Lemmas for the Skorohod Space

Jason Swanson

May 17, 2006

The following lemmas were proved while working on a recent paper, but as of today, they do not appear in the final draft. Rather than having my hard work go to waste, I have decided to present them here in this small article. The context in which these lemmas occurred is described at the end of this article.

1 The Lemmas

A function is cadlag if it is right continuous and has left limits. If (E, r) is a metric space, then the Skorohod space, $D=D_{E}[0, \infty)$, is the space of cadlag functions from $[0, \infty)$ to E. A metric on D is given by

$$
\begin{equation*}
d(x, y)=\inf _{\lambda \in \Lambda}\left[\left\|\log \lambda^{\prime}\right\|_{\infty} \vee \int_{0}^{\infty} e^{-u} \sup _{t \geq 0}\{r(x(t \wedge u), y(\lambda(t) \wedge u)) \wedge 1\} d u\right] \tag{1}
\end{equation*}
$$

where Λ is the collection of all strictly increasing, surjective, Lipschitz continuous functions $\lambda:[0, \infty) \rightarrow[0, \infty)$ such that $\left\|\log \lambda^{\prime}\right\|_{\infty}<\infty$. If (E, r) is complete and separable, then (D, d) is complete and separable. This metric generates the Skorohod topology on D. See Chapter 3 of [1] for details.

Note that $D_{E} \times D_{E}$ is not the same space as $D_{E \times E}$. In particular, the map $(x, y) \rightarrow x+y$ is not continuous when viewed as a map from $D_{\mathbb{R}^{d}} \times D_{\mathbb{R}^{d}}$ to $D_{\mathbb{R}^{d}}$, but it is continuous as a map from $D_{\mathbb{R}^{2 d}}$ to $D_{\mathbb{R}^{d}}$.

Lemma 1.1 Suppose $x_{n} \rightarrow x$ in $D_{\mathbb{R}^{d}}[0, \infty)$ and $y_{n} \rightarrow y$ in $D_{\mathbb{R}^{d}}[0, \infty)$. If $\Delta x(t) \Delta y(t)=0$ for all $t \geq 0$, then $x_{n}+y_{n} \rightarrow x+y$ in $D_{\mathbb{R}^{d}}[0, \infty)$.

Proof. By Lemma 6.2 in [2], $v_{n} \rightarrow v$ in $D_{\mathbb{R}^{d}}[0, \infty)$ if and only if the following conditions hold.
(i) If $t_{n} \rightarrow t$, then $\left|v_{n}\left(t_{n}\right)-v(t)\right| \wedge\left|v_{n}\left(t_{n}\right)-v(t-)\right| \rightarrow 0$.
(ii) If $s_{n} \geq t_{n}, s_{n}, t_{n} \rightarrow t$, and $v_{n}\left(t_{n}\right) \rightarrow v(t)$, then $v_{n}\left(s_{n}\right) \rightarrow v(t)$.

Let $z_{n}=x_{n}+y_{n}$ and $z=x+y$. Suppose $t_{n} \rightarrow t$. Since $\Delta x(t) \Delta y(t)=0$, either t is a continuity point of x or it is a continuity point of y. By symmetry, suppose it is a continuity
point of x. In this case, choose strictly increasing, surjective $\lambda_{n}:[0, \infty) \rightarrow[0, \infty)$ such that $\lambda_{n}(t) \rightarrow t$ and $x_{n}(t)-x\left(\lambda_{n}(t)\right) \rightarrow 0$ uniformly on compacts. Then

$$
\left|x_{n}\left(t_{n}\right)-x(t)\right| \leq\left|x_{n}\left(t_{n}\right)-x\left(\lambda_{n}\left(t_{n}\right)\right)\right|+\left|x\left(\lambda_{n}\left(t_{n}\right)\right)-x(t)\right| .
$$

