Elementary limit theorems in probability

Jason Swanson

December 27, 2008

1 Introduction

What follows is a collection of various limit theorems that occur in probability. Most are taken from a short list of references. Such theorems are stated without proof and a citation follows the name of the theorem. A few are not taken from references. They are usually straightforward generalizations of the standard theorems and proofs are provided. The glossary includes some definitions of terms used in these theorems.

2 Glossary

uncorrelated: A family of random variables $\{X_i\}_{i \in I}$ with $EX_i^2 < \infty$ is uncorrelated if $E(X_iX_j) = EX_iEX_j$ whenever $i \neq j$.

independent: The random variables X_1, X_2, \ldots, X_n are independent if

$$P\left(\bigcap_{j=1}^{n} \{X_j \in A_j\}\right) = \prod_{j=1}^{n} P(X_j \in A_j)$$

for all *n*-tuples of measurable sets (A_1, A_2, \ldots, A_n) . A family of random variables $\{X_i\}_{i \in I}$ is independent if for each finite subset $J \subset I$, the family $\{X_i\}_{i \in J}$ is independent.

uniformly integrable: A family of random variables $\{X_i\}_{i \in I}$ is uniformly integrable if $\sup_{i \in I} E\left[|X_i| \mathbb{1}_{\{|X_i| \geq K\}}\right] \to 0$ as $K \to \infty$.

pairwise independent: A family of random variables $\{X_i\}_{i \in I}$ is pairwise independent if X_i and X_j are independent whenever $i \neq j$.

measure preserving: Let (Ω, \mathcal{F}, P) be a probability space. An injective map $T : \Omega \to \Omega$ is a measure preserving transformation if $A \in \mathcal{F}$ implies $T(A) \in \mathcal{F}$ and P(T(A)) = P(A).

T-invariant: If *T* is a measure preserving transformation, then a set $\Lambda \in \mathcal{F}$ is *T*-invariant, or invariant under *T*, if $1_{\Lambda}(\omega) = 1_{\Lambda}(T(\omega))$ a.s.

median: Let $x_1, \ldots, x_n \in \mathbb{R}$ and let $\tau : \{1, \ldots, n\} \to \{1, \ldots, n\}$ be a bijection such that $y_j = x_{\tau(j)}$ satisfies $y_1 \leq \cdots \leq y_n$. Then $\operatorname{med}(x_1, \ldots, x_n) = y_k$, where $k = \lfloor (n+1)/2 \rfloor$.

If $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$, then $\operatorname{med}(x^{(1)}, \ldots, x^{(n)})$ is the vector in \mathbb{R}^d whose *j*-th component is $\operatorname{med}(x_j^{(1)}, \ldots, x_j^{(n)})$.

weak convergence: Let μ_n , μ be probability measures on (S, \mathcal{B}) , where S is a metric space and \mathcal{B} is its Borel σ -algebra. If $\int f d\mu_n \to \int f d\mu$ for every bounded, continuous $f: S \to \mathbb{R}$, then μ_n converges weakly to μ (written $\mu_n \Rightarrow \mu$).

convergence in distribution: Let X_n , X be random variables taking values in a metric space S. Define measures μ_n , μ on (S, \mathcal{B}) , where \mathcal{B} is the Borel σ -algebra on S, by $\mu_n(A) = P(X_n \in A), \ \mu(A) = P(X \in A)$. Then X_n converges to X in distribution (written $X_n \xrightarrow{d} X$ or $X_n \Rightarrow X$) if $\mu_n \Rightarrow \mu$.

multinormal: A random vector $X = (X_1, \ldots, X_d)^T$ is multinormal if every linear combination $c_1X_1 + \cdots + c_dX_d$ has a normal (possibly degenerate) distribution. The mean of X is the (column) vector $\theta \in \mathbb{R}^d$ with $\theta_j = EX_j$. The covariance of X is the $d \times d$ matrix σ with

$$\sigma_{ij} = \operatorname{Cov}(X_i, X_j) = E(X_i X_j) - \theta_i \theta_j).$$

In this case, σ is symmetric and positive semidefinite, and $c_1X_1 + \ldots + c_dX_d$ has mean $c^T\theta$ and variance $c^T\sigma c$.

Poisson: A random variable Z is $Poisson(\lambda)$ if $P(Z = k) = e^{-\lambda} \lambda^k / k!$ for all $k \in \mathbb{Z}_+ = \{0\} \cup \mathbb{N}$.

stable law: A random variable Y has a stable law if for every $k \in \mathbb{N}$, there are constants a_k and b_k such that $(Y_1 + \cdots + Y_k - b_k)/a_k \stackrel{d}{=} Y$ whenever Y_1, \ldots, Y_k are independent and identically distributed (iid) with $Y_j \stackrel{d}{=} Y$. (The notation $U \stackrel{d}{=} V$ means that the random variables U and V have the same distribution.)

slowly varying: A function L(x) is slowly varying if $\lim_{x\to\infty} L(tx)/L(x) = 1$ for all t > 0.

3 Laws of Large Numbers

Theorem 3.1. $(L^2 \text{ weak law})[2]$

Let X_1, X_2, \ldots be uncorrelated random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$. If $S_n = X_1 + \cdots + X_n$, then $S_n/n \to \mu$ in L^2 and in probability as $n \to \infty$.

Theorem 3.2. $(L^1 \text{ weak law})[7]$ If X_1, X_2, \ldots is a uniformly integrable sequence of independent random variables, then

$$\frac{1}{n}\sum_{m=1}^{n}(X_m - EX_m) \to 0,$$

in L^1 and in probability as $n \to \infty$. In particular, if X_1, X_2, \ldots is iid with $E|X_1| < \infty$ and $S_n = X_1 + \cdots + X_n$, then $S_n/n \to EX_1$ in L^1 and in probability.

