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1 Preliminaries

If X and Y are sets, their Cartesian product is the set X x Y = {(z,y) :x € X,y € Y}. A
relation from X to Y is any subset of X x Y. If R is a relation from X to Y, then we often
write 2Ry to mean (x,y) € R. A relation on X is a relation from X to X.

A partial ordering on a nonempty set X is a relation on X such that

(i) if zRy and yRz, then xRz,

(ii) if xRy and yRx, then =y, and

(iii) zRx for all z.
A total ordering (or linear ordering) is a partial ordering R such that
(iv) if z,y € X, then xRy or yRz.

We will often denote partial orderings by the symbol <, rather than the symbol R, in which
case x < y shall mean that x <y and x # y. Two partially ordered sets are order isomorphic
if there exists a bijection f: X — Y such that a < b if and only if f(a) < f(b).

If X is a partially ordered set and F C X, then x € F is a maximal element of E if, for
all y € F, v <y implies y = x. Similarly, x € F is a minimal element of E if, for all y € E,
y < x implies y = x. Maximal and minimal elements may or may not exist, and they may or
may not be unique. If E is totally ordered, then maximal and minimal elements are unique,
when they exist.

An upper bound for E is an element x € X such that y < z for all y € F. Similarly, a
lower bound for E is an element x € X such that x < y for all y € E. Upper and lower
bounds need not exist, and they need not be elements of the set F.

As an example, let X = 2%, the set of all subsets of R. Then X is partially ordered by
the inclusion relation, C. Let

E={AeX:AC(-00,0)or AC(0,00)}.

Note that = (—00,0) € F is a maximal element of E. To prove this, we simply observe
that if y € E and  C y, then y = . However, x is not an upper bound for E. The only
upper bounds for E are R and (—o0,0) U (0, 00), neither of which are in £. This example
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shows that, in general, a maximal element of £ need not be an upper bound for E. However,
if F is totally ordered, then maximal and minimal elements of FE, when they exist, are upper
and lower bounds for E, respectively.

If X is a totally ordered set, and every nonempty subset of X has a minimal element,
then X is well ordered, and the ordering is called a well ordering. For example, the natural
numbers, N, with their natural ordering, are well ordered, but the integers are not.

Theorem 1.1. (Zorn’s lemma) If X is a partially ordered set, and every totally ordered
subset of X has an upper bound, then X has a maximal element.

Zorn’s lemma is logically equivalent to the axiom of choice.
Theorem 1.2. (Well ordering principle) Every nonempty set can be well ordered.
Proof. Let X be a nonempty set, and let
W={(FE,<): EC X and < is a well ordering on E}.

Define a partial ordering on W by (Ei, <;) S (E», <o) if

(i) Ey C Es,

(il) <; and <, agree on Fj, and

(iii) if z € By N EY, then y <5 x for all y € Fj.

It is left as an exercise for the reader to show that every totally ordered subset of VW has an
upper bound. Hence, by Zorn’s lemma, W has a maximal element, (E, <). Assume F # X.
Choose zy € E°. Define E' = FU {zo} and <'=< U{(x,2¢) : * € E}. Then (E', <) € W
and (E, <) < (£, <’). But this contradicts the fact that (E, <) is a maximal element of W.
Therefore, £ = X, and < is a well ordering on X. O

2 Transfinite induction

The principle of mathematical induction can be stated as follows: If A C N satisfies
(i) 1 € A, and
(ii) if {1,...,n—1} C A, then n € A,
then A = N. Note that (i) can be rephrased as
(i) if ) C A, then 1 € A.
This allows us to combine both conditions into a single condition and state the following.

Theorem 2.1. (Principle of mathematical induction) Let A C N. If I,, C A implies
n € A, where I, ={j € N:j <n}, then A=N.



We now extend this principle so that it applies not only to the set N, but to any well
ordered set X. Let X be a well ordered set. If A C X is nonempty, then A has a minimal
element, which we call the infimum of A, and denote by inf A. If A has an upper bound,
then

B ={z € X : z is an upper bound for A}

is nonempty, and we define the supremum of A by sup A = inf B. For z € X, we define the
wnitial segment of x by
I, ={ye X :y<u}

The elements of I, are called the predecessors of x.

