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1 Preliminaries

If X and Y are sets, their Cartesian product is the set X × Y = {(x, y) : x ∈ X, y ∈ Y }. A
relation from X to Y is any subset of X × Y . If R is a relation from X to Y , then we often
write xRy to mean (x, y) ∈ R. A relation on X is a relation from X to X.

A partial ordering on a nonempty set X is a relation on X such that

(i) if xRy and yRz, then xRz,

(ii) if xRy and yRx, then x = y, and

(iii) xRx for all x.

A total ordering (or linear ordering) is a partial ordering R such that

(iv) if x, y ∈ X, then xRy or yRx.

We will often denote partial orderings by the symbol ≤, rather than the symbol R, in which
case x < y shall mean that x ≤ y and x 6= y. Two partially ordered sets are order isomorphic
if there exists a bijection f : X → Y such that a ≤ b if and only if f(a) ≤ f(b).

If X is a partially ordered set and E ⊂ X, then x ∈ E is a maximal element of E if, for
all y ∈ E, x ≤ y implies y = x. Similarly, x ∈ E is a minimal element of E if, for all y ∈ E,
y ≤ x implies y = x. Maximal and minimal elements may or may not exist, and they may or
may not be unique. If E is totally ordered, then maximal and minimal elements are unique,
when they exist.

An upper bound for E is an element x ∈ X such that y ≤ x for all y ∈ E. Similarly, a
lower bound for E is an element x ∈ X such that x ≤ y for all y ∈ E. Upper and lower
bounds need not exist, and they need not be elements of the set E.

As an example, let X = 2R, the set of all subsets of R. Then X is partially ordered by
the inclusion relation, ⊆. Let

E = {A ∈ X : A ⊆ (−∞, 0) or A ⊆ (0,∞)}.

Note that x = (−∞, 0) ∈ E is a maximal element of E. To prove this, we simply observe
that if y ∈ E and x ⊆ y, then y = x. However, x is not an upper bound for E. The only
upper bounds for E are R and (−∞, 0) ∪ (0,∞), neither of which are in E. This example
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shows that, in general, a maximal element of E need not be an upper bound for E. However,
if E is totally ordered, then maximal and minimal elements of E, when they exist, are upper
and lower bounds for E, respectively.

If X is a totally ordered set, and every nonempty subset of X has a minimal element,
then X is well ordered, and the ordering is called a well ordering. For example, the natural
numbers, N, with their natural ordering, are well ordered, but the integers are not.

Theorem 1.1. (Zorn’s lemma) If X is a partially ordered set, and every totally ordered
subset of X has an upper bound, then X has a maximal element.

Zorn’s lemma is logically equivalent to the axiom of choice.

Theorem 1.2. (Well ordering principle) Every nonempty set can be well ordered.

Proof. Let X be a nonempty set, and let

W = {(E,≤) : E ⊂ X and ≤ is a well ordering on E}.

Define a partial ordering on W by (E1,≤1) . (E2,≤2) if

(i) E1 ⊂ E2,

(ii) ≤1 and ≤2 agree on E1, and

(iii) if x ∈ E2 ∩ Ec
1, then y ≤2 x for all y ∈ E1.

It is left as an exercise for the reader to show that every totally ordered subset of W has an
upper bound. Hence, by Zorn’s lemma, W has a maximal element, (E,≤). Assume E 6= X.
Choose x0 ∈ Ec. Define E ′ = E ∪ {x0} and ≤′=≤ ∪{(x, x0) : x ∈ E}. Then (E ′,≤′) ∈ W
and (E,≤) . (E ′,≤′). But this contradicts the fact that (E,≤) is a maximal element of W .
Therefore, E = X, and ≤ is a well ordering on X. 2

2 Transfinite induction

The principle of mathematical induction can be stated as follows: If A ⊂ N satisfies

(i) 1 ∈ A, and

(ii) if {1, . . . , n− 1} ⊂ A, then n ∈ A,

then A = N. Note that (i) can be rephrased as

(i)′ if ∅ ⊂ A, then 1 ∈ A.

This allows us to combine both conditions into a single condition and state the following.

Theorem 2.1. (Principle of mathematical induction) Let A ⊂ N. If In ⊂ A implies
n ∈ A, where In = {j ∈ N : j < n}, then A = N.
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We now extend this principle so that it applies not only to the set N, but to any well
ordered set X. Let X be a well ordered set. If A ⊂ X is nonempty, then A has a minimal
element, which we call the infimum of A, and denote by inf A. If A has an upper bound,
then

B = {x ∈ X : x is an upper bound for A}
is nonempty, and we define the supremum of A by sup A = inf B. For x ∈ X, we define the
initial segment of x by

Ix = {y ∈ X : y < x}.
The elements of Ix are called the predecessors of x.

Theorem 2.2. (Principle of transfinite induction) Let X be a well ordered set. Let
A ⊂ X. If Ix ⊂ A implies x ∈ A, then A = X.

