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1 Introduction

What follows is a collection of various limit theorems that occur in probability. Most
are taken from a short list of references. Such theorems are stated without proof and a
citation follows the name of the theorem. A few are not taken from references. They are
usually straightforward generalizations of the standard theorems and proofs are provided.
The glossary includes some definitions of terms used in these theorems.

2 Glossary

uncorrelated: A family of random variables {X;}ic; with EX? < oo is uncorrelated if
E(X;X;) = EX,;EX; whenever i # j.

independent: The random variables X, X5, ..., X, are independent if
P(ﬂ{XJ S AJ}> = HP(X] € AJ)
j=1 i=1
for all n-tuples of measurable sets (Aj, Ay, ..., A,). A family of random variables {X;};es is

independent if for each finite subset J C I, the family {X;};c, is independent.

uniformly integrable: A family of random variables {X;}c; is uniformly integrable if
Supser B [\Xill{\xi\zK}] — 0 as K — oo.

pairwise independent: A family of random variables {X;};cs is pairwise independent if
X; and X are independent whenever ¢ # j.

measure preserving: Let (2, F, P) be a probability space. An injective map 7" : 2 — Q
is a measure preserving transformation if A € F implies T(A) € F and P(T(A)) = P(A).

T-invariant: If 7" is a measure preserving transformation, then a set A € F is T-invariant,
or invariant under 7', if 15 (w) = 1,(T(w)) a.s.

median: Let zy,...,2, € Rand let 7 : {1,...,n} — {1,...,n} be a bijection such that
y; = () satisfies y; < -+ < y,. Then med(y,...,x,) = yp, where k = [(n +1)/2].
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If 2z, ... 2 € R then med(z, ... ,:1:(")) is the vector in R? whose j-th component is

med(xg»l), o ,:cg.")).

weak convergence: Let i, 1 be probability measures on (S, 5), where S is a metric space
and B is its Borel o-algebra. If [ fdu, — [ fdu for every bounded, continuous f : S — R,
then p, converges weakly to u (written g, = p).

convergence in distribution: Let X,,, X be random variables taking values in a metric
space S. Define measures p,, p on (S,B), where B is the Borel g-algebra on S, by
pn(A) = P(X,, € A), u(A) = P(X € A). Then X,, converges to X in distribution (written

XniXoanﬁX)ifunﬁpd.

multinormal: A random vector X = (Xj,...,Xy)T is multinormal if every linear
combination ¢; Xy + - -+ + ¢4X4 has a normal (possibly degenerate) distribution. The mean
of X is the (column) vector § € R? with 6; = EX;. The covariance of X is the d x d matrix
o with

Jij = COV(XZ‘,XJ‘) = E(XZXJ) — 619])

In this case, ¢ is symmetric and positive semidefinite, and ¢, X; + ... + ¢4 X4 has mean c¢’'6
and variance ¢! oc.

Poisson: A random variable Z is Poisson()\) if P(Z = k) = e *\*/k! for all k € Z, =
{0} UN.

stable law: A random variable Y has a stable law if for every & € N, there are constants
ar and by such that (Y7 + -+ + Y — bg)/ax 2 Y whenever Yy, ...,Y; are independent and

identically distributed (iid) with Y; Ly (The notation U £ V means that the random
variables U and V' have the same distribution.)

slowly varying: A function L(x) is slowly varying if lim, .., L(tx)/L(z) =1 for all £ > 0.

3 Laws of Large Numbers

Theorem 3.1. (L* weak law)[2]
Let Xy, Xo, ... be uncorrelated random variables with EX; = p and Var(X;) < C < oo. If
Sp =X+ + X, then S,/n — p in L* and in probability as n — oo.

Theorem 3.2. (L' weak law)[7]
If X1, X5, ... is a uniformly integrable sequence of independent random variables, then

1 n
=3 (X — EX,) =0,
n

m=1

in L' and in probability as n — oo. In particular, if X1, Xs, ... is iid with E|X| < oo and
S, =X+ + X, then S,,/n — EX; in L' and in probability.



