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Notation

N The set of natural numbers, i.e. N = {1, 2, 3, . . .}
Z The set of integers, i.e. Z = {. . . –3, -2, -1, 0, 1, 2, 3, . . .}

∈ Is an element of

∉ Is not an element of

∃ There exists

∀ For all

A ∪ B The union of A and B, i.e. A ∪ B = {x : x ∈ A or x ∈ B}
A ∩ B The intersection of A and B, i.e. A ∩ B = {x : x ∈ A and x ∈ B}
A – B The relative complement of B in A, i.e. A – B = {x : x ∈ A and x ∉ B}

Ai
i m

n

=
∪ The union as i goes from m to n of Ai, i.e. Ai

i m

n

=
∪ = {x : ∃ i ∈ N, m ≤ i ≤ n such that x ∈ Ai}

f : A→B A function from A to B, i.e. a rule that assigns an element f (a) ∈ B to every element a ∈ A
P (A) The power set of A, i.e. the set of all subsets of A

∅ The null set, i.e. the set with no elements.
x A vector, i.e. x = {x1, x2, . . . , xn} for some n ∈ N
00 The zero vector, i.e. 0 = (0, 0, 0, . . . , 0)
Ak The set of k-tuples in A, i.e. Ak = {x = (x1, x2, . . . , xk) : xi ∈ A for all i}

xi
i m

n

=
∑ The sum as i goes from m to n of xi, i.e. xi

i m

n

=
∑ = xm + xm+1 + . . . + xn



Part I

The Game Space,
The Winners, and

The Fundamental Positions



Two players sit across from one another at a table. On the table are several rows of pennies.
Turns alternate. The player with the turn selects a row, takes pennies from it, and removes them
from the table. The player may take the whole row or part of the row, but must take at least one
penny. The player who takes the last penny loses.

The question that led to the writing of this paper is the following: Adam and Brian are playing
the penny game with four rows of pennies. They've decided to put 9 pennies in the first row, 18
pennies in the second, and 34 pennies in the third. They agree that if Adam can go first, Brian
can decide how many pennies to put in the fourth row. How many pennies should Brian put in
the fourth row to ensure his victory?

Questions that come to mind are: What does it mean to "ensure victory"? If this can be
adequately defined, is there a solution? If there is a solution, is it unique? This paper will answer
these questions and provide a mathematical framework for understanding the general game with
any number of rows containing any number of pennies.

To begin with, let us define the set which will model The Penny Game.

Definition 1
Let N be the set of non-negative integers. If G = Nk for some k ∈ Z, k ≥ 2, then G is called
the game space of order k.

In the original question, Adam and Brian are playing in the game space of order 4, G = N4. If
Brian places 12 pennies in the fourth row, then the initial board setup would be (9, 18, 34, 12). If
Adam begins the game by taking all 9 pennies from the first row, the resulting position would be
(0, 18, 34, 12).

Note that the order of the game space depends only on the initial number of rows in the game
and not on the number of rows remaining at any later time. The order of the game space remains
constant from the start to the finish of the game.

In the penny game certain positions are related in ways that others are not. For example,
(9, 18, 34, 12) and (9, 18, 18, 12) are related in that one can be created from the other in one turn
of the game; (9, 18, 34, 12) and (0, 18, 34, 9) are not.

Definition 2
Let G be the game space of order k. Let x, y ∈ G. If ∃ j ∈ Z, 1 ≤ j ≤ k such that xj > yj and

xi = yi for i ≠ j, then y is a reduction of x.

In our analysis of The Penny Game, it will be necessary to consider all possible moves available
to our opponent at a given time. This is equivalent to considering the complete set of reductions
of a given position.

Definition 3
Let G be the game space of order k. The reduction function, σ : G → P (G) is defined as:

σ (x) = {y ∈ G : y is a reduction of x}.

Note that for any game space, G, σ (x) = ∅ if and only if x = 0.



The following positions play a critical role in the theory of the penny game.

Definition 4

Let G be the game space of order k. Let x ∈ G. If xi
i

k

=
=
∑ 1

1

, then x is a unit.

Units have the property that if one is on the table and it is your opponent's turn to play, you win.
Other positions bear similar properties. Consider the position (2, 2, 0) ∈ G = N3. If this is on the
table and it is your opponent's turn to play, then no matter what he does, you can make a unit,
and thereby win. Mathematically speaking, if x = (2, 2, 0), then ∀ y ∈ σ (x), σ (y) contains a
unit. Let us call all such x with this property "first level winners". Now let us define "second
level winners" as any x such that ∀ y ∈ σ (x), σ (y) contains a unit or a first level winner.
Continuing in this way, we can define n-th level winners for any n ∈ N. Using this concept, if

the position on the table is a unit or an n-th level winner for some n ∈ N and it is your
opponent's turn to play, then victory is ensured.

