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The following lemmas were proved while working on a recent paper, but as of today,
they do not appear in the final draft. Rather than having my hard work go to waste, I
have decided to present them here in this small article. The context in which these lemmas
occurred is described at the end of this article.

1 The Lemmas

A function is cadlag if it is right continuous and has left limits. If (E, r) is a metric space,
then the Skorohod space, D = DE[0,∞), is the space of cadlag functions from [0,∞) to E.
A metric on D is given by

d(x, y) = inf
λ∈Λ

[
‖ log λ′‖∞ ∨

∫ ∞

0

e−u sup
t≥0
{r(x(t ∧ u), y(λ(t) ∧ u)) ∧ 1} du

]
, (1)

where Λ is the collection of all strictly increasing, surjective, Lipschitz continuous functions
λ : [0,∞) → [0,∞) such that ‖ log λ′‖∞ < ∞. If (E, r) is complete and separable, then
(D, d) is complete and separable. This metric generates the Skorohod topology on D. See
Chapter 3 of [1] for details.

Note that DE×DE is not the same space as DE×E. In particular, the map (x, y) → x+y
is not continuous when viewed as a map from DRd ×DRd to DRd , but it is continuous as a
map from DR2d to DRd .

Lemma 1.1 Suppose xn → x in DRd [0,∞) and yn → y in DRd [0,∞). If ∆x(t)∆y(t) = 0
for all t ≥ 0, then xn + yn → x + y in DRd [0,∞).

Proof. By Lemma 6.2 in [2], vn → v in DRd [0,∞) if and only if the following conditions
hold.

(i) If tn → t, then |vn(tn)− v(t)| ∧ |vn(tn)− v(t−)| → 0.

(ii) If sn ≥ tn, sn, tn → t, and vn(tn) → v(t), then vn(sn) → v(t).

Let zn = xn + yn and z = x + y. Suppose tn → t. Since ∆x(t)∆y(t) = 0, either t is a
continuity point of x or it is a continuity point of y. By symmetry, suppose it is a continuity
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point of x. In this case, choose strictly increasing, surjective λn : [0,∞) → [0,∞) such that
λn(t) → t and xn(t)− x(λn(t)) → 0 uniformly on compacts. Then

|xn(tn)− x(t)| ≤ |xn(tn)− x(λn(tn))|+ |x(λn(tn))− x(t)|.

Since λn(tn) → t and t is a continuity point of x, it follows that xn(tn) → x(t). Hence,

|zn(tn)− z(t)| ∧ |zn(tn)− z(t−)| ≤ (|xn(tn)− x(t)|+ |yn(tn)− y(t)|)
∧ (|xn(tn)− x(t−)|+ |yn(tn)− y(t−)|)

= |xn(tn)− x(t)|+ (|yn(tn)− y(t)| ∧ |yn(tn)− y(t−)|).

Since (i) holds for {yn}, this goes to zero, which verifies (i) for {zn}.
Now suppose sn ≥ tn, sn, tn → t, and zn(tn) → z(t). Again, by symmetry, assume t is

a continuity point of x. We then have that yn(tn) = zn(tn) − xn(tn) → z(t) − x(t) = y(t).
Hence, by (ii), we must have yn(sn) → y(t). But this implies zn(sn) = xn(sn) + yn(sn) →
x(t) + y(t) = z(t) and this verifies (ii) for {zn}. 2

Lemma 1.2 If 2 ≤ d < ∞, then {(X1
n, . . . , Xd

n)} is relatively compact in DRd [0,∞) if and
only if {Xk

n} and {Xk
n + X`

n} are relatively compact in DR[0,∞).

Proof. Problem 3.22(c) in [1]. 2

Lemma 1.3 For each n, let Xn and Yn be independent random variables taking values in
DRk [0,∞) and DRm [0,∞), respectively. Suppose that (Xn, Yn) ⇒ (X,Y ) in DRk [0,∞) ×
DRm [0,∞). If

P (∆X(t)∆Y (t) = 0 for all t ≥ 0) = 1,

then (Xn, Yn) ⇒ (X, Y ) in DRk×Rm [0,∞).