Since $\lambda_{n}\left(t_{n}\right) \rightarrow t$ and t is a continuity point of x, it follows that $x_{n}\left(t_{n}\right) \rightarrow x(t)$. Hence,

$$
\begin{aligned}
\left|z_{n}\left(t_{n}\right)-z(t)\right| \wedge\left|z_{n}\left(t_{n}\right)-z(t-)\right| \leq & \left(\left|x_{n}\left(t_{n}\right)-x(t)\right|+\left|y_{n}\left(t_{n}\right)-y(t)\right|\right) \\
& \wedge\left(\left|x_{n}\left(t_{n}\right)-x(t-)\right|+\left|y_{n}\left(t_{n}\right)-y(t-)\right|\right) \\
= & \left|x_{n}\left(t_{n}\right)-x(t)\right|+\left(\left|y_{n}\left(t_{n}\right)-y(t)\right| \wedge\left|y_{n}\left(t_{n}\right)-y(t-)\right|\right)
\end{aligned}
$$

Since (i) holds for $\left\{y_{n}\right\}$, this goes to zero, which verifies (i) for $\left\{z_{n}\right\}$.
Now suppose $s_{n} \geq t_{n}, s_{n}, t_{n} \rightarrow t$, and $z_{n}\left(t_{n}\right) \rightarrow z(t)$. Again, by symmetry, assume t is a continuity point of x. We then have that $y_{n}\left(t_{n}\right)=z_{n}\left(t_{n}\right)-x_{n}\left(t_{n}\right) \rightarrow z(t)-x(t)=y(t)$. Hence, by (ii), we must have $y_{n}\left(s_{n}\right) \rightarrow y(t)$. But this implies $z_{n}\left(s_{n}\right)=x_{n}\left(s_{n}\right)+y_{n}\left(s_{n}\right) \rightarrow$ $x(t)+y(t)=z(t)$ and this verifies (ii) for $\left\{z_{n}\right\}$.

Lemma 1.2 If $2 \leq d<\infty$, then $\left\{\left(X_{n}^{1}, \ldots, X_{n}^{d}\right)\right\}$ is relatively compact in $D_{\mathbb{R}^{d}}[0, \infty)$ if and only if $\left\{X_{n}^{k}\right\}$ and $\left\{X_{n}^{k}+X_{n}^{\ell}\right\}$ are relatively compact in $D_{\mathbb{R}}[0, \infty)$.

Proof. Problem 3.22(c) in [1].
Lemma 1.3 For each n, let X_{n} and Y_{n} be independent random variables taking values in $D_{\mathbb{R}^{k}}[0, \infty)$ and $D_{\mathbb{R}^{m}}[0, \infty)$, respectively. Suppose that $\left(X_{n}, Y_{n}\right) \Rightarrow(X, Y)$ in $D_{\mathbb{R}^{k}}[0, \infty) \times$ $D_{\mathbb{R}^{m}}[0, \infty)$. If

$$
P(\Delta X(t) \Delta Y(t)=0 \text { for all } t \geq 0)=1
$$

then $\left(X_{n}, Y_{n}\right) \Rightarrow(X, Y)$ in $D_{\mathbb{R}^{k} \times \mathbb{R}^{m}}[0, \infty)$.
Proof. By the Skorohod Representation Theorem, we can assume that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ a.s. By Lemma 1.1, $X_{n}+Y_{n} \rightarrow X+Y$ a.s. Hence, by Lemma 1.2, $\left\{\left(X_{n}, Y_{n}\right)\right\}$ is relatively compact in $D_{\mathbb{R}^{k+m}}[0, \infty)$. If (U, V) is a subsequential limit, then $U \stackrel{d}{=} X, V \stackrel{d}{=} Y$, and U and V are independent. Hence, $(U, V) \stackrel{d}{=}(X, Y)$, so $\left(X_{n}, Y_{n}\right) \Rightarrow(X, Y)$.