Definition 5
Let G be the game space of order k. The set of winners of G is defined as:
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Before we investigate the properties of this set, let us introduce an alternative concept. The
Penny Game is sometimes played with the objective reversed, i.e. whoever takes the last penny
wins. If this is the goal, units are no longer "winners", but 0 is. If we base our recursive
construction of the set of "winners" on 0 instead of the units, we obtain a different, yet analogous
set of winners.

Definition 6
Let G be the game space of order k. The set of contrary winners of G is defined as:
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Note that the condition σ (x) ≠ ∅ has been omitted. This is because σ (x) = ∅ is equivalent to
x = 0. In other words, we have allowed 0 to be an element of W'n for all n.



Now, not only do W and W' share many of the same properties, but many of the same elements
as well. In fact, only a finite number of elements are not common to both sets. Because these sets
are so similar, it will be useful to discuss and prove properties of only one, which, for
mathematical simplicity, will be W'. Therefore, in order to provide a complete understanding of
W, let us specify the exact relationship between W and W'. Before we do this, we will need some
preliminaries.

Lemma 1
Let G be the game space of order k and x ∈ G. Then

(i) if σ (x) ≠ ∅ and ∀ y ∈ σ (x), σ (y) ∩ W ≠ ∅, then x ∈ W; and
(ii) if ∀ y ∈ σ (x), σ (y) ∩ W' ≠ ∅, then x ∈ W'.

Proof
Part (i): Let G be the game space of order k, x ∈ G, σ (x) ≠ ∅, and ∀ y ∈ σ (x),

σ (y) ∩ W ≠ ∅. Let h = |σ (x)| = xi
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Part (ii): Let G be the game space of order k, x ∈ G, and ∀ y ∈ σ (x), σ (y) ∩ W' ≠ ∅. If

σ (x) = ∅, then x = 0 ∈ W0' ⊂ W'. Assume σ (x) ≠ ∅. Let h = |σ (x)| = xi
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σ (x) = {a1, a2, . . . , ah}. For each ai, find bi ∈ σ (ai) ∩ W'. Then, for each bi ∈ W' = W'n
n=

∞

0
∪ ,

find Ni ∈ Z, Ni ≥ 0 such that bi ∈ W'N i
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∪  ≠ ∅. Thus, by definition, x ∈ W'N + 1 ⊂ W'. n

The above lemma is simply a reformulation of the definition of the set of (contrary) winners, but
with the cumbersome usage of Wn and W'n eliminated.

Definition 7
Let G be the game space of order k. The set of fundamental positions is

F = {x ∈ G : ∀ i ∈ Z, 1 ≤ i ≤ k, xi ≤ 1}. The odd positions are Fo = {x ∈ F : xi
i
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 is odd}.

The even positions are Fe = F – Fo.

Examples of fundamental positions are (1, 0, 0, 1, 1) which is odd, (1, 1) which is even, and
(1, 1, 1, 0) which is odd.



Lemma 2
Let G be the game space of order k, F the set of fundamental positions, and x ∈ G. Then
(i) if x ∈ Fo, then σ (x) ⊂ Fe; and
(ii) if x ∈ Fe, then σ (x) ⊂ Fo.

Proof
Part (i): Let G be the game space of order k and x ∈ Fo ⊂ G. Since 0 ∉ Fo, σ (x) ≠ ∅. Let
y ∈ σ (x) be arbitrary. Find j ∈ Z, 1 ≤ j ≤ k such that xj > yj and xi = yi for i ≠ j. Since

x ∈ Fo ⊂ F, xj ≤ 1, i.e. xj =1 and yj = 0. Thus,
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is even and y ∈ Fe. Since y was arbitrary, σ (x) ⊂ Fe.

Part (ii): Let G be the game space of order k and x ∈ Fe ⊂ G. If σ (x) = ∅, then σ (x) ⊂ Fo

trivially. Assume σ (x) ≠ ∅. Let y ∈ σ (x) be arbitrary. Find j ∈ Z, 1 ≤ j ≤ k such that xj > yj

and xi = yi for i ≠ j. Since x ∈ Fe ⊂ F, xj ≤ 1, i.e. xj =1 and yj = 0. Thus,
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is odd and y ∈ Fo. Since y was arbitrary, σ (x) ⊂ Fo. n

The above lemma states that the reduction of an odd position is even and the reduction of an
even position is odd.

Lemma 3
Let G be the game space of order k, W the set of winners, W' the set of contrary winners, and
F the set of fundamental positions. Then

(i) W ∩ F = Fo, and
(ii) W' ∩ F = Fe.

