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1 Conditioning on σ-algebras

Let pΩ,F , P q be a probability space and let A P F with P pAq ą 0. Define

QpBq “ P pB | Aq “
P pB X Aq

P pAq
, for all B P F .

It is easy to to check that Q is a probability measure on pΩ,Fq. If X is a random variable,
we define the conditional expectation of X given A as

ErX | As “

ż

X dQ, (1.1)

whenever this integral is well-defined. Note that Er1B | As “ P pB | Aq.

Theorem 1.1. If Er|X|1As ă 8, then X is Q-integrable. If X ě 0 or Er|X|1As ă 8, then

ErX | As “
ErX1As

P pAq
. (1.2)

Remark 1.2. Note that (1.2) may be written as

ErX | As “
αpAq

P pAq
, (1.3)

where dα “ X dP . Also note that (1.2) gives us the formula ErX1As “ P pAqErX | As. If
X “ 1B, then this reduces to the familiar multiplication rule, P pAXBq “ P pAqP pB | Aq.

Proof of Theorem 1.1. Note that if P pBq “ 0, then QpBq “ 0. Hence Q ! P . Also note
that

QpBq “

ż

B

1A

P pAq
dP, for all B P F .

Thus, dQ{dP “ 1A{P pAq. It follows that if X ě 0, then

ErX | As “

ż

X dQ “

ż

X
dQ

dP
dP “ E

„

X
1A

P pAq



“
ErX1As

P pAq
.

Therefore, if Er|X|1As ă 8, then X is Q-integrable, and the same formula holds. l
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Lemma 1.3. Any finite σ-algebra F on Ω can be written as F “ σptAju
n
j“1q, where tAju

n
j“1

is a partition of Ω, that is, Ω “
Ţn

j“1Aj. Moreover, the partition tAju
n
j“1 is unique.

Proof. For each ω P Ω, let Aω be the smallest measurable set containing ω. That is,
Aω “

Ş

Fω, where Fω “ tA P F : ω P Au. Since this is a finite intersection, Aω P F .
In particular, E “ tAω : ω P Ωu is a finite set. We claim that E is a partition of Ω and that
F “ σpEq.

Clearly, Ω “
Ť

ωPΩAω, so to show that E is a partition, it suffices to show that this is a
disjoint union. More specifically, we wish to show that if ω, ω1 P Ω, then either Aω “ Aω1 or
AωXAω1 “ H. Let ω, ω1 P Ω. Note that for any A P F , if ω P A, then A P Fω, which implies
Aω Ă A. Hence, if ω P Aω1 , then Aω Ă Aω1 ; and if ω P Ac

ω1 , then Aω Ă Ac
ω1 . That is, either

Aω Ă Aω1 or Aω Ă Ac
ω1 . By symmetry, either Aω1 Ă Aω or Aω1 Ă Ac

ω. Taken together, this
shows that either Aω “ Aω1 or Aω X Aω1 “ H.

To see that F “ σpEq, simply note that any A P F can be written as A “
Ť

ωPAAω, and
that this is a finite union.

For uniqueness, suppose that F “ σptBju
n
j“1q, where Ω “

Ţn
j“1Bj. If ω P Bj, then

Aω “ Bj. Therefore, E “ tBju
n
j“1. l

Exercise 1.4. Show that every infinite σ-algebra is uncountable.

Let pΩ,F , P q be a probability space and X an integrable random variable. Let G Ă F be
a finite σ-algebra. Write G “ σptAju

n
j“1q, where tAju

n
j“1 is a partition of Ω. The conditional

expectation of X given G, written ErX | Gs, is a random variable defined by

ErX | Gspωq “

$

’

’

’

’

&

’

’

’

’

%

ErX | A1s if ω P A1,

ErX | A2s if ω P A2,
...

ErX | Ans if ω P An.

Note that we may write

ErX | Gs “
n
ÿ

j“1

ErX | Ajs1Aj
. (1.4)

We also define the conditional probability of A given G as P pA | Gq “ Er1A | Gs. Note
that P pA | Gqpωq “ P pA | Ajq if ω P Aj.

To illustrate this concept, consider the following heuristic example. Imagine my friend is
at the local bar, and is about to throw a dart at a dartboard. If I model the dart board by
a unit circle, which I call Ω, then his dart will land at some point ω P Ω.