Lemma 1.4 Let (E, r) be a complete and separable metric space. Let X_{n} be a sequence of E-valued random variables and suppose, for each k, there exists a sequence $\left\{X_{n, k}\right\}_{n=1}^{\infty}$ such that

$$
\limsup _{n \rightarrow \infty} E\left[r\left(X_{n}, X_{n, k}\right)\right] \leq \delta_{k}
$$

where $\delta_{k} \rightarrow 0$ as $k \rightarrow \infty$. Suppose also that for each k, there exists Y_{k} such that $X_{n, k} \Rightarrow Y_{k}$ as $n \rightarrow \infty$. Then there exists X such that $X_{n} \Rightarrow X$ and $Y_{k} \Rightarrow X$.

Proof. Let $\mathcal{P}(E)$ be the family of all probability measures on E, endowed with the Prohorov metric,

$$
\rho(P, Q)=\inf \left\{\varepsilon>0: P(F) \leq Q\left(F^{\varepsilon}\right)+\varepsilon \text { for all } F \in \mathcal{C}\right\},
$$

where \mathcal{C} is the collection of closed sets in E and $F^{\varepsilon}=\{x \in E: r(x, F)<\varepsilon\}$. Under this metric, $(\mathcal{P}(E), \rho)$ is complete and separable, and $Z_{n} \Rightarrow Z$ if and only if $\rho\left(P Z_{n}^{-1}, P Z^{-1}\right) \rightarrow 0$.

Let $\varepsilon>0$ be given and choose k_{0} such that $\delta_{k}<\varepsilon^{2}$ whenever $k \geq k_{0}$. For each fixed $k \geq k_{0}$, choose $N(k)$ and $M(k)$ such that $E\left[r\left(X_{n}, X_{n, k}\right)\right]<\varepsilon^{2}$ whenever $n \geq N(k)$ and $\rho\left(P X_{n, k}^{-1}, P Y_{k}^{-1}\right)<\varepsilon$ whenever $n \geq M(k)$. Let $n \geq N(k)$ be arbitrary. Then for all $F \in \mathcal{C}$,

$$
P\left(X_{n} \in F\right) \leq P\left(X_{n} \in F, r\left(X_{n}, X_{n, k}\right)<\varepsilon\right)+P\left(r\left(X_{n}, X_{n, k}\right) \geq \varepsilon\right) \leq P\left(X_{n, k} \in F^{\varepsilon}\right)+\varepsilon
$$

It follows then that $\rho\left(P X_{n}^{-1}, P X_{n, k}^{-1}\right) \leq \varepsilon$ whenever $n \geq N(k)$.
Now let $n, m \geq N\left(k_{0}\right) \vee M\left(k_{0}\right)$. Then

$$
\begin{aligned}
\rho\left(P X_{n}^{-1}, P X_{m}^{-1}\right) \leq & \rho\left(P X_{n}^{-1}, P X_{n, k_{0}}^{-1}\right)+\rho\left(P X_{n, k_{0}}^{-1}, P Y_{k_{0}}^{-1}\right) \\
& +\rho\left(P Y_{k_{0}}^{-1}, P X_{m, k_{0}}^{-1}\right)+\rho\left(P X_{m, k_{0}}^{-1}, P X_{m}^{-1}\right) \\
< & 4 \varepsilon
\end{aligned}
$$

Hence, $\left\{P X_{n}^{-1}\right\}$ is Cauchy in $\mathcal{P}(E)$, so there exists X such that $X_{n} \Rightarrow X$.
Now let $k \geq k_{0}$ and choose $n \geq N(k) \vee M(k)$ such that $\rho\left(P X_{n}^{-1}, P X^{-1}\right)<\varepsilon$. Then

$$
\rho\left(P Y_{k}^{-1}, P X^{-1}\right) \leq \rho\left(P Y_{k}^{-1}, P X_{n, k}^{-1}\right)+\rho\left(P X_{n, k}^{-1}, P X_{n}^{-1}\right)+\rho\left(P X_{n}^{-1}, P X^{-1}\right)<3 \varepsilon .
$$

