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Abstract

These notes represent my attempt to better understand the Malliavin calculus by
describing how it works in Rd, and comparing it to the ordinary multivariable calculus.
These notes are not intended to be self-contained. Facts and theorems will be stated
without proof, and the focus will be on understanding the concepts and the mechanics
of Malliavin calculus. The main reference for these notes is [1].

1 Introduction

Let H be a real, separable Hilbert space, and let {X(h) : h ∈ H} be a collection of
random variables, all defined on the same probability space. We say that {X(h)} is an
isonormal Gaussian process on H if every X(h) is normally distributed with mean zero, and
E[X(h)X(g)] = 〈h, g〉H for all h, g ∈ H.

Given any real, separable Hilbert space H, it is always possible to construct an isonormal
Gaussian process on H. (This can be proved using Kolmogorov’s extension theorem.) It is
also possible to show that an isonormal Gaussian process must be linear, in the sense that
X(λh+ µg) = λX(h) + µX(g) for all λ, µ ∈ R and all h, g ∈ H.

Example 1.1. Let Z be a standard normal random variable. For each a ∈ R, define
X(a) = aZ. Then {X(a) : a ∈ R} is an isonormal Gaussian process on R. (Note that R
is a one-dimensional Hilbert space, where the inner product is just ordinary multiplication.)
The original normal random variable is embedded in this process as Z = X(1).

Example 1.2. Let X be a nondegenerate multinormal random (column) vector in Rd with
mean zero and covariance matrix Σ = E[XXT ]. For each u ∈ Rd, define X(u) = uTX. Let
HΣ = Rd with the inner product 〈u, v〉Σ = uT Σv. Then {X(u)} is an isonormal Gaussian
process on HΣ. The components of the original multinormal random vector are embedded
in this process as X(ej) = eT

j X, where {ej} are the standard basis vectors in Rd.

Example 1.3. Let {B(t) : 0 ≤ t ≤ 1} be a standard Brownian motion. For each

h ∈ L2([0, 1]), define W (h) =
∫ 1

0
h(u) dB(u). It is easy to verify that {W (h) : h ∈ L2([0, 1])}

is an isonormal Gaussian process on L2([0, 1]). The original Brownian motion is embedded
in this process as B(t) = W (1[0,t]).
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Suppose {X(h)} is an isonormal Gaussian process on H, defined on some probability
space (Ω,F , P ). Let G = σ(X(h) : h ∈ H). Then any random variable F : Ω → R which
is G-measurable may be regarded as a functional of the Gaussian process {X(h)}. The
Malliavin calculus gives us a way to differentiate and integrate these functionals.

Example 1.3 is of primary importance in Malliavin calculus, and can be used to extend
the Itô integral to the so-called Skorohod integral. By changing the form of the inner product
in Example 1.3, Malliavin calculus can used to study fractional Brownian motion, and other
continuous-time Gaussian processes.

Note that the underlying Hilbert space in Example 1.3 is infinite-dimensional. Perhaps
the most important applications of Malliavin calculus use infinite-dimensional Hilbert spaces.
Example 1.2, however, involves a finite-dimensional Hilbert space. In this setting, the
Malliavin calculus is much simpler, and in these notes, we will focus on this example only.
We will stress the connection between Malliavin calculus and the ordinary multivariable
calculus on Rd.

2 The Hilbert spaces

Throughout these notes, vectors in Rd will be regarded as column vectors, so that uTv
denotes the ordinary inner product in Rd. The standard basis vectors in Rd will be denoted
by {ej}, so that the components of u in the standard basis are eT

j u.
In these notes, we fix a nondegenerate multinormal random vector X in Rd with mean

zero and covariance matrix Σ = E[XXT ], defined on a probability space (Ω,F , P ). We
have already seen the Hilbert space HΣ = Rd with inner product 〈u, v〉Σ = uT Σv and norm
‖u‖2

Σ = 〈u, u〉Σ. The process X(u) = uTX is an isonormal Gaussian process on HΣ.
To obtain an orthonormal basis for HΣ, let M be the unique upper triangular matrix

such that Σ = MTM . (This is called the Cholesky decomposition.) Define vj = M−1ej.
Then

〈vi, vj〉Σ = vT
i Σvj = vT

i M
TMvj = eT

i ej.

Therefore, {vj} is an orthonormal basis for HΣ.
We will denote the components of a vector u ∈ HΣ in this basis by u(j) = 〈u, vj〉Σ. We

then have the familiar properties u =
∑d

j=1 u(j)vj and 〈u1, u2〉Σ =
∑d

j=1 u1(j)u2(j).

2.1 Tensor products

Let H and Ĥ be Hilbert spaces. Recall that any x ∈ H can be identified with the linear
functional w 7→ 〈x,w〉H . Given x ∈ H and x̂ ∈ Ĥ, let us define the tensor product of x and

x̂, denoted by x⊗ x̂, as the bilinear functional on H × Ĥ given by

(x⊗ x̂)(w, ŵ) = 〈x,w〉H〈x̂, ŵ〉 bH .