Unfortunately, I am not there with him and will not be able to observe the exact location
of ω. But after he throws the dart, he is going to call me on the phone and tell me what
his score for that shot was. This information will not be enough for me to determine ω. It
will, however, narrow it down. Before I receive his call, I can partition the dartboard Ω into
several pieces, A1, . . . , An, with each piece corresponding to a unique score. Once he calls
me, I will know which piece contains his dart.

Let X be the distance from his dart to the bullseye. Suppose he calls me and I determine
that his dart is somewhere inside Aj. I can then compute ErX | Ajs. However, before
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he calls, I can get prepared by computing ErX | Ajs for all j, and then encoding all this
information into the single random variable ErX | Gs.

In probability theory, we model information by σ-algebras. In this example, the σ-algebra
G generated by the partition tAju models the information I will receive from my friend’s
phone call. Imagine that while I am waiting for my friend’s phone call, an interviewer starts
asking me questions. For various events A, the interviewer asks me, “After your friend calls,
will you know with certainty whether or not A has occurred?” Depending on the event A,
I will have to answer either yes, no, or maybe. The events A P G are precisely those events
for which I can answer yes.

Theorem 1.5. Let pΩ,F , P q be a probability space and X an integrable random variable.
Let G Ă F be a finite σ-algebra, and let dα “ X dP . Then

ErX | Gs “ dpα|Gq

dpP |Gq
. (1.5)

Or equivalently, Z “ ErX | Gs is the unique random variable such that

(i) Z is G-measurable, and

(ii) ErX1As “ ErZ1As, for all A P G.

Remark 1.6. First, note the similarity between (1.5) and (1.3). Second, it should be

mentioned that Z “ ErX | Gs is unique in the following sense. If rZ is another G-measurable

random variable such that ErX1As “ Er rZ1As for all A P G, then Z “ rZ a.s.

Proof of Theorem 1.5. Let Z “ ErX | Gs. To prove (1.5), we must show that Z is G-
measurable and that

pα|GqpAq “

ż

A

Z dpP |Gq, for all A P G.

If A P G, then pα|GqpAq “ αpAq “ ErX1As; and if Z is G-measurable, then
ş

A
Z dpP |Gq “

ş

A
Z dP “ ErZ1As. It therefore follows that (1.5) is equivalent to (i) and (ii). Uniqueness

follows from the uniqueness for the Radon-Nikodym derivative.
Write G “ σptAju

n
j“1q, where tAju

n
j“1 is a partition of Ω. By (1.4), it is clear that Z

is G-measurable, so we need only verify (ii). By the linearity of the expected value, it will
suffice to show that ErX1Aj

s “ ErZ1Aj
s for all j. Using (1.4), we have

ErZ1Aj
s “ E

„ˆ n
ÿ

i“1

ErX | Ais1Ai

˙

1Aj



“ E

„ n
ÿ

i“1

ErX | Ais1AiXAj



“ ErErX | Ajs1Aj
s “ ErX | AjsP pAjq “ ErX1Aj

s,

where the last equality follows from (1.2). l

We now extend the definition of ErX | Gs to infinite σ-algebras. Let pΩ,F , P q be a
probability space and X an integrable random variable. Let G Ă F be a σ-algebra. The
conditional expectation of X given G is the unique random variable Z “ ErX | Gs
satisfying (i) and (ii) of Theorem 1.5. Equivalently, ErX | Gs can be defined by (1.5),
where dα “ X dP . We also define the conditional probability of A given G as
P pA | Gq “ Er1A | Gs.
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2 Conditioning on random variables

Let pΩ,F , P q be a probability space and X an integrable random variable. Let Y be a
discrete random variable taking values in a finite set S “ tk1, . . . , knu, and assume that
P pY “ kjq ą 0 for all j. Define fpkq “ ErX | Y “ ks for all k P S. Since tY “ ku is an
event with positive probability, this is the simplest kind of conditional expectation we have
used so far, namely, the one defined in (1.1).

We now define the conditional expectation of X given Y as ErX | Y s “ fpY q. In
other words, ErX | Y s is a random variable whose outcome depends on Y . Specifically, for
all ω P tY “ ku, we have ErX | Y spωq “ fpkq.

Theorem 2.1. Under the above definitions, ErX | Y s “ ErX | σpY qs.

Proof. Under the above definitions, ErX | Y s “ fpY q. In order to show that fpY q “ ErX |

σpY qs, we must show that (i) fpY q is σpY q-measurable, and (ii) ErX1As “ ErfpY q1As for
all A P σpY q.