Theorem 3.3. (Weak law for triangular arrays)[2]
For each n, let X,y, 1 < k < n, be independent. Let b, > 0 with b, — oo and let
Xk = Xnrl{x, <ba}- Suppose that

(i) ZZ:1 P(| X, x| > b,) — 0, and

(i) b,? > et EYik — 0 asn — oco.
If we let S, = Xp1 + -+ Xpp and put a, = > _, EX g, then (S, — ay,) /by — 0 in
probability.

Theorem 3.4. (Weak law of large numbers)
Let X1, Xs, ... be independent with sup, xP(|Xg| > ) — 0 asz — oco. Let S, = X;+---+X,
and let

1 n
k=1

Then S, /n — p, — 0 in probability.

Proof. Let f(z) = sup, 2P(|Xx| > x). We apply Theorem [3.3| with X, , = X and b, = n.
To verify Condition (i) of Theorem [3.3] note that

ZP [Xel > n) < msup P(Xe| > n) = f(n) =0,
k=1

as n — oo. For Condition (ii), we use the fact that for any random variable Y, we have
EY? = [Z2yP(|Y] > y)dy. Thus,

1 n
EZEXM<—Z/ yP(IX] > y) dy < > /f
k=1

Fix ¢ > 0. Since f(z) — 0 as x — oo, there exists K > 0 such that x > K implies f(z) < e.

Thus,
. 2 (" :
lim sup — / f(y) dy = limsup ( / fly)dy + — / fly dy)
n—oo 1 Jg n— o0
) 2K?  2(n-—
< lim sup + = 2¢.
n—o0 n n
Since € was arbitrary, this completes the proof. O

Theorem 3.5. (Strong laws of large numbers)[2],[4]

(1) If X1, X, ... are pairwise independent and identically distributed with E|X;| < oo,
then (X1 +---+ X,,)/n — EX; a.s. asn — oc.

(ii) If X1,Xs,... are @id with E[|Xi|l{x,>0}) = 00 and E[|Xi|lix,<0y) < o0, then
(Xi4+--+X,)/n— o0 as.



(iii) If X1, Xs, ... are iid with EX? < oo, then (X; +---+ X,,)/n — EX; a.s. and in L.

Part (i) of the above theorem is Theorem 1.7.1 in [2]. If we inspect the proof of that
theorem, we see that the conditions can be weakened to the following.

Theorem 3.6. (Generalized strong law of large numbers)

Let X1, Xs,... be nonnegative random variables with E|X;| < oo and EXy = p for all
k. Let Yy = Xplyx,|<k}, and assume the random variables {Yi} are uncorrelated. Also
assume there ezists a constant C' such that P(X, > t) < CP(X; > t) for all k and t. If
Sp=X1+ -+ X, then S,/n — p a.s. asn — oo.

Remark 3.7. Any sequence whose positive and negative parts satisfy the above hypotheses
will satisfy the strong law of large numbers.

Proof. Let a > 1 and € > 0 be arbitrary. Let T,, = Y +--- 4+ Y,, and k(n) = [a"]. By
Chebyshev,

> " P(|Tiw) — ETiny| > k(n ZVar Timy)/ K (n)?

=g ? Z k(n)~? Z Var(Y,
Z Var(Y, Z k(n

n:k(n)>m

Since [a"| > a™/2,

Z "] 72 <4 Z Q™ <41 —a Hm 2

n:la™|>m n:la™|>m
Hence,

> P(|Tem) — ETimy| > €k(n)) < 4(1 - o~ Z Var(Y,
=1

To bound this sum, note that

0 k k
Var(Y;) < EY? = / 2uP(Yy, > y)dy < / 2uP( Xy > y)dy < C’/ 2yP (X1 > y) dy.
0 0 0

