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The following lemmas were proved while working on a recent paper, but as of today,
they do not appear in the final draft. Rather than having my hard work go to waste, I
have decided to present them here in this small article. The context in which these lemmas
occurred is described at the end of this article.

1 The Lemmas

A function is cadlag if it is right continuous and has left limits. If (E,r) is a metric space,
then the Skorohod space, D = Dg[0, c0), is the space of cadlag functions from [0, 00) to E.
A metric on D is given by

d(z,y) = )1\I61/f\|:|| log \'|oo V /000 e “sup{r(z(t Au),y(A(t) Au)) A1} dul, (1)

>0

where A is the collection of all strictly increasing, surjective, Lipschitz continuous functions
A [0,00) — [0,00) such that ||[logN|. < oco. If (F,r) is complete and separable, then
(D,d) is complete and separable. This metric generates the Skorohod topology on D. See
Chapter 3 of [I] for details.

Note that D x Dg is not the same space as Dgyg. In particular, the map (z,y) — x+y
is not continuous when viewed as a map from Dga X Dps to Dga, but it is continuous as a
map from Dpg2a to Dpa.

Lemma 1.1 Suppose x, — x in Dga|0,00) and y, — y in Dgal0,00). If Ax(t)Ay(t) =0
for allt >0, then x, + y, — x + y in Dga[0,00).

Proof. By Lemma 6.2 in [2], v, — v in Dga[0,00) if and only if the following conditions
hold.

(i) If t, — ¢, then |v,(t,) — v(t)| A |vn(tn) — v(t—)] — O.
(ii) If s,, > tn, Sn,t, — t, and v, (t,) — v(t), then v,(s,) — v(t).

Let z, = x, + y, and z = x + y. Suppose t, — t. Since Az(t)Ay(t) = 0, either ¢ is a
continuity point of x or it is a continuity point of y. By symmetry, suppose it is a continuity



point of x. In this case, choose strictly increasing, surjective A, : [0,00) — [0, 00) such that
An(t) — t and z,(t) — (A, (t)) — 0 uniformly on compacts. Then

20 (tn) — 2(t)] < |zn(tn) — 2(Aa(tn))| + [2(An(tn)) — z(2)].

Since A\, (t,) — t and ¢ is a continuity point of z, it follows that x,(t,) — z(t). Hence,

[2n(tn) = 2(O Alzn(tn) = 2(E=)] < (Jea(tn) = 2(O] + [yn(ta) = y(1)])
A (e (tn) = 2(t=)] + [yn(tn) — y(t=)])
= len(tn) = 2O + (Iyn(tn) = y(OI A lyn(tn) — y(E=)))-

Since (i) holds for {y,}, this goes to zero, which verifies (i) for {z,}.

Now suppose s,, > t,, Sp,t, — t, and 2,(t,) — z(t). Again, by symmetry, assume t is
a continuity point of . We then have that v, (t,) = z,(t,) — zn(t,) — 2(t) — z(t) = y(t).
Hence, by (ii), we must have y,(s,) — y(t). But this implies z,(s,) = z,(sn) + yn(sn) —
x(t) + y(t) = z(t) and this verifies (ii) for {z,}. O

Lemma 1.2 If2 < d < oo, then {(X},..., X%} is relatively compact in Dga[0,00) if and
only if {X*} and {X¥ + X'} are relatively compact in Dg[0, 00).

Proof. Problem 3.22(c) in [1]. O

Lemma 1.3 For each n, let X,, and Y, be independent random variables taking values in
Dgi[0,00) and Dgm|0,00), respectively. Suppose that (X,,Y,) = (X,Y) in Dg:[0,00) X
D]Rm [O, OO) ]f

P(AX(t)AY (t) =0 for allt > 0) =1,

then (X,,,Y,) = (X,Y) in Dgiyrn[0, 00).

Proof. By the Skorohod Representation Theorem, we can assume that X,, — X and Y, — Y
a.s. By Lemma[l.1} X, +Y, — X +Y a.s. Hence, by Lemma [1.2] {(X,,Y,)} is relatively

compact in Dgrtm[0, 00). If (U, V) is a subsequential limit, then U 2 X,V 2 Y, and U and
V' are independent. Hence, (U, V) < (X,Y),so (X,,Y,) = (X,Y). O

Lemma 1.4 Let (E,r) be a complete and separable metric space. Let X,, be a sequence of
E-valued random variables and suppose, for each k, there exists a sequence {X, 1}, such
that

lim sup E[r(X,, Xnk)] < Ok,

n—oo

where 0, — 0 as k — oo. Suppose also that for each k, there exists Yy, such that X, = Y}
asn — 00. Then there exists X such that X,, = X and YV, = X.

Proof. Let P(E) be the family of all probability measures on £, endowed with the Prohorov
metric,

p(P,Q) =inf{e >0: P(F) < Q(F°)+¢ for all F €},

where C is the collection of closed sets in £ and F© = {x € E : r(z,F) < €}. Under this
metric, (P(E), p) is complete and separable, and Z,, = Z if and only if p(PZ, ', PZ~') — 0.
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Let ¢ > 0 be given and choose ky such that §, < €2 whenever k > kq. For each fixed
k > ko, choose N(k) and M(k) such that E[r(X,, X,.)] < €* whenever n > N(k) and
,o(PX;}g, PY, ') < & whenever n > M(k). Let n > N(k) be arbitrary. Then for all F € C,

P(X, € F) < P(X, € F,7(Xp, Xo) < &)+ P(r(X,, Xpp) > ) < P(Xpp € F?) +¢.

