12

Z t

0

' 000.Y.s// dŒŒY ��s : (5.17)

Proof. Let X D ' 0.Y / D f .B/, where f D ' 0 ı g. By Theorem 3.1,

Z
X dY D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB��;

whereˆ 2 C1.R/ is chosen so thatˆ0 D fg0 andˆ.0/ D 0. Since .' ıg/0 D fg0,
we have ˆ D .' ı g/ � .' ı g/.0/. Also,

f 00g0 � f 0g00 D ..' 000 ı g/.g0/2 C .' 00 ı g/g00/g0 � .' 00 ı g/g0g00 D .' 000 ı g/.g0/3:

Thus,

Z t

0

' 0.Y.s// dY.s/ D
Z t

0

X.s/ dY.s/

D .' ı g/.B.t// � .' ı g/.0/

C 1

12

Z t

0

.' 000 ı g/.B.s//.g0.B.s///3 dŒŒB��s

D '.Y.t// � '.Y.0//C �

12

Z t

0

' 000.Y.s//.g0.B.s///3 dW.s/:
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By Eq. (5.14), this gives

Z t

0

' 0.Y.s// dY.s/ D '.Y.t// � '.Y.0//C 1

12

Z t

0

' 000.Y.s// dŒŒY ��s ;

which is Eq. (5.17). ut
Corollary 3.2. Let N 2 ŒS� and write N D � C Y C V , where � is an FB1-
measurable random variable, Y D g.B/, and V D R

�.B/ dŒŒB�� for some g; � 2
C1.R/. Let X D f .B/ and Z D h.B/, where f; h 2 C1.R/. Then

if dM D X dN , then Z dM D ZX dN � 1

4
.f 0g0h0/.B/ dŒŒB��. (5.18)

Moreover, the above correction term is a “weak triple covariation” in the following
sense: If V D fVng, where

Vn.t/ D
bntcX

jD1
.X.tj /� X.tj�1//.Y.tj / � Y.tj�1//.Z.tj / �Z.tj�1//;

then V 2 S and ŒV � D R
.f 0g0h0/.B/ dŒŒB��.

Proof. Let N , X , and Z be as in the hypotheses, and let M D R
X dN . By

Theorem 3.1,

M D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB�� C

Z
X dV;

where ˆ 2 C1.R/ is chosen so that ˆ0 D fg0 and ˆ.0/ D 0. Hence, by
Lemma 3.2,

Z
Z dM D

Z
Z dˆ.B/C 1

12

Z
.f 00g0h�f 0g00h/.B/ dŒŒB��C

Z
ZX dV: (5.19)

By Theorem 3.1,

Z
Z dˆ.B/ D ‰.B/C 1

12

Z
.h00ˆ0 � h0ˆ00/.B/ dŒŒB��;

where ‰ 2 C1.R/ is chosen so that ‰0 D hˆ0 and ‰.0/ D 0. Theorem 3.1 also
gives

Z
ZX dY D e‰.B/C 1

12

Z
..f h/00g0 � .f h/0g00/.B/ dŒŒB��;
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where e‰ 2 C1.R/ is chosen so that e‰0 D f hg0 and e‰.0/ D 0. Note, however,
that this implies ‰ D e‰, which gives
Z
Z dˆ.B/ D

Z
ZX dY C 1

12

Z
.h00ˆ0 � h0ˆ00 � .f h/00g0 C .f h/0g00/.B/ dŒŒB��:

Substituting ˆ0 D fg0 into the above and simplifying gives

Z
Z dˆ.B/ D

Z
ZX dY C 1

12

Z
.f 0g00h� f 00g0h� 3f 0g0h0/.B/ dŒŒB��:

Substituting this into Eq. (5.19) gives

Z
Z dM D

Z
ZX dY � 1

4

Z
.f 0g0h0/.B/ dŒŒB��C

Z
ZX dV

D
Z
ZX dN � 1

4

Z
.f 0g0h0/.B/ dŒŒB��;

and this verifies Eq. (5.18).
Finally, if V D fVng, then ıj .Vn/ D ıj .ƒ

X
n /ıj .ƒ

Y
n /ıj .ƒ

Z
n /. From Eq. (5.8), we

see that V 2 S, '1;V D 0, and '3;V D '1;X'1;Y '1;Z D f 0g0h0. Since ŒV �0 D 0, it
follows from Example 2.2 that ŒV � D R

.f 0g0h0/.B/ dŒŒB��. ut
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5. Nourdin, I., Réveillac, A.: Asymptotic behavior of weighted quadratic variations of fractional
Brownian motion: the critical case H D 1=4. Ann. Probab. 37(6), 2200–2230 (2009)
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