Proof
Part (i): First, note that since W0 is the set of units, W0 ∩ F ⊂ Fo. Now let N be an arbitrary
non-negative integer and assume that Wn ∩ F ⊂ Fo for all n ≤ N. Let x ∈ WN + 1 ∩ F be
arbitrary. Suppose x ∉ Fo, i.e. x ∈ Fe. Since 0 ∉ W, σ (x) ≠ ∅. Choose y ∈ σ (x). By

lemma 2, y ∈ Fo. Since x ∈ WN + 1, ∃ z ∈ σ (y) ∩ Wi
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∪ , i.e. z ∈ Wn for some n ≤ N. By

lemma 2, z ∈ Fe ⊂ F. Thus, by hypothesis, z ∈ Wn ∩ F ⊂ Fo, i.e. z ∈ Fe ∩ Fo = ∅. Hence, by
contradiction, x ∈ Fo. Since x ∈ WN + 1 ∩ F was arbitrary, WN + 1 ∩ F ⊂ Fo. Therefore, by
induction, Wn ∩ F ⊂ Fo for all n ≥ 0, i.e.

W F W F W F Fo∩ =
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Now define Fo (q) = {x ∈ Fo : xi
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= q}. Note that Fo (1) = W0 = W0 ∩ F ⊂ W ∩ F. Now let

N ∈ N be arbitrary and assume that Fo (n) ⊂ W ∩ F for all n ≤ N. If Fo (N + 1) = ∅, then,

trivially, Fo (N + 1) ⊂ W ∩ F. Let Fo (N + 1) ≠ ∅ and let x ∈ Fo (N + 1) ⊂ Fo ⊂ F be
arbitrary. Since 0 ∉ Fo, σ (x) ≠ ∅. Let y ∈ σ (x) be arbitrary. By lemma 2, y ∈ Fe. Since
x ∈ F and x is not a unit, 0 ∉ σ (x), i.e. σ (y) ≠ ∅. Choose z ∈ σ (y). Let

n = z xi
i

k

i
i

k

= =
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= N + 1. Since, by lemma 2, z ∈ Fo, it follows that z ∈ Fo (n). Since n ≤ N,

then by hypothesis, z ∈ W ∩ F ⊂ W. Since y was arbitrary, then by lemma 1, x ∈ W. Hence,
x ∈ W ∩ F and, since x was arbitrary, Fo (N + 1) ⊂ W ∩ F.

Thus, by induction, Fo (q) ⊂ W ∩ F for all q ∈ N. Since Fo = Fo q
q

b g
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∪ , Fo ⊂ W ∩ F, i.e.

W ∩ F = Fo.

Part (ii): First, note that since W'0 = {0}, W'0 ∩ F ⊂ Fe. Now let N be an arbitrary non-
negative integer and assume that W'n ∩ F ⊂ Fe for all n ≤ N. Let x ∈ W'N + 1 ∩ F be arbitrary.
Suppose x ∉ Fe, i.e. x ∈ Fo. Since 0 ∉ Fo, σ (x) ≠ ∅. Choose y ∈ σ (x). By lemma 2, y ∈ Fe.

Since x ∈ W'N + 1, ∃ z ∈ σ (y) ∩ W'i
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∪ , i.e. z ∈ W'n for some n ≤ N. Now by lemma 2,

z ∈ Fo ⊂ F. Thus, by hypothesis, z ∈ W'n ∩ F ⊂ Fe, i.e. z ∈ Fo ∩ Fe = ∅. Hence, by
contradiction, x ∈ Fe. Since x ∈ W'N + 1 ∩ F was arbitrary, W'N + 1 ∩ F ⊂ Fe. Therefore, by
induction, Wn ∩ F ⊂ Fe for all n ≥ 0, i.e.
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Now define Fe (q) = {x ∈ Fe : xi
i
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= q}. Note that Fe (0) = W'0 = W'0 ∩ F ⊂ W' ∩ F. Now

let N be an arbitrary non-negative integer and assume that Fe (n) ⊂ W' ∩ F for all n ≤ N. If
Fe (N + 1) = ∅, then, trivially, Fe (N + 1) ⊂ W' ∩ F. Let Fe (N + 1) ≠ ∅ and let
x ∈ Fe (N + 1) ⊂ Fe ⊂ F be arbitrary. Since N + 1 ≥ 1, x ≠ 0, i.e. σ (x) ≠ ∅. Let y ∈ σ (x) be
arbitrary. By lemma 2, y ∈ Fo. Since x ∈ F and x is not a unit, 0 ∉ σ (x), i.e. σ (y) ≠ ∅.

Choose z ∈ σ (y). Let n = z xi
i
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= N + 1. Since, by lemma 2, z ∈ Fe, it follows that

z ∈ Fe (n). Since n ≤ N, then by hypothesis, z ∈ W' ∩ F ⊂ W'. Since y was arbitrary, then by
lemma 1, x ∈ W'. Hence, x ∈ W' ∩ F and, since x was arbitrary, Fe (N + 1) ⊂ W' ∩ F.

