Elementary limit theorems in probability

Jason Swanson

December 27, 2008

1 Introduction

What follows is a collection of various limit theorems that occur in probability. Most are taken from a short list of references. Such theorems are stated without proof and a citation follows the name of the theorem. A few are not taken from references. They are usually straightforward generalizations of the standard theorems and proofs are provided. The glossary includes some definitions of terms used in these theorems.

2 Glossary

uncorrelated: A family of random variables $\left\{X_{i}\right\}_{i \in I}$ with $E X_{i}^{2}<\infty$ is uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$ whenever $i \neq j$.
independent: The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if

$$
P\left(\bigcap_{j=1}^{n}\left\{X_{j} \in A_{j}\right\}\right)=\prod_{j=1}^{n} P\left(X_{j} \in A_{j}\right)
$$

for all n-tuples of measurable sets $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. A family of random variables $\left\{X_{i}\right\}_{i \in I}$ is independent if for each finite subset $J \subset I$, the family $\left\{X_{i}\right\}_{i \in J}$ is independent.
uniformly integrable: A family of random variables $\left\{X_{i}\right\}_{i \in I}$ is uniformly integrable if $\sup _{i \in I} E\left[\left|X_{i}\right| 1_{\left\{\left|X_{i}\right| \geq K\right\}}\right] \rightarrow 0$ as $K \rightarrow \infty$.
pairwise independent: A family of random variables $\left\{X_{i}\right\}_{i \in I}$ is pairwise independent if X_{i} and X_{j} are independent whenever $i \neq j$.
measure preserving: Let (Ω, \mathcal{F}, P) be a probability space. An injective map $T: \Omega \rightarrow \Omega$ is a measure preserving transformation if $A \in \mathcal{F}$ implies $T(A) \in \mathcal{F}$ and $P(T(A))=P(A)$.
T-invariant: If T is a measure preserving transformation, then a set $\Lambda \in \mathcal{F}$ is T-invariant, or invariant under T, if $1_{\Lambda}(\omega)=1_{\Lambda}(T(\omega))$ a.s.
median: Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and let $\tau:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a bijection such that $y_{j}=x_{\tau(j)}$ satisfies $y_{1} \leq \cdots \leq y_{n}$. Then $\operatorname{med}\left(x_{1}, \ldots, x_{n}\right)=y_{k}$, where $k=\lfloor(n+1) / 2\rfloor$.

If $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^{d}$, then $\operatorname{med}\left(x^{(1)}, \ldots, x^{(n)}\right)$ is the vector in \mathbb{R}^{d} whose j-th component is $\operatorname{med}\left(x_{j}^{(1)}, \ldots, x_{j}^{(n)}\right)$.
weak convergence: Let μ_{n}, μ be probability measures on (S, \mathcal{B}), where S is a metric space and \mathcal{B} is its Borel σ-algebra. If $\int f d \mu_{n} \rightarrow \int f d \mu$ for every bounded, continuous $f: S \rightarrow \mathbb{R}$, then μ_{n} converges weakly to μ (written $\mu_{n} \Rightarrow \mu$).
convergence in distribution: Let X_{n}, X be random variables taking values in a metric space S. Define measures μ_{n}, μ on (S, \mathcal{B}), where \mathcal{B} is the Borel σ-algebra on S, by $\mu_{n}(A)=P\left(X_{n} \in A\right), \mu(A)=P(X \in A)$. Then X_{n} converges to X in distribution (written $X_{n} \xrightarrow{d} X$ or $\left.X_{n} \Rightarrow X\right)$ if $\mu_{n} \Rightarrow \mu$.
multinormal: A random vector $X=\left(X_{1}, \ldots, X_{d}\right)^{T}$ is multinormal if every linear combination $c_{1} X_{1}+\cdots+c_{d} X_{d}$ has a normal (possibly degenerate) distribution. The mean of X is the (column) vector $\theta \in \mathbb{R}^{d}$ with $\theta_{j}=E X_{j}$. The covariance of X is the $d \times d$ matrix σ with

$$
\left.\sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left(X_{i} X_{j}\right)-\theta_{i} \theta_{j}\right) .
$$

In this case, σ is symmetric and positive semidefinite, and $c_{1} X_{1}+\ldots+c_{d} X_{d}$ has mean $c^{T} \theta$ and variance $c^{T} \sigma c$.

Poisson: A random variable Z is $\operatorname{Poisson}(\lambda)$ if $P(Z=k)=e^{-\lambda} \lambda^{k} / k$! for all $k \in \mathbb{Z}_{+}=$ $\{0\} \cup \mathbb{N}$.
stable law: A random variable Y has a stable law if for every $k \in \mathbb{N}$, there are constants a_{k} and b_{k} such that $\left(Y_{1}+\cdots+Y_{k}-b_{k}\right) / a_{k} \stackrel{d}{=} Y$ whenever Y_{1}, \ldots, Y_{k} are independent and identically distributed (iid) with $Y_{j} \stackrel{d}{=} Y$. (The notation $U \stackrel{d}{=} V$ means that the random variables U and V have the same distribution.)
slowly varying: A function $L(x)$ is slowly varying if $\lim _{x \rightarrow \infty} L(t x) / L(x)=1$ for all $t>0$.

3 Laws of Large Numbers

Theorem 3.1. (L^{2} weak law) [2]
Let X_{1}, X_{2}, \ldots be uncorrelated random variables with $E X_{i}=\mu$ and $\operatorname{Var}\left(X_{i}\right) \leq C<\infty$. If $S_{n}=X_{1}+\cdots+X_{n}$, then $S_{n} / n \rightarrow \mu$ in L^{2} and in probability as $n \rightarrow \infty$.

Theorem 3.2. (L^{1} weak law) 7
If X_{1}, X_{2}, \ldots is a uniformly integrable sequence of independent random variables, then

$$
\frac{1}{n} \sum_{m=1}^{n}\left(X_{m}-E X_{m}\right) \rightarrow 0
$$

in L^{1} and in probability as $n \rightarrow \infty$. In particular, if X_{1}, X_{2}, \ldots is iid with $E\left|X_{1}\right|<\infty$ and $S_{n}=X_{1}+\cdots+X_{n}$, then $S_{n} / n \rightarrow E X_{1}$ in L^{1} and in probability.