Recall that a random variable Z is σpY q-measurable if and only if Z “ gpY q for some
measurable function g. Hence, (i) clearly holds. For (ii), let A P σpY q be arbitrary. Then
A “ tY P Bu for some B P R. This implies there is some subset C Ă S such that

A “ 9
Ť

kPCtY “ ku. By the linearity of the expected value, we may assume without loss of
generality that A “ tY “ ku. In this case,

ErfpY q1As “ ErfpY q1tY“kus “ Erfpkq1tY“kus “ fpkqP pY “ kq

“ ErX|Y “ ksP pY “ kq “ ErX1tY“kus “ ErX1As.

Note that we have again used (1.2). l

We now extend the definition of ErX | Y s to arbitrary random variables. Let pΩ,F , P q
be a probability space and X an integrable random variable. Let Y be an arbitrary random
variable. The conditional expectation of X given Y is ErX | Y s “ ErX | σpY qs. We
also define the conditional probability of A given Y as P pA | Y q “ Er1A | Y s. Note that
since ErX | Y s is σpY q-measurable, there exists a measurable function g (which depends on
X) such that ErX | Y s “ gpY q.

Example 2.2. Suppose X and Y are random variables with a joint density function fpx, yq.
Note that P pX P A | Y “ kq is undefined, since P pY “ kq “ 0. Nonetheless, it should be
intuitively clear that the following equation ought to hold:

P pX P A | Y “ kq “

ż

A

fpx, kq dx
ż

R
fpx, kq dx

. (2.1)

The integral in the denominator is necessary in order to make the function x ÞÑ fpx, kq a
probability density function. In this example, we will explore the sense in which this formula
is rigorously valid. (In an undergraduate class, it may be rigorously valid by definition. But
for us, as usual, it is a special case of something more general.)
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Theorem 2.3. Let X and Y have joint density fpx, yq. Let g be a measurable function such
that E|gpXq| ă 8. Define

hpkq “

ż

R
gpxqfpx, kq dx
ż

R
fpx, kq dx

,

whenever
ş

R fpx, kq dx ą 0, and hpkq “ 0 otherwise. Then ErgpXq | Y s “ hpY q.

Remark 2.4. If gpxq “ 1Apxq, then hpkq agrees with the right-hand side of (2.1). Also, as can
be seen from the proof below, we could have defined hpkq arbitrarily when

ş

R fpx, kq dx “ 0.

Proof of Theorem 2.3. Since hpY q is σpY q-measurable, it will suffice for us to show that
ErhpY q1As “ ErgpXq1As for all A P σpY q. Let A P σpY q. Then A “ tY P Bu for some
B P R. We now have

ErhpY q1As “ ErhpY q1BpY qs “

ż

B

ż

R
hpyqfpx, yq dx dy

“

ż

B

ˆ

hpyq

ż

R
fpx, yq dx

˙

dy “

ż

BXC

ˆ

hpyq

ż

R
fpx, yq dx

˙

dy,

where C “ ty :
ş

R fpx, yq dx ą 0u. Note that for all y P C, we have hpyq
ş

R fpx, yq dx “
ş

R gpxqfpx, yq dx. Also, for all y P Cc, we have fpx, yq “ 0 for Lebesgue almost every x.
Thus, y P Cc implies

ş

R gpxqfpx, yq dx “ 0. It therefore follows that

ErhpY q1As “

ż

BXC

ż

R
gpxqfpx, yq dx dy “

ż

B

ż

R
gpxqfpx, yq dx dy

“ ErgpXq1BpY qs “ ErgpXq1As,

which was what we needed to prove. l

In general, we interpret ErX | Y “ ys to mean gpyq, where g is a measurable function
such that ErX | Y s “ gpY q. Some caution is needed in these cases, though, since such a
function g is only defined µY -a.s., where µY is the distribution of Y .

3 Properties of conditional expectation

3.1 Basic properties

Let pΩ,F , P q be a probability space, X an integrable random variable, and G Ă F .

Proposition 3.1. ErErX | Gss “ EX.

Proof. By the definition of conditional expectation, we have ErErX | Gs1As “ ErX1As for
all A P G. Take A “ Ω. l

Proposition 3.2. If X is G-measurable, then ErX | Gs “ X.
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Proof. It follows trivially, since X is G-measurable and ErX1As “ ErX1As for all A P G. l

Recall that X and G are independent if σpXq and G are independent, which in turn
means that P pA X Bq “ P pAqP pBq whenever A P σpXq and B P G. Hence, X and G are
independent if and only if P ptX P Cu XBq “ P pX P CqP pBq for all C P R and B P G.