Proof. By the Skorohod Representation Theorem, we can assume that Xn → X and Yn → Y
a.s. By Lemma 1.1, Xn + Yn → X + Y a.s. Hence, by Lemma 1.2, {(Xn, Yn)} is relatively

compact in DRk+m [0,∞). If (U, V ) is a subsequential limit, then U
d
= X, V

d
= Y , and U and

V are independent. Hence, (U, V )
d
= (X, Y ), so (Xn, Yn) ⇒ (X, Y ). 2

Lemma 1.4 Let (E, r) be a complete and separable metric space. Let Xn be a sequence of
E-valued random variables and suppose, for each k, there exists a sequence {Xn,k}∞n=1 such
that

lim sup
n→∞

E[r(Xn, Xn,k)] ≤ δk,

where δk → 0 as k →∞. Suppose also that for each k, there exists Yk such that Xn,k ⇒ Yk

as n →∞. Then there exists X such that Xn ⇒ X and Yk ⇒ X.

Proof. Let P(E) be the family of all probability measures on E, endowed with the Prohorov
metric,

ρ(P, Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε for all F ∈ C},
where C is the collection of closed sets in E and F ε = {x ∈ E : r(x, F ) < ε}. Under this
metric, (P(E), ρ) is complete and separable, and Zn ⇒ Z if and only if ρ(PZ−1

n , PZ−1) → 0.
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Let ε > 0 be given and choose k0 such that δk < ε2 whenever k ≥ k0. For each fixed
k ≥ k0, choose N(k) and M(k) such that E[r(Xn, Xn,k)] < ε2 whenever n ≥ N(k) and
ρ(PX−1

n,k, PY −1
k ) < ε whenever n ≥ M(k). Let n ≥ N(k) be arbitrary. Then for all F ∈ C,

P (Xn ∈ F ) ≤ P (Xn ∈ F, r(Xn, Xn,k) < ε) + P (r(Xn, Xn,k) ≥ ε) ≤ P (Xn,k ∈ F ε) + ε.

It follows then that ρ(PX−1
n , PX−1

n,k) ≤ ε whenever n ≥ N(k).
Now let n,m ≥ N(k0) ∨M(k0). Then

ρ(PX−1
n , PX−1

m ) ≤ ρ(PX−1
n , PX−1

n,k0
) + ρ(PX−1

n,k0
, PY −1

k0
)

+ ρ(PY −1
k0

, PX−1
m,k0

) + ρ(PX−1
m,k0

, PX−1
m )

< 4ε.

Hence, {PX−1
n } is Cauchy in P(E), so there exists X such that Xn ⇒ X.

Now let k ≥ k0 and choose n ≥ N(k) ∨M(k) such that ρ(PX−1
n , PX−1) < ε. Then

ρ(PY −1
k , PX−1) ≤ ρ(PY −1

k , PX−1
n,k) + ρ(PX−1

n,k, PX−1
n ) + ρ(PX−1

n , PX−1) < 3ε.

Hence, Yk ⇒ X. 2

Lemma 1.5 Suppose x, y ∈ D and x(t) = y(t) for all t < T . Then d(x, y) ≤ e−T .

Proof. Taking λ(t) = t in (1) gives

d(x, y) ≤
∫ ∞

0

e−u sup
t∈[0,u]

{r(x(t), y(t)) ∧ 1} du.

If x(t) = y(t) for all t < T , then d(x, y) ≤
∫∞

T
e−u du = e−T . 2

Lemma 1.6 For x ∈ D = DRd [0,∞) and ε > 0, let

hε(x) = inf{t ≥ 0 : |x(t)| ∧ |x(t−)| ≤ ε}. (2)

If (xn, hε(xn)) → (x, T ) ∈ D × [0,∞], then hε(x) ≤ T .

