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Let me begin by saying that I am by no means a historian. But one thing I have gleaned
from my meager exposure to the subject is that there was once a time in history when science
was regarded as just another branch of philosophy. It was called “natural” philosophy, perhaps to
distinguish it from “supernatural” philosophies such as theology or metaphysics.

Today, of course, we regard science as a discipline which is quite distinct in character from
philosophy. And it is right that we do so. For example, science produces technology, but philosophy
does not. So they truly are separate disciplines. And what distinguishes science from philosophy
is obvious. There is only one thing: the scientific method. Probably everyone is familiar with the
scientific method. I know that when I was in elementary school, we would open our science book,
and there it would be, in bold letters, prominently displayed in a boxed area. It was some sort of
six-step procedure. There was an acronym for remembering it which contained a “Q” and, I think,
three or four “R”’s. It was like the Ten Commandments, laid out in stone, as though it had been
there since the dawn of time. But whatever the case may be, the scientific method is just an idea,
and we all know what that idea is. It’s the idea that we should formulate testable hypotheses and
then perform experiments to see whether or not those hypotheses are correct.

Now, a lot goes into forming a testable hypothesis. But the first thing you need — the absolutely
necessary ingredient to formulating a testable hypothesis — is that it be phrased in language which
is completely unambiguous. You can’t, for example, as a chemist, have a hypothesis in which you
say, “When I mix A and B, there will be a reaction, and that reaction will be ‘very strong’.” That
just won’t work. You would perform the experiment, see the reaction, and say, “Yeah, that was
very strong.” But the guy next to you says, “Well, it was strong, I'll give you that. But ‘very’
strong? I don’t think so.” You have an argument and at the end of the day, you’ve proved nothing.
So before a hypothesis has a chance of being testable, it must be formulated in language that cannot
be misinterpreted and does not depend on anyone’s opinions. We have a language for that and it’s
called mathematics. So, in the end, it’s really the use of mathematics that separates science from
philosophy.

That said, let’s return to the beginning of this discussion, which was that science used to be
just another branch of philosophy. We might now wonder why. Surely they had mathematics.
Mathematics has been around a lot longer than modern science. Why didn’t they use their math-
ematics and create science? Well, let’s think about this for a moment. What kind of mathematics



did they have? They knew how to count and add and multiply. They knew about prime numbers
and rationals and irrationals. So they had a kind of number theory. Geometry had been around
since before Euclid. Pythagoras dealt with triangles, so they had trigonometry. But all of these are
subjects that deal with static objects. When you study trigonometry, you study a triangle. What
does it do? Nothing. It just sits there. You look at it and deduce properties of it, but nothing
is moving. Nothing is changing. It wasn’t until the advent of calculus that we had a branch of
mathematics capable of describing the dynamic world around us. And everything we care about,
everything we want to say and know about the world around us, relates to how it changes and
what rules it follows as it makes those changes. Think about our rockets and missiles and satellites,
our bridges and buildings and airplanes, everything electronic or magnetic in nature. All of these
things we understand and can control because of calculus. The birth of calculus ushered in this era
of modern science and, since then, calculus has shaped the world in which we live.

We might ask, then, what part of calculus is it that’s performing this miracle for us? Is it the
idea of the derivative? Or the concept of the integral? Or is it just the whole package altogether?
Well, I would like to claim that it is the differential equation. The differential equation is the thing
that allows us to translate our hypotheses about the world into mathematics. For example, suppose
you want to assert that the acceleration of a falling body is constant, independent of the body’s
mass or its height or how long it’s been falling. Well, what you’re really saying is y”” = g. Calculus
then gives you a way to solve this equation. What this means is that, if your assertion is true, then
the falling body ought to behave according to the solution you've just constructed. You can then
observe the falling body and see if you're right.

As another example, imagine a bunch of people at a party, getting wild and crazy. Someone
attaches a spring to the ceiling and puts a weight at the end of the spring. They pull down on
the weight and let it go, watching it bob up and down, giggling and drinking. Just then, someone
comes in and says, “You know what? I'll bet that, at any given moment, the net force on that
weight is proportional to its displacement from equilibrium.”