Proposition 3.3. If X and G are independent, then ErX | Gs “ ErXs. In particular,
ErX | tH,Ωus “ ErXs.

Proof. A constant random variable is measurable with respect to every σ-algebra, so ErXs
is trivially G-measurable. Also, for all A P G, we have ErX1As “ ErXsEr1As “ ErErXs1As.
The final claim holds since every random variable is independent of the trivial σ-algebra. l

Theorem 3.4. If G1 Ă G2 Ă F , then ErErX | G1s | G2s “ ErErX | G2s | G1s “ ErX | G1s.

Remark 3.5. In words, this says that in a battle between nested σ-algebras, the smallest
σ-algebra always wins.

Proof of Theorem 3.4. Since G1 Ă G2 and ErX | G1s is G1-measurable, it is also G2-
measurable. Hence, by Proposition 3.2, ErErX | G1s | G2s “ ErX | G1s. The other
equality holds since ErX | G1s is G1-measurable and, for all A P G1 Ă G2, we have
ErErX | G1s1As “ ErX1As “ ErErX | G2s1As. l

Theorem 3.6. If Y and XY are integrable, and X is G-measurable, then

ErXY | Gs “ XErY | Gs a.s.

Proof. Let dα “ Y dP , so that ErY | Gs “ dpα|Gq{dpP |Gq. Let dβ1 “ X dα`, dβ2 “ X dα´,
and β “ β1 ´ β2, so that dβ “ XY dP and ErXY | Gs “ dpβ|Gq{dpP |Gq. Since X is
G-measurable, we have dpβ1|Gq{dpα`|Gq “ dpβ2|Gq{dpα´|Gq “ X. Hence,

ErXY | Gs “ dpβ|Gq

dpP |Gq
“
dpβ1|Gq

dpP |Gq
´
dpβ2|Gq

dpP |Gq

“
dpβ1|Gq

dpα`|Gq
¨
dpα`|Gq

dpP |Gq
´
dpβ2|Gq

dpα´|Gq
¨
dpα´|Gq

dpP |Gq

“ X

ˆ

dpα`|Gq

dpP |Gq
´
dpα´|Gq

dpP |Gq

˙

“ X
dpα|Gq

dpP |Gq
“ XErY | Gs, P -a.s.,

and we are done. l

Theorem 3.7. (linearity) EraX ` Y | Gs “ aErX | Gs ` ErY | Gs.

Proof. The right-hand side is clearly G-measurable. Let A P G. Then

ErpaErX | Gs ` ErY | Gsq1As “ aErErX | Gs1As ` ErErY | Gs1As

“ aErX1As ` ErY 1As “ ErpaX ` Y q1As,

and we are done. l
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Lemma 3.8. Suppose U and V are H-measurable random variables. If ErU1As ď ErV 1As

for all A P H, then U ď V a.s. If ErU1As “ ErV 1As for all A P H, then U “ V a.s.

Proof. By reversing the roles of U and V , the second claim follows from the first. To prove
the first, suppose ErU1As ď ErV 1As for all A P H. Let A “ tU ą V u P H and define
Z “ pU ´ V q1A, so that Z ě 0. Note that EZ “ ErU1As ´ ErV 1As ď 0. Hence, EZ “ 0,
so Z “ 0 a.s., which implies P pAq “ 0. l

Theorem 3.9. (monotonicity) If X ď Y a.s., then ErX | Gs ď ErY | Gs a.s.

Proof. For all A P G, we have ErErX | Gs1As “ ErX1As ď ErY 1As “ ErErY | Gs1As.
Hence, by Lemma 3.8, ErX | Gs ď ErY | Gs a.s. l

Theorem 3.10. Suppose X and Y are independent and ϕ is a measurable function such
that E|ϕpX, Y q| ă 8, then ErϕpX, Y q | Xs “ gpXq, where gpxq “ Erϕpx, Y qs.

Remark 3.11. It is important here that X and Y are independent. This result is not true
when X and Y are dependent.