Thus,

| /\

/ Liyem)2yP(X1 > y) dy

5" Vil < €3
- /w{im 1{y<m}}2yP(X1 >y)dy
I

m=1



where the last inequality above uses Lemma 1.7.1(c) in [2]. Putting this together, we have
> P(|Tign) = ETiwmy| > €k(n)) < 16C(1 — a?)e?E| X3 < oo
n=1

By the Borel-Cantelli lemma, since € is arbitrary, this implies (Tj) — ETgm)/k(n) — 0 a.s.
Now,

EY, = E(Xi, — Xilix,>ky) = it — / P(Xylix,>1 > y) dy.
0

Note that

o0

[e%¢) k
0 0 k
k [e'S)
< C(/ P(X; > k)dy+/ P(X; >y)dy>
0 k
== OE(Xll{X1>k}) — 0.

Hence, EY;, — p as k — oo, which implies ETj ) /k(n) — p. We have therefore shown that
Thny/k(n) — p a.s. For the intermediate values, if k(n) < m < k(n + 1), then

Ti(n) < T < Tk(n+1)’
kE(n+1) — m k(n)

where we have used the fact that Y, > 0. Thus, recalling that k(n) = |a™], we have
k(n+1)/k(n) — a and

1
—p <liminf T,,,/m < limsupT,,/m < au.
a

n—0o n—oo

Since a > 1 was arbitrary, this shows that T,,,/m — pu a.s.
Finally, note that

Y P(Xy>k)<CY P(X)>k) gc/ P(X; > y)dy = CEX, < .
0

k=1 k=1

By Borel-Cantelli, P(X} # Y) i.0.) = 0. Therefore, |S,(w) — T, (w)| < R(w) < oo a.s. for all
n, which implies S,/n — p a.s. O

Theorem 3.8. (Kolmogorov’s strong law of large numbers)[4]
Let Xy, Xs5,... be ud and let S, = Z;’L=1 Xj;.  Then there ewists 1 € R such that
limy, oo Sp/m = p a.s. if and only if E|X;| < co. In this case, p = EX;.

Theorem 3.9. (Glivenko-Cantelli theorem)|2]
Suppose X1, Xo, ... are @id. Define F(z) = P(X; <z) and F,(z) =n~"! 2?21 lyx,<zy. Then
SUD,eg | Fn(z) — F(x)] — 0 a.s.



Theorem 3.10. (Ergodic strong law of large numbers)[4]

Let T be an injective measure preserving transformation of ) onto itself. Assume the only
T-invariant sets are sets of probability 0 or 1. If X € L', then n™! Z?Zl X(T'(w)) — EX
a.s. and in L' as n — oo, where T"*' =TI o T,

Theorem 3.11. (Quantile strong law of large numbers)
Let X1, X, ... be iid and let F(x) = P(X; < z). Fiz a € (0,1). Suppose there exists q
such that F(q) = a and F is strictly increasing at © = q. Let M, denote the |an]-th order
statistic of the quantities X1,...,X,,. Then M, — q a.s.

Proof. Note that for each z € R, {M,, <z} = {377, l{x,<z) > [an]}. Thus, for all ¢ > 0,

1< lan] 1< lan]
e < M, < e S PV Lo A o S N AV .
{g—e<M,<q+e} {n; (Xyzare) 2 } {n; (X;<0-2)

n

By Theorem , there exists Q* C Q such that P(Q*) = 1 and n~' 37" 1(x,<sy — F(2)
uniformly in x for each w € Q. Since F(¢+¢) > a and F(q¢ —¢) < «, each w € Q" is an
element of {g — e < M,, < q+ ¢} for sufficiently large n. Hence,

0" C {q— e <liminf M,, < limsup M,, < q+ ¢},

n—00 n—oo

which shows that M,, — ¢ a.s. O

Remark 3.12. There are many very detailed results on the asymptotics of order statistics in

5.