Theorem 3.3. (Weak law for triangular arrays) [2]
For each n, let $X_{n, k}, 1 \leq k \leq n$, be independent. Let $b_{n}>0$ with $b_{n} \rightarrow \infty$ and let $\bar{X}_{n, k}=X_{n, k} 1_{\left\{\left|X_{n, k}\right| \leq b_{n}\right\}}$. Suppose that
(i) $\sum_{k=1}^{n} P\left(\left|X_{n, k}\right|>b_{n}\right) \rightarrow 0$, and
(ii) $b_{n}^{-2} \sum_{k=1}^{n} E \bar{X}_{n, k}^{2} \rightarrow 0$ as $n \rightarrow \infty$.

If we let $S_{n}=X_{n, 1}+\cdots+X_{n, n}$ and put $a_{n}=\sum_{k=1}^{n} E \bar{X}_{n, k}$, then $\left(S_{n}-a_{n}\right) / b_{n} \rightarrow 0$ in probability.

Theorem 3.4. (Weak law of large numbers)
Let X_{1}, X_{2}, \ldots be independent with $\sup _{k} x P\left(\left|X_{k}\right| \geq x\right) \rightarrow 0$ as $x \rightarrow \infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$ and let

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} E\left[X_{k} 1_{\left\{\left|X_{k}\right| \leq n\right\}}\right] .
$$

Then $S_{n} / n-\mu_{n} \rightarrow 0$ in probability.
Proof. Let $f(x)=\sup _{k} x P\left(\left|X_{k}\right| \geq x\right)$. We apply Theorem 3.3 with $X_{n, k}=X_{k}$ and $b_{n}=n$. To verify Condition (i) of Theorem 3.3, note that

$$
\sum_{k=1}^{n} P\left(\left|X_{k}\right|>n\right) \leq n \sup _{k} P\left(\left|X_{k}\right|>n\right)=f(n) \rightarrow 0
$$

as $n \rightarrow \infty$. For Condition (ii), we use the fact that for any random variable Y, we have $E Y^{2}=\int_{0}^{\infty} 2 y P(|Y|>y) d y$. Thus,

$$
\frac{1}{n^{2}} \sum_{k=1}^{n} E \bar{X}_{n, k}^{2} \leq \frac{2}{n^{2}} \sum_{k=1}^{n} \int_{0}^{n} y P\left(\left|X_{k}\right|>y\right) d y \leq \frac{2}{n} \int_{0}^{n} f(y) d y
$$

Fix $\varepsilon>0$. Since $f(x) \rightarrow 0$ as $x \rightarrow \infty$, there exists $K>0$ such that $x \geq K$ implies $f(x) \leq \varepsilon$. Thus,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{2}{n} \int_{0}^{n} f(y) d y & =\limsup _{n \rightarrow \infty}\left(\frac{2}{n} \int_{0}^{K} f(y) d y+\frac{2}{n} \int_{K}^{n} f(y) d y\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\frac{2 K^{2}}{n}+\frac{2(n-K) \varepsilon}{n}\right)=2 \varepsilon
\end{aligned}
$$

Since ε was arbitrary, this completes the proof.
Theorem 3.5. (Strong laws of large numbers) [2, [4]
(i) If X_{1}, X_{2}, \ldots are pairwise independent and identically distributed with $E\left|X_{1}\right|<\infty$, then $\left(X_{1}+\cdots+X_{n}\right) / n \rightarrow E X_{1}$ a.s. as $n \rightarrow \infty$.
(ii) If X_{1}, X_{2}, \ldots are iid with $E\left[\left|X_{1}\right| 1_{\left\{X_{1}>0\right\}}\right]=\infty$ and $E\left[\left|X_{1}\right| 1_{\left\{X_{1}<0\right\}}\right]<\infty$, then $\left(X_{1}+\cdots+X_{n}\right) / n \rightarrow \infty$ a.s.
(iii) If X_{1}, X_{2}, \ldots are iid with $E X_{1}^{2}<\infty$, then $\left(X_{1}+\cdots+X_{n}\right) / n \rightarrow E X_{1}$ a.s. and in L^{2}.

Part (i) of the above theorem is Theorem 1.7.1 in [2]. If we inspect the proof of that theorem, we see that the conditions can be weakened to the following.

Theorem 3.6. (Generalized strong law of large numbers)
Let X_{1}, X_{2}, \ldots be nonnegative random variables with $E\left|X_{k}\right|<\infty$ and $E X_{k}=\mu$ for all k. Let $Y_{k}=X_{k} 1_{\left\{\left|X_{k}\right| \leq k\right\}}$, and assume the random variables $\left\{Y_{k}\right\}$ are uncorrelated. Also assume there exists a constant C such that $P\left(X_{k}>t\right) \leq C P\left(X_{1}>t\right)$ for all k and t. If $S_{n}=X_{1}+\cdots+X_{n}$, then $S_{n} / n \rightarrow \mu$ a.s. as $n \rightarrow \infty$.

Remark 3.7. Any sequence whose positive and negative parts satisfy the above hypotheses will satisfy the strong law of large numbers.
Proof. Let $\alpha>1$ and $\varepsilon>0$ be arbitrary. Let $T_{n}=Y_{1}+\cdots+Y_{n}$ and $k(n)=\left\lfloor\alpha^{n}\right\rfloor$. By Chebyshev,

$$
\begin{aligned}
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\varepsilon k(n)\right) & \leq \varepsilon^{-2} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\varepsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right) \\
& =\varepsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2}
\end{aligned}
$$

Since $\left\lfloor\alpha^{n}\right\rfloor \geq \alpha^{n} / 2$,

$$
\sum_{n:\left\lfloor\alpha^{n}\right\rfloor \geq m}\left\lfloor\alpha^{n}\right\rfloor^{-2} \leq 4 \sum_{n:\left\lfloor\alpha^{n}\right\rfloor \geq m} \alpha^{-2 n} \leq 4\left(1-\alpha^{-2}\right) m^{-2} .
$$

Hence,

$$
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\varepsilon k(n)\right) \leq 4\left(1-\alpha^{-2}\right) \varepsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) / m^{2}
$$

To bound this sum, note that

$$
\operatorname{Var}\left(Y_{k}\right) \leq E Y_{k}^{2}=\int_{0}^{\infty} 2 y P\left(Y_{k}>y\right) d y \leq \int_{0}^{k} 2 y P\left(X_{k}>y\right) d y \leq C \int_{0}^{k} 2 y P\left(X_{1}>y\right) d y
$$