Let F = {x⊗ x̂ : x ∈ H, x̂ ∈ Ĥ} and E the set of all finite linear combinations of elements
of F . We define an inner product on F by

〈x⊗ x̂, y ⊗ ŷ〉 = 〈x, y〉H〈x̂, ŷ〉 bH ,
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and extend this inner product to E by linearity. The tensor product of H and Ĥ is the
completion of E under this inner product, and is denoted by H ⊗ Ĥ. We may similarly
define the tensor product of any finite number of Hilbert spaces. We write H⊗n for the
tensor product of H with itself n times, and similarly for x⊗n. It can be shown that if {ej}
and {êk} are orthonormal bases for H and Ĥ respectively, then {ej ⊗ êk} is an orthonormal

basis for H ⊗ Ĥ.
An orthonormal basis for the Hilbert space H⊗m

Σ is therefore

{vj1 ⊗ · · · ⊗ vjm : 1 ≤ j1, . . . , jm ≤ d}.

We will write the components of u ∈ H⊗m
Σ as

u(j1, . . . , jm) = 〈u, vj1 ⊗ · · · ⊗ vjm〉H⊗m
Σ
,

so that

u =
d∑

j1,...,jm=1

u(j1, . . . , jm)vj1 ⊗ · · · ⊗ vjm ,

and

〈u, v〉H⊗m
Σ

=
d∑

j1,...,jm=1

u(j1, . . . , jm)v(j1, . . . , jm).

In particular, note that we can identify H⊗2
Σ with the set of d × d matrices, H⊗3

Σ with the
set of d × d × d arrays, and so on. More generally, we can identify H⊗m

Σ with the L2 space
of real-valued functions on {1, . . . , d}m equipped with counting measure.

If u ∈ H⊗p
Σ and v ∈ H⊗q

Σ , then u⊗ v ∈ H⊗(p+q)
Σ , and

u⊗ v =
d∑

i1,...,ip=1

d∑
j1,...,jq=1

u(i1, . . . , ip)v(j1, . . . , jq)(vi1 ⊗ . . .⊗ vip)⊗ (vj1 ⊗ . . .⊗ vjq)

=
d∑

j1,...,jp+q=1

u(j1, . . . , jp)v(jp+1, . . . , jp+q)vj1 ⊗ . . .⊗ vjp+q .

In other words,
u⊗ v(j1, . . . , jp+q) = u(j1, . . . , jp)v(jp+1, . . . , jp+q),

which gives a component-wise formula for the tensor product.
We say that u ∈ H⊗m

Σ is symmetric if u(j1, . . . , jm) = u(jσ(1), . . . , jσ(m)), for all σ ∈ Sm,
where Sm is the group of permutations of {1, . . . ,m}. If u ∈ H⊗m

Σ , then we define the
symmetrization of u as

ũ(j1, . . . , jm) =
1

m!

∑
σ∈Sm

u(jσ(1), . . . , jσ(m)).

If u ∈ H⊗p
Σ and v ∈ H⊗q

Σ are symmetric, and r ∈ {1, 2, . . . , p ∧ q}, then the contraction of r

indices of u and v is denoted by u⊗r v, and is the element of H
⊗(p+q−2r)
Σ whose components
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are

u⊗r v(j1, . . . , jp+q−2r) =
d∑

i1,...,ir=1

u(j1, . . . , jp−r, i1, . . . , ir)v(jp−r+1, . . . , jp+q−2r, i1, . . . , ir).

Note that H⊗0
Σ is just the space of scalars, R; every u ∈ H⊗1

Σ = HΣ is symmetric, and if
u, v ∈ HΣ, then u⊗1v = 〈u, v〉Σ ∈ H⊗0

Σ . We will also adopt the convention that u⊗0v = u⊗v.

2.2 The function spaces

Recall that X is a multinormal random vector defined on (Ω,F , P ). Let G = σ(X). If H is
a Hilbert space, we will write L2(G;H) for the space of square-integrable functions mapping
(Ω,G, P ) to H. Note that 〈F,G〉L2(G;H) = E[〈F,G〉H ] for all F,G ∈ L2(G;H). For simplicity,
we write L2(G) = L2(G; R). The inner product and norm in L2(G) will be denoted by 〈·, ·〉G
and ‖ · ‖G.

The space L2(G) is the primary setting for the Malliavin calculus. If a function F : Ω → R
belongs to L2(G) and is “smooth enough” (in a sense to be made precise later), then we will
see how to differentiate F . Recall that any function F : Ω → R which is G-measurable
can be written as F = f(X) for some measurable function f : Rd → R. It is natural,
then, to suspect that there might be a connection between the Malliavin derivative of F and
the ordinary derivative of f . More generally, we will explore the connection between the
Malliavin calculus on L2(G) and the theory of L2-derivatives on Rd.

If $ is a Borel measure on Rd and H is a Hilbert space, then we will write L2($;H)
for the space of measurable functions from Rd to H which are square-integrable with
respect to the measure $. Note that 〈f, g〉L2($;H) =

∫
〈f, g〉H d$. For simplicity, we write

L2($) = L2($; R), and denote the inner product and norm on L2($) by 〈·, ·〉$ and ‖ · ‖$.
When necessary, we will use λ to denote Lebesgue measure on Rd.

Let ν be the law of X, that is, ν(A) = P (X ∈ A) for all Borel sets A. Note that
dν = p dλ, where

p(x) =
1

(2π)d/2
√

det Σ
exp

(
−1

2
xT Σ−1x

)
. (2.1)

The map f 7→ F = f(X) provides a natural isomorphism from L2(ν) to L2(G). As we will
see, in the context of these notes, all of the main concepts and methods of Malliavin calculus
can be phrased in terms of the ordinary calculus for functions in L2(ν).