4 Convergence in Distribution

Theorem 4.1. (Portmanteau Theorem) [I]
If X,,, X are random wvariables taking values in a metric space S, then the following are
equivalent:

(i) X, = X

(i) E[f(X,)] — E[f(X)] for all bounded, uniformly continuous f: S — R
(1) limsup, . P(X, € F) < P(X € F) for all closed F C S
(iv) liminf, .. P(X, € G) < P(X € G) for all open G C S

(v) lim, ., P(X, € A) = P(X € A) for all Borel sets A C S with P(X € 0A) =0

Theorem 4.2. (Skorohod representation)|[3]

Let S be a complete, separable metric space and B its Borel o-algebra. If pu,, po are probability
measures on (S, B) with p, = po, then there exists a probability space (2, F, P) and random
variables X,,, Xy on ) taking values in S such that X,, has distribution p,, for alln > 0 and
X, — Xo a.s.



Theorem 4.3. [I]
Let S be a metric space, B its Borel o-algebra, and P,, P probability measures on (S, B).
Suppose U C B satisfies

(i) U is closed under finite intersections, and
(i1) each open set in S is a countable union of elements of U.
If P,(A) — P(A) for all A€ U, then P, = P.

Theorem 4.4. [1]

Forz,y € RY, writex <y ifx; <y; forallj. If X™ X are R4 -valued random variables with
FO)(z) = P(X™ < ) and F(z) = P(X < ), then X™ = X if and only if F™(z) — F(x)
for all x € R? such that F is continuous at x.

Theorem 4.5. (Cramér-Wold device)[2]
Let XM X be random vectors in R®. If0- X™ = 0. X for all § € R?, then X = X

5 Central Limit Theorems

Theorem 5.1. (Central Limit Theorem)[2]
Let X1, Xo,... be tid with EX; = p. Suppose that Var(X;) = o* € (0,00). If S, =
X+ ...+ X, then (S, — nu)/(on/?) = x, where x has the standard normal distribution.

Theorem 5.2. (Lindeberg-Feller Theorem)|2]
For each n, let X, 1 <m <n, be independent random variables with EX,, ,,, = 0. If

(i) o EX?, — 0% asn — oo, and
(i) for each e >0, 3" | El|Xnm|*1{x,m>e}] — 0 as n — oo,
then S,, = X1+ -+ X, = 0x as n — oo, where x has the standard normal distribution.

Remark 5.3. Durrett assumes in condition (i) that ? > 0. However, if 02 = 0, then condition
(i) says that S, — 0 in L? and therefore S,, — 0 in probability and in distribution.

Theorem 5.4. (Lyapunov’s Central Limit Theorem)
Let X1, Xy, ... be independent with EX; = 0 for all j. Let a,, = (/> 7, Var(X;). If there

exists 6 > 0 such that lim, e can ) S EIXG PP =0, then
Xi+--4+ X,
Z?:1 Var(Xj)

= X

where x has the standard normal distribution.



Proof. Foreachn € Nandm € {1,...,n},let X, = ;' X, Notethat 3" | EX2  =1.
Also note that for each ¢ > 0,

ZE | X1 X 52}] = ZE | Xon P11 X [>ane)]

m=1 m=1
Laxe g [ X
<o?) E [Wl{mmbans}
m=1 n

< 8_50@(2”) Z E|Xm|2+5 =0,

m=1
as n — 0o. Hence, by Theorem Xni+-+Xun=x m|

Theorem 5.5. (Nonclassical Central Limit Theorem, Part I)[6]

For each n, let X, ,,, 1 < m < n, be independent random variables with £X,, ,,, = 0 and
o2 = EX2 > 0. Suppose " _ 02 =1andlet S, = X1+ -+ Xnn. Then S, = x,
where x has the standard normal distribution, if and only iof

i S [ el PG <) Plogh < )] ds =, G.)
m=1 x|>€e

for every € > 0.