Proof of Theorem 3.10. Clearly, gpXq is σpXq-measurable. Let A P R. Then

ErϕpX, Y q1tXPAus “

ż ż

ϕpx, yq1ApxqµY pdyqµXpdxq

“

ż

1Apxq

ˆ
ż

ϕpx, yqµY pdyq

˙

µXpdxq “

ż

1ApxqgpxqµXpdxq “ ErgpXq1tXPAus,

and we are done. l

Example 3.12. Let X, Y, Z be iid, uniformly distributed on p0, 1q. We shall compute the
distribution of pXY qZ . We begin by computing the distribution of W “ XY . Let w P p0, 1q.
Then

P pW ď wq “ P pXY ď wq “ Er1tXYďwus “ ErEr1tXYďwu | Xss.

By Theorem 3.10, Er1tXYďwu | Xs “ fpXq, where

fpxq “ Er1txYďwus “ P pxY ď wq “ P
´

Y ď
w

x

¯

“ 1txăwu `
w

x
1txěwu.

Thus,

P pW ď wq “ ErfpXqs “ E
”

1tXăwu `
w

X
1tXěwu

ı

“ w `

ż 1

w

w

x
dx “ w ´ w logw.

Differentiating, we find that W has density fW pwq “ p´ logwq1p0,1qpwq.
Similarly, for x P p0, 1q, we now compute

P ppXY qZ ď xq “ ErP pWZ
ď x | W qs “ ErgpW qs,

where

gpwq “ P pwZ
ď xq “ P

ˆ

Z ě
log x

logw

˙

“

ˆ

1´
log x

logw

˙

1twďxu.
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Thus,

P ppXY qZ ď xq “ E

„ˆ

1´
log x

logW

˙

1tWďxu



“

ż x

0

ˆ

1´
log x

logw

˙

p´ logwq dw

“ ´

ż x

0

logw dw ` x log x “ x.

In other words, pXY qZ is uniformly distributed on p0, 1q.

3.2 Limit theorems and inequalities

Theorem 3.13. (monotone convergence) If 0 ď Xn Ò X a.s. and X is integrable, then
ErXn | Gs Ò ErX | Gs a.s.

Proof. By monotonicity, there exists a G-measurable random variable Z such that ErXn |

Gs Ò Z a.s. Let A P G. Using monotone convergence,

ErZ1As “ lim
nÑ8

ErErXn | Gs1As “ lim
nÑ8

ErXn1As “ ErX1As,

which shows Z “ ErX | Gs. l

Theorem 3.14. (Fatou’s lemma) If Xn ě 0 a.s., each Xn is integrable, and lim infnÑ8Xn

is integrable, then
Erlim inf

nÑ8
Xn | Gs ď lim inf

nÑ8
ErXn | Gs a.s.

Proof. Let Xn “ infjěnXj and X “ lim infnÑ8Xn. Note that 0 ď Xn Ò X. In particular,
Xn is integrable. For each j ě n, we have Xn ď Xj a.s. Hence, by monotonicity,
ErXn | Gs ď ErXj | Gs a.s. It follows that

ErXn | Gs ď inf
jěn

ErXj | Gs a.s.

Monotone convergence implies

ErX | Gs “ lim
nÑ8

ErXn | Gs ď lim inf
nÑ8

ErXn | Gs a.s.,

and we are done. l

Theorem 3.15. (dominated convergence) Let Xn be random variables with Xn Ñ X
a.s. Suppose there exists an integrable random variable Y such that |Xn| ď Y a.s. for all n.
Then

lim
nÑ8

ErXn | Gs “ ErX | Gs a.s.

Exercise 3.16. Prove Theorem 3.15 by mimicking the proof of the ordinary dominated
convergence theorem.
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Exercise 3.17. Show that if ϕ : RÑ R is convex, then the left-hand derivative,

ϕ1´pcq “ lim
hÓ0

ϕpcq ´ ϕpc´ hq

h

exists for all c. Moreover,

ϕpxq ´ ϕpcq ´ px´ cqϕ1´pcq ě 0, (3.1)

for all x and c.

Theorem 3.18. (Jensen’s inequality) If ϕ is convex and X and ϕpXq are integrable,
then ϕpErX | Gsq ď ErϕpXq | Gs.

Proof. Let Z “ pX´ErX | Gsqϕ1´pErX | Gsq, so that by (3.1), ϕpXq´ϕpErX | Gsq´Z ě 0,
which implies

0 ď ErϕpXq ´ ϕpErX | Gsq ´ Z | Gs “ ErϕpXq | Gs ´ ϕpErX | Gsq ´ ErZ | Gs.