Theorem 2.2. (Principle of transfinite induction) Let X be a well ordered set. Let
ACX. If I, C A implies x € A, then A= X.

Proof. Suppose A # X and let x = inf(A°). Then I, C A, but « ¢ A. O

Theorem 2.3. (Set of countable ordinals) There is an uncountable well ordered set (2,
called the set of countable ordinals, such that I, is countable for all x € Q. If Q' is another
set with the same properties, then € and Q' are order isomorphic. FEvery countable subset of
Q has an upper bound.

Proof. Let X be an uncountable well ordered set, whose existence is guaranteed by the well
ordering principle. Let A = {z € X : I, is uncountable}. If A is empty, then let Q = X. If
A is nonempty, then let Q2 = I, where xy = inf A. It follows, then, that I, is countable for
all z € Q.

Suppose ' is another set with this property. Let Z = {[, : = € Q} U {Q} and
T ={I,:z € Q}U{Q}. Let F be the collection of order isomorphisms f : X — Y, where
X €Z and Y € 7'. The set F is nonempty, since the unique map f : {inf Q} — {inf Q'}
belongs to F. Also, the set F is partially ordered by inclusion, where we regard each f € F
as a subset of Q x Q. It is left as an exercise for the reader to verify that the hypotheses of
Zorn’s lemma are satisfied. Hence, F has a maximal element, f : A — B.

Suppose A = [, for some = € ). Then A is countable and, since f is a bijection, B is also
countable. But €' is uncountable. Hence, B = I, for some y € 2. This means, however,
that f can be extended to an order isomorphism f : AU{x} — BU{y} by setting f(x) =y,
and this contradicts the maximality of f. Therefore, A = Q. Since 2 is uncountable and I,
is countable for all y € €', it follows that B = ', and f is an order isomorphism from 2 to
Q.

Finally, suppose A C € is countable. Let J = (J,4 I». Since J is countable, J # €.
Choose any b € J¢. Let x € A be arbitrary. Since b € J¢ we have b ¢ [,. Hence, b £ .
Since € is totally ordered, this means x < b, so b is an upper bound for A. O
Remark 2.4. (Regarding () as an extension of N.) Let A = {x € Q : [, is infinite} and
let w =inf A. Then N and I, are order isomorphic, which allows us to identify N with the
subset I, C Q. An explicit order isomorphism can be constructed as follows: let f(1) = inf Q
and, for n > 1, let f(n) = inf({f(1),..., f(n —1)}°).

Remark 2.5. (Successors) Let z € Q. Then {y € X : y < x} = I, U {x} is countable.
Hence, S, = {y € X : z <y} = (I, U{z})° is nonempty. The successor of x is defined as
x+ 1 =1infS,. We say that z is the immediate predecessor of x + 1.
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Theorem 2.6. If o, € €2, then « is the successor of B if and only if 3 is the maximal
element of 1. In particular, if o is the successor of B, then x < « if and only if x < 3, so
that Ia = ]g U {ﬁ}

If w = inf A, where A = {x € Q : I, is infinite}, then w does not have an immediate
predecessor.

Proof. Suppose « is the successor of 3, so that o = inf Sg. In particular, o € S3, so that
B < «, which implies 3 € I,. Suppose z € I, and 8 < z. If § # x, then 2 € S3. Since
a = inf S, this implies @ < z. But this contradicts x € I,. Hence, 8 = z, so (3 is the
maximal element of I,,.

Conversely, suppose 3 is the maximal element of /,. Then 8 < «, which implies a € S;.
Suppose z € Sz and © < a. Suppose ¥ # a. Then x € [,, and since [ is the maximal
element of [,, we must have x < . Therefore, x € I3 U {3} = S5, a contradiction. Hence,
= «a, so o = inf S, which means « is the successor of f3.

Suppose « is the successor of 5. If x < 3, then since § < «, we have x < a. Conversely,
if x < a, then x € I, so x < 3, since [ is the maximal element of I,,.

Finally, suppose w has an immediate predecessor, 3. Since § < w, it follows that I3 is
finite. But this implies I,, = I3 U {3} is finite, which contradicts w € A. O

3 An example

Let X be a set and 2% the collection of all subsets of X. A nonempty collection F C 2% is
called a o-algebra if

(i) if A € F, then A° € F, and
(i) if {4;}32, C F, then U2, 4; € F.