Thus, by induction, Fe (q) ⊂ W' ∩ F for all non-negative integers q. Since Fe = Fe q
q
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Fe ⊂ W' ∩ F, i.e. W' ∩ F = Fe. n

The above lemma states that an odd position is a winner and an even position is a contrary
winner. It also states that an odd position is not a contrary winner and an even position is not a
winner.



Lemma 4
Let G be the game space of order k and F the set of fundamental positions. If x ∈ G – F, then
σ (x) ∩ Fo = ∅ if and only if σ (x) ∩ Fe = ∅.

Proof
Let G be the game space of order k, F the set of fundamental positions, and x ∈ G – F.
Assume σ (x) ∩ Fo = ∅.

Suppose σ (x) ∩ Fe ≠ ∅, i.e. ∃ y ∈ σ (x) ∩ Fe. Since y ∈ σ (x), find j ∈ N, 1 ≤ j ≤ k such

that xj > yj and xi = yi for i ≠ j. Since x ∉ F and y ∈ Fe ⊂ F, xj ≥ 2. Define
z = {z1, z2, . . . , zk} ∈ F such that zj = 1 – yj and zi = yi for i ≠ j. Then xj > zj and xi = yi for
i ≠ j, i.e. z ∈ σ (x). Also,
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 is odd, i.e. z ∈ Fo. Hence, z ∈ σ (x) ∩ Fo = ∅; so by

contradiction, σ (x) ∩ Fe = ∅.

A similar argument proves the converse. Assume σ (x) ∩ Fe = ∅. Suppose σ (x) ∩ Fo ≠ ∅,
i.e. ∃ y ∈ σ (x) ∩ Fo. Since y ∈ σ (x), find j ∈ N, 1 ≤ j ≤ k such that xj > yj and xi = yi for

i ≠ j. Since x ∉ F and y ∈ Fo ⊂ F, xj ≥ 2. Define z = {z1, z2, . . . , zk} ∈ F such that zj = 1 – yj

and zi = yi for i ≠ j. Then xj > zj and xi = yi for i ≠ j, i.e. z ∈ σ (x). Also,
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 is even, i.e. z ∈ Fe. Hence, z ∈ σ (x) ∩ Fe = ∅; so by contradiction,

σ (x) ∩ Fo = ∅. n

The above lemma states that the reductions of a non-fundamental position either contain both
odd and even positions or neither.

With these preliminaries, we can now state the exact relationship between W and W'.

Theorem 1
Let G be the game space of order k, W the set of winners, W' the set of contrary winners, and
F the set of fundamental positions. Then
(i) W – W' = Fo

(ii) W' – W = Fe

Proof
Part (i): Let x ∈ W0 – W' be arbitrary. Since x ∈ W0, x is a unit, i.e. x ∈ Fo. Since x was
arbitrary, W0 – W' ⊂ Fo. Now let N be an arbitrary non-negative integer and assume that
Wn – W' ⊂ Fo for all n ≤ N.



Let x ∈ WN + 1 – W' be arbitrary. Suppose x ∉ Fo. Since x ∈ WN + 1 ⊂ W, x ≠ 0, i.e. σ (x) ≠ ∅.
Let y ∈ σ (x) be arbitrary.

Assume y ∈ Fo. Then, since x ∈ WN + 1 and y ∈ σ (x), ∃ z ∈ σ (y) ∩ Wi
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y ∈ Fo, by lemma 2, σ (y) ⊂ Fe. Thus, z ∈ Fe ⊂ F. Also, z ∈ Wi
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∪  ⊂ W, i.e.

z ∈ W ∩ F = Fo, by lemma 3. Hence, z ∈ Fe ∩ Fo = ∅. So, by contradiction, y ∉ Fo.

Assume y ∈ Fe. By supposition, x ∉ Fo. Since x ∈ W, by lemma 3, x ∉ Fe. Thus, x ∉ F.
Therefore, by lemma 4, since y ∈ σ (x) ∩ Fe, σ (x) ∩ Fo ≠ ∅. Find y' ∈ σ (x) ∩ Fo. Then,

since x ∈ WN + 1 and y' ∈ σ (x), ∃ z ∈ σ (y') ∩ Wi
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σ (y) ⊂ Fe, Thus, z ∈ Fe ⊂ F. Also, z ∈ Wi
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∪  ⊂ W, i.e. z ∈ W ∩ F = Fo, by lemma 3.

Hence, z ∈ Fe ∩ Fo = ∅. So, by contradiction, y ∉ Fe.

Therefore, since Fo ∪ Fe = F, y ∉ F. Now, since x ∈ WN + 1, find z ∈ σ (y) ∩ Wi
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Assume z ∈ Fo. Then, since y ∉ F, by lemma 4, ∃ z' ∈ σ (y) ∩ Fe. By lemma 3, part (ii),
Fe ⊂ W', i.e. z' ∈ W'. Thus, σ (y) ∩ W' ≠ ∅.