Proof. Suppose A 6= X and let x = inf(Ac). Then Ix ⊂ A, but x /∈ A. 2

Theorem 2.3. (Set of countable ordinals) There is an uncountable well ordered set Ω,
called the set of countable ordinals, such that Ix is countable for all x ∈ Ω. If Ω′ is another
set with the same properties, then Ω and Ω′ are order isomorphic. Every countable subset of
Ω has an upper bound.

Proof. Let X be an uncountable well ordered set, whose existence is guaranteed by the well
ordering principle. Let A = {x ∈ X : Ix is uncountable}. If A is empty, then let Ω = X. If
A is nonempty, then let Ω = Ix0 , where x0 = inf A. It follows, then, that Ix is countable for
all x ∈ Ω.

Suppose Ω′ is another set with this property. Let I = {Ix : x ∈ Ω} ∪ {Ω} and
I ′ = {Ix : x ∈ Ω′} ∪ {Ω′}. Let F be the collection of order isomorphisms f : X → Y , where
X ∈ I and Y ∈ I ′. The set F is nonempty, since the unique map f : {inf Ω} → {inf Ω′}
belongs to F . Also, the set F is partially ordered by inclusion, where we regard each f ∈ F
as a subset of Ω×Ω′. It is left as an exercise for the reader to verify that the hypotheses of
Zorn’s lemma are satisfied. Hence, F has a maximal element, f : A → B.

Suppose A = Ix for some x ∈ Ω. Then A is countable and, since f is a bijection, B is also
countable. But Ω′ is uncountable. Hence, B = Iy for some y ∈ Ω′. This means, however,
that f can be extended to an order isomorphism f : A∪{x} → B∪{y} by setting f(x) = y,
and this contradicts the maximality of f . Therefore, A = Ω. Since Ω is uncountable and Iy

is countable for all y ∈ Ω′, it follows that B = Ω′, and f is an order isomorphism from Ω to
Ω′.

Finally, suppose A ⊂ Ω is countable. Let J =
⋃

x∈A Ix. Since J is countable, J 6= Ω.
Choose any b ∈ J c. Let x ∈ A be arbitrary. Since b ∈ J c, we have b /∈ Ix. Hence, b ≮ x.
Since Ω is totally ordered, this means x ≤ b, so b is an upper bound for A. 2

Remark 2.4. (Regarding Ω as an extension of N.) Let A = {x ∈ Ω : Ix is infinite} and
let ω = inf A. Then N and Iω are order isomorphic, which allows us to identify N with the
subset Iω ⊂ Ω. An explicit order isomorphism can be constructed as follows: let f(1) = inf Ω
and, for n > 1, let f(n) = inf({f(1), . . . , f(n− 1)}c).

Remark 2.5. (Successors) Let x ∈ Ω. Then {y ∈ X : y ≤ x} = Ix ∪ {x} is countable.
Hence, Sx = {y ∈ X : x < y} = (Ix ∪ {x})c is nonempty. The successor of x is defined as
x + 1 = inf Sx. We say that x is the immediate predecessor of x + 1.
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Theorem 2.6. If α, β ∈ Ω, then α is the successor of β if and only if β is the maximal
element of Iα. In particular, if α is the successor of β, then x < α if and only if x ≤ β, so
that Iα = Iβ ∪ {β}.

If ω = inf A, where A = {x ∈ Ω : Ix is infinite}, then ω does not have an immediate
predecessor.

Proof. Suppose α is the successor of β, so that α = inf Sβ. In particular, α ∈ Sβ, so that
β < α, which implies β ∈ Iα. Suppose x ∈ Iα and β ≤ x. If β 6= x, then x ∈ Sβ. Since
α = inf Sβ, this implies α ≤ x. But this contradicts x ∈ Iα. Hence, β = x, so β is the
maximal element of Iα.

Conversely, suppose β is the maximal element of Iα. Then β < α, which implies α ∈ Sβ.
Suppose x ∈ Sβ and x ≤ α. Suppose x 6= α. Then x ∈ Iα, and since β is the maximal
element of Iα, we must have x ≤ β. Therefore, x ∈ Iβ ∪ {β} = Sc

β, a contradiction. Hence,
x = α, so α = inf Sβ, which means α is the successor of β.

Suppose α is the successor of β. If x ≤ β, then since β < α, we have x < α. Conversely,
if x < α, then x ∈ Iα, so x ≤ β, since β is the maximal element of Iα.

Finally, suppose ω has an immediate predecessor, β. Since β < ω, it follows that Iβ is
finite. But this implies Iω = Iβ ∪ {β} is finite, which contradicts ω ∈ A. 2

3 An example

Let X be a set and 2X the collection of all subsets of X. A nonempty collection F ⊂ 2X is
called a σ-algebra if

(i) if A ∈ F , then Ac ∈ F , and

(ii) if {Aj}∞j=1 ⊂ F , then
⋃∞

j=1 Aj ∈ F .

If E ⊂ 2X , then the σ-algebra generated by E , denoted by σ(E), is the smallest σ-algebra on
X that contains E . More precisely,

σ(E) =
⋂
F∈Γ

F ,

where Γ = {F ⊂ 2X : F is a σ-algebra and E ⊂ F}. That is, A ∈ σ(E) if and only if A ∈ F
for all F ∈ Γ. It is left as an exercise for the reader to verify that

(i) σ(E) is a σ-algebra,

(ii) E ⊂ σ(E), and

(iii) if F is any σ-algebra on X such that E ⊂ F , then σ(E) ⊂ F .