Theorem 3.3. (Weak law for triangular arrays)[2]

For each n, let $X_{n,k}$, $1 \leq k \leq n$, be independent. Let $b_n > 0$ with $b_n \to \infty$ and let $\overline{X}_{n,k} = X_{n,k} \mathbb{1}_{\{|X_{n,k}| \leq b_n\}}$. Suppose that

(i) $\sum_{k=1}^{n} P(|X_{n,k}| > b_n) \to 0$, and

(ii)
$$b_n^{-2} \sum_{k=1}^n E\overline{X}_{n,k}^2 \to 0 \text{ as } n \to \infty.$$

If we let $S_n = X_{n,1} + \cdots + X_{n,n}$ and put $a_n = \sum_{k=1}^n E\overline{X}_{n,k}$, then $(S_n - a_n)/b_n \to 0$ in probability.

Theorem 3.4. (Weak law of large numbers)

Let X_1, X_2, \ldots be independent with $\sup_k x P(|X_k| \ge x) \to 0$ as $x \to \infty$. Let $S_n = X_1 + \cdots + X_n$ and let

$$\mu_n = \frac{1}{n} \sum_{k=1}^n E[X_k \mathbb{1}_{\{|X_k| \le n\}}].$$

Then $S_n/n - \mu_n \to 0$ in probability.

Proof. Let $f(x) = \sup_k x P(|X_k| \ge x)$. We apply Theorem 3.3 with $X_{n,k} = X_k$ and $b_n = n$. To verify Condition (i) of Theorem 3.3, note that

$$\sum_{k=1}^{n} P(|X_k| > n) \le n \sup_k P(|X_k| > n) = f(n) \to 0,$$

as $n \to \infty$. For Condition (ii), we use the fact that for any random variable Y, we have $EY^2 = \int_0^\infty 2y P(|Y| > y) \, dy$. Thus,

$$\frac{1}{n^2} \sum_{k=1}^n E\overline{X}_{n,k}^2 \le \frac{2}{n^2} \sum_{k=1}^n \int_0^n y P(|X_k| > y) \, dy \le \frac{2}{n} \int_0^n f(y) \, dy.$$

Fix $\varepsilon > 0$. Since $f(x) \to 0$ as $x \to \infty$, there exists K > 0 such that $x \ge K$ implies $f(x) \le \varepsilon$. Thus,

$$\limsup_{n \to \infty} \frac{2}{n} \int_0^n f(y) \, dy = \limsup_{n \to \infty} \left(\frac{2}{n} \int_0^K f(y) \, dy + \frac{2}{n} \int_K^n f(y) \, dy \right)$$
$$\leq \limsup_{n \to \infty} \left(\frac{2K^2}{n} + \frac{2(n-K)\varepsilon}{n} \right) = 2\varepsilon.$$

Since ε was arbitrary, this completes the proof.

Theorem 3.5. (Strong laws of large numbers)[2],[4]

- (i) If X_1, X_2, \ldots are pairwise independent and identically distributed with $E|X_1| < \infty$, then $(X_1 + \cdots + X_n)/n \to EX_1$ a.s. as $n \to \infty$.
- (ii) If X_1, X_2, \ldots are iid with $E[|X_1|1_{\{X_1>0\}}] = \infty$ and $E[|X_1|1_{\{X_1<0\}}] < \infty$, then $(X_1 + \cdots + X_n)/n \to \infty$ a.s.

(iii) If X_1, X_2, \ldots are iid with $EX_1^2 < \infty$, then $(X_1 + \cdots + X_n)/n \to EX_1$ a.s. and in L^2 .

Part (i) of the above theorem is Theorem 1.7.1 in [2]. If we inspect the proof of that theorem, we see that the conditions can be weakened to the following.

Theorem 3.6. (Generalized strong law of large numbers)

Let X_1, X_2, \ldots be nonnegative random variables with $E|X_k| < \infty$ and $EX_k = \mu$ for all k. Let $Y_k = X_k \mathbb{1}_{\{|X_k| \le k\}}$, and assume the random variables $\{Y_k\}$ are uncorrelated. Also assume there exists a constant C such that $P(X_k > t) \le CP(X_1 > t)$ for all k and t. If $S_n = X_1 + \cdots + X_n$, then $S_n/n \to \mu$ a.s. as $n \to \infty$.

Remark 3.7. Any sequence whose positive and negative parts satisfy the above hypotheses will satisfy the strong law of large numbers.

Proof. Let $\alpha > 1$ and $\varepsilon > 0$ be arbitrary. Let $T_n = Y_1 + \cdots + Y_n$ and $k(n) = \lfloor \alpha^n \rfloor$. By Chebyshev,

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \varepsilon k(n)) \le \varepsilon^{-2} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)})/k(n)^{2}$$
$$= \varepsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_{m})$$
$$= \varepsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_{m}) \sum_{n:k(n) \ge m} k(n)^{-2}.$$

Since $\lfloor \alpha^n \rfloor \ge \alpha^n/2$,

$$\sum_{n:\lfloor\alpha^n\rfloor\geq m} \lfloor\alpha^n\rfloor^{-2} \leq 4 \sum_{n:\lfloor\alpha^n\rfloor\geq m} \alpha^{-2n} \leq 4(1-\alpha^{-2})m^{-2}.$$

Hence,

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \varepsilon k(n)) \le 4(1 - \alpha^{-2})\varepsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_m)/m^2.$$

To bound this sum, note that

$$\operatorname{Var}(Y_k) \le EY_k^2 = \int_0^\infty 2y P(Y_k > y) \, dy \le \int_0^k 2y P(X_k > y) \, dy \le C \int_0^k 2y P(X_1 > y) \, dy.$$

