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1 Introduction

What follows is a collection of various limit theorems that occur in probability. Most
are taken from a short list of references. Such theorems are stated without proof and a
citation follows the name of the theorem. A few are not taken from references. They are
usually straightforward generalizations of the standard theorems and proofs are provided.
The glossary includes some definitions of terms used in these theorems.

2 Glossary

uncorrelated: A family of random variables {Xi}i∈I with EX2
i < ∞ is uncorrelated if

E(XiXj) = EXiEXj whenever i 6= j.

independent: The random variables X1, X2, . . . , Xn are independent if

P

( n⋂
j=1

{Xj ∈ Aj}
)

=
n∏

j=1

P (Xj ∈ Aj)

for all n-tuples of measurable sets (A1, A2, . . . , An). A family of random variables {Xi}i∈I is
independent if for each finite subset J ⊂ I, the family {Xi}i∈J is independent.

uniformly integrable: A family of random variables {Xi}i∈I is uniformly integrable if
supi∈I E

[
|Xi|1{|Xi|≥K}

]
→ 0 as K →∞.

pairwise independent: A family of random variables {Xi}i∈I is pairwise independent if
Xi and Xj are independent whenever i 6= j.

measure preserving: Let (Ω,F , P ) be a probability space. An injective map T : Ω → Ω
is a measure preserving transformation if A ∈ F implies T (A) ∈ F and P (T (A)) = P (A).

T -invariant: If T is a measure preserving transformation, then a set Λ ∈ F is T -invariant,
or invariant under T , if 1Λ(ω) = 1Λ(T (ω)) a.s.

median: Let x1, . . . , xn ∈ R and let τ : {1, . . . , n} → {1, . . . , n} be a bijection such that
yj = xτ(j) satisfies y1 ≤ · · · ≤ yn. Then med(x1, . . . , xn) = yk, where k = b(n + 1)/2c.

1



If x(1), . . . , x(n) ∈ Rd, then med(x(1), . . . , x(n)) is the vector in Rd whose j-th component is

med(x
(1)
j , . . . , x

(n)
j ).

weak convergence: Let µn, µ be probability measures on (S,B), where S is a metric space
and B is its Borel σ-algebra. If

∫
f dµn →

∫
f dµ for every bounded, continuous f : S → R,

then µn converges weakly to µ (written µn ⇒ µ).

convergence in distribution: Let Xn, X be random variables taking values in a metric
space S. Define measures µn, µ on (S,B), where B is the Borel σ-algebra on S, by
µn(A) = P (Xn ∈ A), µ(A) = P (X ∈ A). Then Xn converges to X in distribution (written

Xn
d→ X or Xn ⇒ X) if µn ⇒ µ.

multinormal: A random vector X = (X1, . . . , Xd)
T is multinormal if every linear

combination c1X1 + · · · + cdXd has a normal (possibly degenerate) distribution. The mean
of X is the (column) vector θ ∈ Rd with θj = EXj. The covariance of X is the d× d matrix
σ with

σij = Cov(Xi, Xj) = E(XiXj)− θiθj).

In this case, σ is symmetric and positive semidefinite, and c1X1 + . . . + cdXd has mean cT θ
and variance cT σc.

Poisson: A random variable Z is Poisson(λ) if P (Z = k) = e−λλk/k! for all k ∈ Z+ =
{0} ∪ N.

stable law: A random variable Y has a stable law if for every k ∈ N, there are constants

ak and bk such that (Y1 + · · · + Yk − bk)/ak
d
= Y whenever Y1, . . . , Yk are independent and

identically distributed (iid) with Yj
d
= Y . (The notation U

d
= V means that the random

variables U and V have the same distribution.)

slowly varying: A function L(x) is slowly varying if limx→∞ L(tx)/L(x) = 1 for all t > 0.

3 Laws of Large Numbers

Theorem 3.1. (L2 weak law)[2]
Let X1, X2, . . . be uncorrelated random variables with EXi = µ and Var(Xi) ≤ C < ∞. If
Sn = X1 + · · ·+ Xn, then Sn/n → µ in L2 and in probability as n →∞.

