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Abstract

An extremely simplified version of poker is completely solved from a game theoretic
standpoint. The actual properties of the optimal solution are then compared to various
common notions about game theory and bluffing in poker. No specialized mathematical
knowledge is needed to understand this material.

1 Introduction

Let us consider a simple card game which we will call “One Card Poker.” The game is played
with two players and a 3-card deck. The deck consists of an ace, a deuce, and a trey. To
begin the game, one of the players is chosen to be the dealer; the other will be called the
opener. After the dealer is selected, each player antes $100, forming a $200 pot. Then, the
dealer deals one card to each player.

After the players look at their cards, the opener is the first to act. He may check or bet
$100. If he bets, then the dealer may either call or fold. If the dealer folds, the opener takes
the pot; if the dealer calls, there is a showdown and the high card takes the pot. The ace is
considered the lowest card.

If the opener begins the game with a check, then the dealer may either check or bet $100.
If the dealer checks, there is a showdown; otherwise, the opener must either call or fold.
Note that there is no raising in this game.

With the rules of One Card Poker in place, let us consider the following situation: the
dealer is dealt the deuce and the opener bets. The dealer’s “hand” can beat only a bluff.
What is the game-theoretic optimal frequency with which the dealer should call in this
situation?

In The Theory of Poker, David Sklansky discusses using game theory to call a possible
bluff. He writes,

Usually when your hand can beat only a bluff, you use your experience and
judgment to determine the chances your opponent is bluffing . . . However, against
an opponent whose judgment is as good as yours or better than yours, or one
who is capable of using game theory to bluff, you in your turn can use game
theory to thwart that player or at least minimize his profits.

He then gives the following example:
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If your opponent bets $20 to win $100, he is getting 5-to-1 on a bluff. Therefore,
you make the odds 5-to-1 against your folding. That is, you must call five times
and fold once.

Motivated by this, let us return to our example. The dealer has the deuce and can beat
only a bluff. The opener has bet $100 into a $200 pot, giving him 2-to-1 on a bluff. We
might therefore think that the dealer should call twice and fold once. Or, in other words, the
dealer should call with his deuce with probability 2

3
. As we will see, however, this is wrong.

The game-theoretic optimal frequency with which the dealer should call with the deuce is 1
3
.

Another interesting example is the following: the dealer is dealt the ace and the opener
checks. Should the dealer bluff? If the opener holds the trey, then a bluff is futile, but if the
opener holds the deuce, then a bluff might work. Suppose that the dealer knows that the
opener will always come out betting when he holds the trey. Then since the opener checked
here, the dealer can be certain that the opener holds the deuce. In this situation, what is
the game-theoretic optimal frequency with which the dealer should bluff?

Again, let us return to the examples in The Theory of Poker:

when I bet my $100, creating a $300 pot, my opponent was getting 3-to-1 odds
from the pot. Therefore my optimum strategy was . . . [to make] the odds against
my bluffing 3-to-1.

Since the dealer will always bet with the trey in this situation, he should bluff with the ace
1
3

of the time in order to make the odds 3-to-1 against a bluff.
But the analysis in this example began with the supposition that the opener will always

bet when he holds the trey. What if the opener is a tricky player who will sometimes check
with the trey, trying to goad the dealer into bluffing? Or, for that matter, what if the opener
has the peculiar habit of never betting when he holds the trey? If he also checks whenever
he holds the deuce, then what can the dealer conclude? The dealer is holding the ace and
the opener has checked. Half the time, the opener will have the trey and a bluff is futile.
The other half of the time, the opener will hold the deuce, and 1

3
of those times, the dealer

ought to bluff. So perhaps, against this opponent, the optimal frequency with which the
dealer should bluff is 1

6
.

But again, as we will see, this is wrong. The dealer’s game-theoretic optimal bluffing
frequency is 1

3
, regardless of how often the opener checks with the trey. In fact, if the dealer

tries bluffing only 1
6

of the time, there is a strategy that the opener can employ – a strategy
which involves always checking with the trey – that capitalizes on this mistake.