Assume z ∉ Fo. Then, since z ∈ Wn for some n ≤ N, then by hypothesis, z ∈ W'. Hence,
σ (y) ∩ W' ≠ ∅.

Since either z ∈ Fo or z ∉ Fo, it follows that σ (y) ∩ W' ≠ ∅. Since y was arbitrary, then by
lemma 1, part (ii), x ∈ W'. But we have defined x ∈ WN + 1 – W', i.e. x ∉ W'. Thus, by
contradiction, x ∈ Fo.

Since x was arbitrary, WN + 1 – W' ⊂ Fo. Hence, by induction, Wn – W' ⊂ Fo for all non-
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Now let x ∈ Fo be arbitrary. By lemma 3, part (i), x ∈ W and x ∉ W', i.e. x ∈ W – W'. Since
x was arbitrary, Fo ⊂ W – W'. Therefore, W – W' = Fo.

Part (ii): First, note that W'0 – W = {0} ⊂ Fe. Now let N be an arbitrary non-negative integer
and assume that W'n – W ⊂ Fe for all n ≤ N.

Let x ∈ W'N + 1 – W be arbitrary. Suppose x ∉ Fe. Since x ∉ Fe, x ≠ 0, i.e. σ (x) ≠ ∅. Let
y ∈ σ (x) be arbitrary.



Assume y ∈ Fe. Then, since x ∈ W'N + 1 and y ∈ σ (x), ∃ z ∈ σ (y) ∩ W'i
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y ∈ Fe, by lemma 2, σ (y) ⊂ Fo. Thus, z ∈ Fo ⊂ F. Also, z ∈ W'i
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z ∈ W' ∩ F = Fe, by lemma 3. Hence, z ∈ Fo ∩ Fe = ∅. So, by contradiction, y ∉ Fe.

Assume y ∈ Fo. By supposition, x ∉ Fe. Since x ∈ W', by lemma 3, x ∉ Fo. Thus, x ∉ F.
Therefore, by lemma 4, since y ∈ σ (x) ∩ Fo, σ (x) ∩ Fe ≠ ∅. Find y' ∈ σ (x) ∩ Fe. Then,

since x ∈ W'N + 1 and y' ∈ σ (x), ∃ z ∈ σ (y') ∩ W'i
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σ (y) ⊂ Fo, Thus, z ∈ Fo ⊂ F. Also, z ∈ W'i
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∪  ⊂ W', i.e. z ∈ W' ∩ F = Fe, by lemma 3.

Hence, z ∈ Fo ∩ Fe = ∅. So, by contradiction, y ∉ Fo.

Therefore, since Fe ∪ Fo = F, y ∉ F. Now, since x ∈ W'N + 1, find z ∈ σ (y) ∩ W'i
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Assume z ∈ Fe. Then, since y ∉ F, by lemma 4, ∃ z' ∈ σ (y) ∩ Fo. By lemma 3, part (i),
Fo ⊂ W, i.e. z' ∈ W. Thus, σ (y) ∩ W ≠ ∅.

Assume z ∉ Fe. Then, since z ∈ W'n for some n ≤ N, then by hypothesis z ∈ W. Hence,
σ (y) ∩ W ≠ ∅.

Since either z ∈ Fe or z ∉ Fe, it follows that σ (y) ∩ W ≠ ∅. Since y was arbitrary and since
σ (x) ≠ ∅, then by lemma 1, part (i), x ∈ W. But we have defined x ∈ W'N + 1 – W, i.e.
x ∉ W. Thus, by contradiction, x ∈ Fe.

Since x was arbitrary, W'N + 1 – W ⊂ Fe. Hence, by induction, W'n – W ⊂ Fe for all non-

negative integers n. Therefore, W W W' W W' W Fe'− =
F
HG

I
KJ − = − ⊂

=

∞

=

∞

i
i

i
i0 0

∪ ∪b g .

Now let x ∈ Fe be arbitrary. By lemma 3, part (ii), x ∈ W' and x ∉ W, i.e. x ∈ W' – W. Since
x was arbitrary, Fe ⊂ W' – W. Therefore, W' – W = Fe. n

Part (i) of the above theorem states that if a position is a winner, but not a contrary winner, then
it is fundamental and, in particular, odd. Part (ii) states that if a position is a contrary winner, but
not a winner, then it is fundamental and, in particular, even. The following conclusion can be
immediately drawn: if a position is not fundamental, then it is either both a winner and a contrary
winner, or it is neither. This fact is stated in the following corollary.



Corollary 1
Let G be the game space of order k, W the set of winners, W' the set of contrary winners, and
F the set of fundamental positions. If x ∉ F, then x ∈ W if and only if x ∈ W'.

Proof
Let x ∉ F and x ∈ W. Suppose x ∉ W'. Then x ∈ W – W' = Fo ⊂ F. Thus, by contradiction,
x ∈ W'.