Theorem 5.6. (Nonclassical Central Limit Theorem, Part IT)[0]

For each n, let Xpm, 1 < m < n, be independent random variables with £EX,, ,, = 0
and o2, = EX2 > 0. Suppose > _, 02, = 1. If Condition (it) of Theorem |5 .
holds, then holds for every e > 0. Conversely, if (5.1 . holds for every ¢ > 0, and
MaXi <<y 02, — 0 as n — oo, then Condition (ii) of Theorem[5.9 holds.

Theorem 5.7. (Converse of Lindeberg-Feller Theorem)

For each n, let X, 1 < m < n, be independent random wvariables with EX,, ,, = 0 and
EX?,, > 0. Suppose

(i) > _EXZ, —o0*>>0asn— oo, and
(i1) max) <<, EX2,, — 0 asn — oo.

If S, = Xp1+ -+ X, = ox as n — 00, where x has the standard normal distribution,
then Condition (ii) of Theorem[5.9 holds.

Proof. Let 02 =Y "  EX?  and define )?n,m = 0, ' X,m and gn = ~n71 + -+ X

n,m

Since S, = ox and o, — o, it follows that §n = x. Hence, by Theorem ,

lim Z / [P <)~ Pl < 0| dr =0,

n—oo



for every e > 0. Also, if 52,, = EX2, , then 32, > 0, 5" _ 52 =1, and max;<m<n —

n,m? n

0 as n — oo. Hence, by Theorem [5.6]

Unm

. i 2 o
7}1—{20 Z El| X m| 1{|)~(n,m|>g}] =0,
m=1

for every € > 0.
Note that

n

> Bl Xl xamisa] = 02 > EllXnml iz, . sotey]
m=1

m=1

Since o0, — o, there exists C' > 0 such that o,, < C for all n. Hence, if we define & = C e,
then

Z E[’Xn7m|21{|Xn,m|>€}] <C® Z E[’Xn,m’21{|)~(nym|>g}]7
m=1

m=1 =

which tends to zero as n — oo. O

Theorem 5.8. (Berry-Esseen)[2]
Let X1, Xo,... be itd with EX; = 0 and EX? = 0> < co. Let S, = X1+ -+ X,,. If
Fo(z) = P(S,/(on'?) < x) and ®(x) = P(x < x), then

3p

sup |F(z) — @(z)] < pEmYCR

where p = E|X;]3.

Theorem 5.9. (The Central Limit Theorem in R?)[2]

Let XM X®@ . be iid random vectors in R with EX™ = 1 and finite covariances
7ij = (X" = ) (X} = 1))

If S™ = XM oo XM then (SM) —np)/nt/? = N, where N is multinormal with mean
0 and covariance o.

Theorem 5.10. (Multidimensional Lindeberg-Feller Theorem)
For each n, let X(™™ 1 < m < n, be independent, R%-valued random vectors with

EX™™) = 0. Let o™ = (a(n’m)), where afy’m) = EXi(n’m)X](-n’m). If

ij
(i) Sr _ o™ — o asn— oo, and

(ii) for each 6 € RY and each e >0, 37 | E[|6 - X" 210, vumjsey] — 0 as n — oo,

then S = XD ... 4 X)) = N where N is multinormal with mean 0 and covariance
0.

Proof. Fix § € R?. By the Cramér-Wold device, it suffices to show 6 - S™ = . N. Now,
foreach n,m e Nwith 1 <m <n,letY,,, =0 X®m)  Then
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(a) Ynm, 1 <m < n, are independent,

(b) EY, ,, =0, and

(c) 22:1 EYnZ,m = 22:1 E)0 - X(n’m)|2 =>" 0T a(mmg — 0T 50 as n — oo.

m=1

Since each o™™ is positive semidefinite, #7c# > 0. Using these conditions and hypothesis

(ii), we may apply Theorem to conclude that

Yoi+ -+ Y, =0-S™ = VoTol y.

Now, E[V0Taf x] = 0= E[0- N] and E[#Tc0x?| = 6700 = E|0- N|?, so VOTal x =6- N in

distribution and 6 - S™ = 4. N.