Theorem 3.2. (L1 weak law)[7]
If X1, X2, . . . is a uniformly integrable sequence of independent random variables, then

1

n

n∑
m=1

(Xm − EXm) → 0,

in L1 and in probability as n → ∞. In particular, if X1, X2, . . . is iid with E|X1| < ∞ and
Sn = X1 + · · ·+ Xn, then Sn/n → EX1 in L1 and in probability.
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Theorem 3.3. (Weak law for triangular arrays)[2]
For each n, let Xn,k, 1 ≤ k ≤ n, be independent. Let bn > 0 with bn → ∞ and let
Xn,k = Xn,k1{|Xn,k|≤bn}. Suppose that

(i)
∑n

k=1 P (|Xn,k| > bn) → 0, and

(ii) b−2
n

∑n
k=1 EX

2

n,k → 0 as n →∞.

If we let Sn = Xn,1 + · · · + Xn,n and put an =
∑n

k=1 EXn,k, then (Sn − an)/bn → 0 in
probability.

Theorem 3.4. (Weak law of large numbers)
Let X1, X2, . . . be independent with supk xP (|Xk| ≥ x) → 0 as x →∞. Let Sn = X1+· · ·+Xn

and let

µn =
1

n

n∑
k=1

E[Xk1{|Xk|≤n}].

Then Sn/n− µn → 0 in probability.

Proof. Let f(x) = supk xP (|Xk| ≥ x). We apply Theorem 3.3 with Xn,k = Xk and bn = n.
To verify Condition (i) of Theorem 3.3, note that

n∑
k=1

P (|Xk| > n) ≤ n sup
k

P (|Xk| > n) = f(n) → 0,

as n → ∞. For Condition (ii), we use the fact that for any random variable Y , we have
EY 2 =

∫ ∞
0

2yP (|Y | > y) dy. Thus,

1

n2

n∑
k=1

EX
2

n,k ≤
2

n2

n∑
k=1

∫ n

0

yP (|Xk| > y) dy ≤ 2

n

∫ n

0

f(y) dy.

Fix ε > 0. Since f(x) → 0 as x →∞, there exists K > 0 such that x ≥ K implies f(x) ≤ ε.
Thus,

lim sup
n→∞

2

n

∫ n

0

f(y) dy = lim sup
n→∞

(
2

n

∫ K

0

f(y) dy +
2

n

∫ n

K

f(y) dy

)
≤ lim sup

n→∞

(
2K2

n
+

2(n−K)ε

n

)
= 2ε.

Since ε was arbitrary, this completes the proof. 2

Theorem 3.5. (Strong laws of large numbers)[2],[4]

(i) If X1, X2, . . . are pairwise independent and identically distributed with E|X1| < ∞,
then (X1 + · · ·+ Xn)/n → EX1 a.s. as n →∞.

(ii) If X1, X2, . . . are iid with E[|X1|1{X1>0}] = ∞ and E[|X1|1{X1<0}] < ∞, then
(X1 + · · ·+ Xn)/n →∞ a.s.
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(iii) If X1, X2, . . . are iid with EX2
1 < ∞, then (X1 + · · ·+ Xn)/n → EX1 a.s. and in L2.

Part (i) of the above theorem is Theorem 1.7.1 in [2]. If we inspect the proof of that
theorem, we see that the conditions can be weakened to the following.

Theorem 3.6. (Generalized strong law of large numbers)
Let X1, X2, . . . be nonnegative random variables with E|Xk| < ∞ and EXk = µ for all
k. Let Yk = Xk1{|Xk|≤k}, and assume the random variables {Yk} are uncorrelated. Also
assume there exists a constant C such that P (Xk > t) ≤ CP (X1 > t) for all k and t. If
Sn = X1 + · · ·+ Xn, then Sn/n → µ a.s. as n →∞.

Remark 3.7. Any sequence whose positive and negative parts satisfy the above hypotheses
will satisfy the strong law of large numbers.

Proof. Let α > 1 and ε > 0 be arbitrary. Let Tn = Y1 + · · · + Yn and k(n) = bαnc. By
Chebyshev,

∞∑
n=1

P (|Tk(n) − ETk(n)| > εk(n)) ≤ ε−2

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2

∞∑
n=1

k(n)−2

k(n)∑
m=1

Var(Ym)

= ε−2

∞∑
m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

Since bαnc ≥ αn/2, ∑
n:bαnc≥m

bαnc−2 ≤ 4
∑

n:bαnc≥m

α−2n ≤ 4(1− α−2)m−2.