Let x ∉ F and x ∈ W'. Suppose x ∉ W. Then x ∈ W' – W = Fe ⊂ F. Thus, by contradiction,
x ∈ W. n



Part II

Exclusive Or and
The General Solution



In the previous section, the exact relationship between winners and contrary winners was
specified. For this reason, we need only concern ourselves with one of these categories, which,
as stated before, for mathematical simplicity, will be contrary winners. Hence, the adjective
"contrary" will be dropped from the informal part of this discussion. Any reference (not in a
definition, lemma, theorem, or corollary) from this point on to a winner will be meant to be
either a winner or a contrary winner.

Now, the set of winners was defined with the intention that if you can create a winner in the
course of play, victory is ensured. This is because once you create a winner, you can continue to
create winners indefinitely. Since the game must end in a finite number of moves, it will end
with you creating a winner. Some questions, however, remain unanswered. If the initial position
of the game is not a winner, can you be guaranteed that you will be able to create a winner from
it? If you create a winner, could it be possible for your opponent to create from it a winner?

If the answer to the first question is yes, more questions follow. What are the conditions under
which a non-winner cannot be transformed through reduction into a winner? Under what
conditions can the resulting positions be transformed into winners? How can we augment our set
of winners to include positions that cannot be transformed through reduction into winners, yet all
their reductions can be so transformed?

Also, if the answer to the second question is yes, even more questions follow. If a winner can be
transformed into a winner, then who will ultimately win the game? Is the ultimate winner
determined only by the initial setup of the game or do the moves made by each player affect who
will reach the zero position first? How should we modify our definition of the set of winners to
take these possibilities into account?

Fortunately, the answer to both of these questions is no, as is demonstrated in the following
theorem.

Theorem 2
Let G be the game space of order k, W' the set of contrary winners, and x ∈ G. Then x ∈ W'
if and only if σ (x) ∩ W' = ∅.

Proof
Let x ∈ W'0, i.e. x = 0. Then σ (x) = ∅, i.e. σ (x) ∩ W' = ∅. Now let N be an arbitrary non-
negative integer and assume that for all n ≤ N, x ∈ W'n implies σ (x) ∩ W' = ∅.

Let x ∈ W'N + 1 be arbitrary. Suppose σ (x) ∩ W' ≠ ∅. Find y ∈ σ (x) ∩ W'. Since x ∈ W'N + 1

and y ∈ σ (x), ∃ z ∈ σ (y) ∩ W'i
i

N

=

F
HG

I
KJ0

∪ , i.e. z ∈ Wn for some n ≤ N. Thus, by hypothesis,

σ (z) ∩ W' = ∅. But y ∈ W', i.e. y ∈ W'm for some non-negative integer m. Since z ∈σ (y),

σ (y) ≠ ∅, i.e. m ≠ 0. Thus, by definition 6, σ (z) ∩ W'i
i

m

=

−F
HG

I
KJ0

1∪  ≠ ∅, i.e. σ (z) ∩ W' ≠ ∅.

Hence, by contradiction, σ (x) ∩ W' = ∅. Therefore, by induction, for all non-negative
integers n, x ∈ W'n implies σ (x) ∩ W' = ∅, i.e. if x ∈ W', then σ (x) ∩ W' = ∅.



Now, define G (n) = {x ∈ G : xi
i

k

=
∑

1

= n}. First note that if x ∈ G (0), then x = 0 ∈ W'. Now

let N be an arbitrary non-negative integer and assume that for all n ≤ N, if x ∈ G (n) and
σ (x) ∩ W' = ∅, then x ∈ W'.

Let x ∈ G (N + 1) and σ (x) ∩ W' = ∅. Suppose x ∉ W'. Then, by lemma 1, part (ii),
∃ y ∈ σ (x) such that σ (y) ∩ W' = ∅. Since y is a reduction of x, y ∈ G (n) for some n ≤ N.
Hence, by hypothesis, y ∈ W'. But y ∈ σ (x) as well and σ (x) ∩ W' = ∅. So, by
contradiction, x ∈ W'.

Therefore, by induction, for all non-negative integers n, if x ∈ G (n) and σ (x) ∩ W' = ∅,

then x ∈ W'. Since G = G( )n
n=

∞

0
∪ , it follows that σ (x) ∩ W' = ∅ implies x ∈ W'. n

This theorem answers the remaining questions in the third paragraph of this paper, namely, is
there a solution and, if so, is it unique. Let's consider the original problem with Adam and Brian.
Brian is looking for some non-negative integer n such that x = (9, 18, 34, n) ∈ W'. (He actually
wants it to be in W, but since the solution won't be a fundamental position, it will also be in W'.)
Let's assume for the moment that no solution exists. Then, by the preceding theorem, all such
positions, x = (9, 18, 34, n), will have a reduction in W'. None of these reductions will involve
reducing the fourth row, since this will produce another position of the same form, none of
which, by assumption, are in W'. Now, there are 9 + 18 + 34 = 61 reductions using the first three
rows. Thus, at least two of (9, 18, 34, 0) through (9, 18, 34, 61) will be able to be made into
winners by removing the same number of pennies from the same row. This will produce two
winners that differ only in their fourth row, i.e. two winners, one of which is a reduction of the
other. The preceding theorem shows that this is not possible. Hence, assuming there is no
solution has produced a logical contradiction, i.e. there is a solution.

