Transfinite induction

Jason Swanson

February 4, 2009

1 Preliminaries

If X and Y are sets, their Cartesian product is the set $X \times Y = \{(x, y) : x \in X, y \in Y\}$. A relation from X to Y is any subset of $X \times Y$. If R is a relation from X to Y, then we often write xRy to mean $(x, y) \in R$. A relation on X is a relation from X to X.

A partial ordering on a nonempty set X is a relation on X such that

(i) if xRy and yRz, then xRz,

- (ii) if xRy and yRx, then x = y, and
- (iii) xRx for all x.

A total ordering (or linear ordering) is a partial ordering R such that

(iv) if $x, y \in X$, then xRy or yRx.

We will often denote partial orderings by the symbol \leq , rather than the symbol R, in which case x < y shall mean that $x \leq y$ and $x \neq y$. Two partially ordered sets are *order isomorphic* if there exists a bijection $f: X \to Y$ such that $a \leq b$ if and only if $f(a) \leq f(b)$.

If X is a partially ordered set and $E \subset X$, then $x \in E$ is a maximal element of E if, for all $y \in E$, $x \leq y$ implies y = x. Similarly, $x \in E$ is a minimal element of E if, for all $y \in E$, $y \leq x$ implies y = x. Maximal and minimal elements may or may not exist, and they may or may not be unique. If E is totally ordered, then maximal and minimal elements are unique, when they exist.

An upper bound for E is an element $x \in X$ such that $y \leq x$ for all $y \in E$. Similarly, a lower bound for E is an element $x \in X$ such that $x \leq y$ for all $y \in E$. Upper and lower bounds need not exist, and they need not be elements of the set E.

As an example, let $X = 2^{\mathbb{R}}$, the set of all subsets of \mathbb{R} . Then X is partially ordered by the inclusion relation, \subseteq . Let

$$E = \{ A \in X : A \subseteq (-\infty, 0) \text{ or } A \subseteq (0, \infty) \}.$$

Note that $x = (-\infty, 0) \in E$ is a maximal element of E. To prove this, we simply observe that if $y \in E$ and $x \subseteq y$, then y = x. However, x is not an upper bound for E. The only upper bounds for E are \mathbb{R} and $(-\infty, 0) \cup (0, \infty)$, neither of which are in E. This example

shows that, in general, a maximal element of E need not be an upper bound for E. However, if E is totally ordered, then maximal and minimal elements of E, when they exist, are upper and lower bounds for E, respectively.

If X is a totally ordered set, and every nonempty subset of X has a minimal element, then X is *well ordered*, and the ordering is called a *well ordering*. For example, the natural numbers, \mathbb{N} , with their natural ordering, are well ordered, but the integers are not.

Theorem 1.1. (Zorn's lemma) If X is a partially ordered set, and every totally ordered subset of X has an upper bound, then X has a maximal element.

Zorn's lemma is logically equivalent to the axiom of choice.

Theorem 1.2. (Well ordering principle) Every nonempty set can be well ordered.

Proof. Let X be a nonempty set, and let

 $\mathcal{W} = \{ (E, \leq) : E \subset X \text{ and } \leq \text{ is a well ordering on } E \}.$

Define a partial ordering on \mathcal{W} by $(E_1, \leq_1) \lesssim (E_2, \leq_2)$ if

- (i) $E_1 \subset E_2$,
- (ii) \leq_1 and \leq_2 agree on E_1 , and
- (iii) if $x \in E_2 \cap E_1^c$, then $y \leq_2 x$ for all $y \in E_1$.

It is left as an exercise for the reader to show that every totally ordered subset of \mathcal{W} has an upper bound. Hence, by Zorn's lemma, \mathcal{W} has a maximal element, (E, \leq) . Assume $E \neq X$. Choose $x_0 \in E^c$. Define $E' = E \cup \{x_0\}$ and $\leq' = \leq \cup \{(x, x_0) : x \in E\}$. Then $(E', \leq') \in \mathcal{W}$ and $(E, \leq) \leq (E', \leq')$. But this contradicts the fact that (E, \leq) is a maximal element of \mathcal{W} . Therefore, E = X, and \leq is a well ordering on X.

