The Feynman-Kac representation

Jason Swanson

October 18, 2007

1 Introduction

Suppose that $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d}$ are continuous functions that satisfy the linear growth condition

$$
|b(x)|+|\sigma(x)| \leq K(1+|x|)
$$

for some constant K and all $x \in \mathbb{R}^{d}$. Consider the stochastic differential equation

$$
\begin{equation*}
X(t)=X(0)+\int_{0}^{t} \sigma(X(s)) d B(s)+\int_{0}^{t} b(X(s)) d s \tag{1.1}
\end{equation*}
$$

We shall assume that for each $x \in \mathbb{R}^{d}$, there exists a pair of \mathbb{R}^{d}-valued processes, X and B, defined on some probability space (Ω, \mathcal{F}, P), such that $P(X(0)=x)=1, B$ is a standard d-dimensional Brownian motion under P, and (1.1) is satisfied. We also assume that the law of (X, B) is uniquely determined.

Let L denote the generator of X. That is, L is the differential operator

$$
L f(x)=\frac{1}{2} \sum_{i, j} a_{i j}(x) \partial_{i j}^{2} f(x)+b(x)^{T} \nabla f(x)
$$

where $f \in C^{2}\left(\mathbb{R}^{d}\right)$ and $a(x)=\sigma(x) \sigma(x)^{T}$.
The Feynman-Kac representation asserts that, under appropriate conditions, the solution to the initial value problem

$$
\begin{equation*}
\partial_{t} u=L u, \quad u(0, x)=f(x) \tag{1.2}
\end{equation*}
$$

is given by

$$
\begin{equation*}
u(t, x)=E^{x}[f(X(t))] . \tag{1.3}
\end{equation*}
$$

We will first present a heuristic derivation of this result, and then state the full theorem, whose proof can be found in the references.

Suppose that (1.2) has a solution $u(t, x)$. Fix $T>0$ and define $v(t, x)=u(T-t, x)$. Then $\partial_{t} v=-L v$. Define $Y(t)=v(t, X(t))$. By Itô's rule,

$$
Y(t)=Y(0)+M(t)+\int_{0}^{t}\left(\partial_{t} v(s, X(s))+L v(s, X(s))\right) d s=Y(0)+M(t)
$$

where $M(t)$ is a local martingale. Hence,

$$
u(T-t, X(t))=u(T, X(0))+M(t)
$$

If M is in fact a martingale, then taking expectations gives

$$
E^{x}[u(T-t, X(t))]=u(T, x) .
$$

Assuming that we can justify letting $t \rightarrow T$ under the expectation, this gives

$$
E^{x}[u(0, X(T))]=u(T, x)
$$

Since $u(0, x)=f(x)$ and since this is true for all $T>0$, we have derived (1.3).

2 The Feynman-Kac representation theorem

The full theorem is more general than what is described in the introduction. We will actually consider the initial value problem

$$
\begin{equation*}
\partial_{t} u=L u-k u+g, \quad u(0, x)=f(x), \tag{2.1}
\end{equation*}
$$

where $k, g:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ are continuous. We assume that $k \geq 0$ and that g satisfies the following growth condition: for each $T>0$, there exist constants L and r such that

$$
\sup _{0 \leq t \leq T}|g(t, x)| \leq L\left(1+|x|^{r}\right)
$$

for all $x \in \mathbb{R}^{d}$.
Theorem 2.1 Assume that $u(t, x)$ is continuous on $[0, \infty) \times \mathbb{R}^{d}$, and that $\partial_{t} u$ and $\partial_{i j}^{2} u$ are continuous on $(0, \infty) \times \mathbb{R}^{d}$ for all i and j. Assume that u satisfies (2.1), and that u satisfies the same growth condition as g. Let

$$
Z(t)=\exp \left\{-\int_{0}^{t} k(s, X(s)) d s\right\}
$$

Then

$$
\begin{equation*}
u(t, x)=E^{x}\left[f(X(t)) Z(t)+\int_{0}^{t} g(s, X(s)) Z(s) d s\right] . \tag{2.2}
\end{equation*}
$$

In particular, such a solution to (2.1) is unique.
This is a special case of Theorem 5.7.6 in [1]. (The full result in [1] concerns the case when b and σ also depend on t.) Note that when $k=0$, we have $Z(t)=1$ and (2.2) reduces to

$$
u(t, x)=E^{x}\left[f(X(t))+\int_{0}^{t} g(s, X(s)) d s\right] .
$$

In particular, if $k=g=0$, then (2.2) reduces to (1.3).