2.3 Hermite polynomials and basis vectors

For n ≥ 0, let

Hn(x) =
(−1)n

n!
ex2/2 d

n

dxn
(e−x2/2)

denote the n-th Hermite polynomial. The first few Hermite polynomials are H0(x) = 1,
H1(x) = x, H2(x) = 1

2
(x2 − 1), and H3(x) = 1

3!
(x3 − 3x). When necessary, we adopt the
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convention that H−1(x) = 0. It can be shown that

H ′
n(x) = Hn−1(x), (2.2)

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x), (2.3)

Hn(−x) = (−1)nHn(x), (2.4)

for all n ≥ 0. We will also sometimes use the normalization hn(x) = n!Hn(x).
The Hermite polynomials can be used to construct an orthonormal basis for L2(G) in the

following way. Let Λ = (N ∪ {0})d. For a ∈ Λ, we set a! =
∏d

j=1 aj!, |a| =
∑d

j=1 aj, and

xa =
∏d

j=1 x
aj

j for all x ∈ Rd. Define Ha : Rd → R by

Ha(x) =
d∏

j=1

Haj
(xj).

If

Φa =
√
a!

d∏
j=1

Haj
(X(vj)),

then it can be shown that {Φa : a ∈ Λ} is an orthonormal basis for L2(G).
The space spanned by {Φa : a ∈ Λ, |a| = m} is called the Wiener chaos of order m, and

is denoted by Hm. It can also be defined as the closed linear subspace of L2(G) generated by
the random variables {Hm(X(v)) : v ∈ Rd, ‖v‖Σ = 1}. Clearly, for n 6= m, Hn and Hm are
orthogonal, and L2(G) =

⊕∞
m=0Hm. Hence, any F ∈ L2(G) can be decomposed uniquely

as F =
∑∞

m=0 Ym, where Ym ∈ Hm and the sum converges in L2(Ω). More specifically,
F =

∑∞
m=0

∑
|a|=mE[ΦaF ]Φa. Since Φ0 = 1, this gives

F = EF +
∞∑

m=1

Ym,

where Ym =
∑

|a|=mE[ΦaF ]Φa ∈ Hm.
The space H0 is the set of constant random variables, and the space H1 consists of linear

combinations of the components of X. In fact, according to the remark following the proof
of Theorem 1.1.1 in [1], the space

⊕m
j=0Hj is just the set of random variables of the form

p(X), where p : Rd → R is a polynomial of degree k ≤ m. This implies, that in the context
of these notes, each Hm is a finite-dimensional subspace of L2(G).

In order to transport all this machinery to L2(ν), we define the map I : L2(ν) → L2(G)
by If = f(X), and observe that I is an isomorphism. Thus, if

ϕa(x) = (I−1Φa)(x) =
√
a!

d∏
j=1

Haj
(vT

j x),

then {ϕa : a ∈ Λ} is an orthonormal basis for L2(ν).
Note that I−1Hm is the space spanned by {ϕa : a ∈ Λ, |a| = m}, and can also be defined

as the closed linear subspace of L2(ν) generated by the functions {Hm(vT ·) : v ∈ Rd, ‖v‖Σ =
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1}. We can decompose L2(ν) into orthogonal subspace as L2(ν) =
⊕∞

m=0 I−1Hm. The space⊕m
j=0 I−1Hm is simply the space of polynomials of degree k ≤ m, and any f ∈ L2(ν) can be

decomposed as

f = 〈1, f〉ν +
∞∑

m=1

fm,

where fm = I−1Ym =
∑

|a|=m〈ϕa, f〉νϕa.

3 Iterated “integrals”

The iterated integral operators {Im}m≥0 are a family of linear operators, Im : H⊗m
Σ → L2(G).

The map I0 is the identity, where we regard the scalars R as being embedded naturally in
L2(G) as the constant random variables. To define the map Im for m ≥ 1, we must specify its
action on the basis vectors. For this, let us define the map τ : {1, . . . , d}m → Λ = (N∪{0})d

as follows. If J = (j1, . . . , jm), then τ(J)i = #{k : jk = i}. Note that |τ(J)| =
∑

i τ(J)i = m.
Moreover, τ maps {1, . . . , d}m onto {a : |a| = m}, and for any fixed a with |a| = m, we have
#{J : τ(J) = a} = m!/a!.

We now define

Im(vj1 ⊗ · · · ⊗ vjm) =
d∏

i=1

hai
(X(vi)) =

√
a! Φa,

where a = τ(j1, . . . , jm). For example, if d = 4, then

I6(v1 ⊗ v4 ⊗ v1 ⊗ v1 ⊗ v2 ⊗ v4) = h3(X(v1))h1(X(v2))h0(X(v3))h2(X(v4)).

It follows immediately from this definition that Im(u) = Im(ũ) for all u ∈ H⊗m
Σ .

Since {Φa : a ∈ Λ} is an orthonormal basis for L2(G), it follows that E[Ip(u)Iq(v)] = 0
whenever p 6= q. Suppose u, v ∈ H⊗m

Σ . Let us write

ũ =
∑
|a|=m

∑
J∈τ−1(a)

ũ(j1, . . . , jm)vj1 ⊗ · · · ⊗ vjd
.