Thus,

$$\sum_{m=1}^{\infty} \operatorname{Var}(Y_m)/m^2 \le C \sum_{m=1}^{\infty} m^{-2} \int_0^\infty \mathbb{1}_{\{y < m\}} 2y P(X_1 > y) \, dy$$
$$= C \int_0^\infty \left\{ \sum_{m=1}^\infty m^{-2} \mathbb{1}_{\{y < m\}} \right\} 2y P(X_1 > y) \, dy$$
$$\le 4C \int_0^\infty P(X_1 > y) \, dy = 4CE|X_1|,$$

where the last inequality above uses Lemma 1.7.1(c) in [2]. Putting this together, we have

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \varepsilon k(n)) \le 16C(1 - \alpha^{-2})\varepsilon^{-2}E|X_1| < \infty.$$

By the Borel-Cantelli lemma, since ε is arbitrary, this implies $(T_{k(n)} - ET_{k(n)})/k(n) \to 0$ a.s. Now,

$$EY_k = E(X_k - X_k \mathbb{1}_{\{X_k > k\}}) = \mu - \int_0^\infty P(X_k \mathbb{1}_{\{X_k > k\}} > y) \, dy.$$

Note that

$$\int_0^\infty P(X_k 1_{\{X_k > k\}} > y) \, dy = \int_0^k P(X_k > k) \, dy + \int_k^\infty P(X_k > y) \, dy$$
$$\leq C \left(\int_0^k P(X_1 > k) \, dy + \int_k^\infty P(X_1 > y) \, dy \right)$$
$$= CE(X_1 1_{\{X_1 > k\}}) \to 0.$$

Hence, $EY_k \to \mu$ as $k \to \infty$, which implies $ET_{k(n)}/k(n) \to \mu$. We have therefore shown that $T_{k(n)}/k(n) \to \mu$ a.s. For the intermediate values, if $k(n) \le m < k(n+1)$, then

$$\frac{T_{k(n)}}{k(n+1)} \le \frac{T_m}{m} \le \frac{T_{k(n+1)}}{k(n)},$$

where we have used the fact that $Y_k \ge 0$. Thus, recalling that $k(n) = \lfloor \alpha^n \rfloor$, we have $k(n+1)/k(n) \to \alpha$ and

$$\frac{1}{\alpha}\mu \le \liminf_{n \to \infty} T_m/m \le \limsup_{n \to \infty} T_m/m \le \alpha\mu.$$

Since $\alpha > 1$ was arbitrary, this shows that $T_m/m \to \mu$ a.s.

Finally, note that

$$\sum_{k=1}^{\infty} P(X_k > k) \le C \sum_{k=1}^{\infty} P(X_1 > k) \le C \int_0^{\infty} P(X_1 > y) \, dy = CEX_1 < \infty.$$

By Borel-Cantelli, $P(X_k \neq Y_k \text{ i.o.}) = 0$. Therefore, $|S_n(\omega) - T_n(\omega)| \leq R(\omega) < \infty$ a.s. for all n, which implies $S_n/n \to \mu$ a.s.

Theorem 3.8. (Kolmogorov's strong law of large numbers)[4] Let X_1, X_2, \ldots be iid and let $S_n = \sum_{j=1}^n X_j$. Then there exists $\mu \in \mathbb{R}$ such that $\lim_{n\to\infty} S_n/n = \mu$ a.s. if and only if $E|X_1| < \infty$. In this case, $\mu = EX_1$.

Theorem 3.9. (Glivenko-Cantelli theorem)[2] Suppose X_1, X_2, \ldots are iid. Define $F(x) = P(X_1 \le x)$ and $F_n(x) = n^{-1} \sum_{j=1}^n \mathbb{1}_{\{X_j \le x\}}$. Then $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$ a.s. **Theorem 3.10.** (Ergodic strong law of large numbers)[4]

Let T be an injective measure preserving transformation of Ω onto itself. Assume the only T-invariant sets are sets of probability 0 or 1. If $X \in L^1$, then $n^{-1} \sum_{j=1}^n X(T^j(\omega)) \to EX$ a.s. and in L^1 as $n \to \infty$, where $T^{j+1} = T^j \circ T$.

Theorem 3.11. (Quantile strong law of large numbers)

Let X_1, X_2, \ldots be iid and let $F(x) = P(X_1 \leq x)$. Fix $\alpha \in (0, 1)$. Suppose there exists q such that $F(q) = \alpha$ and F is strictly increasing at x = q. Let M_n denote the $\lfloor \alpha n \rfloor$ -th order statistic of the quantities X_1, \ldots, X_n . Then $M_n \to q$ a.s.

Proof. Note that for each $x \in \mathbb{R}$, $\{M_n \leq x\} = \{\sum_{j=1}^n \mathbb{1}_{\{X_j \leq x\}} \geq \lfloor \alpha n \rfloor\}$. Thus, for all $\varepsilon > 0$,

$$\{q - \varepsilon < M_n \le q + \varepsilon\} = \left\{\frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{X_j \le q + \varepsilon\}} \ge \frac{\lfloor \alpha n \rfloor}{n}\right\} \cap \left\{\frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{X_j \le q - \varepsilon\}} < \frac{\lfloor \alpha n \rfloor}{n}\right\}.$$

By Theorem 3.9, there exists $\Omega^* \subset \Omega$ such that $P(\Omega^*) = 1$ and $n^{-1} \sum_{j=1}^n \mathbb{1}_{\{X_j \leq x\}} \to F(x)$ uniformly in x for each $\omega \in \Omega^*$. Since $F(q + \varepsilon) > \alpha$ and $F(q - \varepsilon) < \alpha$, each $\omega \in \Omega^*$ is an element of $\{q - \varepsilon < M_n \leq q + \varepsilon\}$ for sufficiently large n. Hence,

$$\Omega^* \subset \{q - \varepsilon \le \liminf_{n \to \infty} M_n \le \limsup_{n \to \infty} M_n \le q + \varepsilon\},\$$

which shows that $M_n \to q$ a.s.