Finally, let us consider one last example before solving One Card Poker and answering
all our questions. Consider the situation in which the opener is dealt the deuce. He checks
and the dealer bets. His hand can beat only a bluff. What is the optimal frequency with
which he should call this bet? Should he call 2

3
of the time, as suggested by the excerpt from

The Theory of Poker? Or should he call 1
3

of the time, as he would if faced with the same
situation as the dealer?

As we will see, there is no unambiguous answer to this question. For example, it may be
optimal for the opener to call here 2

3
of the time, but only if he never checks with the trey

and bluffs with the ace 1
3

of the time. On the other hand, it may be optimal for the opener
to call in this situation, say, 19 times out of 30, but only if he checks with the trey 10% of the
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time and bluffs with the ace 30% of the time. So we see here a somewhat counter-intuitive
example where the optimal play for the opener depends not only on the current situation,
but also on how he would have responded if the situation were different. After all, if this one
hand is the only hand these two players will ever play with each other, then why should it
matter that the opener intended to check with the trey 10% of the time? He was never and
will never be dealt a trey!

2 Obvious Plays and Stupid Mistakes

We now want to analyze One Card Poker using game theory. What this means is that we
will consider a group of strategies for the opener and a group of strategies for the dealer.
From these groups, we will try to find strategies which are “optimal” in a certain sense. But
it would definitely be a waste of time if any part of that analysis were devoted to concluding
that one should never fold a trey, or that one should never call a bet with an ace. For this
reason, let us devote this section to enumerating the Stupid Mistakes in One Card Poker.
We will thereafter assume that the players do not make these Stupid Mistakes. This will
allow us to reduce the sizes of the groups of strategies we must consider.

Stupid Mistake No. 1: Folding the trey. We will assume that neither player will ever fold
the trey.

Stupid Mistake No. 2: Calling with the ace. We will assume that neither player will ever
call a bet while holding the ace.

Stupid Mistake No. 3: Checking with the trey “in position.” We will assume that if the
dealer holds the trey and the opener checks, then the dealer will automatically bet.

Stupid Mistake No. 4: Betting with the deuce. If a player bets with the deuce, then
according to the other Stupid Mistakes, his opponent will fold the ace and call with the trey.
If the dealer holds the deuce and is checked to, then checking and betting have the same effect
when the opener holds the ace, but betting loses an additional $100 when the opener holds
the trey. Similarly, when the opener holds the deuce, checking with the intention of calling a
bet has the same effect as betting when the dealer holds the trey, but wins additional money
when the dealer holds the ace and decides to bluff. So there is always a better option than
betting the deuce. Betting the deuce is a no-win situation for the bettor, and we will assume
that neither player will bet the deuce.

3 Strategic Plays and Expected Value

Given that the players will flawlessly avoid the Stupid Mistakes, they now have a limited
number of choices. The dealer must decide how frequently he will bluff with the ace when
the opener checks, and he must decide how frequently to call with the deuce when the opener
bets. Let us denote these probabilities by q1 and q2, respectively.

As for the opener, he has three decisions. He must decide how frequently to bet out as
a bluff when he holds the ace. Call this p1. He must decide how frequently to call with the
deuce when the dealer bets. Call this p2. And finally, he must decide how frequently to bet
out with the trey. Call this p3. Note that it is not an obvious play to choose p3 = 1. If, for
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example, the opener held the trey, and he somehow knew that the dealer held the ace, then
the only correct play would be to check.

To summarize, p1 is the probability the opener bluffs with the ace, p2 is the probability
the opener calls with the deuce, p3 is the probability the opener bets with the trey, q1 is the
probability the dealer bluffs with the ace, and q2 is the probability the dealer calls with the
deuce.

