Moment estimates for Itô diffusions

Jason Swanson

June 4, 2014

Consider the stochastic differential equation,

$$
\begin{equation*}
X(t)=\xi+\int_{0}^{t} b(X(s), s) d s+\int_{0}^{t} \sigma(X(s), s) d W(s) \tag{1}
\end{equation*}
$$

where $X(t)$ is an \mathbb{R}^{d}-valued process, $b: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}^{d}, \sigma: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}^{d \times r}, W$ is an r-dimensional, standard Brownian motion, and ξ is an \mathbb{R}^{d}-valued random variable, independent of W. In what follows, $|\cdot|$ will always denote the Euclidean norm. The following is an improved version of [1, Theorem 5.2.9].

Theorem 1. Suppose there exists a constant K such that

$$
\begin{align*}
|b(x, t)-b(y, t)|+|\sigma(x, t)-\sigma(y, t)| & \leqslant K|x-y|, \text { and } \tag{2}\\
|b(x, t)|^{2}+|\sigma(x, t)|^{2} & \leqslant K^{2}\left(1+|x|^{2}\right), \tag{3}
\end{align*}
$$

for all x, y, t. Also assume that $E|\xi|^{2 m}<\infty$ for some real $m \geqslant 1$. Then there exists a continuous process X, adapted to the augmented filtration of W, which is a strong solution of (1). Moreover, for any $T>0$, there exists a positive constant C, depending only on K, T, and m, such that

$$
\begin{equation*}
E|X(t)|^{2 m} \leqslant C\left(1+E|\xi|^{2 m}\right) e^{C t} \tag{4}
\end{equation*}
$$

for all $0 \leqslant t \leqslant T$.
In the case $m=1$, Theorem 1 is just a restatement of [1, Theorem 5.2.9]. We will generalize to $m>1$ using the Burkholder-Davis-Gundy inequalities, which can be found in [1. Theorem 3.2.28]. The part of that theorem which is relevant to us is included below.

Theorem 2. For every real $m>0$, there exists a finite constant K_{m} such that for all continuous local martingales M and all $t \geqslant 0$,

$$
\begin{equation*}
E|M(t)|^{2 m} \leqslant K_{m} E\langle M\rangle_{t}^{m}, \tag{5}
\end{equation*}
$$

where $\langle M\rangle$ is the quadratic variation of M.
Proof of Theorem 1. By Jensen's inequality, $E|\xi|^{2 m}<\infty$ implies $E|\xi|^{2}<\infty$, so the hypotheses of [1, Theorem 5.2.9] hold. In particular, we have the existence of X, the strong solution of (1).

Let $X_{0}(t)=\xi$ and

$$
X_{k+1}(t)=\xi+\int_{0}^{t} b\left(X_{k}(s), s\right) d s+\int_{0}^{t} \sigma\left(X_{k}(s), s\right) d W(s)
$$

It is shown in the proof of [1, Theorem 5.2.9] that these processes are well-defined, and for P-a.e. $\omega \in \Omega$, we have $X_{k}(\cdot, \omega) \rightarrow X(\cdot, \omega)$ uniformly on compact subsets of $[0, \infty)$.

In what follows, $\|\cdot\|_{p}$ will denote the norm in $L^{p}(\Omega)$, so that $\|Z\|_{p}=\left(E\left[|Z|^{p}\right]\right)^{1 / p}$. Note that (5) can be reformulated as $\|M(t)\|_{2 m}^{2} \leqslant K_{m}^{\prime}\left\|\langle M\rangle_{t}\right\|_{m}$, where $K_{m}^{\prime}=K_{m}^{1 / m}$.

If c_{j} are nonnegative constants and $p>0$, then

$$
\begin{equation*}
\left(\sum_{j=1}^{n} c_{j}\right)^{p} \leqslant\left(n \max \left\{c_{1}, \ldots, c_{n}\right\}\right)^{p}=n^{p} \max \left\{c_{1}^{p}, \ldots, c_{n}^{p}\right\} \leqslant n^{p} \sum_{j=1}^{n} c_{j}^{p} \tag{6}
\end{equation*}
$$

Using this inequality and Theorem 2, we have

$$
\begin{aligned}
\left\|X_{k+1}(t)\right\|_{2 m}^{2} & \leqslant 9\|\xi\|_{2 m}^{2}+9\left\|\int_{0}^{t} b\left(X_{k}(s), s\right) d s\right\|_{2 m}^{2}+9\left\|\int_{0}^{t} \sigma\left(X_{k}(s), s\right) d W(s)\right\|_{2 m}^{2} \\
& \leqslant 9\|\xi\|_{2 m}^{2}+9\left\|\int_{0}^{t} b\left(X_{k}(s), s\right) d s\right\|_{2 m}^{2}+9 K_{m}^{\prime}\left\|\int_{0}^{t}\left|\sigma\left(X_{k}(s), s\right)\right|^{2} d s\right\|_{m}
\end{aligned}
$$