Hence,
∞∑

n=1

P (|Tk(n) − ETk(n)| > εk(n)) ≤ 4(1− α−2)ε−2

∞∑
m=1

Var(Ym)/m2.

To bound this sum, note that

Var(Yk) ≤ EY 2
k =

∫ ∞

0

2yP (Yk > y) dy ≤
∫ k

0

2yP (Xk > y) dy ≤ C

∫ k

0

2yP (X1 > y) dy.

Thus,

∞∑
m=1

Var(Ym)/m2 ≤ C

∞∑
m=1

m−2

∫ ∞

0

1{y<m}2yP (X1 > y) dy

= C

∫ ∞

0

{ ∞∑
m=1

m−21{y<m}

}
2yP (X1 > y) dy

≤ 4C

∫ ∞

0

P (X1 > y) dy = 4CE|X1|,
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where the last inequality above uses Lemma 1.7.1(c) in [2]. Putting this together, we have

∞∑
n=1

P (|Tk(n) − ETk(n)| > εk(n)) ≤ 16C(1− α−2)ε−2E|X1| < ∞.

By the Borel-Cantelli lemma, since ε is arbitrary, this implies (Tk(n)−ETk(n))/k(n) → 0 a.s.
Now,

EYk = E(Xk −Xk1{Xk>k}) = µ−
∫ ∞

0

P (Xk1{Xk>k} > y) dy.

Note that∫ ∞

0

P (Xk1{Xk>k} > y) dy =

∫ k

0

P (Xk > k) dy +

∫ ∞

k

P (Xk > y) dy

≤ C

( ∫ k

0

P (X1 > k) dy +

∫ ∞

k

P (X1 > y) dy

)
= CE(X11{X1>k}) → 0.

Hence, EYk → µ as k →∞, which implies ETk(n)/k(n) → µ. We have therefore shown that
Tk(n)/k(n) → µ a.s. For the intermediate values, if k(n) ≤ m < k(n + 1), then

Tk(n)

k(n + 1)
≤ Tm

m
≤

Tk(n+1)

k(n)
,

where we have used the fact that Yk ≥ 0. Thus, recalling that k(n) = bαnc, we have
k(n + 1)/k(n) → α and

1

α
µ ≤ lim inf

n→∞
Tm/m ≤ lim sup

n→∞
Tm/m ≤ αµ.

Since α > 1 was arbitrary, this shows that Tm/m → µ a.s.
Finally, note that

∞∑
k=1

P (Xk > k) ≤ C

∞∑
k=1

P (X1 > k) ≤ C

∫ ∞

0

P (X1 > y) dy = CEX1 < ∞.

By Borel-Cantelli, P (Xk 6= Yk i.o.) = 0. Therefore, |Sn(ω)− Tn(ω)| ≤ R(ω) < ∞ a.s. for all
n, which implies Sn/n → µ a.s. 2

Theorem 3.8. (Kolmogorov’s strong law of large numbers)[4]
Let X1, X2, . . . be iid and let Sn =

∑n
j=1 Xj. Then there exists µ ∈ R such that

limn→∞ Sn/n = µ a.s. if and only if E|X1| < ∞. In this case, µ = EX1.

Theorem 3.9. (Glivenko-Cantelli theorem)[2]
Suppose X1, X2, . . . are iid. Define F (x) = P (X1 ≤ x) and Fn(x) = n−1

∑n
j=1 1{Xj≤x}. Then

supx∈R |Fn(x)− F (x)| → 0 a.s.
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Theorem 3.10. (Ergodic strong law of large numbers)[4]
Let T be an injective measure preserving transformation of Ω onto itself. Assume the only
T -invariant sets are sets of probability 0 or 1. If X ∈ L1, then n−1

∑n
j=1 X(T j(ω)) → EX

a.s. and in L1 as n →∞, where T j+1 = T j ◦ T .

Theorem 3.11. (Quantile strong law of large numbers)
Let X1, X2, . . . be iid and let F (x) = P (X1 ≤ x). Fix α ∈ (0, 1). Suppose there exists q
such that F (q) = α and F is strictly increasing at x = q. Let Mn denote the bαnc-th order
statistic of the quantities X1, . . . , Xn. Then Mn → q a.s.

