The expectation of a product of Gaussian random variables

Jason Swanson

October 16, 2007

Let $X_{1}, X_{2}, \ldots, X_{2 n}$ be a collection of random variables which are jointly Gaussian. Assume that each X_{j} has mean zero and variance one. In this note, we will derive a formula for the expectation of their product in terms of their pairwise covariances. To state the formula, we introduce the following notation. A partition of a set S is a collection of pairwise disjoint, nonempty subsets of S whose union is S. Let \mathcal{A} be a partition of $\{1,2, \ldots, 2 n\}$. We will call \mathcal{A} a pair-partition if each set $A \in \mathcal{A}$ has exactly two elements. (In particular, this means \mathcal{A} consists of exactly n sets.) Let $\mathbb{A}=\mathbb{A}^{n}$ denote the set of all pair-partitions of $\{1,2, \ldots, 2 n\}$. We shall show that

$$
E\left[\prod_{j=1}^{2 n} X_{j}\right]=\sum_{\mathcal{A} \in \mathbb{A}} \prod_{\{i, j\} \in \mathcal{A}} \rho_{i j},
$$

where $\rho_{i j}=E\left[X_{i} X_{j}\right]$. For example,

$$
E\left[X_{1} X_{2} X_{3} X_{4}\right]=\rho_{12} \rho_{34}+\rho_{13} \rho_{24}+\rho_{14} \rho_{23},
$$

and

$$
\begin{aligned}
E\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right]= & \rho_{12} \rho_{34} \rho_{56}+\rho_{12} \rho_{35} \rho_{46}+\rho_{12} \rho_{36} \rho_{45} \\
& +\rho_{13} \rho_{24} \rho_{56}+\rho_{13} \rho_{25} \rho_{46}+\rho_{13} \rho_{26} \rho_{45} \\
& +\rho_{14} \rho_{23} \rho_{56}+\rho_{14} \rho_{25} \rho_{36}+\rho_{14} \rho_{26} \rho_{35} \\
& +\rho_{15} \rho_{23} \rho_{46}+\rho_{15} \rho_{24} \rho_{36}+\rho_{15} \rho_{26} \rho_{34} \\
& +\rho_{16} \rho_{23} \rho_{45}+\rho_{16} \rho_{24} \rho_{35}+\rho_{16} \rho_{25} \rho_{34} .
\end{aligned}
$$

To prove this formula, we begin with the following lemma.
Lemma 1 If $X_{1}, \ldots, X_{2 n}$ are jointly Gaussian with $E X_{j}=0$ and $E X_{j}^{2}=1$, then

$$
E\left[\prod_{j=1}^{2 n} X_{j}\right]=\frac{1}{n} \sum_{i<j} \rho_{i j} E\left[\prod_{k \notin\{i, j\}} X_{k}\right],
$$

where $\rho_{i j}=E\left[X_{i} X_{j}\right]$.

Proof. Let $W_{1}, \ldots, W_{2 n}$ be dependent Brownian motions with covariation $\left[W_{i}, W_{j}\right]_{t}=\rho_{i j} t$. Using Itô's formula, we have

$$
\begin{aligned}
E\left[X_{1} \cdots X_{2 n}\right] & =E\left[W_{1}(1) \cdots W_{2 n}(1)\right] \\
& =\sum_{i<j} \int_{0}^{1} E\left[\prod_{k \notin\{i, j\}} W_{k}(s)\right] \rho_{i j} d s \\
& =\sum_{i<j} \int_{0}^{1}(\sqrt{s})^{2 n-2} E\left[\prod_{k \notin\{i, j\}} X_{k}\right] \rho_{i j} d s \\
& =\sum_{i<j} \frac{1}{n} E\left[\prod_{k \notin\{i, j\}} X_{k}\right] \rho_{i j},
\end{aligned}
$$

completing the proof.
We can now prove the general formula.
Theorem 2 If $X_{1}, \ldots, X_{2 n}$ are jointly Gaussian with $E X_{j}=0$ and $E X_{j}^{2}=1$, then

$$
\begin{equation*}
E\left[\prod_{j=1}^{2 n} X_{j}\right]=\sum_{\mathcal{A} \in \mathbb{A}} \prod_{\{i, j\} \in \mathcal{A}} \rho_{i j}, \tag{1}
\end{equation*}
$$