Hence, $Y_{k} \Rightarrow X$.
Lemma 1.5 Suppose $x, y \in D$ and $x(t)=y(t)$ for all $t<T$. Then $d(x, y) \leq e^{-T}$.
Proof. Taking $\lambda(t)=t$ in (1) gives

$$
d(x, y) \leq \int_{0}^{\infty} e^{-u} \sup _{t \in[0, u]}\{r(x(t), y(t)) \wedge 1\} d u
$$

If $x(t)=y(t)$ for all $t<T$, then $d(x, y) \leq \int_{T}^{\infty} e^{-u} d u=e^{-T}$.
Lemma 1.6 For $x \in D=D_{\mathbb{R}^{d}}[0, \infty)$ and $\varepsilon>0$, let

$$
\begin{equation*}
h_{\varepsilon}(x)=\inf \{t \geq 0:|x(t)| \wedge|x(t-)| \leq \varepsilon\} . \tag{2}
\end{equation*}
$$

If $\left(x_{n}, h_{\varepsilon}\left(x_{n}\right)\right) \rightarrow(x, T) \in D \times[0, \infty]$, then $h_{\varepsilon}(x) \leq T$.
Proof. Let $s<t<h_{\varepsilon}(x)$, so that $\inf _{[0, t]}|x(r)|>\varepsilon$. Since $x(\cdot) \mapsto \inf _{[0, \cdot]}|x(r)|$ is continuous in the Skorohod topology, for sufficiently large $n, \inf _{[0, s]}\left|x_{n}(r)\right|>\varepsilon$, which implies that $s \leq h_{\varepsilon}\left(x_{n}\right)$. Letting $n \rightarrow \infty$ gives $s \leq T$. Letting $s \uparrow h_{\varepsilon}(x)$ gives $h_{\varepsilon}(x) \leq T$.

2 The Context

These lemmas were proved while working on a paper in which we applied the theorems in [2]. We did not need the full power of these theorems. Rather, we simply used the following "watered down" versions.

This first theorem is a special case of Theorem 2.2 in [2].

Theorem 2.1 For each n, let Y_{n} be a cadlag, \mathbb{R}^{m}-valued semimartingale with respect to a filtration $\left\{\mathcal{F}_{t}^{n}\right\}$. Suppose that $Y_{n}=M_{n}+A_{n}$, where M_{n} is an $\left\{\mathcal{F}_{t}^{n}\right\}$-local martingale and A_{n} is a finite variation process, and that

$$
\begin{equation*}
\sup _{n} E\left[\left[M_{n}\right]_{t}+V_{t}\left(A_{n}\right)\right]<\infty \tag{3}
\end{equation*}
$$

for each $t \geq 0$, where $V_{t}\left(A_{n}\right)$ is the total variation of A_{n} on $[0, t]$. Let X_{n} be a cadlag, $\left\{\mathcal{F}_{t}^{n}\right\}$-adapted, $\mathbb{R}^{k \times m}$-valued process and define

$$
Z_{n}(t)=\int_{0}^{t} X_{n}(s-) d Y_{n}(s)
$$

Suppose that $\left(X_{n}, Y_{n}\right) \Rightarrow(X, Y)$ in $D_{\mathbb{R}^{k \times m} \times \mathbb{R}^{m}}[0, \infty)$. Then Y is a semimartingale with respect to a filtration to which X and Y are adapted, and $\left(X_{n}, Y_{n}, Z_{n}\right) \Rightarrow(X, Y, Z)$ in $D_{\mathbb{R}^{k \times m} \times \mathbb{R}^{m} \times \mathbb{R}^{k}}[0, \infty)$, where

$$
Z(t)=\int_{0}^{t} X(s-) d Y(s)
$$

If $\left(X_{n}, Y_{n}\right) \rightarrow(X, Y)$ in probability, then $Z_{n} \rightarrow Z$ in probability.
Remark 2.2 In the setting of Theorem 2.1, if $\left\{V_{n}\right\}$ is another sequence of cadlag adapted processes and $\left(V_{n}, X_{n}, Y_{n}\right) \Rightarrow(V, X, Y)$, then $\left(V_{n}, X_{n}, Y_{n}, Z_{n}\right) \Rightarrow(V, X, Y, Z)$. This can be seen by applying Theorem 2.1 to $\left(\bar{X}_{n}, \bar{Y}_{n}\right)$, where $\bar{X}_{n}=\left(V_{n}, X_{n}\right)$ and $\bar{Y}_{n}=\left(0, Y_{n}\right)^{T}$.