We now want to use these values to compute the opener’s post-ante expected value (EV).
What this means is that we will regard the $200 pot, which was created by the antes, as
belonging to neither player. So, for example, if the opener checks, the dealer bets, and the
opener folds, then we regard this as a $200 win for the dealer and a $0 win (or loss) for the
opener. After computing the opener’s post-ante EV, it will be a simple matter to convert
this into a pre-ante EV; that is, the opener’s EV for the entire hand, including his original
$100 ante.

There are three possible non-zero post-ante results for the opener. Either he loses $100,
wins $200, or wins $300. We will begin by computing the probabilities of each of these
outcomes.

Case 1: the opener has the ace, the dealer has the deuce. In this case, the opener loses
$100 if he bluffs and is called. This happens with probability p1q2. He wins $200 if he bluffs
and the dealer folds. This has probability p1(1 − q2). He cannot win $300.

Case 2: the opener has the ace, the dealer has the trey. Here, the opener can only lose
$100, which happens whenever he tries to bluff. The probability of this is p1.

Case 3: the opener has the deuce, the dealer has the ace. In this case, the opener checks.
With probability 1 − q1, the hand is checked through and the opener wins $200. With
probability q1p2, the dealer bluffs and gets called, and the opener wins $300. The opener
cannot lose $100.

Case 4: the opener has the deuce, the dealer has the trey. The opener cannot win
anything. He loses $100 when he calls the dealer’s bet with probability p2.

Case 5: the opener has the trey, the dealer has the ace. Here, the opener wins $300 when
he checks and the dealer bluffs. This has probability (1− p3)q1. Otherwise, with probability
1 − (1 − p3)q1, the opener wins $200.

Case 6: the opener has the trey, the dealer has the deuce. Here, the opener wins $300
when he bets and the dealer calls. This has probability p3q2. Otherwise, with probability
1 − p3q2, the opener wins $200.

Since each of these cases has probability 1
6
, we can combine them to see that the opener

loses $100 (cases 1, 2, and 4) with probability

Q1 =
1

6
(p1q2 + p1 + p2), (1)

he wins $200 (cases 1, 3, 5, and 6) with probability

Q2 =
1

6
(p1(1 − q2) + 1 − q1 + 1 − (1 − p3)q1 + 1 − p3q2)

=
1

6
(p1 − p1q2 + 3 − 2q1 + p3q1 − p3q2), (2)
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and wins $300 (cases 3, 5, and 6) with probability

Q3 =
1

6
(q1p2 + (1 − p3)q1 + p3q2)

=
1

6
(p2q1 + q1 − p3q1 + p3q2). (3)

This gives him a post-ante EV of

−Q1 + 2Q2 + 3Q3,

where one unit of EV represents a $100 average win per hand.
If we want to include his ante, then, in each of these cases, we must reduce his final

outcome by $100. Also, we must acknowledge that, with probability 1− (Q1 + Q2 + Q3), he
loses his original ante of $100. This gives him a total EV for the entire hand of

−2Q1 + Q2 + 2Q3 − (1 − Q1 − Q2 − Q3),

which simplifies to
− Q1 + 2Q2 + 3Q3 − 1. (4)

4 Game Theory Analysis

In a way, the idea behind game theory is very basic. In this case, we simply want to
understand how the players’ choices of the p and q values affect their EVs. To accomplish
this, we will need to simplify and rewrite the expressions derived in the previous section.
Plugging (1), (2), and (3) into (4), we find that the opener’s total EV for the entire hand is

1

6
(−p1q2−p1−p2)+

1

6
(2p1−2p1q2+6−4q1+2p3q1−2p3q2)+

1

6
(3p2q1+3q1−3p3q1+3p3q2)−1,

which simplifies to

1

6
(−3p1q2 + p1 − p2 − q1 − p3q1 + p3q2 + 3p2q1).