Proof. Note that for each x ∈ R, {Mn ≤ x} = {
∑n

j=1 1{Xj≤x} ≥ bαnc}. Thus, for all ε > 0,

{q − ε < Mn ≤ q + ε} =

{
1

n

n∑
j=1

1{Xj≤q+ε} ≥
bαnc

n

}
∩

{
1

n

n∑
j=1

1{Xj≤q−ε} <
bαnc

n

}
.

By Theorem 3.9, there exists Ω∗ ⊂ Ω such that P (Ω∗) = 1 and n−1
∑n

j=1 1{Xj≤x} → F (x)
uniformly in x for each ω ∈ Ω∗. Since F (q + ε) > α and F (q − ε) < α, each ω ∈ Ω∗ is an
element of {q − ε < Mn ≤ q + ε} for sufficiently large n. Hence,

Ω∗ ⊂ {q − ε ≤ lim inf
n→∞

Mn ≤ lim sup
n→∞

Mn ≤ q + ε},

which shows that Mn → q a.s. 2

Remark 3.12. There are many very detailed results on the asymptotics of order statistics in
[5].

4 Convergence in Distribution

Theorem 4.1. (Portmanteau Theorem) [1]
If Xn, X are random variables taking values in a metric space S, then the following are
equivalent:

(i) Xn ⇒ X

(ii) E[f(Xn)] → E[f(X)] for all bounded, uniformly continuous f : S → R

(iii) lim supn→∞ P (Xn ∈ F ) ≤ P (X ∈ F ) for all closed F ⊂ S

(iv) lim infn→∞ P (Xn ∈ G) ≤ P (X ∈ G) for all open G ⊂ S

(v) limn→∞ P (Xn ∈ A) = P (X ∈ A) for all Borel sets A ⊂ S with P (X ∈ ∂A) = 0

Theorem 4.2. (Skorohod representation)[3]
Let S be a complete, separable metric space and B its Borel σ-algebra. If µn, µ0 are probability
measures on (S,B) with µn ⇒ µ0, then there exists a probability space (Ω,F , P ) and random
variables Xn, X0 on Ω taking values in S such that Xn has distribution µn for all n ≥ 0 and
Xn → X0 a.s.
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Theorem 4.3. [1]
Let S be a metric space, B its Borel σ-algebra, and Pn, P probability measures on (S,B).
Suppose U ⊂ B satisfies

(i) U is closed under finite intersections, and

(ii) each open set in S is a countable union of elements of U .

If Pn(A) → P (A) for all A ∈ U , then Pn ⇒ P .

Theorem 4.4. [1]
For x, y ∈ Rd, write x ≤ y if xj ≤ yj for all j. If X(n), X are Rd-valued random variables with
F (n)(x) = P (X(n) ≤ x) and F (x) = P (X ≤ x), then X(n) ⇒ X if and only if F (n)(x) → F (x)
for all x ∈ Rd such that F is continuous at x.

Theorem 4.5. (Cramér-Wold device)[2]
Let X(n), X be random vectors in Rd. If θ ·X(n) ⇒ θ ·X for all θ ∈ Rd, then X(n) ⇒ X.

5 Central Limit Theorems

Theorem 5.1. (Central Limit Theorem)[2]
Let X1, X2, . . . be iid with EXj = µ. Suppose that Var(Xj) = σ2 ∈ (0,∞). If Sn =
X1 + . . . + Xn, then (Sn − nµ)/(σn1/2) ⇒ χ, where χ has the standard normal distribution.

Theorem 5.2. (Lindeberg-Feller Theorem)[2]
For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0. If

(i)
∑n

m=1 EX2
n,m → σ2 as n →∞, and

(ii) for each ε > 0,
∑n

m=1 E[|Xn,m|21{|Xn,m|>ε}] → 0 as n →∞,

then Sn = Xn,1 + · · ·+Xn,n ⇒ σχ as n →∞, where χ has the standard normal distribution.

Remark 5.3. Durrett assumes in condition (i) that σ2 > 0. However, if σ2 = 0, then condition
(i) says that Sn → 0 in L2 and therefore Sn → 0 in probability and in distribution.