Thus,

$$
\begin{aligned}
\sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) / m^{2} & \leq C \sum_{m=1}^{\infty} m^{-2} \int_{0}^{\infty} 1_{\{y<m\}} 2 y P\left(X_{1}>y\right) d y \\
& =C \int_{0}^{\infty}\left\{\sum_{m=1}^{\infty} m^{-2} 1_{\{y<m\}}\right\} 2 y P\left(X_{1}>y\right) d y \\
& \leq 4 C \int_{0}^{\infty} P\left(X_{1}>y\right) d y=4 C E\left|X_{1}\right|
\end{aligned}
$$

where the last inequality above uses Lemma 1.7.1(c) in [2]. Putting this together, we have

$$
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\varepsilon k(n)\right) \leq 16 C\left(1-\alpha^{-2}\right) \varepsilon^{-2} E\left|X_{1}\right|<\infty
$$

By the Borel-Cantelli lemma, since ε is arbitrary, this implies $\left(T_{k(n)}-E T_{k(n)}\right) / k(n) \rightarrow 0$ a.s. Now,

$$
E Y_{k}=E\left(X_{k}-X_{k} 1_{\left\{X_{k}>k\right\}}\right)=\mu-\int_{0}^{\infty} P\left(X_{k} 1_{\left\{X_{k}>k\right\}}>y\right) d y
$$

Note that

$$
\begin{aligned}
\int_{0}^{\infty} P\left(X_{k} 1_{\left\{X_{k}>k\right\}}>y\right) d y & =\int_{0}^{k} P\left(X_{k}>k\right) d y+\int_{k}^{\infty} P\left(X_{k}>y\right) d y \\
& \leq C\left(\int_{0}^{k} P\left(X_{1}>k\right) d y+\int_{k}^{\infty} P\left(X_{1}>y\right) d y\right) \\
& =C E\left(X_{1} 1_{\left\{X_{1}>k\right\}}\right) \rightarrow 0
\end{aligned}
$$

Hence, $E Y_{k} \rightarrow \mu$ as $k \rightarrow \infty$, which implies $E T_{k(n)} / k(n) \rightarrow \mu$. We have therefore shown that $T_{k(n)} / k(n) \rightarrow \mu$ a.s. For the intermediate values, if $k(n) \leq m<k(n+1)$, then

$$
\frac{T_{k(n)}}{k(n+1)} \leq \frac{T_{m}}{m} \leq \frac{T_{k(n+1)}}{k(n)},
$$

where we have used the fact that $Y_{k} \geq 0$. Thus, recalling that $k(n)=\left\lfloor\alpha^{n}\right\rfloor$, we have $k(n+1) / k(n) \rightarrow \alpha$ and

$$
\frac{1}{\alpha} \mu \leq \liminf _{n \rightarrow \infty} T_{m} / m \leq \limsup _{n \rightarrow \infty} T_{m} / m \leq \alpha \mu .
$$

Since $\alpha>1$ was arbitrary, this shows that $T_{m} / m \rightarrow \mu$ a.s.
Finally, note that

$$
\sum_{k=1}^{\infty} P\left(X_{k}>k\right) \leq C \sum_{k=1}^{\infty} P\left(X_{1}>k\right) \leq C \int_{0}^{\infty} P\left(X_{1}>y\right) d y=C E X_{1}<\infty
$$

By Borel-Cantelli, $P\left(X_{k} \neq Y_{k}\right.$ i.o. $)=0$. Therefore, $\left|S_{n}(\omega)-T_{n}(\omega)\right| \leq R(\omega)<\infty$ a.s. for all n, which implies $S_{n} / n \rightarrow \mu$ a.s.

Theorem 3.8. (Kolmogorov's strong law of large numbers) 4]
Let X_{1}, X_{2}, \ldots be iid and let $S_{n}=\sum_{j=1}^{n} X_{j}$. Then there exists $\mu \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} S_{n} / n=\mu$ a.s. if and only if $E\left|X_{1}\right|<\infty$. In this case, $\mu=E X_{1}$.

Theorem 3.9. (Glivenko-Cantelli theorem) [2]
Suppose X_{1}, X_{2}, \ldots are iid. Define $F(x)=P\left(X_{1} \leq x\right)$ and $F_{n}(x)=n^{-1} \sum_{j=1}^{n} 1_{\left\{X_{j} \leq x\right\}}$. Then $\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \rightarrow 0$ a.s.

Theorem 3.10. (Ergodic strong law of large numbers) 4]
Let T be an injective measure preserving transformation of Ω onto itself. Assume the only T-invariant sets are sets of probability 0 or 1 . If $X \in L^{1}$, then $n^{-1} \sum_{j=1}^{n} X\left(T^{j}(\omega)\right) \rightarrow E X$ a.s. and in L^{1} as $n \rightarrow \infty$, where $T^{j+1}=T^{j} \circ T$.

Theorem 3.11. (Quantile strong law of large numbers)
Let X_{1}, X_{2}, \ldots be iid and let $F(x)=P\left(X_{1} \leq x\right)$. Fix $\alpha \in(0,1)$. Suppose there exists q such that $F(q)=\alpha$ and F is strictly increasing at $x=q$. Let M_{n} denote the $\lfloor\alpha n\rfloor$-th order statistic of the quantities X_{1}, \ldots, X_{n}. Then $M_{n} \rightarrow q$ a.s.

Proof. Note that for each $x \in \mathbb{R},\left\{M_{n} \leq x\right\}=\left\{\sum_{j=1}^{n} 1_{\left\{X_{j} \leq x\right\}} \geq\lfloor\alpha n\rfloor\right\}$. Thus, for all $\varepsilon>0$,

$$
\left\{q-\varepsilon<M_{n} \leq q+\varepsilon\right\}=\left\{\frac{1}{n} \sum_{j=1}^{n} 1_{\left\{X_{j} \leq q+\varepsilon\right\}} \geq \frac{\lfloor\alpha n\rfloor}{n}\right\} \cap\left\{\frac{1}{n} \sum_{j=1}^{n} 1_{\left\{X_{j} \leq q-\varepsilon\right\}}<\frac{\lfloor\alpha n\rfloor}{n}\right\} .
$$

By Theorem 3.9, there exists $\Omega^{*} \subset \Omega$ such that $P\left(\Omega^{*}\right)=1$ and $n^{-1} \sum_{j=1}^{n} 1_{\left\{X_{j} \leq x\right\}} \rightarrow F(x)$ uniformly in x for each $\omega \in \Omega^{*}$. Since $F(q+\varepsilon)>\alpha$ and $F(q-\varepsilon)<\alpha$, each $\omega \in \Omega^{*}$ is an element of $\left\{q-\varepsilon<M_{n} \leq q+\varepsilon\right\}$ for sufficiently large n. Hence,

$$
\Omega^{*} \subset\left\{q-\varepsilon \leq \liminf _{n \rightarrow \infty} M_{n} \leq \limsup _{n \rightarrow \infty} M_{n} \leq q+\varepsilon\right\},
$$

which shows that $M_{n} \rightarrow q$ a.s.
Remark 3.12. There are many very detailed results on the asymptotics of order statistics in [5].