This next theorem is a special case of Theorem 5.4 and Corollary 5.6 in [2].
Theorem 2.3 For each n, let Y_{n} be a cadlag, \mathbb{R}^{m}-valued semimartingale with respect to a filtration $\left\{\mathcal{F}_{t}^{n}\right\}$. Suppose that $\left\{Y_{n}\right\}$ satisfies (3). Let U_{n} be a cadlag, $\left\{\mathcal{F}_{t}^{n}\right\}$-adapted, \mathbb{R}^{k}-valued process and suppose that $\left(U_{n}, Y_{n}\right) \Rightarrow(U, Y)$ in $D_{\mathbb{R}^{k} \times \mathbb{R}^{m}}[0, \infty)$. Let G_{n} and G be continuous functions from \mathbb{R}^{k} to $\mathbb{R}^{k \times m}$ such that $G_{n} \rightarrow G$ uniformly on compacts, and suppose that X_{n} satisfies

$$
X_{n}(t)=U_{n}(t)+\int_{0}^{t} G_{n}\left(X_{n}(s-)\right) d Y_{n}(s)
$$

Consider the integral equation

$$
X(t)=U(t)+\int_{0}^{t} G(X(s-)) d Y(s)
$$

Suppose that for every version of (U, Y), this equation has a unique strong solution for all time $t \geq 0$. Then $\left(U_{n}, X_{n}, Y_{n}\right) \Rightarrow(U, X, Y)$ in $D_{\mathbb{R}^{k} \times \mathbb{R}^{k} \times \mathbb{R}^{m}}[0, \infty)$. If $\left(U_{n}, Y_{n}\right) \rightarrow(U, Y)$ in probability, then $X_{n} \rightarrow X$ in probability.

Remark 2.4 As in Remark 2.2. if $\left\{V_{n}\right\}$ is another sequence of cadlag adapted processes and $\left(V_{n}, U_{n}, Y_{n}\right) \Rightarrow(V, U, Y)$, then $\left(V_{n}, U_{n}, X_{n}, Y_{n}\right) \Rightarrow(V, U, X, Y)$. This can be seen by applying Theorem 2.3 to $\left(\bar{U}_{n}, Y_{n}\right)$ and \bar{G}_{n}, where $\bar{U}_{n}=\left(V_{n}, U_{n}\right)$ and $\bar{G}_{n}=\left(0, G_{n}\right)$.

The final theorem in this section is a generalization of these two, which follows from Remark 2.5 in [2].

Theorem 2.5 Suppose all of the hypotheses of Theorem 2.1 (or Theorem 2.3) hold, except for (3). If $\left\{\left(\bar{X}_{n}, \bar{Y}_{n}\right)\right\}$ is relatively compact in $D_{\mathbb{R}^{m \times \ell} \times \mathbb{R}^{\ell}}[0, \infty),\left\{\bar{Y}_{n}\right\}$ satisfies (3), and

$$
Y_{n}(t)=\int_{0}^{t} \bar{X}_{n}(s-) d \bar{Y}_{n}(s)
$$

then the conclusions of Theorem 2.1 (or Theorem 2.3) hold.

References

[1] Stewart N. Ethier and Thomas G. Kurtz, Markov Processes: Characterization and Convergence. Wiley-Interscience, 1986.
[2] Thomas G. Kurtz and Philip Protter, Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations. The Annals of Probability, 19(3) (1991), 1035-1070.