Theorem 5.11. (Poisson Convergence)[2]

O

For eachn, let X,, ,, 1 < m <n be independent nonnegative integer valued random variables

and set ppm = P(Xpm = 1), enm = P(Xom > 2). If
(i) > Pom — A € (0,00) as n — oo,
(11) max(py1,Pn2s---Pnm) — 0 as n — oo, and
(i) > €nm — 0 asn — oo,
then S, = Xp1+ -+ Xpn = Z, where Z is Poisson(\).

Theorem 5.12. (Convergence to Stable Laws)[2]
Let Xy, Xo,... be iid. Let S, = X; +---+ X,,, a, = inf{x
by = nE[X11{x,|<an]- Define

walt) = tan(ra/2) z:fa f 1,
(2/m)loglt| if a=1.

If
(i) P(X,>x)/P(|X1| >x) — 60 €]0,1] as x — oo, and

: P(|Xy| > z) < n7'}, and

(i) P(|X1| > 2)=a"*L(x), where 0 < a < 2 and L is slowly varying,

then (S, — bp)/a, =Y, where Y has a stable law and satisfies

Ee™ = exp{itc — b|t|*(1 + (20 — 1) sgn(t)w, ()},

for some constants b and c.

Theorem 5.13. (Martingale Central Limit Theorem)[4]

Let X1, Xo, ... be random variables and let Fi,Fs, ... be o-algebras with F,, C Fn11 for all
n. If BE(X,|Fn.1) = 0, BE(X2|F,—1) = 1, and E(|X,.|]*|F.1) < K < oo for all n, then

(X1 + - ++X,)/n'? = y.
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For the next theorem, we need to start with a lemma.

Lemma 5.14. Let Z™, Z be R%-valued random vectors such that Z™ = Z. Let o™, a € R¢
satisfy a'™ — a and define the set A = {x € R? : x > a}. If P(Z € 0A) = 0, then
P(Z™ > a™) — P(Z > a).

Proof. Let A, = {x € R?: 2 > a™}. By Theorem (V) and the triangle inequality, it
suffices to show that |[P(Z™ € A,) — P(Z™ € A)| < P(Z™ € A,AA) — 0. (Here, “A”
denotes the symmetric difference: AAB = (A\ B)U (B \ A).)

Fix 6 > 0 and let B. denote the set of all x € RY that satisfy x; > a; — ¢ for all 7, and for
which there exists j such that z; < a; + . Since B, is a decreasing family of sets as ¢ | 0
with N.B. C A, we may choose ¢ sufficiently small so that P(Z € B.) <.

Since a(™ — a, we have A,AA C B, for n sufficiently large. Hence, P(Z(™ € A, AA) <
P(Z™ € B,). Since B. is closed, Theorem (iii) gives that limsup,_ .. P(Z™ € B.) <
P(Z € B.). Thus, for n sufficiently large, P(Z™ € B.) < P(Z € B.) + 0 < 26. Since § was
arbitrary, this completes the proof. O

Theorem 5.15. (Multi-Dimensional Quantile Central Limit Theorem)

Let X = (Xl(n),...,XC(ln)), n € N, be iid random vectors and let F;(z) = P(X]Q) < x).
Fiz o € (0,1)* and suppose there exists ¢ € R? such that Fj(q;) = a; and Fj(g;) > 0
for all 5. Let Mj( "™ be the |ayn|-th order statistic of the quantities XJ( ),.. ,X;n) and
M® = (Mm™, . M ) If Gyj(z,y) = P(X <z, X(l) < y) is continuous at (g, q;)

for all i, 7, then \/_( q) = N, where N is multmormal with mean 0 and covariance o,
gien by
T Fla)F(g)

’lUZth pij = Gw(qu QJ) — OZZ'Oéj.
Proof. Fix z € R? and for each n,m € N, 1 < m < n, define the random vector Y™ ¢ R?