2 Transfinite induction

The principle of mathematical induction can be stated as follows: If $A \subset \mathbb{N}$ satisfies

- (i) $1 \in A$, and
- (ii) if $\{1, \ldots, n-1\} \subset A$, then $n \in A$,

then $A = \mathbb{N}$. Note that (i) can be rephrased as

(i)' if $\emptyset \subset A$, then $1 \in A$.

This allows us to combine both conditions into a single condition and state the following.

Theorem 2.1. (Principle of mathematical induction) Let $A \subset \mathbb{N}$. If $I_n \subset A$ implies $n \in A$, where $I_n = \{j \in \mathbb{N} : j < n\}$, then $A = \mathbb{N}$.

We now extend this principle so that it applies not only to the set \mathbb{N} , but to any well ordered set X. Let X be a well ordered set. If $A \subset X$ is nonempty, then A has a minimal element, which we call the *infimum* of A, and denote by inf A. If A has an upper bound, then

$$B = \{x \in X : x \text{ is an upper bound for } A\}$$

is nonempty, and we define the supremum of A by $\sup A = \inf B$. For $x \in X$, we define the *initial segment* of x by

$$I_x = \{ y \in X : y < x \}.$$

The elements of I_x are called the *predecessors* of x.

Theorem 2.2. (Principle of transfinite induction) Let X be a well ordered set. Let $A \subset X$. If $I_x \subset A$ implies $x \in A$, then A = X.

Proof. Suppose $A \neq X$ and let $x = \inf(A^c)$. Then $I_x \subset A$, but $x \notin A$.

Theorem 2.3. (Set of countable ordinals) There is an uncountable well ordered set Ω , called the set of countable ordinals, such that I_x is countable for all $x \in \Omega$. If Ω' is another set with the same properties, then Ω and Ω' are order isomorphic. Every countable subset of Ω has an upper bound.

Proof. Let X be an uncountable well ordered set, whose existence is guaranteed by the well ordering principle. Let $A = \{x \in X : I_x \text{ is uncountable}\}$. If A is empty, then let $\Omega = X$. If A is nonempty, then let $\Omega = I_{x_0}$, where $x_0 = \inf A$. It follows, then, that I_x is countable for all $x \in \Omega$.

Suppose Ω' is another set with this property. Let $\mathcal{I} = \{I_x : x \in \Omega\} \cup \{\Omega\}$ and $\mathcal{I}' = \{I_x : x \in \Omega'\} \cup \{\Omega'\}$. Let \mathcal{F} be the collection of order isomorphisms $f : X \to Y$, where $X \in \mathcal{I}$ and $Y \in \mathcal{I}'$. The set \mathcal{F} is nonempty, since the unique map $f : \{\inf \Omega\} \to \{\inf \Omega'\}$ belongs to \mathcal{F} . Also, the set \mathcal{F} is partially ordered by inclusion, where we regard each $f \in \mathcal{F}$ as a subset of $\Omega \times \Omega'$. It is left as an exercise for the reader to verify that the hypotheses of Zorn's lemma are satisfied. Hence, \mathcal{F} has a maximal element, $f : A \to B$.

Suppose $A = I_x$ for some $x \in \Omega$. Then A is countable and, since f is a bijection, B is also countable. But Ω' is uncountable. Hence, $B = I_y$ for some $y \in \Omega'$. This means, however, that f can be extended to an order isomorphism $f : A \cup \{x\} \to B \cup \{y\}$ by setting f(x) = y, and this contradicts the maximality of f. Therefore, $A = \Omega$. Since Ω is uncountable and I_y is countable for all $y \in \Omega'$, it follows that $B = \Omega'$, and f is an order isomorphism from Ω to Ω' .

Finally, suppose $A \subset \Omega$ is countable. Let $J = \bigcup_{x \in A} I_x$. Since J is countable, $J \neq \Omega$. Choose any $b \in J^c$. Let $x \in A$ be arbitrary. Since $b \in J^c$, we have $b \notin I_x$. Hence, $b \notin x$. Since Ω is totally ordered, this means $x \leq b$, so b is an upper bound for A.