Theorem 5.4. (Lyapunov’s Central Limit Theorem)

Let X1, X2, . . . be independent with EXj = 0 for all j. Let αn =
√∑n

j=1 Var(Xj). If there

exists δ > 0 such that limn→∞ α
−(2+δ)
n

∑n
j=1 E|Xj|2+δ = 0, then

X1 + · · ·+ Xn√∑n
j=1 Var(Xj)

⇒ χ,

where χ has the standard normal distribution.
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Proof. For each n ∈ N and m ∈ {1, . . . , n}, let Xn,m = α−1
n Xm. Note that

∑n
m=1 EX2

n,m = 1.
Also note that for each ε > 0,

n∑
m=1

E[|Xn,m|21{|Xn,m|>ε}] = α−2
n

n∑
m=1

E[|Xm|21{|Xm|>αnε}]

≤ α−2
n

n∑
m=1

E

[
|Xm|2+δ

(αnε)δ
1{|Xm|>αnε}

]
≤ ε−δα−(2+δ)

n

n∑
m=1

E|Xm|2+δ → 0,

as n →∞. Hence, by Theorem 5.2, Xn,1 + · · ·+ Xn,n ⇒ χ. 2

Theorem 5.5. (Nonclassical Central Limit Theorem, Part I)[6]
For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0 and
σ2

nm = EX2
n,m > 0. Suppose

∑n
m=1 σ2

nm = 1 and let Sn = Xn,1 + · · · + Xn,n. Then Sn ⇒ χ,
where χ has the standard normal distribution, if and only if

lim
n→∞

n∑
m=1

∫
{|x|>ε}

|x|
∣∣P (Xn,m ≤ x)− P (σ−1

nmχ ≤ x)
∣∣ dx = 0, (5.1)

for every ε > 0.

Theorem 5.6. (Nonclassical Central Limit Theorem, Part II)[6]
For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0
and σ2

nm = EX2
n,m > 0. Suppose

∑n
m=1 σ2

nm = 1. If Condition (ii) of Theorem 5.2
holds, then (5.1) holds for every ε > 0. Conversely, if (5.1) holds for every ε > 0, and
max1≤m≤n σ2

nm → 0 as n →∞, then Condition (ii) of Theorem 5.2 holds.

Theorem 5.7. (Converse of Lindeberg-Feller Theorem)
For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0 and
EX2

n,m > 0. Suppose

(i)
∑n

m=1 EX2
n,m → σ2 > 0 as n →∞, and

(ii) max1≤m≤n EX2
n,m → 0 as n →∞.

If Sn = Xn,1 + · · · + Xn,n ⇒ σχ as n → ∞, where χ has the standard normal distribution,
then Condition (ii) of Theorem 5.2 holds.

Proof. Let σ2
n =

∑n
m=1 EX2

n,m and define X̃n,m = σ−1
n Xn,m and S̃n = X̃n,1 + · · · + X̃n,n.

Since Sn ⇒ σχ and σn → σ, it follows that S̃n ⇒ χ. Hence, by Theorem 5.5,

lim
n→∞

n∑
m=1

∫
{|x|>ε}

|x|
∣∣∣P (X̃n,m ≤ x)− P (σ−1

nmχ ≤ x)
∣∣∣ dx = 0,
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for every ε > 0. Also, if σ̃2
nm = EX̃2

n,m, then σ̃2
nm > 0,

∑n
m=1 σ̃2

nm = 1, and max1≤m≤n σ̃2
nm →

0 as n →∞. Hence, by Theorem 5.6,

lim
n→∞

n∑
m=1

E[|X̃n,m|21{| eXn,m|>eε}] = 0,

for every ε̃ > 0.
Note that

n∑
m=1

E[|Xn,m|21{|Xn,m|>ε}] = σ2
n

n∑
m=1

E[|X̃n,m|21{| eXn,m|>σ−1
n ε}]

Since σn → σ, there exists C > 0 such that σn ≤ C for all n. Hence, if we define ε̃ = C−1ε,
then

n∑
m=1

E[|Xn,m|21{|Xn,m|>ε}] ≤ C2

n∑
m=1

E[|X̃n,m|21{| eXn,m|>eε}],

which tends to zero as n →∞. 2

Theorem 5.8. (Berry-Esseen)[2]
Let X1, X2, . . . be iid with EXi = 0 and EX2

i = σ2 < ∞. Let Sn = X1 + · · · + Xn. If
Fn(x) = P (Sn/(σn1/2) ≤ x) and Φ(x) = P (χ ≤ x), then

sup
x
|Fn(x)− Φ(x)| ≤ 3ρ

σ3n1/2
,

where ρ = E|Xi|3.