The uniqueness of the solution follows much easier. Suppose there are numbers a and b such that
(9, 18, 34, a) and (9, 18, 34, b) are both winners. If a ≠ b, then one is greater. Suppose a > b.
Then (9, 18, 34, b) is a reduction of (9, 18, 34, a) which is not possible since they are both
winners. Thus a = b and the solution is unique. These facts are stated and proved formally in the
following theorem.

Theorem 3

Let G be the game space of order k and W' the set of contrary winners. If ai i

kl q =

−

1

1
 are non-

negative integers, then there exists a unique non-negative integer ak such that
a = {a1, a2, . . . , ak} ∈ W'.

Proof

Let G be the game space of order k and ai i

kl q =

−

1

1
 non-negative integers. Assume that

an = {a1, a2, . . . , ak – 1, n} ∉ W' for all n ∈ Z, n ≥ 0.

For each an, by theorem 2, find bn ∈ σ (an) ∩ W'. For each bn, find pn such that a bp pn n
>  and

ai = bi for i ≠ pn. Let qn = a bp pn n
− > 0. First note that for all n, pn ≠ k. This is because if



pn = k, then bn = {a1, a2, . . . , ak – 1, n – qn} ∈ W', which contradicts the initial assumption.
Hence, qn = a bp pn n

− ≤ M = max {a1, a2, . . . , ak – 1}, i.e. there are at most M (k – 1) unique

ordered pairs (pn, qn).

Now find 0 ≤ u < v ≤ M (k – 1) such that (pu, qu) = (pv, qv). It follows then that

bu p u p va a a q u a a a q v v u
u v

= − = − − −1 2 1 2, , , , , , , , , ,… … … …n s b gn s , i.e. bu ∈ σ (bv). But

bu, bv ∈ W' which, by theorem 2, is a contradiction. Therefore, the original assumption is
false and ∃ n ∈ Z, n ≥ 0 such that an = {a1, a2, . . . , ak – 1, n} ∈ W'.

Now let an, am ∈ W'. Assume n ≠ m. Without loss of generality, let n < m. Then
an = {a1, a2, . . . , ak – 1, n} = {a1, a2, . . . , ak – 1, m – (m – n)}, i.e. an ∈ σ (am), which, by
theorem 2, is a contradiction. Thus, n = m and the solution is unique. n

At this point, the questions of existence and uniqueness of the solution have been answered. But
the original problem remains unsolved. The number n ∈ Z, n ≥ 0 such that (9, 18, 34, n) ∈ W'
remains to be found. The rest of this paper will be devoted to determining the mathematical
structure of the elements of W'.

Theorem 2 states that a winner can't be made into a winner and a non-winner can always be
made into a winner. This property of the set of winners can be abstracted and applied to any
arbitrary subset of G as is done in the following definition.

Definition 8
Let G be the game space of order k and S ⊂ G any subset of G. If for all x ∈ G, x ∈ S if and
only if σ (x) ∩ S = ∅, then S is reduction exclusive.

With this definition, theorem 2 simply states that W' is reduction exclusive. It turns out that for
any game space, there are very few reduction exclusive subsets. In fact, there is only one.

Theorem 4
Let G be the game space of order k. If S ⊂ G is reduction exclusive, then S = W'.

Proof
First, note that σ (0) = ∅, i.e. σ (0) ∩ S = ∅. Since S is reduction exclusive, 0 ∈ S.

Thus, W'0 = {0} ⊂ S. Now let N be an arbitrary non-negative integer and assume that
W'n ⊂ S for all n ≤ N.

Let x ∈ W'N + 1 be arbitrary. Suppose x ∉ S. Since S is reduction exclusive, σ (x) ∩ S ≠ ∅.

Find y ∈ σ (x) ∩ S. Since x ∈ W'N + 1 and y ∈ σ (x), σ (y) ∩ W'i
i

N

=

F
HG

I
KJ0

∪  ≠ ∅. By hypothesis,

W'i
i

N

=

F
HG

I
KJ0

∪  ⊂ S, i.e. σ (y) ∩ S ≠ ∅. But then, since S is reduction exclusive, y ∉ S, a

contradiction. Thus, x ∈ S and, since x was arbitrary, W'N + 1 ⊂ S.



Hence, by induction, W'n ⊂ S for all non-negative integers n, i.e. W' ⊂ S.