Since ũ is symmetric, ũ(j1, . . . , jm) depends only on a. Hence, we have

ũ =
∑
|a|=m

∑
J∈τ−1(a)

ũ(a)vj1 ⊗ · · · ⊗ vjd
,

which gives

Im(u) = Im(ũ) =
∑
|a|=m

∑
J∈τ−1(a)

ũ(a)Im(vj1 ⊗ · · · ⊗ vjd
)

=
∑
|a|=m

∑
J∈τ−1(a)

ũ(a)
√
a! Φa

=
∑
|a|=m

m!√
a!
ũ(a)Φa. (3.1)
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Since similar formulas holds for ṽ and Im(ṽ), we have

E[Im(u)Im(v)] = 〈Im(ũ), Im(ṽ)〉G =
∑
|a|=m

(m!)2

a!
ũ(a)ṽ(a).

On the other hand,

〈ũ, ṽ〉H⊗m
Σ

=
∑
|a|=m

∑
J∈τ−1(a)

ũ(a)ṽ(a) =
∑
|a|=m

m!

a!
ũ(a)ṽ(a).

We have thus shown that

E[Ip(u)Iq(v)] =

{
0 if p 6= q,

m!〈ũ, ṽ〉H⊗m
Σ

if p = q = m.
(3.2)

In particular, this shows that EIm(u) = 0 for m ≥ 1 and ‖Im(u)‖2
G = m!‖ũ‖2

H⊗m
Σ

for all m.

Note that by the triangle inequality, ‖ũ‖H⊗m
Σ

≤ ‖u‖H⊗m
Σ

.

Since {Φa : |a| = m} is an orthonormal basis for Hm, we see from (3.1) that Im maps
H⊗m

Σ onto Hm. Moreover, for each Y ∈ Hm, there is a unique symmetric ũ ∈ H⊗m
Σ such that

Y = Im(ũ). Thus, any F ∈ L2(G) can be written as

F = EF +
∞∑

m=1

Im(um).

If the um’s are taken to be symmetric, then they are unique.
Another important identity satisfied by the iterated integral operators is

Ip+1(u⊗ v) = Ip(u)I1(v)− pIp−1(u⊗1 v), (3.3)

whenever u ∈ H⊗p
Σ is symmetric, and v ∈ HΣ. This is a special case of the multiplication

formula,

Ip(u)Iq(v) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(u⊗r v),

which holds whenever u ∈ H⊗p
Σ and v ∈ H⊗q

Σ are symmetric. For a proof of the multiplication
formula, see [1]. The multiplication formula can be used to show that

Im(u⊗m) = hm(X(u)), (3.4)

whenever u ∈ HΣ is a unit vector. In particular, I(u) = I1(u) = X(u) for all u ∈ HΣ.
An alternative notation for the iterated integral operators is

Im(u) =

∫
{1,...,d}m

u(j1, . . . , jm) dX(j1) · · · dX(jm).

In this notation, if u ∈ HΣ, then∫
u(j) dX(j) = I(u) = X(u) = uTX.
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According to (3.3), if u, v ∈ HΣ, then∫∫
u(i)v(j) dX(i) dX(j) =

∫
u(i) dX(i)

∫
v(j) dX(j)− 〈u, v〉Σ.

The final term in the above expression is a stochastic correction term, which ensures that
the iterated integral has mean zero.

4 Ordinary multivariable calculus

4.1 Gradient

Recall that {ej} denotes the standard basis vectors in Rd. If f : Rd → R is differentiable,
then we define ∇f : Rd → Rd by

∇f =
d∑

j=1

∂f

∂xj

ej.

Similarly, if f is m times differentiable, we define

Dmf =
d∑

j1,...,jm=1

dmf

dxj1 · · · dxjm

ej1 ⊗ · · · ⊗ ejm .

Note that D2f is the d× d matrix of second order partial derivatives; D3f is not a matrix,
but a d× d× d array of third order partial derivatives. In general, Dmf is an m-fold tensor,
and we will regard it as an element of H⊗m

Σ .
The directional derivative operator in the direction of a vector u ∈ Rd is denoted by ∂u

and is defined by ∂uf = uT∇f . The Schwartz space of test functions is denoted by S(Rd).
It consists of smooth functions, all of whose derivatives decay faster than any polynomial.
Formally, S(Rd) consists of all functions ϕ ∈ C∞(Rd) such that

sup
x∈Rd

|xaDmϕ(x)| <∞,

for all a ∈ Λ and m ∈ N0. Using integration by parts, we have 〈∂uϕ, ψ〉λ = −〈ϕ, ∂uψ〉λ for
all ϕ, ψ ∈ S(Rd).

We will also need the notion of a weak derivative. Let f ∈ L2(ν) and let U =

{u1, . . . , ud} ⊂ Rd be linearly independent. If there exists f̃ ∈ L2(ν;HΣ) such that

〈uT f̃ , ϕ〉λ = −〈f, ∂uϕ〉λ for all ϕ ∈ S(Rd) and all u ∈ U , then we will say that f is weakly

differentiable. In this case, we define ∇f = f̃ and ∂uf = uT f̃ . The space W 1,2(ν) consists
of all f ∈ L2(ν) that are weakly differentiable. Note that, by linearity, if f ∈ W 1,2(ν), then
〈∂uf, ϕ〉λ = −〈f, ∂uϕ〉λ for all ϕ ∈ S(Rd) and all u ∈ Rd. The space W 1,2(ν) is a normed
vector space with norm ‖f‖2

W 1,2(ν) = ‖f‖2
ν + ‖∇f‖2

L2(ν;HΣ).