4 Convergence in Distribution

Theorem 4.1. (Portmanteau Theorem) [1]
If X_{n}, X are random variables taking values in a metric space S, then the following are equivalent:
(i) $X_{n} \Rightarrow X$
(ii) $E\left[f\left(X_{n}\right)\right] \rightarrow E[f(X)]$ for all bounded, uniformly continuous $f: S \rightarrow \mathbb{R}$
(iii) $\lim \sup _{n \rightarrow \infty} P\left(X_{n} \in F\right) \leq P(X \in F)$ for all closed $F \subset S$
(iv) $\liminf _{n \rightarrow \infty} P\left(X_{n} \in G\right) \leq P(X \in G)$ for all open $G \subset S$
(v) $\lim _{n \rightarrow \infty} P\left(X_{n} \in A\right)=P(X \in A)$ for all Borel sets $A \subset S$ with $P(X \in \partial A)=0$

Theorem 4.2. (Skorohod representation) [3]
Let S be a complete, separable metric space and \mathcal{B} its Borel σ-algebra. If μ_{n}, μ_{0} are probability measures on (S, \mathcal{B}) with $\mu_{n} \Rightarrow \mu_{0}$, then there exists a probability space (Ω, \mathcal{F}, P) and random variables X_{n}, X_{0} on Ω taking values in S such that X_{n} has distribution μ_{n} for all $n \geq 0$ and $X_{n} \rightarrow X_{0}$ a.s.

Theorem 4.3. [1]
Let S be a metric space, \mathcal{B} its Borel σ-algebra, and P_{n}, P probability measures on (S, \mathcal{B}). Suppose $\mathcal{U} \subset \mathcal{B}$ satisfies
(i) \mathcal{U} is closed under finite intersections, and
(ii) each open set in S is a countable union of elements of \mathcal{U}.

If $P_{n}(A) \rightarrow P(A)$ for all $A \in \mathcal{U}$, then $P_{n} \Rightarrow P$.
Theorem 4.4. [1]
For $x, y \in \mathbb{R}^{d}$, write $x \leq y$ if $x_{j} \leq y_{j}$ for all j. If $X^{(n)}$, X are \mathbb{R}^{d}-valued random variables with $F^{(n)}(x)=P\left(X^{(n)} \leq x\right)$ and $F(x)=P(X \leq x)$, then $X^{(n)} \Rightarrow X$ if and only if $F^{(n)}(x) \rightarrow F(x)$ for all $x \in \mathbb{R}^{d}$ such that F is continuous at x.

Theorem 4.5. (Cramér-Wold device) 2]
Let $X^{(n)}$, X be random vectors in \mathbb{R}^{d}. If $\theta \cdot X^{(n)} \Rightarrow \theta \cdot X$ for all $\theta \in \mathbb{R}^{d}$, then $X^{(n)} \Rightarrow X$.

5 Central Limit Theorems

Theorem 5.1. (Central Limit Theorem) 2
Let X_{1}, X_{2}, \ldots be iid with $E X_{j}=\mu$. Suppose that $\operatorname{Var}\left(X_{j}\right)=\sigma^{2} \in(0, \infty)$. If $S_{n}=$ $X_{1}+\ldots+X_{n}$, then $\left(S_{n}-n \mu\right) /\left(\sigma n^{1 / 2}\right) \Rightarrow \chi$, where χ has the standard normal distribution.

Theorem 5.2. (Lindeberg-Feller Theorem) [2]
For each n, let $X_{n, m}, 1 \leq m \leq n$, be independent random variables with $E X_{n, m}=0$. If
(i) $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}$ as $n \rightarrow \infty$, and
(ii) for each $\varepsilon>0, \sum_{m=1}^{n} E\left[\left|X_{n, m}\right|^{2} 1_{\left\{\left|X_{n, m}\right|>\varepsilon\right\}}\right] \rightarrow 0$ as $n \rightarrow \infty$,
then $S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \sigma \chi$ as $n \rightarrow \infty$, where χ has the standard normal distribution.
Remark 5.3. Durrett assumes in condition (i) that $\sigma^{2}>0$. However, if $\sigma^{2}=0$, then condition (i) says that $S_{n} \rightarrow 0$ in L^{2} and therefore $S_{n} \rightarrow 0$ in probability and in distribution.

Theorem 5.4. (Lyapunov's Central Limit Theorem)
Let X_{1}, X_{2}, \ldots be independent with $E X_{j}=0$ for all j. Let $\alpha_{n}=\sqrt{\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)}$. If there exists $\delta>0$ such that $\lim _{n \rightarrow \infty} \alpha_{n}^{-(2+\delta)} \sum_{j=1}^{n} E\left|X_{j}\right|^{2+\delta}=0$, then

$$
\frac{X_{1}+\cdots+X_{n}}{\sqrt{\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)}} \Rightarrow \chi
$$

where χ has the standard normal distribution.

Proof. For each $n \in \mathbb{N}$ and $m \in\{1, \ldots, n\}$, let $X_{n, m}=\alpha_{n}^{-1} X_{m}$. Note that $\sum_{m=1}^{n} E X_{n, m}^{2}=1$. Also note that for each $\varepsilon>0$,

$$
\begin{aligned}
\sum_{m=1}^{n} E\left[\left|X_{n, m}\right|^{2} 1_{\left\{\left|X_{n, m}\right|>\varepsilon\right\}}\right] & =\alpha_{n}^{-2} \sum_{m=1}^{n} E\left[\left|X_{m}\right|^{2} 1_{\left\{\left|X_{m}\right|>\alpha_{n} \varepsilon\right\}}\right] \\
& \leq \alpha_{n}^{-2} \sum_{m=1}^{n} E\left[\frac{\left|X_{m}\right|^{2+\delta}}{\left(\alpha_{n} \varepsilon\right)^{\delta}} 1_{\left\{\left|X_{m}\right|>\alpha_{n} \varepsilon\right\}}\right] \\
& \leq \varepsilon^{-\delta} \alpha_{n}^{-(2+\delta)} \sum_{m=1}^{n} E\left|X_{m}\right|^{2+\delta} \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$. Hence, by Theorem 5.2, $X_{n, 1}+\cdots+X_{n, n} \Rightarrow \chi$.
Theorem 5.5. (Nonclassical Central Limit Theorem, Part I) [6]
For each n, let $X_{n, m}, 1 \leq m \leq n$, be independent random variables with $E X_{n, m}=0$ and $\sigma_{n m}^{2}=E X_{n, m}^{2}>0$. Suppose $\sum_{m=1}^{n} \sigma_{n m}^{2}=1$ and let $S_{n}=X_{n, 1}+\cdots+X_{n, n}$. Then $S_{n} \Rightarrow \chi$, where χ has the standard normal distribution, if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \int_{\{|x|>\varepsilon\}}|x|\left|P\left(X_{n, m} \leq x\right)-P\left(\sigma_{n m}^{-1} \chi \leq x\right)\right| d x=0 \tag{5.1}
\end{equation*}
$$