In order to make use of this, it will be convenient to rewrite this as

1

6
[p1(1 − 3q2) + p2(3q1 − 1) + p3(q2 − q1) − q1] (5)

and also as
1

6
[q1(3p2 − p3 − 1) + q2(p3 − 3p1) + (p1 − p2)]. (6)

From (5), we see that something special happens when q1 = q2 = 1
3
. In this case, the

opener’s EV is simply − 1
18

, and this does not depend on the opener’s choices of the numbers
p1, p2, and p3. If the dealer chooses these q-values, then the dealer is indifferent as to how
the opener plays the game. The dealer’s EV will be 1

18
, regardless of how the opener plays.

For this reason, we will refer to q1 = q2 = 1
3

as the dealer’s “indifferent strategy.”
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If the dealer deviates from the indifferent strategy, then he is making a “mistake” in the
sense that the opener (if he can spot the deviation) can increase his EV above − 1

18
(and

possibly even give himself a positive EV) by choosing the appropriate counter-strategy.
Let us consider some examples. Suppose that the dealer does not bluff enough with the

ace, does not call enough with the deuce, and bluffs with the ace more often than he calls
with the deuce. In other words, the dealer has chosen a strategy in which q2 < q1 < 1

3
. In

order for the opener to maximize his EV in this case, he should never call with the deuce
(since the dealer does not bluff enough), always bluff with the ace (since the dealer does not
call enough), and never bet out with the trey (since the dealer will bluff more often than he
will call). In other words, the opener should choose the strategy p1 = 1, p2 = 0, and p3 = 0.
From (6), we see that the opener’s EV will be

1

6
[−q1 − 3q2 + 1].

Since q2 < q1 < 1
3
, this EV will always be greater than − 1

18
, and may very well be positive.

For example, if q2 = 1
6

and q1 = 1
4
, then the opener’s EV will be 1

24
.

As another example, suppose that the opener is the kind of “passive” player that will
never bet out with the trey. The dealer sees this and reasons, as in the introduction, that
he should only bluff 1

6
of the time. If he does this, then the opener can counter by simply

doing nothing! The opener can simply never bet out and never call, unless he has the trey.
In other words, the opener chooses the strategy p1 = p2 = p3 = 0. Referring to (5), we see
that by doing this, the opener has an EV of − 1

36
, which is better for the opener than − 1

18
.

In fact, if the players alternate positions and the passive player uses the indifferent strategy
when he is the dealer, then his EV over every pair of hands will be − 1

36
+ 1

18
= 1

36
and he

will be a long term winner.
The point here is that the dealer wants to bluff in a way that puts the opener “on the

edge” and makes it difficult for him to decide whether or not he should call. This is why the
bluffing frequency should match the pot odds. But no amount of bluffing is going to make
it difficult for him to call with a trey. So the bluffing frequency must be targeted at making
his decision with the deuce a difficult one. This is accomplished precisely by making q1 = 1

3
.

For one final example, suppose that the dealer has read The Theory of Poker and has
decided that he should bluff with the ace 1

3
of the time. That is, he chooses q1 = 1

3
. He

also knows that, with the deuce, his hand can beat only a bluff. So when the opener bets
$100 into a $200 pot, the dealer should make the odds 2-to-1 against his folding. That is,
he should call twice and fold once. So he decides upon q2 = 2

3
.

By (5), we see that the opener’s EV is now

1

6

[
−p1 +

1

3
p3 −

1

3

]
.

The opener can maximize his EV by choosing p1 = 0 (never bluffing), p3 = 1 (always betting
with the trey), and doing whatever he likes with the deuce. By doing this, the opener’s EV
is zero.

In other words, by calling 2
3

of the time with the deuce, the dealer has forfeited his 1
18

EV advantage, which is his natural advantage due to acting last. If the players take turns
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being the dealer, he could end up a long term loser by forfeiting this advantage every other
hand.