When checking if f ∈ W 1,2(ν), it is enough to verify that, for each j ∈ {1, . . . , d}, there

exists f̃j ∈ L2(ν) such that 〈f̃j, ϕ〉λ = −〈f, ∂uj
ϕ〉λ for all g ∈ S(Rd). Indeed, if this is the

case, then we may define f̃ =
∑d

j=1 f̃jA
T ej, where A is an operator such that Auj = ej for

all j. It is then a straightforward exercise to check that f̃ = ∇f .
For vector fields f ∈ L2(ν;HΣ), we will say that f ∈ W 1,2(ν;HΣ) if uTf ∈ W 1,2(ν) for

all u ∈ U . Again, by linearity, if f ∈ W 1,2(ν;HΣ), then uTf ∈ W 1,2(ν) for all u ∈ Rd.
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4.2 Divergence

If g : Rd → Rd is a differentiable vector field, then the (classical) divergence of g is denoted
by ∇Tg and is defined by

∇Tg =
d∑

j=1

∂(eT
j g)

∂xj

=
d∑

j=1

∂ej
(eT

j g). (4.1)

The classical divergence operator obeys the product rule,

∇T (fg) = (∇f)Tg + f∇Tg, (4.2)

whenever f : Rd → R is differentiable and g : Rd → Rd is a differentiable vector field.
Suppose ϕ ∈ S(Rd) and Ψ : Rd → Rd satisfies eT

j Ψ ∈ S(Rd) for all j. Then

〈ϕ,∇T Ψ〉λ =
d∑

j=1

〈
ϕ,
∂(eT

j Ψ)

∂xj

〉
λ

= −
d∑

j=1

〈
∂ϕ

∂xj

, eT
j Ψ

〉
λ

= −〈∇ϕ,Ψ〉L2(λ;HI), (4.3)

where HI is Rd, equipped with the ordinary inner product. Note that (4.1) still makes sense,
even when g is only weakly differentiable. In that case, (4.2) and (4.3) are still valid. The
result in (4.3) shows that, at least formally, −∇T is the adjoint of the gradient operator ∇
in the space L2(λ;HI).

In our case, the L2(ν)-divergence operator (which we will denote by δν) will look
somewhat different, since we are working on L2(ν;HΣ). Let us define Dom δν as the set
of all vector fields g ∈ L2(ν;HΣ) such that

|〈∇f, g〉L2(ν;HΣ)| ≤ cg‖f‖ν ,

for all f ∈ W 1,2(ν), where cg is a constant depending only on g. If g ∈ Dom δν , then δν(g)
is the unique element of L2(ν) such that

〈f, δν(g)〉ν = 〈∇f, g〉L2(ν;HΣ),

for all f ∈ W 1,2(ν). In other words, the divergence operator δν is the adjoint of the gradient
operator ∇ in the space L2(ν;HΣ). (The existence of the adjoint follows from standard
results in functional analysis, since the gradient operator is closed, and its domain, W 1,2(ν),
is dense in L2(ν).)

As we will see in Section 6, W 1,2(ν;HΣ) ⊂ Dom δν . Let g ∈ W 1,2(ν;HΣ) and let
f ∈ W 1,2(ν) be arbitrary. Recall that dν = p dλ, where p is given by (2.1). Note that

p(x) =
1

(2π)d/2
√

det Σ
e−‖y‖

2/2,

where x = MTy. Using integration by parts, it follows that

〈∇f, g〉L2(ν;HΣ) = 〈∇f, pΣg〉L2(λ;HI) = −〈f,∇T (pΣg)〉λ = −〈f, (∇p)T Σg + p∇T (Σg)〉λ,

9



Note that

(∇p)T ej =
∂p

∂xj

= −p
d∑

i=1

yi
∂yi

∂xj

= −p
d∑

i=1

yie
T
i (MT )−1ej = −pyT (MT )−1ej = −pxT Σ−1ej,

so that (∇p)T = −pxT Σ−1. Thus,

〈∇f, g〉L2(ν;HΣ) = 〈f, (−∇T (Σg) + xTg)p〉L2(λ) = 〈f,−∇T (Σg) + xTg〉L2(ν).

This shows that
δν(g) = −∇T (Σg) + xTg, (4.4)

for all g ∈ W 1,2(ν;HΣ).

4.3 Second order differential operators

If f : Rd → R is twice differentiable, then the Laplacian of f , denoted by ∆f , is defined as
the divergence of the gradient of f . That is,

∆f = ∇T (∇f) =
d∑

i=1

∂

∂xi

(eT
i ∇f) =

d∑
i=1

∂

∂xi

(
eT

i

d∑
j=1

∂f

∂xj

ej

)
=

d∑
i,j=1

(eT
i ej)

∂2f

∂xi∂xj

=
d∑

j=1

∂2f

∂x2
j

.

In our case, we can define an analogous operator. Let

DomLν = {f ∈ W 1,2(ν) : ∇f ∈ Dom δν},

and for f ∈ DomLν , define Lνf = −δν(∇f). Note that

{f ∈ W 1,2(ν) : ∇f ∈ W 1,2(ν;HΣ)} ⊂ DomLν .