It therefore suffices to show that ErZ | Gs “ 0. To see this, we calculate

ErZ | Gs “ ErpX ´ ErX | Gsqϕ1´pErX | Gsq | Gs
“ ϕ1´pErX | GsqErX ´ ErX | Gs | Gs
“ ϕ1´pErX | GsqpErX | Gs ´ ErErX | Gs | Gsq
“ ϕ1´pErX | GsqpErX | Gs ´ ErX | Gsq “ 0,

and we are done. l

Theorem 3.19. (Hölder’s inequality) Let p, q P p1,8q be conjugate exponents, so that
1{p` 1{q “ 1. Suppose that |X|p and |Y |q are integrable. Then

Er|XY | | Gs ď pEr|X|p | Gsq1{ppEr|Y |q | Gsq1{q a.s.

Proof. Note that by the ordinary Hölder’s inequality, XY is integrable, so that Er|XY | | Gs
is well-defined. Let U “ pEr|X|p | Gsq1{p and V “ pEr|Y |q | Gsq1{q. Note that both U and V
are G-measurable. Observe that

Er|X|p1tU“0us “ ErEr|X|p1tU“0u | Gss “ Er1tU“0uEr|X|
p
| Gss “ Er1tU“0uU

p
s “ 0.

Hence, |X|1tU“0u “ 0 a.s., which implies

Er|XY | | Gs1tU“0u “ Er|XY |1tU“0u | Gs “ 0.

Similarly, Er|XY | | Gs1tV“0u “ 0. It therefore suffices to show that Er|XY | | Gs1H ď UV ,
where H “ tU ą 0, V ą 0u. For this, we will use Lemma 3.8 to prove that

Er|XY | | Gs
UV

1H ď 1 a.s..

Note that the left-hand side is defined to be zero on Hc.
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Let A P G be arbitrary and define G “ H X A. Then

E

„

Er|XY | | Gs
UV

1H1A



“ E

„

E

„

|XY |

UV
1G

ˇ

ˇ

ˇ

ˇ

G


“ E

„

|X|

U
1G ¨

|Y |

V
1G



ď

ˆ

E

„

|X|p

Up
1G

˙1{pˆ

E

„

|Y |q

V q
1G

˙1{q

“

ˆ

E

„

Er|X|p | Gs
Up

1G

˙1{pˆ

E

„

Er|Y |q | Gs
V q

1G

˙1{q

“ pEr1Gsq
1{p
pEr1Gsq

1{q
“ Er1Gs ď Er1As.

Applying Lemma 3.8 finishes the proof. l

3.3 Minimizing the mean square error

We say that a random variable X is square integrable if E|X|2 ă 8. Let X be square
integrable and consider the function fpaq “ E|X´a|2 “ a2´2pEXqa`E|X|2. This function
has a minimum at a “ EX. In other words, if we wish to approximate X by a constant,
then the constant EX is the one which minimizes our mean square error.

The conditional expectation has a similar property. If we wish to approximate X by
a square integrable, G-measurable random variable, then ErX | Gs is the random variable
which minimizes our mean square error. This is made precise in the following theorem.

Theorem 3.20. Let pΩ,F , P q be a probability space and let X be square integrable. Let
G Ă F and define Z “ ErX | Gs. If Y is any square integrable, G-measurable random
variable, then E|X ´ Z|2 ď E|X ´ Y |2.

Proof. First note that by Jensen’s inequality,

|Z|2 “ |ErX | Gs|2 ď Er|X|2 | Gs a.s.

Hence, E|Z|2 ď ErEr|X|2 | Gss “ E|X|2 ă 8 and Z is square integrable. Let W “ Z ´ Y .
Since W is G-measurable,

ErWZs “ ErWErX | Gss “ ErErWX | Gss “ ErWXs.

Hence, ErW pX ´ Zqs “ 0, which implies

E|X ´ Y |2 “ E|X ´ Z `W |2 “ E|X ´ Z|2 ` 2ErW pX ´ Zqs ` E|W |2

“ E|X ´ Z|2 ` E|W |2 ě E|X ´ Z|2,

and we are done. l

Remark 3.21. In the language of Hilbert spaces and Lp spaces, this theorem says the
following: X is an element of the Hilbert space L2pΩ,F , P q, and ErX | Gs is the orthogonal
projection of X onto the subspace L2pΩ,G, P q.
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4 Regular conditional distributions

4.1 Introduction

If X is a real-valued random variable, then µXpAq “ P pX P Aq defines a measure µX on the
real line which we call the distribution (or law) of X. One feature of the distribution is that
it provides us with a way to calculate expectations:

ErfpXqs “

ż

R
fpxqµXpdxq.