Remark 2.4. (Regarding Ω as an extension of \mathbb{N} .) Let $A = \{x \in \Omega : I_x \text{ is infinite}\}$ and let $\omega = \inf A$. Then \mathbb{N} and I_{ω} are order isomorphic, which allows us to identify \mathbb{N} with the subset $I_{\omega} \subset \Omega$. An explicit order isomorphism can be constructed as follows: let $f(1) = \inf \Omega$ and, for n > 1, let $f(n) = \inf(\{f(1), \ldots, f(n-1)\}^c)$.

Remark 2.5. (Successors) Let $x \in \Omega$. Then $\{y \in X : y \leq x\} = I_x \cup \{x\}$ is countable. Hence, $S_x = \{y \in X : x < y\} = (I_x \cup \{x\})^c$ is nonempty. The successor of x is defined as $x + 1 = \inf S_x$. We say that x is the *immediate predecessor* of x + 1. **Theorem 2.6.** If $\alpha, \beta \in \Omega$, then α is the successor of β if and only if β is the maximal element of I_{α} . In particular, if α is the successor of β , then $x < \alpha$ if and only if $x \leq \beta$, so that $I_{\alpha} = I_{\beta} \cup \{\beta\}$.

If $\omega = \inf A$, where $A = \{x \in \Omega : I_x \text{ is infinite}\}$, then ω does not have an immediate predecessor.

Proof. Suppose α is the successor of β , so that $\alpha = \inf S_{\beta}$. In particular, $\alpha \in S_{\beta}$, so that $\beta < \alpha$, which implies $\beta \in I_{\alpha}$. Suppose $x \in I_{\alpha}$ and $\beta \leq x$. If $\beta \neq x$, then $x \in S_{\beta}$. Since $\alpha = \inf S_{\beta}$, this implies $\alpha \leq x$. But this contradicts $x \in I_{\alpha}$. Hence, $\beta = x$, so β is the maximal element of I_{α} .

Conversely, suppose β is the maximal element of I_{α} . Then $\beta < \alpha$, which implies $\alpha \in S_{\beta}$. Suppose $x \in S_{\beta}$ and $x \leq \alpha$. Suppose $x \neq \alpha$. Then $x \in I_{\alpha}$, and since β is the maximal element of I_{α} , we must have $x \leq \beta$. Therefore, $x \in I_{\beta} \cup \{\beta\} = S_{\beta}^{c}$, a contradiction. Hence, $x = \alpha$, so $\alpha = \inf S_{\beta}$, which means α is the successor of β .

Suppose α is the successor of β . If $x \leq \beta$, then since $\beta < \alpha$, we have $x < \alpha$. Conversely, if $x < \alpha$, then $x \in I_{\alpha}$, so $x \leq \beta$, since β is the maximal element of I_{α} .

Finally, suppose ω has an immediate predecessor, β . Since $\beta < \omega$, it follows that I_{β} is finite. But this implies $I_{\omega} = I_{\beta} \cup \{\beta\}$ is finite, which contradicts $\omega \in A$.

3 An example

Let X be a set and 2^X the collection of all subsets of X. A nonempty collection $\mathcal{F} \subset 2^X$ is called a σ -algebra if

- (i) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, and
- (ii) if $\{A_j\}_{j=1}^{\infty} \subset \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

If $\mathcal{E} \subset 2^X$, then the σ -algebra generated by \mathcal{E} , denoted by $\sigma(\mathcal{E})$, is the smallest σ -algebra on X that contains \mathcal{E} . More precisely,

$$\sigma(\mathcal{E}) = \bigcap_{\mathcal{F} \in \Gamma} \mathcal{F},$$

where $\Gamma = \{ \mathcal{F} \subset 2^X : \mathcal{F} \text{ is a } \sigma \text{-algebra and } \mathcal{E} \subset \mathcal{F} \}$. That is, $A \in \sigma(\mathcal{E})$ if and only if $A \in \mathcal{F}$ for all $\mathcal{F} \in \Gamma$. It is left as an exercise for the reader to verify that

- (i) $\sigma(\mathcal{E})$ is a σ -algebra,
- (ii) $\mathcal{E} \subset \sigma(\mathcal{E})$, and
- (iii) if \mathcal{F} is any σ -algebra on X such that $\mathcal{E} \subset \mathcal{F}$, then $\sigma(\mathcal{E}) \subset \mathcal{F}$.