for every $\varepsilon>0$.
Theorem 5.6. (Nonclassical Central Limit Theorem, Part II) [6]
For each n, let $X_{n, m}, 1 \leq m \leq n$, be independent random variables with $E X_{n, m}=0$ and $\sigma_{n m}^{2}=E X_{n, m}^{2}>0$. Suppose $\sum_{m=1}^{n} \sigma_{n m}^{2}=1$. If Condition (ii) of Theorem 5.2 holds, then (5.1) holds for every $\varepsilon>0$. Conversely, if (5.1) holds for every $\varepsilon>0$, and $\max _{1 \leq m \leq n} \sigma_{n m}^{2} \rightarrow 0$ as $n \rightarrow \infty$, then Condition (ii) of Theorem 5.2 holds.

Theorem 5.7. (Converse of Lindeberg-Feller Theorem)
For each n, let $X_{n, m}, 1 \leq m \leq n$, be independent random variables with $E X_{n, m}=0$ and $E X_{n, m}^{2}>0$. Suppose
(i) $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ as $n \rightarrow \infty$, and
(ii) $\max _{1 \leq m \leq n} E X_{n, m}^{2} \rightarrow 0$ as $n \rightarrow \infty$.

If $S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \sigma \chi$ as $n \rightarrow \infty$, where χ has the standard normal distribution, then Condition (ii) of Theorem 5.2 holds.

Proof. Let $\sigma_{n}^{2}=\sum_{m=1}^{n} E X_{n, m}^{2}$ and define $\widetilde{X}_{n, m}=\sigma_{n}^{-1} X_{n, m}$ and $\widetilde{S}_{n}=\widetilde{X}_{n, 1}+\cdots+\widetilde{X}_{n, n}$. Since $S_{n} \Rightarrow \sigma \chi$ and $\sigma_{n} \rightarrow \sigma$, it follows that $\widetilde{S}_{n} \Rightarrow \chi$. Hence, by Theorem 5.5,

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \int_{\{|x|>\varepsilon\}}|x|\left|P\left(\widetilde{X}_{n, m} \leq x\right)-P\left(\sigma_{n m}^{-1} \chi \leq x\right)\right| d x=0
$$

for every $\varepsilon>0$. Also, if $\widetilde{\sigma}_{n m}^{2}=E \widetilde{X}_{n, m}^{2}$, then $\widetilde{\sigma}_{n m}^{2}>0, \sum_{m=1}^{n} \widetilde{\sigma}_{n m}^{2}=1$, and $\max _{1 \leq m \leq n} \widetilde{\sigma}_{n m}^{2} \rightarrow$ 0 as $n \rightarrow \infty$. Hence, by Theorem 5.6.

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{n} E\left[\left|\widetilde{X}_{n, m}\right|^{2} 1_{\left\{\left|\tilde{X}_{n, m}\right|>\tilde{\varepsilon}\right\}}\right]=0
$$

for every $\widetilde{\varepsilon}>0$.
Note that

$$
\sum_{m=1}^{n} E\left[\left|X_{n, m}\right|^{2} 1_{\left\{\left|X_{n, m}\right|>\varepsilon\right\}}\right]=\sigma_{n}^{2} \sum_{m=1}^{n} E\left[\left|\widetilde{X}_{n, m}\right|^{2} 1_{\left\{\left|\widetilde{X}_{n, m}\right|>\sigma_{n}^{-1} \varepsilon\right\}}\right]
$$

Since $\sigma_{n} \rightarrow \sigma$, there exists $C>0$ such that $\sigma_{n} \leq C$ for all n. Hence, if we define $\widetilde{\varepsilon}=C^{-1} \varepsilon$, then

$$
\sum_{m=1}^{n} E\left[\left|X_{n, m}\right|^{2} 1_{\left\{\left|X_{n, m}\right|>\varepsilon\right\}}\right] \leq C^{2} \sum_{m=1}^{n} E\left[\left|\tilde{X}_{n, m}\right|^{2} 1_{\left\{\left|\widetilde{X}_{n, m}\right|>\tilde{\varepsilon}\right\}}\right],
$$

which tends to zero as $n \rightarrow \infty$.
Theorem 5.8. (Berry-Esseen) [2]
Let X_{1}, X_{2}, \ldots be iid with $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2}<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. If $F_{n}(x)=P\left(S_{n} /\left(\sigma n^{1 / 2}\right) \leq x\right)$ and $\Phi(x)=P(\chi \leq x)$, then

$$
\sup _{x}\left|F_{n}(x)-\Phi(x)\right| \leq \frac{3 \rho}{\sigma^{3} n^{1 / 2}},
$$

where $\rho=E\left|X_{i}\right|^{3}$.
Theorem 5.9. (The Central Limit Theorem in $\left.\mathbb{R}^{d}\right)[2]$
Let $X^{(1)}, X^{(2)}, \ldots$ be iid random vectors in \mathbb{R}^{d} with $E X^{(n)}=\mu$ and finite covariances

$$
\sigma_{i j}=E\left[\left(X_{i}^{(n)}-\mu_{i}\right)\left(X_{j}^{(n)}-\mu_{j}\right)\right] .
$$

If $S^{(n)}=X^{(1)}+\cdots+X^{(n)}$, then $\left(S^{(n)}-n \mu\right) / n^{1 / 2} \Rightarrow N$, where N is multinormal with mean 0 and covariance σ.

Theorem 5.10. (Multidimensional Lindeberg-Feller Theorem)
For each n, let $X^{(n, m)}$, $1 \leq m \leq n$, be independent, \mathbb{R}^{d}-valued random vectors with $E X^{(n, m)}=0$. Let $\sigma^{(n, m)}=\left(\sigma_{i j}^{(n, m)}\right)$, where $\sigma_{i j}^{(n, m)}=E X_{i}^{(n, m)} X_{j}^{(n, m)}$. If
(i) $\sum_{m=1}^{n} \sigma^{(n, m)} \rightarrow \sigma$ as $n \rightarrow \infty$, and
(ii) for each $\theta \in \mathbb{R}^{d}$ and each $\varepsilon>0, \sum_{m=1}^{n} E\left[\left|\theta \cdot X^{(n, m)}\right|^{2} 1_{\left\{\left|\theta \cdot X^{(n, m)}\right|>\varepsilon\right\}}\right] \rightarrow 0$ as $n \rightarrow \infty$,
then $S^{(n)}=X^{(n, 1)}+\cdots+X^{(n, n)} \Rightarrow N$, where N is multinormal with mean 0 and covariance σ.