Remark 3.12. There are many very detailed results on the asymptotics of order statistics in [5].

4 Convergence in Distribution

Theorem 4.1. (Portmanteau Theorem) [1]

If X_n , X are random variables taking values in a metric space S, then the following are equivalent:

- (i) $X_n \Rightarrow X$
- (ii) $E[f(X_n)] \to E[f(X)]$ for all bounded, uniformly continuous $f: S \to \mathbb{R}$
- (iii) $\limsup_{n\to\infty} P(X_n \in F) \le P(X \in F)$ for all closed $F \subset S$
- (iv) $\liminf_{n\to\infty} P(X_n \in G) \leq P(X \in G)$ for all open $G \subset S$
- (v) $\lim_{n\to\infty} P(X_n \in A) = P(X \in A)$ for all Borel sets $A \subset S$ with $P(X \in \partial A) = 0$

Theorem 4.2. (Skorohod representation)[3]

Let S be a complete, separable metric space and \mathcal{B} its Borel σ -algebra. If μ_n , μ_0 are probability measures on (S, \mathcal{B}) with $\mu_n \Rightarrow \mu_0$, then there exists a probability space (Ω, \mathcal{F}, P) and random variables X_n , X_0 on Ω taking values in S such that X_n has distribution μ_n for all $n \ge 0$ and $X_n \to X_0$ a.s.

Theorem 4.3. [1]

Let S be a metric space, \mathcal{B} its Borel σ -algebra, and P_n , P probability measures on (S, \mathcal{B}) . Suppose $\mathcal{U} \subset \mathcal{B}$ satisfies

- (i) \mathcal{U} is closed under finite intersections, and
- (ii) each open set in S is a countable union of elements of \mathcal{U} .

If $P_n(A) \to P(A)$ for all $A \in \mathcal{U}$, then $P_n \Rightarrow P$.

Theorem 4.4. [1]

For $x, y \in \mathbb{R}^d$, write $x \leq y$ if $x_j \leq y_j$ for all j. If $X^{(n)}$, X are \mathbb{R}^d -valued random variables with $F^{(n)}(x) = P(X^{(n)} \leq x)$ and $F(x) = P(X \leq x)$, then $X^{(n)} \Rightarrow X$ if and only if $F^{(n)}(x) \to F(x)$ for all $x \in \mathbb{R}^d$ such that F is continuous at x.

Theorem 4.5. (Cramér-Wold device)[2] Let $X^{(n)}$, X be random vectors in \mathbb{R}^d . If $\theta \cdot X^{(n)} \Rightarrow \theta \cdot X$ for all $\theta \in \mathbb{R}^d$, then $X^{(n)} \Rightarrow X$.

5 Central Limit Theorems

Theorem 5.1. (Central Limit Theorem)[2] Let X_1, X_2, \ldots be iid with $EX_j = \mu$. Suppose that $Var(X_j) = \sigma^2 \in (0, \infty)$. If $S_n = X_1 + \ldots + X_n$, then $(S_n - n\mu)/(\sigma n^{1/2}) \Rightarrow \chi$, where χ has the standard normal distribution.

Theorem 5.2. (Lindeberg-Feller Theorem)[2] For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$. If

- (i) $\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2$ as $n \to \infty$, and
- (ii) for each $\varepsilon > 0$, $\sum_{m=1}^{n} E[|X_{n,m}|^2 \mathbb{1}_{\{|X_{n,m}| > \varepsilon\}}] \to 0$ as $n \to \infty$,

then $S_n = X_{n,1} + \cdots + X_{n,n} \Rightarrow \sigma \chi$ as $n \to \infty$, where χ has the standard normal distribution.

Remark 5.3. Durrett assumes in condition (i) that $\sigma^2 > 0$. However, if $\sigma^2 = 0$, then condition (i) says that $S_n \to 0$ in L^2 and therefore $S_n \to 0$ in probability and in distribution.

Theorem 5.4. (Lyapunov's Central Limit Theorem) Let X_1, X_2, \ldots be independent with $EX_j = 0$ for all j. Let $\alpha_n = \sqrt{\sum_{j=1}^n \operatorname{Var}(X_j)}$. If there exists $\delta > 0$ such that $\lim_{n\to\infty} \alpha_n^{-(2+\delta)} \sum_{j=1}^n E|X_j|^{2+\delta} = 0$, then

$$\frac{X_1 + \dots + X_n}{\sqrt{\sum_{j=1}^n \operatorname{Var}(X_j)}} \Rightarrow \chi,$$

where χ has the standard normal distribution.

Proof. For each $n \in \mathbb{N}$ and $m \in \{1, \ldots, n\}$, let $X_{n,m} = \alpha_n^{-1} X_m$. Note that $\sum_{m=1}^n E X_{n,m}^2 = 1$. Also note that for each $\varepsilon > 0$,

$$\sum_{m=1}^{n} E[|X_{n,m}|^2 \mathbb{1}_{\{|X_{n,m}|>\varepsilon\}}] = \alpha_n^{-2} \sum_{m=1}^{n} E[|X_m|^2 \mathbb{1}_{\{|X_m|>\alpha_n\varepsilon\}}]$$
$$\leq \alpha_n^{-2} \sum_{m=1}^{n} E\left[\frac{|X_m|^{2+\delta}}{(\alpha_n\varepsilon)^{\delta}} \mathbb{1}_{\{|X_m|>\alpha_n\varepsilon\}}\right]$$
$$\leq \varepsilon^{-\delta} \alpha_n^{-(2+\delta)} \sum_{m=1}^{n} E|X_m|^{2+\delta} \to 0,$$

as $n \to \infty$. Hence, by Theorem 5.2, $X_{n,1} + \cdots + X_{n,n} \Rightarrow \chi$.