Suppose f ∈ W 1,2(ν) and ∇f ∈ W 1,2(ν;HΣ). Then by (4.4),

Lνf = −δ(∇f) = ∇T (Σ∇f)− xT∇f

=
d∑

i=1

∂

∂xi

(eT
i Σ∇f)−

d∑
j=1

xj
∂f

∂xj

=
d∑

i=1

∂

∂xi

(
eT

i Σ
d∑

j=1

∂f

∂xj

ej

)
−

d∑
j=1

xj
∂f

∂xj

=
d∑

i,j=1

(eT
i Σej)

∂2f

∂xi∂xj

−
d∑

j=1

xj
∂f

∂xj

.

In the special case that the components of X are independent standard normals, so that
Σ = I and dν(x) = (2π)−d/2e−‖x‖

2/2 dλ(x), we have Lνf = ∆f−xT∇f , which is the generator
of the classical Ornstein-Uhlenbeck process on Rd. Recall that the Ornstein-Uhlenbeck
process on Rd is the solution Z to the stochastic differential equation dZ = −Z dt+

√
2 dB,

where B is a standard, d-dimensional standard Brownian motion.
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5 The Malliavin derivative

Let S = {f(X) : f ∈ C∞
c (Rd)} ⊂ L2(G). If F = f(X) ∈ S, then we define

DF = ∇f(X) ∈ L2(G;HΣ). Similarly, we define DmF = Dmf(X) ∈ L2(G;H⊗m
Σ ). For

F ∈ S, let

‖F‖2
m,2 =

m∑
j=0

‖DjF‖2
L2(G;H⊗j

Σ )
=

m∑
j=0

E‖DjF‖2
H⊗j

Σ

.

We then define Dm,2 as the closure of S in L2(G) with respect to ‖ · ‖m,2. The operator Dm

is closable, and extends to Dm,2.

Theorem 5.1. Suppose F ∈ L2(G) and write

F =
∞∑

m=0

Im(um) = EF + uT
1X +

∞∑
m=2

Im(um), (5.1)

where each um ∈ H⊗m
Σ is symmetric. Then F ∈ D1,2 if and only if

∞∑
m=1

mm!‖um‖2
H⊗m

Σ
<∞, (5.2)

in which case,

DjF := 〈DF, vj〉Σ =
∞∑

m=1

mIm−1(um(·, j)) = u1(j) +
∞∑

m=2

mIm−1(um(·, j)), (5.3)

and the left-hand side of (5.2) equals ‖DF‖2
L2(G;HΣ).

For a proof of this theorem, see [1]. Equation (5.3) is easy to verify in one particular
special case. Suppose F = f(X), where f(x) = hm(uTx) and u ∈ HΣ is a unit vector. Then
by (3.4), we have F = Im(u⊗m) and

DjF = 〈∇f(X), vj〉Σ = 〈h′m(uTX)u, vj〉Σ = mhm−1(u
TX)u(j)

= mIm−1(u
⊗(m−1))u(j) = mIm−1(u

⊗(m−1)u(j)) = mIm−1(u
⊗m(·, j)),

which agrees with (5.3).
Note that, by (5.1), we have

E[FX(vj)] = E[FXTvj] = E[uT
1XX

Tvj] = uT
1 Σvj = 〈u1, vj〉Σ = u1(j) = E[DjF ].

By linearity, it follows that
E[FX(u)] = E[〈DF, u〉Σ], (5.4)

for all F ∈ D1,2 and all u ∈ HΣ. This is commonly called the (Malliavin) integration by parts
formula. This formula can also be derived by writing the expectations as integrals over Rd,
and using ordinary integration by parts.
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Equation (5.3) can be generalized (see Exercise 1.2.5 in [1]) to

DN
j1,...,jN

F := 〈DNF, vj1 ⊗ · · · ⊗ vjN
〉H⊗N

Σ

=
∞∑

m=N

m!

(m−N)!
Im−N(um(·, j1, . . . , jN))

= N !uN(j1, . . . , jN) +
∞∑

m=N+1

m!

(m−N)!
Im−N(um(·, j1, . . . , jN)).

Consequently, if u ∈ H⊗N
Σ , then E[〈DNF, u〉H⊗N

Σ
] = N !〈uN , u〉H⊗N

Σ
. On the other hand, by

(5.1), we have E[FIN(u)] = E[IN(uN)IN(u)]. Applying (3.2), this show that

E[FIm(u)] = E[〈DmF, u〉H⊗m
Σ

],

for all F ∈ Dm,2 and all symmetric u ∈ H⊗m
Σ , which is a generalization of (5.4) to higher

derivatives.
It may be difficult to see from Theorem 5.1, but the Malliavin derivative is really just

the weak derivative from Section 4.

Theorem 5.2. Recall the isomorphism I : L2(ν) → L2(G) given by If = f(X). By a slight
abuse of notation, we may consider I : L2(ν;HΣ) → L2(G;HΣ), also given by If = f(X).
In this case, IW 1,2(ν) = D1,2, ‖If‖1,2 = ‖f‖W 1,2(ν), and I∇f = DIf for all f ∈ W 1,2(ν).