Proof. Fix $\theta \in \mathbb{R}^{d}$. By the Cramér-Wold device, it suffices to show $\theta \cdot S^{(n)} \Rightarrow \theta \cdot N$. Now, for each $n, m \in \mathbb{N}$ with $1 \leq m \leq n$, let $Y_{n, m}=\theta \cdot X^{(n, m)}$. Then
(a) $Y_{n, m}, 1 \leq m \leq n$, are independent,
(b) $E Y_{n, m}=0$, and
(c) $\sum_{m=1}^{n} E Y_{n, m}^{2}=\sum_{m=1}^{n} E\left|\theta \cdot X^{(n, m)}\right|^{2}=\sum_{m=1}^{n} \theta^{T} \sigma^{(n, m)} \theta \rightarrow \theta^{T} \sigma \theta$ as $n \rightarrow \infty$.

Since each $\sigma^{(n, m)}$ is positive semidefinite, $\theta^{T} \sigma \theta \geq 0$. Using these conditions and hypothesis (ii), we may apply Theorem 5.2 to conclude that

$$
Y_{n, 1}+\cdots+Y_{n, n}=\theta \cdot S^{(n)} \Rightarrow \sqrt{\theta^{T} \sigma \theta} \chi
$$

Now, $E\left[\sqrt{\theta^{T} \sigma \theta} \chi\right]=0=E[\theta \cdot N]$ and $E\left[\theta^{T} \sigma \theta \chi^{2}\right]=\theta^{T} \sigma \theta=E|\theta \cdot N|^{2}$, so $\sqrt{\theta^{T} \sigma \theta} \chi=\theta \cdot N$ in distribution and $\theta \cdot S^{(n)} \Rightarrow \theta \cdot N$.

Theorem 5.11. (Poisson Convergence) [2]
For each n, let $X_{n, m}, 1 \leq m \leq n$ be independent nonnegative integer valued random variables and set $p_{n, m}=P\left(X_{n, m}=1\right), \varepsilon_{n, m}=P\left(X_{n, m} \geq 2\right)$. If
(i) $\sum_{m=1}^{n} p_{n, m} \rightarrow \lambda \in(0, \infty)$ as $n \rightarrow \infty$,
(ii) $\max \left(p_{n, 1}, p_{n, 2}, \ldots, p_{n, m}\right) \rightarrow 0$ as $n \rightarrow \infty$, and
(iii) $\sum_{m=1}^{n} \varepsilon_{n, m} \rightarrow 0$ as $n \rightarrow \infty$,
then $S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow Z$, where Z is $\operatorname{Poisson}(\lambda)$.
Theorem 5.12. (Convergence to Stable Laws) [2]
Let X_{1}, X_{2}, \ldots be iid. Let $S_{n}=X_{1}+\cdots+X_{n}$, $a_{n}=\inf \left\{x: P\left(\left|X_{1}\right|>x\right) \leq n^{-1}\right\}$, and $b_{n}=n E\left[X_{1} 1_{\left\{\left|X_{1}\right| \leq a_{n}\right\}}\right]$. Define

$$
w_{\alpha}(t)= \begin{cases}\tan (\pi \alpha / 2) & \text { if } \alpha \neq 1 \\ (2 / \pi) \log |t| & \text { if } \alpha=1\end{cases}
$$

If
(i) $P\left(X_{1}>x\right) / P\left(\left|X_{1}\right|>x\right) \rightarrow \theta \in[0,1]$ as $x \rightarrow \infty$, and
(ii) $P\left(\left|X_{1}\right|>x\right)=x^{-\alpha} L(x)$, where $0<\alpha<2$ and L is slowly varying,
then $\left(S_{n}-b_{n}\right) / a_{n} \Rightarrow Y$, where Y has a stable law and satisfies

$$
E e^{i t Y}=\exp \left\{i t c-b|t|^{\alpha}\left(1+i(2 \theta-1) \operatorname{sgn}(t) w_{\alpha}(t)\right)\right\},
$$

for some constants b and c.
Theorem 5.13. (Martingale Central Limit Theorem) [4]
Let X_{1}, X_{2}, \ldots be random variables and let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ be σ-algebras with $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ for all n. If $E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=0, E\left(X_{n}^{2} \mid \mathcal{F}_{n-1}\right)=1$, and $E\left(\left|X_{n}\right|^{3} \mid \mathcal{F}_{n-1}\right) \leq K<\infty$ for all n, then $\left(X_{1}+\cdots++X_{n}\right) / n^{1 / 2} \Rightarrow \chi$.

For the next theorem, we need to start with a lemma.
Lemma 5.14. Let $Z^{(n)}, Z$ be \mathbb{R}^{d}-valued random vectors such that $Z^{(n)} \Rightarrow Z$. Let $a^{(n)}, a \in \mathbb{R}^{d}$ satisfy $a^{(n)} \rightarrow a$ and define the set $A=\left\{x \in \mathbb{R}^{d}: x \geq a\right\}$. If $P(Z \in \partial A)=0$, then $P\left(Z^{(n)} \geq a^{(n)}\right) \rightarrow P(Z \geq a)$.
Proof. Let $A_{n}=\left\{x \in \mathbb{R}^{d}: x \geq a^{(n)}\right\}$. By Theorem 4.1(v) and the triangle inequality, it suffices to show that $\left|P\left(Z^{(n)} \in A_{n}\right)-P\left(Z^{(n)} \in A\right)\right| \leq P\left(Z^{(n)} \in A_{n} \Delta A\right) \rightarrow 0$. (Here, " Δ " denotes the symmetric difference: $A \Delta B=(A \backslash B) \cup(B \backslash A)$.)

Fix $\delta>0$ and let B_{ε} denote the set of all $x \in \mathbb{R}^{d}$ that satisfy $x_{i} \geq a_{i}-\varepsilon$ for all i, and for which there exists j such that $x_{j} \leq a_{j}+\varepsilon$. Since B_{ε} is a decreasing family of sets as $\varepsilon \downarrow 0$ with $\cap_{\varepsilon} B_{\varepsilon} \subset \partial A$, we may choose ε sufficiently small so that $P\left(Z \in B_{\varepsilon}\right)<\delta$.