Theorem 5.5. (Nonclassical Central Limit Theorem, Part I)[6] For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$ and $\sigma_{nm}^2 = EX_{n,m}^2 > 0$. Suppose $\sum_{m=1}^n \sigma_{nm}^2 = 1$ and let $S_n = X_{n,1} + \cdots + X_{n,n}$. Then $S_n \Rightarrow \chi$, where χ has the standard normal distribution, if and only if

$$\lim_{n \to \infty} \sum_{m=1}^{n} \int_{\{|x| > \varepsilon\}} |x| \left| P(X_{n,m} \le x) - P(\sigma_{nm}^{-1}\chi \le x) \right| \, dx = 0, \tag{5.1}$$

for every $\varepsilon > 0$.

Theorem 5.6. (Nonclassical Central Limit Theorem, Part II)[6]

For each n, let $X_{n,m}$, $1 \leq m \leq n$, be independent random variables with $EX_{n,m} = 0$ and $\sigma_{nm}^2 = EX_{n,m}^2 > 0$. Suppose $\sum_{m=1}^n \sigma_{nm}^2 = 1$. If Condition (ii) of Theorem 5.2 holds, then (5.1) holds for every $\varepsilon > 0$. Conversely, if (5.1) holds for every $\varepsilon > 0$, and $\max_{1\leq m\leq n}\sigma_{nm}^2 \to 0$ as $n \to \infty$, then Condition (ii) of Theorem 5.2 holds.

Theorem 5.7. (Converse of Lindeberg-Feller Theorem)

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$ and $EX_{n,m}^2 > 0$. Suppose

- (i) $\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2 > 0$ as $n \to \infty$, and
- (*ii*) $\max_{1 \le m \le n} EX_{n,m}^2 \to 0 \text{ as } n \to \infty.$

If $S_n = X_{n,1} + \cdots + X_{n,n} \Rightarrow \sigma \chi$ as $n \to \infty$, where χ has the standard normal distribution, then Condition (ii) of Theorem 5.2 holds.

Proof. Let $\sigma_n^2 = \sum_{m=1}^n E X_{n,m}^2$ and define $\widetilde{X}_{n,m} = \sigma_n^{-1} X_{n,m}$ and $\widetilde{S}_n = \widetilde{X}_{n,1} + \cdots + \widetilde{X}_{n,n}$. Since $S_n \Rightarrow \sigma \chi$ and $\sigma_n \to \sigma$, it follows that $\widetilde{S}_n \Rightarrow \chi$. Hence, by Theorem 5.5,

$$\lim_{n \to \infty} \sum_{m=1}^{n} \int_{\{|x| > \varepsilon\}} |x| \left| P(\widetilde{X}_{n,m} \le x) - P(\sigma_{nm}^{-1}\chi \le x) \right| \, dx = 0,$$

for every $\varepsilon > 0$. Also, if $\widetilde{\sigma}_{nm}^2 = E\widetilde{X}_{n,m}^2$, then $\widetilde{\sigma}_{nm}^2 > 0$, $\sum_{m=1}^n \widetilde{\sigma}_{nm}^2 = 1$, and $\max_{1 \le m \le n} \widetilde{\sigma}_{nm}^2 \to 0$ as $n \to \infty$. Hence, by Theorem 5.6,

$$\lim_{n \to \infty} \sum_{m=1}^{n} E[|\widetilde{X}_{n,m}|^2 \mathbb{1}_{\{|\widetilde{X}_{n,m}| > \widetilde{\varepsilon}\}}] = 0$$

for every $\tilde{\varepsilon} > 0$.

Note that

$$\sum_{m=1}^{n} E[|X_{n,m}|^2 \mathbb{1}_{\{|X_{n,m}| > \varepsilon\}}] = \sigma_n^2 \sum_{m=1}^{n} E[|\widetilde{X}_{n,m}|^2 \mathbb{1}_{\{|\widetilde{X}_{n,m}| > \sigma_n^{-1}\varepsilon\}}]$$

Since $\sigma_n \to \sigma$, there exists C > 0 such that $\sigma_n \leq C$ for all n. Hence, if we define $\tilde{\varepsilon} = C^{-1}\varepsilon$, then

$$\sum_{m=1}^{n} E[|X_{n,m}|^2 \mathbb{1}_{\{|X_{n,m}| > \varepsilon\}}] \le C^2 \sum_{m=1}^{n} E[|\widetilde{X}_{n,m}|^2 \mathbb{1}_{\{|\widetilde{X}_{n,m}| > \widetilde{\varepsilon}\}}],$$

to as $n \to \infty$.

which tends to zero as $n \to \infty$.

Theorem 5.8. (Berry-Esseen)[2]

Let X_1, X_2, \ldots be iid with $EX_i = 0$ and $EX_i^2 = \sigma^2 < \infty$. Let $S_n = X_1 + \cdots + X_n$. If $F_n(x) = P(S_n/(\sigma n^{1/2}) \leq x)$ and $\Phi(x) = P(\chi \leq x)$, then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{3\rho}{\sigma^3 n^{1/2}}$$

where $\rho = E|X_i|^3$.

Theorem 5.9. (The Central Limit Theorem in \mathbb{R}^d)[2] Let $X^{(1)}, X^{(2)}, \ldots$ be iid random vectors in \mathbb{R}^d with $EX^{(n)} = \mu$ and finite covariances

$$\sigma_{ij} = E[(X_i^{(n)} - \mu_i)(X_j^{(n)} - \mu_j)].$$

If $S^{(n)} = X^{(1)} + \cdots + X^{(n)}$, then $(S^{(n)} - n\mu)/n^{1/2} \Rightarrow N$, where N is multinormal with mean 0 and covariance σ .