For example, the Borel σ -algebra on \mathbb{R} , denoted by $\mathcal{B}(\mathbb{R})$, is the σ -algebra generated by the open sets. That is, $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{E})$, where $\mathcal{E} = \{U \subset \mathbb{R} : U \text{ is open}\}.$

The above definition of $\sigma(\mathcal{E})$ may not be very intuitive. What does a typical set in $\sigma(\mathcal{E})$ look like? Informally, we construct $\sigma(\mathcal{E})$ by starting with \mathcal{E} and then throwing in

whatever else we need so that $\sigma(\mathcal{E})$ is closed under complements and countable unions. We could start by defining $\mathcal{E}_1 = \{A \subset X : A \in \mathcal{E} \text{ or } A^c \in \mathcal{E}\}$. Of course, this may not be closed under countable unions, so we define $\mathcal{D}_2 = \{\bigcup_{j=1}^{\infty} A_j : \{A_j\}_{j=1}^{\infty} \subset \mathcal{E}_1\}$. Unfortunately, this new set may no longer be closed under complements. So we repeat, defining $\mathcal{E}_2 = \{A \subset X : A \in \mathcal{D}_2 \text{ or } A^c \in \mathcal{D}_2\}$. But now this new set may no longer be closed under countable unions. We could go on like this, defining for n > 1,

$$\mathcal{D}_n = \left\{ \bigcup_{j=1}^{\infty} A_j : \{A_j\}_{j=1}^{\infty} \subset \mathcal{E}_{n-1} \right\},\$$
$$\mathcal{E}_n = \{A \subset X : A \in \mathcal{D}_n \text{ or } A^c \in \mathcal{D}_n \}.$$

We now have a nested sequence of families of sets, $\mathcal{E}_1 \subset \mathcal{E}_2 \subset \cdots$, none of which is equal to $\sigma(\mathcal{E})$. We might try taking the union, $\bigcup_{j=1}^{\infty} \mathcal{E}_j$, but this is not in general equal to $\sigma(\mathcal{E})$ either.

In order to make a scheme like this work, we need transfinite induction. Let Ω be the set of countable ordinals. Let $\alpha \in \Omega$. If $\alpha = 1$, then \mathcal{E}_{α} is defined as above. If α has an immediate predecessor, β , then define

$$\mathcal{D}_{\alpha} = \left\{ \bigcup_{j=1}^{\infty} A_j : \{A_j\}_{j=1}^{\infty} \subset \mathcal{E}_{\beta} \right\},\$$
$$\mathcal{E}_{\alpha} = \{A \subset X : A \in \mathcal{D}_{\alpha} \text{ or } A^c \in \mathcal{D}_{\alpha} \}.$$

Otherwise, define $\mathcal{E}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{E}_{\beta}$. Does this actually define \mathcal{E}_{α} for every $\alpha \in \Omega$? To see that it does, we use the principle of transfinite induction. Let $A \subset \Omega$ be the set of all α for which \mathcal{E}_{α} is defined. We see from the above that if $I_{\alpha} \subset A$, then $\alpha \in A$. Hence, $A = \Omega$.

Lemma 3.1. If $\beta < \alpha$, then $\mathcal{E}_{\beta} \subset \mathcal{E}_{\alpha}$.