3 The killed process

The process $X(t)$ can be thought of as representing the location of a particle which is moving about randomly in \mathbb{R}^{d}. In this section, we modify the process X so that the particle is "killed" at a random time ρ. Specifically, we define

$$
\begin{equation*}
\rho=\inf \left\{t \geq 0: \int_{0}^{t} k(s, X(s)) d s \geq \tau\right\} \tag{3.1}
\end{equation*}
$$

where τ is independent of X and is exponentially distributed with mean 1. The killed process is defined as

$$
\tilde{X}(t)= \begin{cases}X(t) & \text { if } t<\rho \tag{3.2}\\ \Delta & \text { if } t \geq \rho\end{cases}
$$

where Δ is a so-called "cemetery" state which is outside of \mathbb{R}^{d}.
The function $k(t, x)$ is interpreted as the killing rate. Informally, this means that if, at time t, the particle is alive and is situated at the point x, then the probability that it dies in the next h units of time is approximately $k(t, x) h$ when h is small. Symbolically,

$$
\begin{equation*}
P(\rho \leq t+h \mid \rho>t, X(t)=x) \approx k(t, x) h \tag{3.3}
\end{equation*}
$$

To see this more formally, first recall that X is a Markov process with respect to a filtration \mathcal{F}_{t}. Since τ and X are independent,

$$
P\left(\rho>t+h \mid \mathcal{F}_{\infty}\right)=P\left(\int_{0}^{t+h} k(s, X(s)) d s<\tau \mid \mathcal{F}_{\infty}\right)=Z(t+h)
$$

where Z is defined as in Theorem 2.1. Hence,

$$
\begin{aligned}
P\left(\rho>t+h \mid \mathcal{F}_{t}\right) & =E\left[Z(t+h) \mid \mathcal{F}_{t}\right] \\
& =Z(t) E\left[\exp \left\{-\int_{t}^{t+h} k(s, X(s)) d s\right\} \mid \mathcal{F}_{t}\right] \\
& =Z(t) E^{X(t)}\left[\exp \left\{-\int_{0}^{h} k(t+s, X(s)) d s\right\}\right],
\end{aligned}
$$

where we have used the Markov property in the last equality. Finally, then,

$$
\begin{aligned}
P(\rho>t+h \mid X(t)) & =E\left[Z(t) E^{X(t)}\left[\exp \left\{-\int_{0}^{h} k(t+s, X(s)) d s\right\}\right] \mid X(t)\right] \\
& =E^{X(t)}\left[\exp \left\{-\int_{0}^{h} k(t+s, X(s)) d s\right\}\right] E[Z(t) \mid X(t)]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P(\rho \leq t+h \mid \rho>t, X(t)=x) & =1-P(\rho>t+h \mid \rho>t, X(t)=x) \\
& =1-\frac{P(\rho>t+h \mid X(t)=x)}{P(\rho>t \mid X(t)=x)} \\
& =1-E^{x}\left[\exp \left\{-\int_{0}^{h} k(t+s, X(s)) d s\right\}\right] .
\end{aligned}
$$

Under suitable conditions on k and X, we may differentiate under the expectation, which yields (3.3) as the first order linear approximation.

The connection between the killed process and the Feynman-Kac representation is given by the following theorem.

Theorem 3.1 Suppose that (2.1) has a solution u which satisfies the assumptions of Theorem 2.1. Let X denote the solution to (1.1) and let \widetilde{X} be the killed process given by (3.1) and (3.2). Then

$$
u(t, x)=E^{x}\left[f(\widetilde{X}(t))+\int_{0}^{t} g(s, \widetilde{X}(s)) d s\right]
$$

where f and g are extended so that $f(\Delta)=0$ and $g(t, \Delta)=0$.
Proof. Let $\varphi(t, x)$ be a measurable function such that $E^{x}[\varphi(t, X(t)) Z(t)]$ exists. Extend φ so that $\varphi(t, \Delta)=0$. Then

$$
\begin{aligned}
E^{x}[\varphi(t, X(t)) Z(t)] & =E^{x}\left[\varphi(t, X(t)) P\left(\int_{0}^{t} k(s, X(s)) d s<\tau \mid \mathcal{F}_{\infty}\right)\right] \\
& =E^{x}\left[\varphi(t, X(t)) P\left(t<\rho \mid \mathcal{F}_{\infty}\right)\right] \\
& =E^{x}\left[\varphi(t, X(t)) 1_{\{t<\rho\}}\right] \\
& =E^{x}[\varphi(t, \widetilde{X}(t))] .
\end{aligned}
$$

The theorem now follows directly from Theorem 2.1.

References

[1] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1991.