By Minkowski's inequality, the fact that $\left\|Z^{2}\right\|_{m}=\|Z\|_{2 m}^{2}$, and Jensen's inequality, we have

$$
\begin{aligned}
\left\|X_{k+1}(t)\right\|_{2 m}^{2} & \leqslant 9\|\xi\|_{2 m}^{2}+9\left(\int_{0}^{t}\left\|b\left(X_{k}(s), s\right)\right\|_{2 m} d s\right)^{2}+9 K_{m}^{\prime} \int_{0}^{t}\left\|\sigma\left(X_{k}(s), s\right)\right\|_{2 m}^{2} d s \\
& \leqslant 9\|\xi\|_{2 m}^{2}+9 t \int_{0}^{t}\left\|b\left(X_{k}(s), s\right)\right\|_{2 m}^{2} d s+9 K_{m}^{\prime} \int_{0}^{t}\left\|\sigma\left(X_{k}(s), s\right)\right\|_{2 m}^{2} d s
\end{aligned}
$$

Next, by (3) and (6), we obtain

$$
|b(x, t)|^{2 m} \leqslant K^{2 m}\left(1+|x|^{2}\right)^{m} \leqslant 2^{m} K^{2 m}\left(1+|x|^{2 m}\right)
$$

Thus,

$$
\left\|b\left(X_{k}(s), s\right)\right\|_{2 m}^{2}=\left(E\left|b\left(X_{k}(s), s\right)\right|^{2 m}\right)^{1 / m} \leqslant 2 K^{2}\left(1+E\left|X_{k}(s)\right|^{2 m}\right)^{1 / m}
$$

Using (6) again, we obtain $\left\|b\left(X_{k}(s), s\right)\right\|_{2 m}^{2} \leqslant 4 K^{2}\left(1+\left\|X_{k}(s)\right\|_{2 m}^{2}\right)$, along with the same inequality for $\sigma\left(X_{k}(s), s\right)$. Therefore,

$$
\begin{aligned}
\left\|X_{k+1}(t)\right\|_{2 m}^{2} & \leqslant 9\|\xi\|_{2 m}^{2}+36 K^{2}\left(t+K_{m}^{\prime}\right) \int_{0}^{t}\left(1+\left\|X_{k}(s)\right\|_{2 m}^{2}\right) d s \\
& =9\|\xi\|_{2 m}^{2}+36 K^{2}\left(t+K_{m}^{\prime}\right) t+36 K^{2}\left(t+K_{m}^{\prime}\right) \int_{0}^{t}\left\|X_{k}(s)\right\|_{2 m}^{2} d s
\end{aligned}
$$

Now let $T>0$ and let $c=\max \left\{9,36 K^{2}\left(T+K_{m}^{\prime}\right) T, 36 K^{2}\left(T+K_{m}^{\prime}\right)\right\}$. Then

$$
\left\|X_{k+1}(t)\right\|_{2 m}^{2} \leqslant c\left(1+\|\xi\|_{2 m}^{2}\right)+c \int_{0}^{t}\left\|X_{k}(s)\right\|_{2 m}^{2} d s
$$

for all $0 \leqslant t \leqslant T$. It is straightforward to show by induction that this implies

$$
\left\|X_{k+1}(t)\right\|_{2 m}^{2} \leqslant c\left(1+\|\xi\|_{2 m}^{2}\right) \sum_{j=0}^{k+1} \frac{(c t)^{j}}{j!} \leqslant c\left(1+\|\xi\|_{2 m}^{2}\right) e^{c t}
$$

for all $0 \leqslant t \leqslant T$ and all $k \geqslant 0$. Letting $k \rightarrow \infty$ and using Fatou's lemma shows that

$$
\|X(t)\|_{2 m}^{2} \leqslant c\left(1+\|\xi\|_{2 m}^{2}\right) e^{c t}
$$

for all $0 \leqslant t \leqslant T$. Using (6), this gives

$$
E|X(t)|^{2 m} \leqslant c^{m}\left(1+\|\xi\|_{2 m}^{2}\right)^{m} e^{m c t} \leqslant 2^{m} c^{m}\left(1+\|\xi\|_{2 m}^{2 m}\right) e^{m c t}
$$

Letting $C=\max \left\{(2 c)^{m}, m c\right\}$ yields (4).
Corollary 3. Under the conditions of Theorem 1, for any $T>0$, there exists a constant $C^{\prime \prime}$, depending only on K and T such that

$$
E|X(t)|^{r} \leqslant C^{\prime}\left(1+\left(E|\xi|^{2}\right)^{r / 2}\right) e^{C^{\prime} t}
$$

for all $0 \leqslant t \leqslant T$ and all $0<r<2$.
Proof. Assume the hypotheses of Theorem 1 hold for some $m \geqslant 1$. By Jensen's inequality, we may assume $m=1$ without loss of generality. Let $0<r<2$. By Jensen's inequality, (4), and (6), we have

$$
\begin{aligned}
E|X(t)|^{r} & \leqslant\left(E|X(t)|^{2}\right)^{r / 2} \\
& \leqslant C^{r / 2}\left(1+\|\xi\|_{2}^{2}\right)^{r / 2} e^{r C t / 2} \\
& \leqslant(2 C)^{r / 2}\left(1+\|\xi\|_{2}^{r}\right) e^{C t} \\
& \leqslant(2 C+1)\left(1+\|\xi\|_{2}^{r}\right) e^{(2 C+1) t}
\end{aligned}
$$

Taking $C^{\prime}=2 C+1$ finished the proof.

References

[1] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