The only way for the dealer to prevent the opener from being able to seize back some of
this advantage is to play the indifferent strategy, q1 = q2 = 1

3
. It is for this reason that the

indifferent strategy is more commonly referred to as the “optimal” strategy.
As we have seen, in this game it is optimal to call with the deuce 1

3
of the time, not 2

3

of the time. So is there a flaw in the examples from The Theory of Poker? In fact, there is
not. When your opponent bets $100 into a $200 pot, you should play in a way that makes
the probability you will call 2

3
. But it is not the probability that you will call from your

perspective which should be 2
3
, but the probability from your opponent’s perspective. When

the opener bets with the ace, he does not know whether the dealer has the deuce or the trey.
Half the time, the dealer will have the trey and will automatically call. The other half of the
time, the dealer will have the deuce. Of those times, the dealer will call with frequency 1

3
.

So the probability that the dealer will call, from the opener’s perspective, is 1
2

+ 1
2
· 1

3
= 2

3
.

This phenomenon might be better illustrated if we were using a 4-card deck: one ace,
one deuce, one trey, and one four. In that case, what would be the optimal frequency with
which you should call a bet with the deuce? Well, that would be related to how frequently
you would call a bet with the trey. In order to play optimally, you would have to play the
deuce and the trey (and the four as well) in a way which makes the overall probability that
you will call a bluff 2

3
. But this does not mean you would call specifically with the deuce 2

3

of the time. In fact, you would probably call much less frequently than that.

5 Multiple Optimal Strategies

We just saw that the dealer has a unique optimal strategy, q1 = q2 = 1
3
. The situation for

the opener, however, is different. From (6), we see that any set of p-values which satisfies

3p2 − p3 − 1 = 0

p3 − 3p1 = 0

will be an indifferent strategy for the opener and will give him an EV of 1
6
(p1−p2), regardless

of how the dealer plays. In other words, the opener can choose p3 arbitrarily, and then choose

p1 =
1

3
p3

p2 =
1

3
p3 +

1

3
.

By doing this, he will assure himself an EV of

1

6

(
1

3
p3 −

(
1

3
p3 +

1

3

))
= − 1

18
,

no matter what strategy the dealer selects. In other words, all such strategies are optimal
strategies.

For example, choosing p3 = 1 gives p1 = 1
3

and p2 = 2
3
. So always betting out with

the trey, bluffing with the ace 1
3

of the time, and calling with the deuce 2
3

of the time is
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an optimal strategy for the opener. On the other hand, choosing p3 = 0 yields p1 = 0 and
p2 = 1

3
. So it is also optimal for the opener to never bet with the trey, never bluff with the

ace, and call with the deuce 1
3

of the time. For each different value of p3 between 0 and 1,
there is a different optimal strategy that the opener may employ. As is the nature of optimal
strategies, each of these guarantees the opener an EV of − 1

18
, regardless of the strategy the

dealer chooses. However, if the opener chooses a strategy outside of this group, then the
dealer can capitalize on this “mistake.”

For example, suppose the opener does not call enough with the deuce; that is, p2 < 1
3
p3+

1
3
.

By (6), we see that the dealer can capitalize on this by choosing q1 = 1 (always bluffing with
the ace). By (5), if the dealer chooses q2 = 1

3
(calling 1

3
of the time with the deuce), then he

nullifies the effect of p1 on his EV, allowing him to isolate the opener’s mistake. With these
choices, using (5), the opener’s EV is

1

6

[
2p2 −

2

3
p3 − 1

]
<

1

6

[
2

(
1

3
p3 +

1

3

)
− 2

3
p3 − 1

]
= − 1

18
.

6 Paradoxes

Let us return now to the examples in the introduction. Consider the situation where the
opener is dealt the deuce and checks. The dealer bets. What is the opener’s optimal play?
Suppose he has a perfect random number generator and can call with any probability he
likes. Which probability is optimal?

As we have seen, any probability p2 of the form 1
3
p3 + 1

3
is optimal, provided he bets

out with the trey with probability p3 and bluffs with the ace with probability 1
3
p3. In other

words, it will be optimal for the opener to call here with any probability between 1
3

and 2
3
,

provided he plays the ace and trey in a manner which is consistent with that choice.
To some degree, this flies in the face of conventional wisdom. We know the opener’s card:

the deuce. We know the betting sequence so far: check, bet. We can even know everything
there is to know about his opponent’s tendencies. That is, we can know the precise values
of q1 and q2. And still we do not have enough information to answer the question, “What
is the opener’s optimal play?” His optimal play depends not only on his cards, the betting,
and his opponent. It also depends on how he intends or intended to play in other situations.