Likewise, if B is an event, then µX,BpAq “ P pX P A | Bq defines a measure µX,B on R which
is the conditional distribution of X given B, and we have

ErfpXq | Bs “

ż

R
fpxqµX,Bpdxq.

If G is a finite σ-algebra, so that G “ σptAju
n
j“1q, where tAju

n
j“1 is a partition of Ω, then

P pX P A | Gqpωq “

$

’

’

’

’

&

’

’

’

’

%

P pX P A | A1q if ω P A1,

P pX P A | A2q if ω P A2,
...

P pX P A | Anq if ω P An.

In other words, P pX P ¨ | Gq is just a conditional probability distribution that happens to
depend on ω. Another way of saying it is that P pX P ¨ | Gq is a random probability measure
on the real line.

Conditional expectations can be computed by integrating against this random measure.
That is, if we define µX,Gpω,Aq “ µX,Aj

pAq for ω P Aj, then

ErfpXq | Gspωq “
ż

R
fpxqµX,Gpω, dxq.

With a structure such as this, expectations conditioned on σ-algebras behave very much
like ordinary expectations. When this happens, we are able to make valuable intuitive
connections to mathematical ideas that we are already familiar with. It would be nice if
P pX P ¨ | Gq was always a random measure, even when G is infinite. The following theorem
is a step in this direction.

Theorem 4.1. Let pΩ,F , P q be a probability space and pS,Sq a measurable space. Let X be
an S-valued random variable and G Ă F a σ-algebra. Then

(i) P pX P A | Gq P r0, 1s a.s., for all A P S.

(ii) P pX P H | Gq “ 0 a.s., for all A P S.

(iii) P pX P S | Gq “ 1 a.s., for all A P S.

11



(iv) P pX P
Ţ8

n“1An | Gq “
ř8

n“1 P pX P An | Gq a.s., for all disjoint collections tAnu Ă S.

Exercise 4.2. Prove Theorem 4.1.

Unfortunately, Theorem 4.1 does not show that A ÞÑ P pX P A | Gqpωq is a measure for
P -a.e. ω P Ω. This is because the null set in (iv) can depend on the collection tAnu. So
there may not exist a single event of probability one on which (iv) holds simultaneously for
all disjoint collections.

However, when X takes values in a space that is “nice”, such as the real line, it is
possible to express P pX P ¨ | Gq as a genuine random measure. The remainder of this
sections elaborates on this topic.

4.2 Random measures

Let pS,Sq be a measurable space and let MpSq be the space of all σ-finite measures on
pS,Sq. Let MpSq be the σ-algebra on MpSq generated by sets of the form tν : νpAq P Bu,
where A P S and B P R. Note that MpSq is the smallest σ-algebra such that the projection
functions πA : MpSq Ñ R, defined by πApνq “ νpAq, are Borel measurable for all A P S.
Taking A “ S and B “ t1u shows that M1pSq, the space of all probability measures on
pS,Sq is measurable. Let M1pSq denote MpSq restricted to M1pSq.

Let pT, T q be another measurable space. If µ : T Ñ MpSq, we will write µpt, Aq “
pµptqqpAq. Note that µ is pT ,MpSqq-measurable if and only if πA ˝ µ “ µp¨, Aq is pT ,Rq-
measurable for all A P S. Any such measurable function is called a kernel from T to S. If
µ takes values in M1pSq, then µ is a probability kernel.

Let pΩ,F , P q be a probability space. A random measure on S is an MpSq-valued
random variable. In other words, it is a kernel from Ω to S. If a random measure takes
values in M1pSq, then it is a random probability measure on S. Note that if µ is a kernel
from T to S and Y is a T -valued random variables, then µpT q is a random measure.

4.3 Regular conditional distributions

Let pΩ,F , P q be a probability space and pS,Sq and pT, T q measurable spaces. Let X and Y
be S- and T -valued random variables, respectively. Let G Ă F be a σ-algebra. If there exists
a random measure µ “ µX,G on S such that P pX P A | Gq “ µp¨, Aq a.s. for every A P S, then
µ is a regular conditional distribution for X given G, and we write X | G „ µ. Similarly,
if there exists a probability kernel µ “ µX,Y from T to S such that P pX P A | Y q “ µpY,Aq
a.s. for every A P S, then µpY q is a regular conditional distribution for X given σpY q, and
we write X | Y „ µpY q.