Theorem 5.9. (The Central Limit Theorem in Rd)[2]
Let X(1), X(2), . . . be iid random vectors in Rd with EX(n) = µ and finite covariances

σij = E[(X
(n)
i − µi)(X

(n)
j − µj)].

If S(n) = X(1) + · · ·+ X(n), then (S(n) − nµ)/n1/2 ⇒ N , where N is multinormal with mean
0 and covariance σ.

Theorem 5.10. (Multidimensional Lindeberg-Feller Theorem)
For each n, let X(n,m), 1 ≤ m ≤ n, be independent, Rd-valued random vectors with
EX(n,m) = 0. Let σ(n,m) = (σ

(n,m)
ij ), where σ

(n,m)
ij = EX

(n,m)
i X

(n,m)
j . If

(i)
∑n

m=1 σ(n,m) → σ as n →∞, and

(ii) for each θ ∈ Rd and each ε > 0,
∑n

m=1 E[|θ ·X(n,m)|21{|θ·X(n,m)|>ε}] → 0 as n →∞,

then S(n) = X(n,1) + · · ·+ X(n,n) ⇒ N , where N is multinormal with mean 0 and covariance
σ.

Proof. Fix θ ∈ Rd. By the Cramér-Wold device, it suffices to show θ · S(n) ⇒ θ ·N . Now,
for each n, m ∈ N with 1 ≤ m ≤ n, let Yn,m = θ ·X(n,m). Then
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(a) Yn,m, 1 ≤ m ≤ n, are independent,

(b) EYn,m = 0, and

(c)
∑n

m=1 EY 2
n,m =

∑n
m=1 E|θ ·X(n,m)|2 =

∑n
m=1 θT σ(n,m)θ → θT σθ as n →∞.

Since each σ(n,m) is positive semidefinite, θT σθ ≥ 0. Using these conditions and hypothesis
(ii), we may apply Theorem 5.2 to conclude that

Yn,1 + · · ·+ Yn,n = θ · S(n) ⇒
√

θT σθ χ.

Now, E[
√

θT σθ χ] = 0 = E[θ ·N ] and E[θT σθχ2] = θT σθ = E|θ ·N |2, so
√

θT σθ χ = θ ·N in
distribution and θ · S(n) ⇒ θ ·N . 2

Theorem 5.11. (Poisson Convergence)[2]
For each n, let Xn,m, 1 ≤ m ≤ n be independent nonnegative integer valued random variables
and set pn,m = P (Xn,m = 1), εn,m = P (Xn,m ≥ 2). If

(i)
∑n

m=1 pn,m → λ ∈ (0,∞) as n →∞,

(ii) max(pn,1, pn,2, . . . , pn,m) → 0 as n →∞, and

(iii)
∑n

m=1 εn,m → 0 as n →∞,

then Sn = Xn,1 + · · ·+ Xn,n ⇒ Z, where Z is Poisson(λ).

Theorem 5.12. (Convergence to Stable Laws)[2]
Let X1, X2, . . . be iid. Let Sn = X1 + · · · + Xn, an = inf{x : P (|X1| > x) ≤ n−1}, and
bn = nE[X11{|X1|≤an}]. Define

wα(t) =

{
tan(πα/2) if α 6= 1,

(2/π) log |t| if α = 1.

If

(i) P (X1 > x)/P (|X1| > x) → θ ∈ [0, 1] as x →∞, and

(ii) P (|X1| > x) = x−αL(x), where 0 < α < 2 and L is slowly varying,

then (Sn − bn)/an ⇒ Y , where Y has a stable law and satisfies

EeitY = exp{itc− b|t|α(1 + i(2θ − 1) sgn(t)wα(t))},

for some constants b and c.