Theorem 5.10. (Multidimensional Lindeberg-Feller Theorem)

For each n, let $X^{(n,m)}$, $1 \leq m \leq n$, be independent, \mathbb{R}^d -valued random vectors with $EX^{(n,m)} = 0$. Let $\sigma^{(n,m)} = (\sigma^{(n,m)}_{ij})$, where $\sigma^{(n,m)}_{ij} = EX^{(n,m)}_i X^{(n,m)}_j$. If

- (i) $\sum_{m=1}^{n} \sigma^{(n,m)} \to \sigma \text{ as } n \to \infty, \text{ and}$
- (ii) for each $\theta \in \mathbb{R}^d$ and each $\varepsilon > 0$, $\sum_{m=1}^n E[|\theta \cdot X^{(n,m)}|^2 \mathbb{1}_{\{|\theta \cdot X^{(n,m)}| > \varepsilon\}}] \to 0$ as $n \to \infty$,

then $S^{(n)} = X^{(n,1)} + \cdots + X^{(n,n)} \Rightarrow N$, where N is multinormal with mean 0 and covariance σ .

Proof. Fix $\theta \in \mathbb{R}^d$. By the Cramér-Wold device, it suffices to show $\theta \cdot S^{(n)} \Rightarrow \theta \cdot N$. Now, for each $n, m \in \mathbb{N}$ with $1 \leq m \leq n$, let $Y_{n,m} = \theta \cdot X^{(n,m)}$. Then

- (a) $Y_{n,m}$, $1 \le m \le n$, are independent,
- (b) $EY_{n,m} = 0$, and
- (c) $\sum_{m=1}^{n} EY_{n,m}^2 = \sum_{m=1}^{n} E|\theta \cdot X^{(n,m)}|^2 = \sum_{m=1}^{n} \theta^T \sigma^{(n,m)} \theta \to \theta^T \sigma \theta$ as $n \to \infty$.

Since each $\sigma^{(n,m)}$ is positive semidefinite, $\theta^T \sigma \theta \ge 0$. Using these conditions and hypothesis (ii), we may apply Theorem 5.2 to conclude that

$$Y_{n,1} + \dots + Y_{n,n} = \theta \cdot S^{(n)} \Rightarrow \sqrt{\theta^T \sigma \theta} \,\chi.$$

Now, $E[\sqrt{\theta^T \sigma \theta} \chi] = 0 = E[\theta \cdot N]$ and $E[\theta^T \sigma \theta \chi^2] = \theta^T \sigma \theta = E[\theta \cdot N]^2$, so $\sqrt{\theta^T \sigma \theta} \chi = \theta \cdot N$ in distribution and $\theta \cdot S^{(n)} \Rightarrow \theta \cdot N$.

Theorem 5.11. (Poisson Convergence)[2]

For each n, let $X_{n,m}$, $1 \le m \le n$ be independent nonnegative integer valued random variables and set $p_{n,m} = P(X_{n,m} = 1)$, $\varepsilon_{n,m} = P(X_{n,m} \ge 2)$. If

- (i) $\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0,\infty)$ as $n \to \infty$,
- (ii) $\max(p_{n,1}, p_{n,2}, \ldots, p_{n,m}) \to 0 \text{ as } n \to \infty, \text{ and}$
- (iii) $\sum_{m=1}^{n} \varepsilon_{n,m} \to 0 \text{ as } n \to \infty,$

then $S_n = X_{n,1} + \dots + X_{n,n} \Rightarrow Z$, where Z is $Poisson(\lambda)$.

Theorem 5.12. (Convergence to Stable Laws)[2] Let X_1, X_2, \ldots be iid. Let $S_n = X_1 + \cdots + X_n$, $a_n = \inf\{x : P(|X_1| > x) \le n^{-1}\}$, and $b_n = nE[X_1 1_{\{|X_1| \le a_n\}}]$. Define

$$w_{\alpha}(t) = \begin{cases} \tan(\pi \alpha/2) & \text{if } \alpha \neq 1, \\ (2/\pi) \log |t| & \text{if } \alpha = 1. \end{cases}$$

т	r
1	t
1	
• • /	

(i)
$$P(X_1 > x)/P(|X_1| > x) \to \theta \in [0, 1] \text{ as } x \to \infty, \text{ and}$$

(ii) $P(|X_1| > x) = x^{-\alpha}L(x)$, where $0 < \alpha < 2$ and L is slowly varying,

then $(S_n - b_n)/a_n \Rightarrow Y$, where Y has a stable law and satisfies

$$Ee^{itY} = \exp\{itc - b|t|^{\alpha}(1 + i(2\theta - 1)\operatorname{sgn}(t)w_{\alpha}(t))\},\$$

for some constants b and c.

Theorem 5.13. (Martingale Central Limit Theorem)[4]

Let X_1, X_2, \ldots be random variables and let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be σ -algebras with $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for all n. If $E(X_n | \mathcal{F}_{n-1}) = 0$, $E(X_n^2 | \mathcal{F}_{n-1}) = 1$, and $E(|X_n|^3 | \mathcal{F}_{n-1}) \leq K < \infty$ for all n, then $(X_1 + \cdots + + X_n)/n^{1/2} \Rightarrow \chi$.

For the next theorem, we need to start with a lemma.

Lemma 5.14. Let $Z^{(n)}, Z$ be \mathbb{R}^d -valued random vectors such that $Z^{(n)} \Rightarrow Z$. Let $a^{(n)}, a \in \mathbb{R}^d$ satisfy $a^{(n)} \to a$ and define the set $A = \{x \in \mathbb{R}^d : x \ge a\}$. If $P(Z \in \partial A) = 0$, then $P(Z^{(n)} \ge a^{(n)}) \to P(Z \ge a)$.

Proof. Let $A_n = \{x \in \mathbb{R}^d : x \ge a^{(n)}\}$. By Theorem 4.1(v) and the triangle inequality, it suffices to show that $|P(Z^{(n)} \in A_n) - P(Z^{(n)} \in A)| \le P(Z^{(n)} \in A_n \Delta A) \to 0$. (Here, " Δ " denotes the symmetric difference: $A\Delta B = (A \setminus B) \cup (B \setminus A)$.)