Since $a^{(n)} \rightarrow a$, we have $A_{n} \Delta A \subset B_{\varepsilon}$ for n sufficiently large. Hence, $P\left(Z^{(n)} \in A_{n} \Delta A\right) \leq$ $P\left(Z^{(n)} \in B_{\varepsilon}\right)$. Since B_{ε} is closed, Theorem 4.1(iii) gives that $\limsup _{n \rightarrow \infty} P\left(Z^{(n)} \in B_{\varepsilon}\right) \leq$ $P\left(Z \in B_{\varepsilon}\right)$. Thus, for n sufficiently large, $P\left(\overline{Z^{(n)}} \in B_{\varepsilon}\right) \leq P\left(Z \in B_{\varepsilon}\right)+\delta<2 \delta$. Since δ was arbitrary, this completes the proof.
Theorem 5.15. (Multi-Dimensional Quantile Central Limit Theorem)
Let $X^{(n)}=\left(X_{1}^{(n)}, \ldots, X_{d}^{(n)}\right), n \in \mathbb{N}$, be iid random vectors and let $F_{j}(x)=P\left(X_{j}^{(1)} \leq x\right)$. Fix $\alpha \in(0,1)^{d}$ and suppose there exists $q \in \mathbb{R}^{d}$ such that $F_{j}\left(q_{j}\right)=\alpha_{j}$ and $F_{j}^{\prime}\left(q_{j}\right)>0$ for all j. Let $M_{j}^{(n)}$ be the $\left\lfloor\alpha_{j} n\right\rfloor$-th order statistic of the quantities $X_{j}^{(1)}, \ldots, X_{j}^{(n)}$ and $M^{(n)}=\left(M_{1}^{(n)}, \ldots, M_{d}^{(n)}\right)$. If $G_{i j}(x, y)=P\left(X_{i}^{(1)} \leq x, X_{j}^{(1)} \leq y\right)$ is continuous at $\left(q_{i}, q_{j}\right)$ for all i, j, then $\sqrt{n}\left(M_{n}-q\right) \Rightarrow N$, where N is multinormal with mean 0 and covariance σ, given by

$$
\sigma_{i j}=\frac{\rho_{i j}}{F_{i}^{\prime}\left(q_{i}\right) F_{j}^{\prime}\left(q_{j}\right)},
$$

with $\rho_{i j}=G_{i j}\left(q_{i}, q_{j}\right)-\alpha_{i} \alpha_{j}$.
Proof. Fix $x \in \mathbb{R}^{d}$ and for each $n, m \in \mathbb{N}, 1 \leq m \leq n$, define the random vector $Y^{(n, m)} \in \mathbb{R}^{d}$ by

$$
Y_{j}^{(n, m)}=\frac{1}{\sqrt{n}}\left(1_{\left\{X_{j}^{(m)} \leq x_{j} / \sqrt{n}+q_{j}\right\}}-p_{j}^{(n)}\right)
$$

where $p_{j}^{(n)}=F_{j}\left(x_{j} / \sqrt{n}+q_{j}\right)$. Then for each $n \in \mathbb{N}$,
(a) $Y^{(n, m)}, 1 \leq m \leq n$, are independent,
(b) $E Y^{(n, m)}=0$,
(c) $\sum_{m=1}^{n} E\left[Y_{i}^{(n, m)} Y_{j}^{(n, m)}\right] \rightarrow \rho_{i j}$ as $n \rightarrow \infty$, and
(d) for each $\theta \in \mathbb{R}^{d}$ and $\varepsilon>0, \sum_{m=1}^{n} E\left[\left|\theta \cdot Y^{(n, m)}\right|^{2} 1_{\left.\left\{\left|\theta \cdot Y^{(n, m)}\right|>\varepsilon\right)\right\}}\right] \rightarrow 0$ as $n \rightarrow \infty$.

Part (c) follows since

$$
\begin{aligned}
\sum_{m=1}^{n} E\left[Y_{i}^{(n, m)} Y_{j}^{(n, m)}\right] & =\frac{1}{n} \sum_{m=1}^{n}\left[P\left(X_{i}^{(m)} \leq \frac{x_{i}}{\sqrt{n}}+q_{i}, X_{j}^{(m)} \leq \frac{x_{j}}{\sqrt{n}}+q_{j}\right)-p_{i}^{(n)} p_{j}^{(n)}\right] \\
& =P\left(X_{i}^{(1)} \leq \frac{x_{i}}{\sqrt{n}}+q_{i}, X_{j}^{(1)} \leq \frac{x_{j}}{\sqrt{n}}+q_{j}\right)-p_{i}^{(n)} p_{j}^{(n)}
\end{aligned}
$$

and part (d) follows since $\left|\theta \cdot Y^{(n, m)}\right| \leq \max \left(\left|\theta_{1}\right|, \ldots,\left|\theta_{d}\right|\right) / \sqrt{n}$, and therefore $P\left(\left|\theta \cdot Y^{(n, m)}\right|>\right.$ $\varepsilon)=0$ for sufficiently large n.

Thus, by Theorem 5.10, $S^{(n)}=Y^{(n, 1)}+\cdots+Y^{(n, n)} \Rightarrow \widetilde{N}$, where \widetilde{N} is multinormal with mean 0 and covariance ρ. Now,

$$
\begin{aligned}
\sqrt{n}\left(M^{(n)}-q\right) \leq x & \text { iff } \quad M_{j}^{(n)} \leq x_{j} / \sqrt{n}+q_{j} \text { for all } j \\
& \text { iff } \quad \sum_{m=1}^{n} 1_{\left\{X_{j}^{(m)} \leq x_{j} / \sqrt{n}+q_{j}\right\}} \geq\left\lfloor\alpha_{j} n\right\rfloor \text { for all } j \\
& \text { iff } \\
& \frac{1}{\sqrt{n}} \sum_{m=1}^{n}\left(1_{\left\{X_{j}^{(m)} \leq x_{j} / \sqrt{n}+q_{j}\right\}}-p_{j}^{(n)}\right) \geq \frac{\left\lfloor\alpha_{j} n\right\rfloor-n p_{j}^{(n)}}{\sqrt{n}} \text { for all } j .
\end{aligned}
$$