This seems very counter-intuitive. A play has either a positive expectation, a negative
expectation, or zero expectation. Other hands, at least in our mathematical model, are
independent of this one. How can the opener’s actions in other hands affect the value of his
chosen action in this hand? How could these other actions play any role in determining the
best play here?

But therein lies the catch. At no time until now did we ever ask, “What is the best play?”
We only asked, “What is the optimal play?” So let us now address the best play. If we know
everything about our opponent, then we know the value of q1. Looking at (5), if q1 > 1

3
,

then the opener maximizes his EV by taking p2 = 1. In other words, the best play is to call.
If q1 < 1

3
, then the opener maximizes his EV by taking p2 = 0. In other words, the best play

is to fold. If q1 = 1
3
, then (5) shows us that it does not matter what p2 is. The opener gets

the same EV no matter what frequency he calls with. So all plays are “best” plays.
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We see, then, that there is no contradiction to common sense after all. The best play can
in fact be determined from our cards, the betting, and our opponent’s tendencies, without
having to consider what we will do in other, unrelated situations. But to come to this
realization, we must acknowledge the difference between what is “optimal” and what is
“best.” When your opponent plays optimally, then it doesn’t matter what you do. You will
always have the same EV, so all plays are “best.” But when your opponent does not play
optimally, the best play for you – the play which maximizes your expectation – will not be
optimal either.

We will return to this idea in a moment, but for now let us move in another direction
with this example. For the moment, we will set aside the question of what is best and return
to the problem of determining what is optimal. We have seen that, as the dealer, when you
hold the deuce and your opponent bets, you should play in a way that gives a 2

3
probability

that you will call, with the probability calculated from your opponent’s perspective. Does the
same principle hold for the opener? It seems reasonable to assume that it does. So suppose
the opener holds the deuce. He checks and the dealer bets. Since the opener would always
call here with the trey, how could it ever be optimal for him to call with the deuce more
often than 1

3
of the time?

For instance, it would be optimal for the opener to choose

p3 = 0.9 p1 = 0.3 p2 = 0.3 +
1

3
=

19

30
.

In other words, he checks with the trey 10% of the time, bluffs with the ace 30% of the
time, and calls with the deuce 19 times out of 30. So when the dealer bluffs with the ace,
the opener will call every time he has the trey and 19 out of every 30 times that he has
the deuce. If he has the trey half the time and the deuce half the time, then he is calling
the dealer’s bluff 49 times out of 60, which is more than the requisite 2

3
. Since the dealer is

only getting 2-to-1 odds on his bluff, it seems his bluff has a negative EV. (Out of 60 bluffs,
49 times he loses $100, and 11 times wins $200, for a net profit of −4900 + 2200 = −2700
dollars.) Hence, the less frequently the dealer bluffs, the higher his EV. But the opener’s
strategy is supposed to be optimal. So the dealer’s bluffing frequency cannot affect his EV.
What went wrong?

The key to resolving this apparent contradiction is to fall back on the phrase, “from your
opponent’s perspective.” From the dealer’s perspective, the opener does not have the trey
half the time and the deuce half the time. The opener was first to act and he checked. This
check gave the dealer information. If the dealer knows the opener’s frequencies, then he
knows that the opener will check with the trey 10% of the time. So out of every 20 times
that the dealer has the ace, the opener will have the deuce 10 times and check all 10 of those
times, and he will have the trey 10 times and check only once. So out of 11 checks, he has
the deuce 10 times. Therefore, from the dealer’s perspective, there is a 10

11
probability that

the opener has the deuce. If the opener has the deuce, then he will fold to a bluff 11 times
out of 30; that is, with probability 11