Everyone looks at him and says, “Huh? What did you say?”

“Well,” he replies, “what I really mean is 3y’ = —ky.”

“Ahhh! Okay, now that makes sense!” Again, calculus gives us a way to solve this equation and
we can observe the bobbing weight and check to see if its motion agrees with the solution. It does,
of course. Everyone’s happy and the newcomer to the party is regarded as a scientific genius.

Now, I want to give one last example and this will segue into what I really want to talk about.
Imagine someone comes to you and says, “Hey, check this out. I've just discovered radioactivity.
See this blob of glowing goo? It’s radioactive. And I’ve invented this box that measures the level
of radioactivity.”

“Great,” you tell him. “That’s fantastic.”

“But wait,” he says. “I’ve observed that the level of radioactivity is decaying over time. And I
would like to postulate that, at any given moment, the rate at which it is decaying is proportional
to the amount of radioactivity present at that moment.” Well, what he’s really saying, of course,
is that ¢/ = ry for some (negative, in this case) constant r. You solve this equation and see that



he’s right. You congratulate him for being such an insightful genius and that’s that.

But there’s a subtle problem with this example. You see, this guy doesn’t really understand the
nature of radioactivity. The blob of goo is radioactive because it contains many tiny radioactive
particles. The radioactivity is decreasing because those particles are leaving. But exactly when
particles will leave, no one can predict —it’s random. And, when they do, exactly how many particles
will leave, no one can predict — it’s random. So the actual level of radioactivity is a random process.
It is not described by the solution to ' = ry. What this solution does describe is the average level of
radioactivity, averaged over many different blobs of goo. The actual radioactivity level has random
perturbations about this average.

In this example, however, the particles are so tiny, and there are so many of them, and they
move so quickly, that these random perturbations cannot be seen. The average behavior is all that
can be observed. So from the point of view of the experimenters, ¥/ = ry is a complete description
of the phenomenon. We see then, that in this example, the subtle difficulty is, on a practical level,
completely irrelevant, and calculus survives as the all-powerful tool of science.

But now enter the biologist. The biologist says, “I am studying this population of micro-
organisms and the population is increasing because they are reproducing. I would like to postulate
that the population obeys the equation 3’ = ry.” All right, fine. So the equation is solved and the
population is observed, and suddenly there’s a problem. Clearly, the population is not behaving
like the solution. It almost does, but there are visible random fluctuations. The physicists tell the
biologist, “Well, I'm sorry. You're wrong.” And the biologist replies, “But I've accurately described
the average behavior. This gives me a pretty accurate qualitative description of what’s going on.”
And the physicists say, “All right, fine. That’s probably the best you can hope for anyway. And it’s
only the qualitative understanding that’s important to you. After all, everybody knows biology’s
not an exact science. At least not as exact as physics.” And that’s the end of that. The biologist
goes on her way and is left with the stigma of being a “soft” scientist.

Well, things get even worse now. Enter the economist. He says, “I’ve been looking at the price
of gold. It seems to go up by about the same percentage every year and I would like to postulate
that the price of gold obeys the equation y’ = ry.” The price of gold, of course, looks nothing like
the solution to this equation. If you’ve ever seen graphs of the price of a stock or an exchange
rate on the news or on the internet, you know that these graphs are wild, zig-zag lines. If you
squint your eyes and look at the general shape of the graph, you might be able to see the solution
that the economist is looking for. So perhaps the economist has accurately described the average
behavior of the price of gold. But this time, the random fluctuations are not only visible, they’re
significant, and constitute a major part of the behavior of the process. More than that, though,
the economist cares about these random fluctuations. He’s not just interested in a qualitative
description of what’s going on. He wants to get his hands on these variations about the average. So
the differential equation is even less effective here, and economics is also labelled a “soft” science.