Fix $\delta > 0$ and let B_{ε} denote the set of all $x \in \mathbb{R}^d$ that satisfy $x_i \ge a_i - \varepsilon$ for all i, and for which there exists j such that $x_j \le a_j + \varepsilon$. Since B_{ε} is a decreasing family of sets as $\varepsilon \downarrow 0$ with $\bigcap_{\varepsilon} B_{\varepsilon} \subset \partial A$, we may choose ε sufficiently small so that $P(Z \in B_{\varepsilon}) < \delta$.

Since $a^{(n)} \to a$, we have $A_n \Delta A \subset B_{\varepsilon}$ for *n* sufficiently large. Hence, $P(Z^{(n)} \in A_n \Delta A) \leq P(Z^{(n)} \in B_{\varepsilon})$. Since B_{ε} is closed, Theorem 4.1(iii) gives that $\limsup_{n\to\infty} P(Z^{(n)} \in B_{\varepsilon}) \leq P(Z \in B_{\varepsilon})$. Thus, for *n* sufficiently large, $P(Z^{(n)} \in B_{\varepsilon}) \leq P(Z \in B_{\varepsilon}) + \delta < 2\delta$. Since δ was arbitrary, this completes the proof. \Box

Theorem 5.15. (Multi-Dimensional Quantile Central Limit Theorem)

Let $X^{(n)} = (X_1^{(n)}, \ldots, X_d^{(n)})$, $n \in \mathbb{N}$, be iid random vectors and let $F_j(x) = P(X_j^{(1)} \leq x)$. Fix $\alpha \in (0,1)^d$ and suppose there exists $q \in \mathbb{R}^d$ such that $F_j(q_j) = \alpha_j$ and $F'_j(q_j) > 0$ for all j. Let $M_j^{(n)}$ be the $\lfloor \alpha_j n \rfloor$ -th order statistic of the quantities $X_j^{(1)}, \ldots, X_j^{(n)}$ and $M^{(n)} = (M_1^{(n)}, \ldots, M_d^{(n)})$. If $G_{ij}(x, y) = P(X_i^{(1)} \leq x, X_j^{(1)} \leq y)$ is continuous at (q_i, q_j) for all i, j, then $\sqrt{n}(M_n - q) \Rightarrow N$, where N is multinormal with mean 0 and covariance σ , given by

$$\sigma_{ij} = \frac{\rho_{ij}}{F_i'(q_i)F_j'(q_j)},$$

with $\rho_{ij} = G_{ij}(q_i, q_j) - \alpha_i \alpha_j$.

Proof. Fix $x \in \mathbb{R}^d$ and for each $n, m \in \mathbb{N}$, $1 \le m \le n$, define the random vector $Y^{(n,m)} \in \mathbb{R}^d$ by

$$Y_j^{(n,m)} = \frac{1}{\sqrt{n}} \left(\mathbb{1}_{\{X_j^{(m)} \le x_j / \sqrt{n} + q_j\}} - p_j^{(n)} \right),$$

where $p_j^{(n)} = F_j(x_j/\sqrt{n} + q_j)$. Then for each $n \in \mathbb{N}$,

(a) $Y^{(n,m)}$, $1 \le m \le n$, are independent,

(b)
$$EY^{(n,m)} = 0,$$

(c)
$$\sum_{m=1}^{n} E[Y_i^{(n,m)} Y_j^{(n,m)}] \to \rho_{ij} \text{ as } n \to \infty, \text{ and}$$

(d) for each $\theta \in \mathbb{R}^d$ and $\varepsilon > 0$, $\sum_{m=1}^n E[|\theta \cdot Y^{(n,m)}|^2 \mathbb{1}_{\{|\theta \cdot Y^{(n,m)}| > \varepsilon\}}] \to 0$ as $n \to \infty$.

Part (c) follows since

$$\sum_{m=1}^{n} E[Y_i^{(n,m)}Y_j^{(n,m)}] = \frac{1}{n} \sum_{m=1}^{n} \left[P\left(X_i^{(m)} \le \frac{x_i}{\sqrt{n}} + q_i, X_j^{(m)} \le \frac{x_j}{\sqrt{n}} + q_j\right) - p_i^{(n)}p_j^{(n)} \right]$$
$$= P\left(X_i^{(1)} \le \frac{x_i}{\sqrt{n}} + q_i, X_j^{(1)} \le \frac{x_j}{\sqrt{n}} + q_j\right) - p_i^{(n)}p_j^{(n)},$$

and part (d) follows since $|\theta \cdot Y^{(n,m)}| \leq \max(|\theta_1|, \ldots, |\theta_d|)/\sqrt{n}$, and therefore $P(|\theta \cdot Y^{(n,m)}| > \varepsilon) = 0$ for sufficiently large n.

Thus, by Theorem 5.10, $S^{(n)} = Y^{(n,1)} + \cdots + Y^{(n,n)} \Rightarrow \widetilde{N}$, where \widetilde{N} is multinormal with mean 0 and covariance ρ . Now,

$$\begin{split} \sqrt{n}(M^{(n)} - q) &\leq x \quad \text{iff} \quad M_j^{(n)} \leq x_j / \sqrt{n} + q_j \text{ for all } j \\ \text{iff} \quad \sum_{m=1}^n \mathbf{1}_{\{X_j^{(m)} \leq x_j / \sqrt{n} + q_j\}} \geq \lfloor \alpha_j n \rfloor \text{ for all } j \\ \text{iff} \quad \frac{1}{\sqrt{n}} \sum_{m=1}^n \left(\mathbf{1}_{\{X_j^{(m)} \leq x_j / \sqrt{n} + q_j\}} - p_j^{(n)} \right) \geq \frac{\lfloor \alpha_j n \rfloor - n p_j^{(n)}}{\sqrt{n}} \text{ for all } j. \end{split}$$