30
. In other words, from the dealer’s perspective, given

that the opener checked, he will fold to a bluff 10
11
· 11

30
= 1

3
of the time, which is exactly what

he should be doing.
So using game theory to call a possible bluff is a subtle thing indeed. If your opponent

bets $100 into a $200 pot, you should play in such a way that he thinks there is a 2
3

chance
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you will call. But this does not mean you simply call 2
3

of the time with any marginal hand.
As we saw before, since your opponent does not know what you have, you need to play all
your individual hands in such a way that the overall probability you will call is 2

3
. And, as

this example shows, you must also take into account how the information at your opponent’s
disposal affects his estimations of the probabilities that you have each of these individual
hands.

7 How To Win

Perhaps the most important lesson to take from all of this analysis is the following:

You cannot win with the optimal strategy.

If you always play the optimal strategy, then as the opener you will have an EV of − 1
18

no
matter how your opponent plays, and as the dealer you will have an EV of 1

18
no matter

how your opponent plays. In the long run, you will only be a break-even player. If you use
the optimal strategy, your opponent cannot profit through superior play. But he also cannot
suffer through inferior play. By playing “optimally” you have created a situation in which
your opponent’s choices, good or bad, will have no effect on your EV. Clearly, by symmetry,
you cannot do this and win. (Unless your opponent lets you always play as the dealer.)

So the object of the game is not to play optimally. It is to spot the times when your
opponent is not playing optimally, or even to induce him not to play optimally, to recognize
the way in which he is deviating from optimality, and then to choose a non-optimal strategy
for yourself which capitalizes on his mistakes. You must play non-optimally in order to
win. To capitalize on your opponent’s mistakes, you must play in a way that leaves you
vulnerable.

For instance, your opponent may be bluffing too much. To capitalize on this, you begin
to call more frequently than is optimal. Once you do this, however, your opponent could stop
bluffing altogether and take advantage of you. When you realize he has done this, you would
start calling much less frequently than is optimal. In this way, you and your opponent’s
bluffing and calling frequencies would oscillate, sometimes higher than optimal, sometimes
lower.

In game theory, an optimal solution is also called an “equilibrium.” The idea is that,
through this back-and-forth struggle, the players would eventually settle upon the optimal
frequencies and reach an equilibrium with one another. While this might be true in certain
“real-world” situations (in politics or economics, for example), it is certainly not true in
One Card Poker. An “expert” One Card Poker player would rather quit playing altogether
than settle for the monotonous compromise of playing a zero EV optimal strategy. A battle
between two One Card Poker experts would not be a battle in which both sides played
optimally. Such a battle would be a complete waste of time. Rather, it would be a back-
and-forth struggle like the one described above; a struggle which never slows down and never
reaches equilibrium.

The heart of the game is the struggle. Playing optimally erases this struggle. Playing
optimally prevents your opponent from taking advantage of you, but it also prevents him
from being punished for his mistakes. As such, using game theory to “optimally” bluff or
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to “optimally” call a bluff can only be regarded as a defense. But since it defends both you
and your opponent, a better defense is to simply not play at all.

That being said, it should be pointed out that there are times when the optimal strategy
will be profitable; namely, when your opponent makes Stupid Mistakes. In that case, you can
play optimally and be a long term winner. By playing optimally, you ensure that changes in
his bluffing and calling frequencies will not affect his EV. Since his EV will be intrinsically
negative due to his Stupid Mistakes, you will have a positive expectation. (On the other
hand, if he is making Stupid Mistakes, then you can probably outwit him without game
theory.)

When your opponent does not make Stupid Mistakes, playing optimally is an exercise
in futility. But nonetheless, there is still value in understanding the theoretical aspects of
optimal play. In order to profit, you must know, for example, when your opponent is bluffing
too much. But what does it mean to bluff “too much” in a situation. It means, of course,
bluffing more than is optimal. So you must know what the optimal strategy is (even though
you will consciously avoid it) in order to decide on the proper counter-strategy against your
opponent.
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