Proof. Let $A = \{ \alpha \in \Omega : \bigcup_{\beta < \alpha} \mathcal{E}_{\beta} \subset \mathcal{E}_{\alpha} \}$. Let $\alpha \in \Omega$ and assume $I_{\alpha} \subset A$. If $\alpha = 1$ or α has no immediate predecessor, then it is obvious from the definition of \mathcal{E}_{α} that $\alpha \in A$. Assume that α has an immediate predecessor, β . By the definition of \mathcal{E}_{α} , we have $\mathcal{E}_{\beta} \subset \mathcal{E}_{\alpha}$. Let $x \in I_{\alpha} = I_{\beta} \cup \{\beta\}$ be arbitrary. If $x = \beta$, then as noted above, $\mathcal{E}_{x} \subset \mathcal{E}_{\alpha}$. Assume $x \in I_{\beta}$. Since $\beta \in I_{\alpha} \subset A$, we have $\mathcal{E}_{x} \subset \bigcup_{y < \beta} \mathcal{E}_{y} \subset \mathcal{E}_{\beta} \subset \mathcal{E}_{\alpha}$. We have thus shown that $\mathcal{E}_{x} \subset \mathcal{E}_{\alpha}$ for all $x \in I_{\alpha}$. This implies $\bigcup_{x < \alpha} \mathcal{E}_{x} \subset \mathcal{E}_{\alpha}$, and hence, $\alpha \in A$. By the principle of transfinite induction, $A = \Omega$.

Theorem 3.2. $\sigma(\mathcal{E}) = \bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$.

Proof. Let $A = \{ \alpha \in \Omega : \mathcal{E}_{\alpha} \subset \sigma(\mathcal{E}) \}$. By the definition of \mathcal{E}_{α} , if $I_{\alpha} \subset A$, then $\alpha \in A$. Hence, by transfinite induction, $A = \Omega$. Therefore, $\mathcal{E}_{\alpha} \subset \sigma(\mathcal{E})$ for all $\alpha \in \Omega$, which implies $\bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha} \subset \sigma(\mathcal{E})$.

Since $\mathcal{E} \subset \bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$, the reverse inclusion will follow once we show that $\bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$ is a σ -algebra. We first show that $\bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$ is closed under complements, for which it will suffice to show that \mathcal{E}_{α} is closed under complements for all $\alpha \in \Omega$. Let

 $A = \{ \alpha \in \Omega : \mathcal{E}_{\alpha} \text{ is closed under complements} \}.$

Suppose $I_{\alpha} \subset A$. If $\alpha = 1$ or α has an immediate predecessor, then it is clear from the definition of \mathcal{E}_{α} that $\alpha \in A$. Suppose $\alpha > 1$ does not have an immediate predecessor. Let $E \in \mathcal{E}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{E}_{\beta}$. Then $E \in \mathcal{E}_{\beta}$ for some $\beta \in I_{\alpha}$. Since $I_{\alpha} \subset A$, it follows that \mathcal{E}_{β} is closed under complements. Thus, $E^{c} \in \mathcal{E}_{\beta} \subset \mathcal{E}_{\alpha}$, so \mathcal{E}_{α} is closed under complements, and $\alpha \in A$. We have shown that $I_{\alpha} \subset A$ implies $\alpha \in A$. By transfinite induction, $A = \Omega$.

Finally, we must show that $\bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$ is closed under countable unions. Let $\{E_j\}_{j=1}^{\infty} \subset \bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$, so that $E_j \in \mathcal{E}_{\alpha_j}$. By Theorem 2.3, $A = \{\alpha_j : j \in \mathbb{N}\}$ has an upper bound. Let $\beta = \sup A$ and let α be the successor of β . Since $\alpha_j \leq \beta$ implies $\mathcal{E}_{\alpha_j} \subset \mathcal{E}_{\beta}$, we have $\{E_j\}_{j=1}^{\infty} \subset \mathcal{E}_{\beta}$. Thus, by definition, $\bigcup_{j=1}^{\infty} E_j \in \mathcal{D}_{\alpha} \subset \mathcal{E}_{\alpha} \subset \bigcup_{\alpha \in \Omega} \mathcal{E}_{\alpha}$.

References

[1] Gerald B. Folland, *Real Analysis: Modern Techniques and Their Applications*. Wiley-Interscience, 1999.