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1 Introduction

Suppose that b : R? — R? and ¢ : R? — R? x R? are continuous functions that satisfy the

linear growth condition
|b(z)| + |o ()] < K(1 + |z[)

for some constant K and all z € R?. Consider the stochastic differential equation

X(t):X(O)+/O a(X(s))dB(s)+/O b(X (s)) ds. (1.1)

We shall assume that for each x € R?, there exists a pair of R%valued processes, X and B,
defined on some probability space (2, F, P), such that P(X(0) = z) = 1, B is a standard
d-dimensional Brownian motion under P, and is satisfied. We also assume that the law
of (X, B) is uniquely determined.

Let L denote the generator of X. That is, L is the differential operator

1

Lf(x) = D) Z aij(x)a?jf(x) +b(2)"V f(z),

where f € C*(R?Y) and a(z) = o(z)o(x)T.

The Feynman-Kac representation asserts that, under appropriate conditions, the solution

to the initial value problem
Owu = Lu, u(0,z) = f(x) (1.2)

is given by
u(t, ) = E°[f(X(2))]. (1.3)

We will first present a heuristic derivation of this result, and then state the full theorem,
whose proof can be found in the references.

Suppose that has a solution u(t,z). Fix T > 0 and define v(t,z) = w(T — t,z).
Then 0yv = —Lv. Define Y (t) = v(t, X (¢)). By Ito’s rule,

Y(t) =Y(0)+ M(t) + /0 (Oyv(s, X(s)) + Lo(s, X(s)))ds =Y (0) + M(t),



where M (t) is a local martingale. Hence,
w(T —t, X(t)) = u(T, X(0)) + M(t).
If M is in fact a martingale, then taking expectations gives
Efu(T —t,X(t))] = u(T, x).
Assuming that we can justify letting t — T under the expectation, this gives
E*u(0,X(T))] = uw(T, x).

Since u(0,z) = f(x) and since this is true for all 7' > 0, we have derived (1.3)).

2 The Feynman-Kac representation theorem

The full theorem is more general than what is described in the introduction. We will actually
consider the initial value problem

Owu=Lu—ku+g, u(0,z)=f(z), (2.1)

where k, g : [0,00) x R — R are continuous. We assume that k& > 0 and that g satisfies the
following growth condition: for each T > 0, there exist constants L and r such that

sup [g(t, )| < L(1 + |z[")
0<t<T

for all z € R9,

Theorem 2.1 Assume that u(t,z) is continuous on [0,00) x R, and that O,u and 8i2ju are
continuous on (0,00) x R? for all i and j. Assume that u satisfies (2.1)), and that u satisfies
the same growth condition as g. Let

Z(t) :exp{—/o k(s,X(s))ds}.
Then .
u(t,z) = E* [f(X(t))Z(t) +/O g(s,X(s))Z(s) ds} ) (2.2)
In particular, such a solution to 1S unique.

This is a special case of Theorem 5.7.6 in [I]. (The full result in [I] concerns the case
when b and o also depend on ¢.) Note that when k& = 0, we have Z(t) = 1 and (2.2]) reduces
to

t
ult.o) = B FX0) + [ g(s. (6],
0
In particular, if £ = g = 0, then (2.2)) reduces to (1.3]).
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3 The killed process

The process X (t) can be thought of as representing the location of a particle which is moving
about randomly in R?. In this section, we modify the process X so that the particle is “killed”
at a random time p. Specifically, we define

t
p— inf{t >0 / k(s X(s)) ds > T}, (3.1)
0
where 7 is independent of X and is exponentially distributed with mean 1. The killed process
is defined as
= X(t) ift<
X(t) = ) e (3.2)
A ift > p,

where A is a so-called “cemetery” state which is outside of R.

The function k(t,z) is interpreted as the killing rate. Informally, this means that if, at
time ¢, the particle is alive and is situated at the point z, then the probability that it dies
in the next h units of time is approximately k(¢, z)h when h is small. Symbolically,

Plp<t+hlp>t,X(t) =)=kt z)h. (3:3)

To see this more formally, first recall that X is a Markov process with respect to a filtration
F;. Since 7 and X are independent,

Plp>t+ hlF) = P(/Hh k(s X(s)) ds <

]—"oo) = Z(t+h),

where Z is defined as in Theorem [2.1] Hence,
P(p >t+ h|F) = E[Z(t+ h)|F]

_ Z(t)Elexp{— /tHh k(s, X(s)) ds}

— Z()EX® {exp{— /Oh K(t+ 5, X(s)) dsH |

where we have used the Markov property in the last equality. Finally, then,

g

Plp>t+hX(t)=F [Z(t)EX“) {exp{— /Oh k(t+s,X(s)) ds}] 'X(t)]
= EXO® {exp{— /Oh k(t+s,X(s)) ds}] E[Z(t)|X(t)].

Therefore,

Plp<t+hlp>t,X(t)=2)=1—P(p>t+hlp>tX(t) =x)
P(p>t+h|X(t) =2)
P(p>t|X(t) = z)

o [exp{—/ohk(t%— s,X(s))dsH.
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Under suitable conditions on k£ and X, we may differentiate under the expectation, which
yields as the first order linear approximation.

The connection between the killed process and the Feynman-Kac representation is given
by the following theorem.

Theorem 3.1 Suppose that (2.1) has a solution u which satisfies the assumptions of
Theorem . Let X denote the solution to (1.1) and let X be the killed process given by

and (3.2). Then
ult,z) = E* [f()?(t))jt /O o5, X<s>>ds],

where f and g are extended so that f(A) =0 and g(t,A) = 0.

Proof. Let ¢(t,z) be a measurable function such that E*[p(t, X (t))Z(t)] exists. Extend ¢
so that ¢(t, A) = 0. Then

E®lp(t, X(t)Z(t)] = E* {go(t,X(t))P(/O k(s,X(s))ds <T ]—'oo)}
= E*p(t, X (1)) P(t < plFoo)]
= E*lp(t; X () Li<p)]
= E*[p(t, X (1))]-
The theorem now follows directly from Theorem [2.1} ]
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