where $\rho_{i j}=E\left[X_{i} X_{j}\right]$.
Proof. If $n=1$, the claim is trivial. Suppose the formula holds for $n-1$. For each i and j, define $\mathbb{A}_{i j}=\left\{\mathcal{A} \in \mathbb{A}^{n}:\{i, j\} \in \mathcal{A}\right\}$ and $\mathbb{B}_{i j}=\left\{\mathcal{A} \backslash\{\{i, j\}\}: \mathcal{A} \in \mathbb{A}_{i j}\right\}$. Note that $\mathbb{B}_{i j}$ is simply the set of pair-partitions of $\{1, \ldots, 2 n\} \backslash\{i, j\}$. By Lemma 1 and the inductive hypothesis,

$$
\begin{aligned}
E\left[\prod_{j=1}^{2 n} X_{j}\right] & =\frac{1}{n} \sum_{i<j} \rho_{i j} E\left[\prod_{k \notin\{i, j\}} X_{k}\right] \\
& =\frac{1}{n} \sum_{i<j} \rho_{i j} \sum_{\mathcal{A} \in \mathbb{B}_{i j}} \prod_{\{m, n\} \in \mathcal{A}} \rho_{m n} \\
& =\frac{1}{n} \sum_{i<j} \sum_{\mathcal{A} \in \mathbb{A}_{i j}} \prod_{\{m, n\} \in \mathcal{A}} \rho_{m n} .
\end{aligned}
$$

Since each partition in \mathbb{A}^{n} is counted exactly n times in the above double sum, this completes the proof.

Corollary 3 If $X_{1}, \ldots, X_{2 n}$ are jointly Gaussian with $E X_{j}=0$ and $E X_{j}^{2}=1$, then

$$
E\left[\prod_{j=1}^{2 n} X_{j}\right]=\sum_{k=2}^{2 n} \rho_{1 k} E\left[\prod_{\ell \notin\{1, k\}} X_{\ell}\right],
$$

where $\rho_{1 k}=E\left[X_{1} X_{k}\right]$.

Proof. By Theorem 2,

$$
\begin{aligned}
E\left[\prod_{j=1}^{2 n} X_{j}\right] & =\sum_{\mathcal{A} \in \mathbb{A}} \prod_{\{i, j\} \in \mathcal{A}} \rho_{i j} \\
& =\sum_{k=2}^{2 n} \sum_{\mathcal{A} \in \mathbb{A}_{1 k}} \prod_{\{i, j\} \in \mathcal{A}} \rho_{i j} \\
& =\sum_{k=2}^{2 n} \rho_{1 k} \sum_{\mathcal{A} \in \mathbb{B}_{1 k}} \prod_{\{i, j\} \in \mathcal{A}} \rho_{i j} .
\end{aligned}
$$

Since $\mathbb{B}_{1 k}$ is the set of pair-partitions of $\{1, \ldots, 2 n\} \backslash\{1, k\}$, a second application of Theorem 2 completes the proof.

As an example of the use of Corollary 3, we compute the following:

$$
\begin{aligned}
E\left[X_{1} X_{2}^{2} X_{3} X_{4}^{2}\right] & =2 \rho_{12} E\left[X_{2} X_{3} X_{4}^{2}\right]+\rho_{13} E\left[X_{2}^{2} X_{4}^{2}\right]+2 \rho_{14} E\left[X_{2}^{2} X_{3} X_{4}\right] \\
& =2 \rho_{12}\left(\rho_{23}+2 \rho_{24} \rho_{34}\right)+\rho_{13}\left(1+2 \rho_{24}^{2}\right)+2 \rho_{14}\left(\rho_{34}+2 \rho_{23} \rho_{24}\right) \\
& =2 \rho_{12} \rho_{23}+4 \rho_{12} \rho_{24} \rho_{34}+\rho_{13}+2 \rho_{13} \rho_{24}^{2}+2 \rho_{14} \rho_{34}+4 \rho_{14} \rho_{23} \rho_{24}
\end{aligned}
$$

As can be seen, Corollary 3 provides an iterative method for computing this expectation.
The assumption that each X_{j} has variance 1 is unnecessary.
Corollary 4 If $Y_{1}, \ldots, Y_{2 n}$ are jointly Gaussian, then

$$
E\left[\prod_{j=1}^{2 n} Y_{j}\right]=\sum_{k=2}^{2 n} E\left[Y_{1} Y_{k}\right] E\left[\prod_{\ell \notin 1, k\}} Y_{\ell}\right]
$$

provided $E Y_{j}=0$ for all j.
Proof. Let $\sigma_{j}^{2}=E Y_{j}^{2}, X_{j}=\sigma_{j}^{-1} Y_{j}$, and $\rho_{i j}=E\left[X_{i} X_{j}\right]$. Apply Corollary 3.

Acknowledgments

Thanks go to Wenbo Li for bringing Equation (1) to my attention.