Proof. Let F = f(X) ∈ D1,2 and write F =
∑∞

m=0 Im(um), where each um ∈ H⊗m
Σ

is symmetric. Recall that Im(um) ∈ Hm, the Wiener chaos of order m, and that Hm is
finite-dimensional (at least in the context of these notes) and spanned by {Hm(X(v)) : v ∈
Rd, ‖v‖Σ = 1}. Hence, we may write

F =
∞∑

m=0

N(m)∑
k=1

cm,kHm(X(vm,k)) =
∞∑

m=0

N(m)∑
k=1

cm,k

m!
Im(v⊗m

m,k),

where each vm,k ∈ HΣ is a unit vector. From this, we draw two conclusions. First,

f(x) = (I−1F )(x) =
∞∑

m=0

N(m)∑
k=1

cm,kHm(vT
m,kx). (5.5)

Second,

um =

N(m)∑
k=1

cm,k

m!
v⊗m

m,k.

Using (5.3) and (2.2), it follows that

DjF =
∞∑

m=1

mIm−1(um(·, j)) =
∞∑

m=1

N(m)∑
k=1

cm,k

(m− 1)!
Im−1(v

⊗(m−1)
m,k )vm,k(j)

=
∞∑

m=1

N(m)∑
k=1

cm,kHm−1(v
T
m,kX)vm,k(j) =

∞∑
m=1

N(m)∑
k=1

cm,kH
′
m(vT

m,kX)〈vm,k, vj〉Σ.
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In other words, DjF = f̃j(X), where

f̃j =
∞∑

m=1

N(m)∑
k=1

cm,k∂Σvj
(Hm(vT

m,k·)). (5.6)

Comparing this with (5.5), it now follows, using integration by parts, that if g ∈ S(Rd), then

〈f̃j, g〉λ = −〈f, ∂Σvj
g〉λ. As in Section 4.1, this shows that f ∈ W 1,2(ν). We may use the

method described at the end of Section 4.1 to check that ∇f =
∑d

j=1 f̃jvj, which implies
that DF = ∇f(X). Moreover,

‖F‖2
1,2 = ‖F‖2

G + ‖DF‖2
L2(G;HΣ) = ‖f‖2

ν + ‖∇f‖2
L2(ν;HΣ) = ‖f‖2

W 1,2(ν).

In summary, we have shown that D1,2 ⊂ IW 1,2(ν), ‖If‖1,2 = ‖f‖W 1,2(ν), and I∇f = DIf
for all f ∈ I−1D1,2.

It remains only to show that IW 1,2(ν) ⊂ D1,2. Suppose f ∈ W 1,2(ν) and let F = f(X).

As before, we may write f in the form (5.5). We may then deduce that f̃j = ∂Σvj
f must

have the form (5.6), which, as above, implies

f̃j(X) =
∞∑

m=1

mIm−1(um(·, j)).

From here, we find that

∞ > ‖f̃‖2
L2(ν;HΣ) =

d∑
j=1

‖f̃j‖2
ν =

d∑
j=1

E|f̃j(X)|2 =
d∑

j=1

∞∑
m=1

m‖Im−1(um(·, j))‖2
G

=
∞∑

m=1

mm!
d∑

j=1

‖um(·, j)‖2

H
⊗(m−1)
Σ

=
∞∑

m=1

mm!‖um‖2
H⊗m

Σ
,

which implies F ∈ D1,2. 2

For random vectors u ∈ L2(G;HΣ), we will say that u ∈ D1,2(HΣ) if 〈u, vj〉Σ ∈ D1,2 for
all j. Note that this is equivalent to requiring that 〈u, v〉Σ ∈ D1,2 for all v ∈ HΣ. Also note
that IW 1,2(ν;HΣ) = D1,2(HΣ).

6 The Malliavin divergence operator

The domain of the divergence operator, denoted by Dom δ, is the subset of L2(G;HΣ)
consisting of elements u such that

|〈DF, u〉L2(G;HΣ)| = |E〈DF, u〉Σ| ≤ cu‖F‖G,

for all F ∈ D1,2, where cu is a constant depending only on u. If u ∈ Dom δ, then δ(u) is the
unique element of L2(G) satisfying

〈F, δ(u)〉G = 〈DF, u〉L2(G;HΣ),

for all F ∈ D1,2. In other words, the divergence operator δ is the adjoint of the derivative
operator D.
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Remark 6.1. The Malliavin divergence operator, in the context of these notes, is simply
the L2(ν)-divergence operator from Section 4. In this sense, it is a differential operator.
This fact flies in the face of convention, however, since the Malliavin divergence operator is
sometimes called the “Skorohod integral.”

One reason why we might think of δ as a (stochastic) integral operator is the following.
Suppose u ∈ L2(G;HΣ) is constant almost surely, so that we may regard u as simply being
an element of HΣ. Then by (5.4), we have that δ(u) = X(u). In other words, δ extends the
integral operator I = I1 from deterministic integrands to stochastic integrands.

Another very convincing reason to think of δ as an integral operator occurs in the context
of Example 1.3, where H = L2([0, 1]). In this case, elements u ∈ L2(G;H) are stochastic

processes u(t) satisfying E
∫ 1

0
|u(t)|2 dt <∞. If u ∈ Dom δ and u is adapted to the filtration

of the Brownian motion, then it can be shown that δ(u) =
∫ 1

0
u(t) dB(t), where this is the

Itô integral. However, when u ∈ Dom δ, but is not adapted, then δ(u) is still well defined.
In this sense, in the context of Example (1.3), δ(u) is an extension of the Itô integral to
non-adapted integrands. It is called the Skorohod integral.