Now let x ∈ S be arbitrary. Suppose x ∉ W'. Since W' is reduction exclusive,
σ (x) ∩ W' ≠ ∅. Since W' ⊂ S, σ (x) ∩ S ≠ ∅. But then, since S is reduction exclusive,
x ∉ S. So, by contradiction, x ∈ W and, since x was arbitrary, S ⊂ W'. n

If we can now construct a set whose elements can be easily enumerated and then show that set to
be reduction exclusive, we will have succeeded in finding the precise mathematical structure of
W' and, hopefully, will be able to find n ∈ Z, n ≥ 0 such that (9, 18, 34, n) ∈ W'

Definition 9

Let a and b be non-negative integers. Let a a b bi
i

i

m
i

i
i

n

= =
= =
∑ ∑2 2

0 0

 and  be the unique binary

representations of a and b. Let ai = 0 for i > m, bi = 0 for i > n, and N = max {m, n}. The
exclusive or operator (^) is defined as

a b c c

c
a b

a b

i
i

i

N

i
i i

i i

^ = =

=
=
≠

RST

=
∑2

0

1

0

,  where

if 

if 

Theorem 5
If a, b, and c are non-negative integers, then

(i) a ^ 0 = 0 ^ a = a,
(ii) a ^ b = 0 if and only if a = b,
(iii) a ^ b = b ^ a, and
(iv) (a ^ b) ^ c = a ^ (b ^ c).

Proof
Parts (i), (ii), and (iii) are obvious consequences of definition 9. Part (iv) follows from the
fact that, in definition 9, ci = ai + bi (mod 2). n

Note the following notation: 
i m

n

ia
=
Λ  = am ^ am + 1 ^ . . . ^ an.

Definition 10

Let G be the game space of order k and x ∈ G. If 
i

k

ix
=1
Λ  = 0, then x is symmetric. The set

Ω = {x ∈ G : x is symmetric} is the symmetric subset of G.



Theorem 6
Let G be the game space of order k. The symmetric subset of G, Ω, is reduction exclusive.

Proof
It must be shown that x ∈ Ω if and only if σ (x) ∩ Ω = ∅.

Let x ∈ Ω. If σ (x) = ∅, then σ (x) ∩ Ω = ∅. Assume σ (x) ≠ ∅. Let y ∈ σ (x) be arbitrary.
Find p ∈ N, 1 ≤ p ≤ k such that xp > yp and xi = yi for i ≠ p. Then
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k

i
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i p
i p

k

i

i
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i p p p
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p p
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Λ Λ Λ

Λ Λ
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^ ^

^ ^ ^ ^

^ ^

^

d i

d i

Since xp ≠ yp, xp ^ yp ≠ 0, i.e. y ∉ Ω. Since y was arbitrary, σ (x) ∩ Ω = ∅.

Now let σ (x) ∩ Ω = ∅. Suppose x ∉ Ω. Then 
i

k

ix
=1
Λ = c > 0, i.e. c = 2

0

i
i

i

N

c
=
∑ , where cN = 1.

Let xi = 2
0

j
ij

j

m

x
i

=
∑ , with xij = 0 for j > mi be the unique binary representations of the

components of x. Since 1 = cN = xiN
i

k

=
∑

1

(mod 2), ∃ p ∈ N, 1 ≤ p ≤ k such that xpN = 1. Define

y ∈ G such that yp = xp ^ c and yi = xi for i ≠ p. Now let xp ^ c = 2
0

j
pj

j

m

x
p

'
=

∑ . It then follows

that xp – yp = xp – xp ^ c = 2
0

j
pj pj
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m

x x
p

−
=

∑ 'd i . Note that for j > N, cj = 0, so that x'pj = xpj. Also,

cN = xpN = 1, so that x'pN = 0. Therefore, x y x xp p
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xp > yp and y ∈ σ (x). Furthermore,
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Thus, y ∈ Ω. However, σ (x) ∩ Ω = ∅, so by contradiction, x ∈ Ω. n



Corollary 2
Let G be the game space of order k. If W' is the set of contrary winners and Ω is the
symmetric subset of G, then W' = Ω.

Proof
This follows immediately from theorems 4 and 5. n

So now the solution comes easily. First, compute 9 ^ 18 ^ 34. We have

9 = 20 (1) + 21 (0) + 22 (0) + 23 (1),
18 = 20 (0) + 21 (1) + 22 (0) + 23 (0) + 24 (1), and
34 = 20 (0) + 21 (1) + 22 (0) + 23 (0) + 24 (0) + 25 (1).

Hence 9 ^ 18 ^ 34 = 20 (1) + 21 (0) + 22 (0) + 23 (1) + 24 (1) + 25 (1) = 57. Therefore,
9 ^ 18 ^ 34 ^ 57 = 0, i.e. (9, 18, 34, 57) ∈ Ω = W'.
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