Theorem 5.13. (Martingale Central Limit Theorem)[4]
Let X1, X2, . . . be random variables and let F1,F2, . . . be σ-algebras with Fn ⊂ Fn+1 for all
n. If E(Xn|Fn−1) = 0, E(X2

n|Fn−1) = 1, and E(|Xn|3|Fn−1) ≤ K < ∞ for all n, then
(X1 + · · ·+ +Xn)/n1/2 ⇒ χ.

10



For the next theorem, we need to start with a lemma.

Lemma 5.14. Let Z(n), Z be Rd-valued random vectors such that Z(n) ⇒ Z. Let a(n), a ∈ Rd

satisfy a(n) → a and define the set A = {x ∈ Rd : x ≥ a}. If P (Z ∈ ∂A) = 0, then
P (Z(n) ≥ a(n)) → P (Z ≥ a).

Proof. Let An = {x ∈ Rd : x ≥ a(n)}. By Theorem 4.1(v) and the triangle inequality, it
suffices to show that |P (Z(n) ∈ An) − P (Z(n) ∈ A)| ≤ P (Z(n) ∈ An∆A) → 0. (Here, “∆”
denotes the symmetric difference: A∆B = (A \B) ∪ (B \ A).)

Fix δ > 0 and let Bε denote the set of all x ∈ Rd that satisfy xi ≥ ai− ε for all i, and for
which there exists j such that xj ≤ aj + ε. Since Bε is a decreasing family of sets as ε ↓ 0
with ∩εBε ⊂ ∂A, we may choose ε sufficiently small so that P (Z ∈ Bε) < δ.

Since a(n) → a, we have An∆A ⊂ Bε for n sufficiently large. Hence, P (Z(n) ∈ An∆A) ≤
P (Z(n) ∈ Bε). Since Bε is closed, Theorem 4.1(iii) gives that lim supn→∞ P (Z(n) ∈ Bε) ≤
P (Z ∈ Bε). Thus, for n sufficiently large, P (Z(n) ∈ Bε) ≤ P (Z ∈ Bε) + δ < 2δ. Since δ was
arbitrary, this completes the proof. 2

Theorem 5.15. (Multi-Dimensional Quantile Central Limit Theorem)

Let X(n) = (X
(n)
1 , . . . , X

(n)
d ), n ∈ N, be iid random vectors and let Fj(x) = P (X

(1)
j ≤ x).

Fix α ∈ (0, 1)d and suppose there exists q ∈ Rd such that Fj(qj) = αj and F ′
j(qj) > 0

for all j. Let M
(n)
j be the bαjnc-th order statistic of the quantities X

(1)
j , . . . , X

(n)
j and

M (n) = (M
(n)
1 , . . . ,M

(n)
d ). If Gij(x, y) = P (X

(1)
i ≤ x, X

(1)
j ≤ y) is continuous at (qi, qj)

for all i, j, then
√

n(Mn − q) ⇒ N , where N is multinormal with mean 0 and covariance σ,
given by

σij =
ρij

F ′
i (qi)F ′

j(qj)
,

with ρij = Gij(qi, qj)− αiαj.

Proof. Fix x ∈ Rd and for each n,m ∈ N, 1 ≤ m ≤ n, define the random vector Y (n,m) ∈ Rd

by

Y
(n,m)
j =

1√
n

(
1{X(m)

j ≤xj/
√

n+qj}
− p

(n)
j

)
,

where p
(n)
j = Fj(xj/

√
n + qj). Then for each n ∈ N,

(a) Y (n,m), 1 ≤ m ≤ n, are independent,

(b) EY (n,m) = 0,

(c)
∑n

m=1 E[Y
(n,m)
i Y

(n,m)
j ] → ρij as n →∞, and

(d) for each θ ∈ Rd and ε > 0,
∑n

m=1 E[|θ · Y (n,m)|21{|θ·Y (n,m)|>ε)}] → 0 as n →∞.

Part (c) follows since

n∑
m=1

E[Y
(n,m)
i Y

(n,m)
j ] =

1

n

n∑
m=1

[
P

(
X

(m)
i ≤ xi√

n
+ qi, X

(m)
j ≤ xj√

n
+ qj

)
− p

(n)
i p

(n)
j

]
= P

(
X

(1)
i ≤ xi√

n
+ qi, X

(1)
j ≤ xj√

n
+ qj

)
− p

(n)
i p

(n)
j ,
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and part (d) follows since |θ ·Y (n,m)| ≤ max(|θ1|, . . . , |θd|)/
√

n, and therefore P (|θ ·Y (n,m)| >
ε) = 0 for sufficiently large n.