It follows then that p(PX, !, PX;i) < ¢ whenever n > N (k).

Now let n,m > N (ko) V M(kg). Then

p(PX, Y PXLY) < p(PXSY PX oy )+ p(PX o PYLY)

n,ko n,ko’

+p(PYt PX ) + p(PX L PXLY

m,ko?

< 4e.

Hence, {PX '} is Cauchy in P(E), so there exists X such that X,, = X.
Now let k > ko and choose n > N(k)V M (k) such that p(PX; !, PX™!) < e. Then

p(PY, "', PX ) < p(PY; ', PX; L) + p(PXok, PX ) + p(PX, ' PX ) < 3e.
Hence, Y, = X. O
Lemma 1.5 Suppose z,y € D and x(t) = y(t) for allt <T. Then d(z,y) < e T.

Proof. Taking \(¢) =t in (|l)) gives

d(z,y) < /000 e sup {r(z(t),y(t)) A1} du.

te[0,u]
If 2(t) = y(t) for all ¢ < T, then d(z,y) < [ e “du=eT. 0
Lemma 1.6 For z € D = Dga[0,00) and € > 0, let
he(z) = inf{t > 0: |z(t)| A |z(t—)| < e} (2)
If (xp, he(xy)) — (2,T) € D x [0,00], then ho(x) <T.

Proof. Let s <t < h.(x), so that infjgy |x(r)| > e. Since x(-) + infy.j|2(r)| is continuous
in the Skorohod topology, for sufficiently large n, infjyq |2,(r)| > €, which implies that
s < he(z,). Letting n — oo gives s < T Letting s T h.(x) gives ho(x) <T. O

2 The Context

These lemmas were proved while working on a paper in which we applied the theorems in
[2]. We did not need the full power of these theorems. Rather, we simply used the following
“watered down” versions.

This first theorem is a special case of Theorem 2.2 in [2].



Theorem 2.1 For each n, let Y, be a cadlag, R™-valued semimartingale with respect to a
filtration {F}'}. Suppose that Y, = M, + A,,, where M, is an {F'}-local martingale and A,
s a finite variation process, and that

sUp E[[M,]; + Vi(An)] < o0 (3)

for each t > 0, where Vi(A,) is the total variation of A, on [0,t]. Let X, be a cadlag,
{Fr}-adapted, R¥*™-valued process and define

Zo(t) = /O X, (s—) dYi(s).

Suppose that (X,,Y,) = (X,Y) in Dgixmygm[0,00). Then Y is a semimartingale with
respect to a filtration to which X and Y are adapted, and (X,,Y,,Z,) = (X,Y,Z) in
Dygixmygmxgr |0, 00), where

t
2(t) = / X(s—)dY(s).
0
If (X,,,Y,) — (X,Y) in probability, then Z,, — Z in probability.

Remark 2.2 In the setting of Theorem if {Vn} is another sequence of cadlag adapted
processes and (Vo, Xy, Yn) = (V,X,Y), then (V,, X, Ya, Z,) = (V, X, Y, Z). This can be
seen by applying Theorem to (X,,Yy), where X, = (V,,, X,,) and Y,, = (0,Y,)T.

This next theorem is a special case of Theorem 5.4 and Corollary 5.6 in [2].

Theorem 2.3 For each n, let Y, be a cadlag, R™-valued semimartingale with respect to a
filtration {F'}. Suppose that {Y,} satisfies [3)). Let U, be a cadlag, {F;'}-adapted, R*-valued
process and suppose that (Uy,,Y,) = (U,Y) in Drrygrm|0,00). Let G,, and G be continuous
functions from R* to R**™ such that G,, — G uniformly on compacts, and suppose that X,
satisfies

Xo(t) = Un(t) + /0 Go(Xa(5—)) dYa(s).

Consider the integral equation

X(t) :U(t)+/0 G(X(s-))dY (s).

Suppose that for every version of (U,Y'), this equation has a unique strong solution for all
time t > 0. Then (U,, X,,Yn) = (U, X,Y) in Dgrygrxrn|0,00). If (U,,Y,) — (U,Y) in
probability, then X, — X in probability.

Remark 2.4 As in Remark: if {V.} is another sequence of cadlag adapted processes and
(Va, U, Ya) = (V,UY), then (V,,, Un, X0, Ys) = (V,U, X,Y). This can be seen by applying
Theorem to (Un,Y,) and G,,, where U, = (V,,,U,) and G,, = (0,G,,).

The final theorem in this section is a generalization of these two, which follows from
Remark 2.5 in [2].



Theorem 2.5 Suppose all of the hypotheses of Theorem (oriTheorem hold, except
for B3). If {(X,,Y,)} is relatively compact in Dgmxeype[0,00), {Y,} satisfies (3), and

Ya(t) = /0 T,(5—) dY,(s),

then the conclusions of Theorem[2.1] (or Theorem[2.3) hold.
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