by
) _ L _
Y; o NG <1{X§M)S$y‘/x/ﬁ+%} P; ) ’
where p Fi(xj/v/n+ ¢;). Then for each n € N,

(a) Y™™ 1 < m < n, are independent,

(b) EY™™ =0,

(¢) Sy BV ™Y™™] = pyj s n — oo, and

(d) foreach § € R* and e >0, > | E[|6 Y(”’m)|21{|9,y(n,m)‘>6)}] — 0 as n — oo.
Part (c) follows since

n 1 n
S By ey ey - Ly { p ( ™) < LX< ) o >p<n>]
i n i \/— \/— i j

m=1 m=1

_ M < m o & N,
P(X \/—+qz,X \/ﬁ+qj) P pj s

11



and part (d) follows since |6 - Y™™ < max(|0y],...,|04])/+/n, and therefore P(|-Y ™| >
) = 0 for sufficiently large n.

Thus, by Theorem S =yl ... y®n) o N, where N is multinormal with
mean 0 and covariance p. Now,

V(M™ —¢) <z iff Mj(n) < x;/\/n+gq; for all j

iff Z 1{X;m)§xj/\/ﬁ+qj} > |a;n] for all j
m=1
[ajn ]| —np”

i Ly (n) .
iff %mZ:l (1{X]<_m>§xj/\/ﬁ+qj} Ty ) > T for all -

Thus, if a™ € R? is defined by agn) = (|la;n] — np§n))/\/ﬁ, then P(y/n(M™ —q) < 2) =
P(S™ > a™). Note that

Sl —amn oy lagn] —agn | Fi(gg) — Fylag/Vitg)
J vn +\/_( i — Pj ) NG + 1/ vn ,

so that a™ — a € R, where a; = —z;F}(q;). Therefore, by Lemmam
P(v/n(M™ — q) < z) — P(N > a)
= P(N < —a)
= P(N <ux),

where N is the random vector defined by N; = Nj /Fi(qj).
We now have /n(M™ —¢) = N, N is multinormal with mean 0, and

1 o
E[NN}] = ———E[N;N]] = —29___ — 5.,

which completes the proof. O

Corollary 5.16. (Median Central Limit Theorem)
Let Xy, X, ... be @id, F(z) = P(X; < z), and M,, = med(Xy,...,X,,). If F(0) = 1/2 and
F'(0) > 0, then /nM, = (2F'(0)) 'x.

Corollary 5.17. (Median of Multinormal Random Vectors)

If XD X@ . are iid, mean 0, multinormal R-valued random vectors with covariance o
and M™ = med(XWM, ... X™) then /nM™ = Z, where Z is multinormal with mean 0
and covariance

.1 04
Tij = Uiiajj S1n ? s
YA AN

where sin~*(+) takes values in [—w/2,7/2].
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Proof. By Theorem VnM™ = 7 where Z is multinormal with mean 0 and covariance

7 F(0)F(0)
where p;; = P(Xi(l) < O,X;l) <0)—1/4 and
1 x
o= P <= L [ oo
271'0'jj —0

Since FJ(0) = (2m0;;)~ "/, it remains only to show that

1 . 1 ( 04 )
Pij = 7Sl .
2m \/0ii0jj
Let X = Xl-(l), Y = X](-l) and define

ot =1+ U

= 1 1 1
Xiz\/%_i(\/a_ii)(imy),
so that X *, X~ are independent standard normals. Since
X = Y74 (Vaar X+ 4 Vo X7
v = Y0 (Vs X+ —Vaar X)),

we have that X < 0and Y <0 if and only if ()? X ~) lies in a sector whose angle 6 satisfies
0<6<m7and

2aT — 2a~ Oij
cos = ———— = — .
2a™ 4+ 2a~ \/0ii0jj
Thus,
o 1 11
P(X<0,Y<0)=-—=—cos | — Jig =~ + —sin! Jig :
27 27 v/ 0ii0jj 4 27 \/0ii0 4
where sin~!(-) takes values in [—7/2,7/2]. O
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