Thus, if $a^{(n)} \in \mathbb{R}^d$ is defined by $a_j^{(n)} = (\lfloor \alpha_j n \rfloor - n p_j^{(n)}) / \sqrt{n}$, then $P(\sqrt{n}(M^{(n)} - q) \leq x) = P(S^{(n)} \geq a^{(n)})$. Note that

$$a_j^{(n)} = \frac{\lfloor \alpha_j n \rfloor - \alpha_j n}{\sqrt{n}} + \sqrt{n}(\alpha_j - p_j^{(n)}) = \frac{\lfloor \alpha_j n \rfloor - \alpha_j n}{\sqrt{n}} + \frac{F_j(q_j) - F_j(x_j/\sqrt{n} + q_j)}{1/\sqrt{n}}$$

so that $a^{(n)} \to a \in \mathbb{R}^d$, where $a_j = -x_j F'_j(q_j)$. Therefore, by Lemma 5.14,

$$P(\sqrt{n}(M^{(n)} - q) \le x) \to P(\widetilde{N} \ge a)$$

= $P(\widetilde{N} \le -a)$
= $P(N \le x),$

where N is the random vector defined by $N_j = \widetilde{N}_j / F'_j(q_j)$.

We now have $\sqrt{n}(M^{(n)}-q) \Rightarrow N, N$ is multinormal with mean 0, and

$$E[N_i N_j] = \frac{1}{F'_i(q_i)F'_j(q_j)}E[\widetilde{N}_i \widetilde{N}_j] = \frac{\rho_{ij}}{F'_i(q_i)F'_j(q_j)} = \sigma_{ij},$$

which completes the proof.

Corollary 5.16. (Median Central Limit Theorem) Let X_1, X_2, \ldots be iid, $F(x) = P(X_1 \leq x)$, and $M_n = \text{med}(X_1, \ldots, X_n)$. If F(0) = 1/2 and F'(0) > 0, then $\sqrt{n}M_n \Rightarrow (2F'(0))^{-1}\chi$.

Corollary 5.17. (Median of Multinormal Random Vectors)

If $X^{(1)}, X^{(2)}, \ldots$ are iid, mean 0, multinormal \mathbb{R}^d -valued random vectors with covariance σ and $M^{(n)} = \text{med}(X^{(1)}, \ldots, X^{(n)})$, then $\sqrt{n}M^{(n)} \Rightarrow Z$, where Z is multinormal with mean 0 and covariance

$$\tau_{ij} = \sqrt{\sigma_{ii}\sigma_{jj}} \sin^{-1}\left(\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}\right),\,$$

where $\sin^{-1}(\cdot)$ takes values in $[-\pi/2, \pi/2]$.

	-	-	_

Proof. By Theorem 5.15, $\sqrt{n}M^{(n)} \Rightarrow Z$, where Z is multinormal with mean 0 and covariance

$$\tau_{ij} = \frac{\rho_{ij}}{F_i'(0)F_j'(0)},$$

where $\rho_{ij} = P(X_i^{(1)} \le 0, X_j^{(1)} \le 0) - 1/4$ and

$$F_j(x) = P(X_j^{(1)} \le x) = \frac{1}{\sqrt{2\pi\sigma_{jj}}} \int_{-\infty}^x e^{-t^2/2\sigma_{jj}} dt.$$

Since $F'_{j}(0) = (2\pi\sigma_{jj})^{-1/2}$, it remains only to show that

$$\rho_{ij} = \frac{1}{2\pi} \sin^{-1} \left(\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \right).$$

Let $X = X_i^{(1)}$, $Y = X_j^{(1)}$ and define

$$a^{\pm} = 1 \pm \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$$
$$\widetilde{X}^{\pm} = \frac{1}{\sqrt{2a^{\pm}}} \left(\frac{1}{\sqrt{\sigma_{ii}}}X \pm \frac{1}{\sqrt{\sigma_{jj}}}Y\right),$$

so that \widetilde{X}^+ , \widetilde{X}^- are independent standard normals. Since

$$X = \frac{\sqrt{\sigma_{ii}}}{2} \left(\sqrt{2a^+} \widetilde{X}^+ + \sqrt{2a^-} \widetilde{X}^- \right)$$
$$Y = \frac{\sqrt{\sigma_{jj}}}{2} \left(\sqrt{2a^+} \widetilde{X}^+ - \sqrt{2a^-} \widetilde{X}^- \right),$$

we have that $X \leq 0$ and $Y \leq 0$ if and only if $(\widetilde{X}^+, \widetilde{X}^-)$ lies in a sector whose angle θ satisfies $0 \leq \theta \leq \pi$ and

$$\cos\theta = -\frac{2a^+ - 2a^-}{2a^+ + 2a^-} = -\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$$

Thus,

$$P(X \le 0, Y \le 0) = \frac{\theta}{2\pi} = \frac{1}{2\pi} \cos^{-1} \left(-\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \right) = \frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \left(\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \right),$$

where $\sin^{-1}(\cdot)$ takes values in $[-\pi/2, \pi/2]$.

References

 Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication.

- [2] Richard Durrett. *Probability: theory and examples.* Duxbury Press, Belmont, CA, second edition, 1996.
- [3] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1989.
- [4] Jean Jacod and Philip Protter. *Probability essentials*. Universitext. Springer-Verlag, Berlin, second edition, 2003.
- [5] R.-D. Reiss. Approximate distributions of order statistics. Springer Series in Statistics. Springer-Verlag, New York, 1989. With applications to nonparametric statistics.
- [6] A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996. Translated from the first (1980) Russian edition by R. P. Boas.
- [7] Daniel W. Stroock. *Probability theory, an analytic view.* Cambridge University Press, Cambridge, 1993.