For example, the Borel σ-algebra on R, denoted by B(R), is the σ-algebra generated by the
open sets. That is, B(R) = σ(E), where E = {U ⊂ R : U is open}.

The above definition of σ(E) may not be very intuitive. What does a typical set in
σ(E) look like? Informally, we construct σ(E) by starting with E and then throwing in
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whatever else we need so that σ(E) is closed under complements and countable unions.
We could start by defining E1 = {A ⊂ X : A ∈ E or Ac ∈ E}. Of course, this may
not be closed under countable unions, so we define D2 = {

⋃∞
j=1 Aj : {Aj}∞j=1 ⊂ E1}.

Unfortunately, this new set may no longer be closed under complements. So we repeat,
defining E2 = {A ⊂ X : A ∈ D2 or Ac ∈ D2}. But now this new set may no longer be closed
under countable unions. We could go on like this, defining for n > 1,

Dn =

{ ∞⋃
j=1

Aj : {Aj}∞j=1 ⊂ En−1

}
,

En = {A ⊂ X : A ∈ Dn or Ac ∈ Dn}.

We now have a nested sequence of families of sets, E1 ⊂ E2 ⊂ · · · , none of which is equal
to σ(E). We might try taking the union,

⋃∞
j=1 Ej, but this is not in general equal to σ(E)

either.
In order to make a scheme like this work, we need transfinite induction. Let Ω be the

set of countable ordinals. Let α ∈ Ω. If α = 1, then Eα is defined as above. If α has an
immediate predecessor, β, then define

Dα =

{ ∞⋃
j=1

Aj : {Aj}∞j=1 ⊂ Eβ

}
,

Eα = {A ⊂ X : A ∈ Dα or Ac ∈ Dα}.

Otherwise, define Eα =
⋃

β<α Eβ. Does this actually define Eα for every α ∈ Ω? To see that
it does, we use the principle of transfinite induction. Let A ⊂ Ω be the set of all α for which
Eα is defined. We see from the above that if Iα ⊂ A, then α ∈ A. Hence, A = Ω.

Lemma 3.1. If β < α, then Eβ ⊂ Eα.

Proof. Let A = {α ∈ Ω :
⋃

β<α Eβ ⊂ Eα}. Let α ∈ Ω and assume Iα ⊂ A. If α = 1 or
α has no immediate predecessor, then it is obvious from the definition of Eα that α ∈ A.
Assume that α has an immediate predecessor, β. By the definition of Eα, we have Eβ ⊂ Eα.
Let x ∈ Iα = Iβ ∪ {β} be arbitrary. If x = β, then as noted above, Ex ⊂ Eα. Assume x ∈ Iβ.
Since β ∈ Iα ⊂ A, we have Ex ⊂

⋃
y<β Ey ⊂ Eβ ⊂ Eα. We have thus shown that Ex ⊂ Eα for

all x ∈ Iα. This implies
⋃

x<α Ex ⊂ Eα, and hence, α ∈ A. By the principle of transfinite
induction, A = Ω. 2

Theorem 3.2. σ(E) =
⋃

α∈Ω Eα.

Proof. Let A = {α ∈ Ω : Eα ⊂ σ(E)}. By the definition of Eα, if Iα ⊂ A, then α ∈ A.
Hence, by transfinite induction, A = Ω. Therefore, Eα ⊂ σ(E) for all α ∈ Ω, which implies⋃

α∈Ω Eα ⊂ σ(E).
Since E ⊂

⋃
α∈Ω Eα, the reverse inclusion will follow once we show that

⋃
α∈Ω Eα is a

σ-algebra. We first show that
⋃

α∈Ω Eα is closed under complements, for which it will suffice
to show that Eα is closed under complements for all α ∈ Ω. Let

A = {α ∈ Ω : Eα is closed under complements}.
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Suppose Iα ⊂ A. If α = 1 or α has an immediate predecessor, then it is clear from the
definition of Eα that α ∈ A. Suppose α > 1 does not have an immediate predecessor. Let
E ∈ Eα =

⋃
β<α Eβ. Then E ∈ Eβ for some β ∈ Iα. Since Iα ⊂ A, it follows that Eβ is closed

under complements. Thus, Ec ∈ Eβ ⊂ Eα, so Eα is closed under complements, and α ∈ A.
We have shown that Iα ⊂ A implies α ∈ A. By transfinite induction, A = Ω.

Finally, we must show that
⋃

α∈Ω Eα is closed under countable unions. Let {Ej}∞j=1 ⊂⋃
α∈Ω Eα, so that Ej ∈ Eαj

. By Theorem 2.3, A = {αj : j ∈ N} has an upper bound.
Let β = sup A and let α be the successor of β. Since αj ≤ β implies Eαj

⊂ Eβ, we have
{Ej}∞j=1 ⊂ Eβ. Thus, by definition,

⋃∞
j=1 Ej ∈ Dα ⊂ Eα ⊂

⋃
α∈Ω Eα. 2
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