Thus, if $a^{(n)} \in \mathbb{R}^{d}$ is defined by $a_{j}^{(n)}=\left(\left\lfloor\alpha_{j} n\right\rfloor-n p_{j}^{(n)}\right) / \sqrt{n}$, then $P\left(\sqrt{n}\left(M^{(n)}-q\right) \leq x\right)=$ $P\left(S^{(n)} \geq a^{(n)}\right)$. Note that

$$
a_{j}^{(n)}=\frac{\left\lfloor\alpha_{j} n\right\rfloor-\alpha_{j} n}{\sqrt{n}}+\sqrt{n}\left(\alpha_{j}-p_{j}^{(n)}\right)=\frac{\left\lfloor\alpha_{j} n\right\rfloor-\alpha_{j} n}{\sqrt{n}}+\frac{F_{j}\left(q_{j}\right)-F_{j}\left(x_{j} / \sqrt{n}+q_{j}\right)}{1 / \sqrt{n}},
$$

so that $a^{(n)} \rightarrow a \in \mathbb{R}^{d}$, where $a_{j}=-x_{j} F_{j}^{\prime}\left(q_{j}\right)$. Therefore, by Lemma 5.14,

$$
\begin{aligned}
P\left(\sqrt{n}\left(M^{(n)}-q\right) \leq x\right) & \rightarrow P(\widetilde{N} \geq a) \\
& =P(\widetilde{N} \leq-a) \\
& =P(N \leq x),
\end{aligned}
$$

where N is the random vector defined by $N_{j}=\widetilde{N}_{j} / F_{j}^{\prime}\left(q_{j}\right)$.
We now have $\sqrt{n}\left(M^{(n)}-q\right) \Rightarrow N, N$ is multinormal with mean 0 , and

$$
E\left[N_{i} N_{j}\right]=\frac{1}{F_{i}^{\prime}\left(q_{i}\right) F_{j}^{\prime}\left(q_{j}\right)} E\left[\widetilde{N}_{i} \widetilde{N}_{j}\right]=\frac{\rho_{i j}}{F_{i}^{\prime}\left(q_{i}\right) F_{j}^{\prime}\left(q_{j}\right)}=\sigma_{i j}
$$

which completes the proof.
Corollary 5.16. (Median Central Limit Theorem)
Let X_{1}, X_{2}, \ldots be iid, $F(x)=P\left(X_{1} \leq x\right)$, and $M_{n}=\operatorname{med}\left(X_{1}, \ldots, X_{n}\right)$. If $F(0)=1 / 2$ and $F^{\prime}(0)>0$, then $\sqrt{n} M_{n} \Rightarrow\left(2 F^{\prime}(0)\right)^{-1} \chi$.

Corollary 5.17. (Median of Multinormal Random Vectors)
If $X^{(1)}, X^{(2)}, \ldots$ are iid, mean 0 , multinormal \mathbb{R}^{d}-valued random vectors with covariance σ and $M^{(n)}=\operatorname{med}\left(X^{(1)}, \ldots, X^{(n)}\right)$, then $\sqrt{n} M^{(n)} \Rightarrow Z$, where Z is multinormal with mean 0 and covariance

$$
\tau_{i j}=\sqrt{\sigma_{i i} \sigma_{j j}} \sin ^{-1}\left(\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}\right),
$$

where $\sin ^{-1}(\cdot)$ takes values in $[-\pi / 2, \pi / 2]$.

Proof. By Theorem 5.15, $\sqrt{n} M^{(n)} \Rightarrow Z$, where Z is multinormal with mean 0 and covariance

$$
\tau_{i j}=\frac{\rho_{i j}}{F_{i}^{\prime}(0) F_{j}^{\prime}(0)},
$$

where $\rho_{i j}=P\left(X_{i}^{(1)} \leq 0, X_{j}^{(1)} \leq 0\right)-1 / 4$ and

$$
F_{j}(x)=P\left(X_{j}^{(1)} \leq x\right)=\frac{1}{\sqrt{2 \pi \sigma_{j j}}} \int_{-\infty}^{x} e^{-t^{2} / 2 \sigma_{j j}} d t
$$

Since $F_{j}^{\prime}(0)=\left(2 \pi \sigma_{j j}\right)^{-1 / 2}$, it remains only to show that

$$
\rho_{i j}=\frac{1}{2 \pi} \sin ^{-1}\left(\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}\right) .
$$

Let $X=X_{i}^{(1)}, Y=X_{j}^{(1)}$ and define

$$
\begin{aligned}
a^{ \pm} & =1 \pm \frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}} \\
\widetilde{X}^{ \pm} & =\frac{1}{\sqrt{2 a^{ \pm}}}\left(\frac{1}{\sqrt{\sigma_{i i}}} X \pm \frac{1}{\sqrt{\sigma_{j j}}} Y\right),
\end{aligned}
$$

so that $\widetilde{X}^{+}, \widetilde{X}^{-}$are independent standard normals. Since

$$
\begin{aligned}
& X=\frac{\sqrt{\sigma_{i i}}}{2}\left(\sqrt{2 a^{+}} \widetilde{X}^{+}+\sqrt{2 a^{-}} \widetilde{X}^{-}\right) \\
& Y=\frac{\sqrt{\sigma_{j j}}}{2}\left(\sqrt{2 a^{+}} \widetilde{X}^{+}-\sqrt{2 a^{-}} \widetilde{X}^{-}\right),
\end{aligned}
$$

we have that $X \leq 0$ and $Y \leq 0$ if and only if $\left(\widetilde{X}^{+}, \widetilde{X}^{-}\right)$lies in a sector whose angle θ satisfies $0 \leq \theta \leq \pi$ and

$$
\cos \theta=-\frac{2 a^{+}-2 a^{-}}{2 a^{+}+2 a^{-}}=-\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}} .
$$

Thus,

$$
P(X \leq 0, Y \leq 0)=\frac{\theta}{2 \pi}=\frac{1}{2 \pi} \cos ^{-1}\left(-\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}\right)=\frac{1}{4}+\frac{1}{2 \pi} \sin ^{-1}\left(\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}\right)
$$

where $\sin ^{-1}(\cdot)$ takes values in $[-\pi / 2, \pi / 2]$.

References

[1] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley \& Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
[2] Richard Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA, second edition, 1996.
[3] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1989.
[4] Jean Jacod and Philip Protter. Probability essentials. Universitext. Springer-Verlag, Berlin, second edition, 2003.
[5] R.-D. Reiss. Approximate distributions of order statistics. Springer Series in Statistics. Springer-Verlag, New York, 1989. With applications to nonparametric statistics.
[6] A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 1996. Translated from the first (1980) Russian edition by R. P. Boas.
[7] Daniel W. Stroock. Probability theory, an analytic view. Cambridge University Press, Cambridge, 1993.