Now I want to tell you a story about two men in the 1970’s. Their names were Fischer Black
and Myron Scholes. They were looking at this equation, y' = ry, as a model for the price of
a stock. They knew that this could only represent the average behavior of the stock, but they



wanted to study aspects of it beyond the average. To do this, they utilized what was then, and
still is, a relatively modern tool in mathematics: Ito’s stochastic calculus. Ito is the name of the
mathematician who did the major work to develop the calculus, and “stochastic” simply means
“random”. Black and Scholes knew that the simple equation 4’ = ry only described the average
behavior because r was supposed to represent the average rate of change. To get an equation
describing the actual behavior, they wanted to replace r with the actual rate of change of the stock.
There are two problems with this. First, the actual rate of change depends on time. Sometimes
it’s large, sometimes it’s small. Sometimes it’s even negative. So they needed to replace r with a
function of time. Of course, that was no problem. Physicists had been doing that for centuries. But
the other problem is that the actual rate of change of the stock is random. So they needed to replace
r with a random function of time. More precisely, they changed their equation to y' = [r + W (t)]y,
where W (t) is a random function of time, sometimes called “white noise”. In order to solve this
equation, they used Ito’s stochastic calculus. But since the equation involves a random function,
the solution itself is a random function. So now they were left with the daunting task of trying to
compare the actual behavior of the stock with a solution which was only a random function. How
was that to be done?

To better understand this difficulty, let’s take a step back for a moment and ask ourselves, what
kinds of hypotheses can they form based on their solution? With ordinary calculus, they could only
make assertions regarding the average behavior of the stock. With stochastic calculus, they could
make almost any assertion they could imagine. But the catch is that every assertion comes with a
probability. For example, they could say that the stock will go up tomorrow ...with a 15% chance.
Or they could say that there’s a 60% chance the stock will reach the level 100 within the next 6
months. Are these assertions testable? Suppose they say there’s a 15% chance the stock will go
up tomorrow. Well, you watch the stock. Either it goes up or down. Were they right? Who’s to
say? And you can’t go back in time and watch that day again. So, on the surface, it seems these
assertions are not testable and, scientifically speaking, nothing has been accomplished.

Well, now I'd like to tell you about my grandmother. My grandmother is ninety-five years old.
She goes to bed at about seven o’clock. Every night, she watches the five o’clock news while she
eats her dinner. She must have been watching these same news channels for decades now. And she
will tell you (I can’t remember the exact channels, so I'll make them up) that the weatherman on
channel 4 is the best and the guy on channel 5 isn’t worth a hill of beans. How does she know? The
weatherman comes on and says there’s a 60% chance of rain tomorrow. Either it rains or it doesn’t.
Was he right? Who's to say? And you can’t go back in time and watch that day again. But, of
course, he comes on TV day after day, making his claims. And, somehow, my grandmother has
intuitively analyzed all this data and come up with an opinion as to which weatherman is better.

In the same way, the Black-Scholes model can make predictions day after day. Faced with two
competing models, it’s likely that, over time, even my grandmother could tell you which model
was the better one. So our human brains are capable of evaluating probabilistic assertions, given
enough of them, and it would be inaccurate to say that these assertions (or, rather, collections of
such assertions) are not testable. Exactly what is the right algorithm for testing them? Well, my



grandmother appears to know it, at least subconsciously. Perhaps it’s just a matter of time before
someone formalizes it, writes it down, and it appears as a six-step procedure in elementary school
textbooks called the “probabilistic scientific method”.

Are we living in a new and expanding scientific era, in which the mathematics of probability
is as important as traditional, deterministic mathematics? Can this new era harden the “soft”
sciences of yesterday? To help answer this, it should be mentioned that the Black-Scholes method
is now a major part of economics, not just in theory, but in practice. It has literally sparked a
revolution and has mathematized economics (or at least a part of it) in a way that it had not been
mathematized before. There is an extensive and formal mathematical theory of markets and market
completion and arbitrage all built upon Ito’s stochastic calculus. Similarly, stochastic calculus, and
probability in general, has mathematized biology in a revolutionary way. Not only is probability
used to study the physical growth and movements of actual organisms, but also to study the virtual
movement of DNA through the generations. Genes move in a random way through a family tree
and these random “paths” are studied with probabilistic techniques. It may, right now, just be
science fiction, but perhaps one day probability can mathematize subjects such as sociology and
political science. Who knows, maybe someone reading this right now will be the first person to
study politics in the Middle East using stochastic calculus. Will they make peace or predict doom?
We'll just have to wait and see.