Returning to the finite-dimensional setting, note that if u ∈ L2(G;HΣ), then u(j) =
〈u, vj〉Σ ∈ L2(G). Hence, we may uniquely write u(j) =

∑∞
m=0 Im(um,j), where each

um,j ∈ H⊗m
Σ is symmetric. Note that um :=

∑d
k=1 um,k ⊗ vk ∈ H

⊗(m+1)
Σ is symmetric in

the first m variables. Also, um(·, j) =
∑d

k=1 um,kvk(j) = um,j. Thus,

u(j) =
∞∑

m=0

Im(um(·, j)). (6.1)

Theorem 6.2. Let u ∈ L2(G;HΣ) have expansion (6.1). Then u ∈ Dom δ if and only if

∞∑
m=0

(m+ 1)!‖ũm‖2

H
⊗(m+1)
Σ

<∞, (6.2)

in which case

δ(u) =
∞∑

m=0

Im+1(ũm),

and the left-hand side of (6.2) is equal to ‖δ(u)‖2
G.

Theorem 6.3. (Product rule for Malliavin divergence) Let F ∈ D1,2 and u ∈ Dom δ.
If Fu ∈ L2(G;HΣ), Fδ(u) ∈ L2(G), and 〈DF, u〉Σ ∈ L2(G), then Fu ∈ Dom δ and

δ(Fu) = Fδ(u)− 〈DF, u〉Σ.

For proofs of these theorems, see [1]. With Theorem 6.2, it is not difficult to verify that
D1,2(HΣ) ⊂ Dom δ. Let u ∈ D1,2(HΣ). As above, let us write u(j) =

∑∞
m=0 Im(um(·, j)). By

(5.2), we have
∞∑

m=1

mm!‖um,j‖2
H⊗m

Σ
<∞,
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for each j. It follows that

∞∑
m=0

(m+ 1)!‖ũm‖2

H
⊗(m+1)
Σ

≤
∞∑

m=0

(m+ 1)!‖um‖2

H
⊗(m+1)
Σ

=
∞∑

m=0

(m+ 1)!
d∑

j=1

‖um,j‖2
H⊗m

Σ

≤ 2
d∑

j=1

∞∑
m=0

mm!‖um,j‖2
H⊗m

Σ
<∞.

By (6.2), this shows that D1,2(HΣ) ⊂ Dom δ.
Now recall the isomorphisms I : L2(ν) → L2(G) and I : L2(ν;HΣ) → L2(G;HΣ) given

by If = f(X). It is a direct consequence of the definitions that I Dom δν = Dom δ and
Iδνf = δIf for every f ∈ Dom δν . In other words, the Malliavin divergence is just the
L2(ν)-divergence.

Since IW 1,2(ν;HΣ) = D1,2(HΣ), we may now conclude that W 1,2(ν;HΣ) ⊂ Dom δν . Also,
by Theorem 6.3, the L2(ν)-divergence operator satisfies the product rule

δν(fg) = fδν(g)− (∇f)T Σg,

whenever f ∈ W 1,2(ν), g ∈ Dom δν , fg ∈ L2(ν;HΣ), fδν(g) ∈ L2(ν), and (∇f)T Σg ∈ L2(ν).
Note the similarity between this and (4.2).

7 The Ornstein-Uhlenbeck semigroup

Fix t ≥ 0. The Ornstein-Uhlenbeck semigroup, Tt : L2(G) → L2(G), is defined by

Tt(F ) =
∞∑

m=0

e−mtIm(um),

where F =
∑∞

m=0 Im(um). (Recall that this decomposition is unique when um ∈ H⊗m
Σ is

symmetric.) Let

DomL =

{
F =

∞∑
m=0

Im(um) ∈ L2(G) :
∞∑

m=0

m2‖Im(um)‖2
G <∞

}
.

For F ∈ DomL, we define

LF = −
∞∑

m=0

mIm(um) ∈ L2(G).

One can check that the operator L satisfies

LF = lim
t→0

Tt(F )− F

t
.

That is, L is the generator of the Ornstein-Uhlenbeck semigroup.
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Theorem 7.1. Let F ∈ L2(G). Then F ∈ DomL if and only if F ∈ D1,2 and DF ∈ Dom δ,
in which case LF = −δ(DF ).

For a proof of this theorem, see [1]. This theorem shows that, under the isomorphism
I : L2(ν) → L2(G) given by If = f(X), we have I DomLν = DomL and ILνf = LIf . In
other words, we may identify the operator L on L2(G) with the operator Lν on L2(ν).

We remarked at the end of Section 4 that Lν is the generator of the classical Ornstein-
Uhlenbeck process on Rd when X is a vector of independent standard normals. More
generally, however, Lν is the generator of an Rd-valued stochastic process Z satisfying the
stochastic differential equation,

dZ = −Z dt+
√

2MT dB,

where B is a standard, d-dimensional Brownian motion. Now suppose u ∈ HΣ is a unit
vector. Then the process Z(u) = uTZ is a one-dimensional diffusion satisfying

dZ(u) = −Z(u) dt+
√

2 dB̃,

where B̃ = (Mu)TB. Since the squared Euclidean norm of Mu is uTMTMu = 〈u, u〉Σ = 1,

it follows that B̃ is a standard, one-dimensional Brownian motion. Hence, Z(u) is a classical,
one-dimensional Ornstein-Uhlenbeck process, for every unit vector u ∈ HΣ.
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