Thus, by Theorem 5.10, S(n) = Y (n,1) + · · ·+ Y (n,n) ⇒ Ñ , where Ñ is multinormal with
mean 0 and covariance ρ. Now,

√
n(M (n) − q) ≤ x iff M

(n)
j ≤ xj/

√
n + qj for all j

iff
n∑

m=1

1{X(m)
j ≤xj/

√
n+qj}

≥ bαjnc for all j

iff
1√
n

n∑
m=1

(
1{X(m)

j ≤xj/
√

n+qj}
− p

(n)
j

)
≥
bαjnc − np

(n)
j√

n
for all j.

Thus, if a(n) ∈ Rd is defined by a
(n)
j = (bαjnc − np

(n)
j )/

√
n, then P (

√
n(M (n) − q) ≤ x) =

P (S(n) ≥ a(n)). Note that

a
(n)
j =

bαjnc − αjn√
n

+
√

n(αj − p
(n)
j ) =

bαjnc − αjn√
n

+
Fj(qj)− Fj(xj/

√
n + qj)

1/
√

n
,

so that a(n) → a ∈ Rd, where aj = −xjF
′
j(qj). Therefore, by Lemma 5.14,

P (
√

n(M (n) − q) ≤ x) → P (Ñ ≥ a)

= P (Ñ ≤ −a)

= P (N ≤ x),

where N is the random vector defined by Nj = Ñj/F
′
j(qj).

We now have
√

n(M (n) − q) ⇒ N , N is multinormal with mean 0, and

E[NiNj] =
1

F ′
i (qi)F ′

j(qj)
E[ÑiÑj] =

ρij

F ′
i (qi)F ′

j(qj)
= σij,

which completes the proof. 2

Corollary 5.16. (Median Central Limit Theorem)
Let X1, X2, . . . be iid, F (x) = P (X1 ≤ x), and Mn = med(X1, . . . , Xn). If F (0) = 1/2 and
F ′(0) > 0, then

√
nMn ⇒ (2F ′(0))−1χ.

Corollary 5.17. (Median of Multinormal Random Vectors)
If X(1), X(2), . . . are iid, mean 0, multinormal Rd-valued random vectors with covariance σ
and M (n) = med(X(1), . . . , X(n)), then

√
nM (n) ⇒ Z, where Z is multinormal with mean 0

and covariance

τij =
√

σiiσjj sin−1

(
σij√
σiiσjj

)
,

where sin−1(·) takes values in [−π/2, π/2].
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Proof. By Theorem 5.15,
√

nM (n) ⇒ Z, where Z is multinormal with mean 0 and covariance

τij =
ρij

F ′
i (0)F

′
j(0)

,

where ρij = P (X
(1)
i ≤ 0, X

(1)
j ≤ 0)− 1/4 and

Fj(x) = P (X
(1)
j ≤ x) =

1√
2πσjj

∫ x

−∞
e−t2/2σjj dt.

Since F ′
j(0) = (2πσjj)

−1/2, it remains only to show that

ρij =
1

2π
sin−1

(
σij√
σiiσjj

)
.

Let X = X
(1)
i , Y = X

(1)
j and define

a± = 1± σij√
σiiσjj

X̃± =
1√
2a±

(
1

√
σii

X ± 1
√

σjj

Y

)
,

so that X̃+, X̃− are independent standard normals. Since

X =

√
σii

2

(√
2a+X̃+ +

√
2a−X̃−

)
Y =

√
σjj

2

(√
2a+X̃+ −

√
2a−X̃−

)
,

we have that X ≤ 0 and Y ≤ 0 if and only if (X̃+, X̃−) lies in a sector whose angle θ satisfies
0 ≤ θ ≤ π and

cos θ = −2a+ − 2a−

2a+ + 2a−
= − σij√

σiiσjj

.

Thus,

P (X ≤ 0, Y ≤ 0) =
θ

2π
=

1

2π
cos−1

(
− σij√

σiiσjj

)
=

1

4
+

1

2π
sin−1

(
σij√
σiiσjj

)
,

where sin−1(·) takes values in [−π/2, π/2]. 2
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