If £ C 2%, then the o-algebra generated by &, denoted by (&), is the smallest o-algebra on
X that contains £. More precisely,

o(&) =7,

Fel

where I' = {F C 2% : F is a o-algebra and £ C F}. That is, A € o(€) if and only if A € F
for all F € T". It is left as an exercise for the reader to verify that

(i) o(€) is a o-algebra,
(ii) £ C 0(€), and
(iii) if F is any o-algebra on X such that & C F, then o(€) C F.

For example, the Borel o-algebra on R, denoted by B(R), is the o-algebra generated by the
open sets. That is, B(R) = o(&), where £ = {U C R : U is open}.

The above definition of ¢(€) may not be very intuitive. What does a typical set in
o(€) look like? Informally, we construct o(€) by starting with £ and then throwing in



whatever else we need so that o(€) is closed under complements and countable unions.
We could start by defining & = {A C X : A € Eor A° € £}. Of course, this may
not be closed under countable unions, so we define Dy = {72, A; @ {A;}2, C &}
Unfortunately, this new set may no longer be closed under complements. So we repeat,
defining & = {A C X : A € Dy or A° € D,}. But now this new set may no longer be closed
under countable unions. We could go on like this, defining for n > 1,

Dn = { UA] . {A]}ﬁl C gn—l}a
j=1
En={ACX:AeD,or A€ D,}.

We now have a nested sequence of families of sets, & C & C ---, none of which is equal
to 0(€). We might try taking the union, U]Oi1 &;, but this is not in general equal to (&)
either.

In order to make a scheme like this work, we need transfinite induction. Let € be the
set of countable ordinals. Let a € Q. If @ = 1, then &, is defined as above. If o has an
immediate predecessor, 3, then define

Da — { UAJ : {AJ};)o:1 C gg},
j=1
Ea={ACX:AecD,or A°€ D,}.

Otherwise, define &, = B &s. Does this actually define &, for every o € Q7 To see that

it does, we use the principle of transfinite induction. Let A C €2 be the set of all a for which
&, is defined. We see from the above that if I, C A, then a € A. Hence, A = Q).

Lemma 3.1. If B < «, then E3 C &,.

Proof. Let A= {a € Q: Uz, C &} Let a € Q and assume [, C A. If a =1or
« has no immediate predecessor, then it is obvious from the definition of &, that a € A.
Assume that o has an immediate predecessor, 3. By the definition of &,, we have &3 C &,.
Let x € I, = IgU{f3} be arbitrary. If z = (3, then as noted above, &, C &,. Assume x € 5.
Since g € I, C A, we have &, C Uy<g &, C €3 C &E,. We have thus shown that &, C &, for
all z € I,. This implies |J,_, & C &, and hence, a € A. By the principle of transfinite
induction, A = 2. O
Theorem 3.2. 0(€) =0 &

ac) Yo

Proof. Let A = {a € Q: &, C 0(€)}. By the definition of &,, if [, C A, then a € A.
Hence, by transfinite induction, A = Q. Therefore, &, C (&) for all a € 2, which implies

Uaca €a C a(8).
Since € C J,eq €as the reverse inclusion will follow once we show that |J, & is a
o-algebra. We first show that (J, ¢, & is closed under complements, for which it will suffice

to show that &, is closed under complements for all a € €. Let

A={aeQ:&, is closed under complements}.
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Suppose I, C A. If @ = 1 or a has an immediate predecessor, then it is clear from the
definition of &, that a € A. Suppose o > 1 does not have an immediate predecessor. Let
EFeé&, = U,@‘<a &s. Then E € &3 for some 3 € I,. Since I, C A, it follows that & is closed
under complements. Thus, E¢ € €5 C &,, so &, is closed under complements, and a € A.
We have shown that [, C A implies a € A. By transfinite induction, A = ().

Finally, we must show that (J,cq €a is closed under countable unions. Let {F;}52, C
Uaeq €a, so that E; € &,,. By Theorem , A = {o; : j € N} has an upper bound.
Let 8 = sup A and let a be the successor of 3. Since a; < 3 implies &,;, C &, we have
{E;}52, C . Thus, by definition, ;2 Ej € Do C Ea C Uyeq a- O
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