Proof. Let s < t < hε(x), so that inf [0,t] |x(r)| > ε. Since x(·) 7→ inf [0,· ] |x(r)| is continuous
in the Skorohod topology, for sufficiently large n, inf [0,s] |xn(r)| > ε, which implies that
s ≤ hε(xn). Letting n →∞ gives s ≤ T . Letting s ↑ hε(x) gives hε(x) ≤ T . 2

2 The Context

These lemmas were proved while working on a paper in which we applied the theorems in
[2]. We did not need the full power of these theorems. Rather, we simply used the following
“watered down” versions.

This first theorem is a special case of Theorem 2.2 in [2].
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Theorem 2.1 For each n, let Yn be a cadlag, Rm-valued semimartingale with respect to a
filtration {Fn

t }. Suppose that Yn = Mn + An, where Mn is an {Fn
t }-local martingale and An

is a finite variation process, and that

sup
n

E[[Mn]t + Vt(An)] < ∞ (3)

for each t ≥ 0, where Vt(An) is the total variation of An on [0, t]. Let Xn be a cadlag,
{Fn

t }-adapted, Rk×m-valued process and define

Zn(t) =

∫ t

0

Xn(s−) dYn(s).

Suppose that (Xn, Yn) ⇒ (X, Y ) in DRk×m×Rm [0,∞). Then Y is a semimartingale with
respect to a filtration to which X and Y are adapted, and (Xn, Yn, Zn) ⇒ (X, Y, Z) in
DRk×m×Rm×Rk [0,∞), where

Z(t) =

∫ t

0

X(s−) dY (s).

If (Xn, Yn) → (X, Y ) in probability, then Zn → Z in probability.

Remark 2.2 In the setting of Theorem 2.1, if {Vn} is another sequence of cadlag adapted
processes and (Vn, Xn, Yn) ⇒ (V, X, Y ), then (Vn, Xn, Yn, Zn) ⇒ (V, X, Y, Z). This can be
seen by applying Theorem 2.1 to (X̄n, Ȳn), where X̄n = (Vn, Xn) and Ȳn = (0, Yn)T .

This next theorem is a special case of Theorem 5.4 and Corollary 5.6 in [2].

Theorem 2.3 For each n, let Yn be a cadlag, Rm-valued semimartingale with respect to a
filtration {Fn

t }. Suppose that {Yn} satisfies (3). Let Un be a cadlag, {Fn
t }-adapted, Rk-valued

process and suppose that (Un, Yn) ⇒ (U, Y ) in DRk×Rm [0,∞). Let Gn and G be continuous
functions from Rk to Rk×m such that Gn → G uniformly on compacts, and suppose that Xn

satisfies

Xn(t) = Un(t) +

∫ t

0

Gn(Xn(s−)) dYn(s).

Consider the integral equation

X(t) = U(t) +

∫ t

0

G(X(s−)) dY (s).

Suppose that for every version of (U, Y ), this equation has a unique strong solution for all
time t ≥ 0. Then (Un, Xn, Yn) ⇒ (U,X, Y ) in DRk×Rk×Rm [0,∞). If (Un, Yn) → (U, Y ) in
probability, then Xn → X in probability.

Remark 2.4 As in Remark 2.2, if {Vn} is another sequence of cadlag adapted processes and
(Vn, Un, Yn) ⇒ (V, U, Y ), then (Vn, Un, Xn, Yn) ⇒ (V, U,X, Y ). This can be seen by applying
Theorem 2.3 to (Ūn, Yn) and Ḡn, where Ūn = (Vn, Un) and Ḡn = (0, Gn).

The final theorem in this section is a generalization of these two, which follows from
Remark 2.5 in [2].
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Theorem 2.5 Suppose all of the hypotheses of Theorem 2.1 (or Theorem 2.3) hold, except
for (3). If {(X̄n, Ȳn)} is relatively compact in DRm×`×R` [0,∞), {Ȳn} satisfies (3), and

Yn(t) =

∫ t

0

X̄n(s−) dȲn(s),

then the conclusions of Theorem 2.1 (or Theorem 2.3) hold.
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