A measurable space pS,Sq is a Borel space if there exists an pS,Rq-measurable bijection
ϕ : S Ñ R such that ϕ´1 is pR,Sq-measurable. The following two theorems are Theorem
1.4.12 [1] and Theorem 5.3 in [2], respectively.

Theorem 4.3. If S is a Borel subset of a complete separable metric space, and S is the
collection of Borel subsets of S, then pS,Sq is a Borel space.
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Theorem 4.4. Let pΩ,F , P q be a probability space and pS,Sq and pT, T q measurable spaces.
Let X and Y be S- and T -valued random variables, respectively. If S is a Borel space, then
there exists a probability kernel µ “ µX,Y from T to S such that X | Y „ µpY q. If rµ is
another such probability kernel, then µ “ rµ, µY -a.e.

Corollary 4.5. Let pΩ,F , P q be a probability space and pS,Sq a measurable space. Let X be
an S-valued random variable and G Ă F a σ-algebra. If S is a Borel space, then there exists
a G-measurable random probability measure µ “ µX,G such that X | G „ µ. If rµ is another
such random probability measure, then µ “ rµ a.s.

Proof. Apply Theorem 4.4 with pT, T q “ pΩ,Gq and Y the identity function. l

The first example of what we can do with regular conditional distributions is the following
theorem, which can be regarded as a generalized version of Theorem 3.10.

Theorem 4.6. Let pΩ,F , P q be a probability space and pS,Sq a measurable space. Let X
be an S-valued random variable, G Ă F a σ-algebra, and suppose X | G „ µ. Let pT, T q be
a measurable space and Y a T -valued random variable. Let f : S ˆ T Ñ R be pS ˆ T ,Rq-
measurable with E|fpX, Y q| ă 8. If Y P G, then

ErfpX, Y q | Gs “
ż

S

fpx, Y qµp¨, dxq a.s.

Proof. If f “ 1AˆB, where A P S and B P T , then

Er1AˆBpX, Y q | Gs “ 1BpY qP pX P A | Gq “ 1BpY qµp¨, Aq “

ż

S

1AˆBpx, Y qµp¨, dxq a.s.

By the π-λ theorem, this proves the result for f “ 1C , where C P S ˆ T . By linearity
(Theorem 3.7), the result holds for all simple functions f . By monotone convergence
(Theorem 3.13), the result holds for all nonnegative functions f satisfying E|fpX, Y q| ă 8.
And finally, by considering the positive and negative parts, the result holds for all measurable
functions f satisfying E|fpX, Y q| ă 8. l

Corollary 4.7. Let pΩ,F , P q be a probability space and pS,Sq a measurable space. Let X
be an S-valued random variable, G Ă F a σ-algebra, and suppose X | G „ µ. If f : S Ñ R
is pS,Rq-measurable with E|fpXq| ă 8, then

ErfpXq | Gs “
ż

S

fpxqµp¨, dxq a.s.

Proof. Apply Theorem 4.6 with Y a constant random variable. l

For our second example, we give a simple proof of Theorem 3.19 (Hölder’s inequality).

Proof of Theorem 3.19. Since pR2,R2q is a Borel space, there exists a random measure
µ on R2 such that pX, Y q | G „ µ. Since |X|p and |Y |q are integrable, the ordinary Hölder’s
inequality implies |XY | is integrable. Thus, by Theorem 4.6,

Er|XY | | Gs “
ż

R2

|xy|µp¨, dx dyq a.s.
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For P -a.e. ω P Ω, we may apply the ordinary Hölder’s inequality to the measure µpω, ¨q,
yielding

Er|XY | | Gs ď
ˆ
ż

R2

|x|p µp¨, dx dyq

˙1{pˆż

R2

|y|q µp¨, dx dyq

˙1{q

a.s.

Applying Theorem 4.6 once again finishes the proof. l

For our final example, let us first consider a property of unconditioned expectations. If
X is a real-valued random variable, and h : RÑ r0,8q is absolutely continuous with h1 ě 0
a.e. and hpxq Ó 0 as xÑ ´8, then

ErhpXqs “

ż

R
h1ptqP pX ą tq dt.

This is the content of Exercise 2.2.7 in [1], and one way to see it is to use Fubini’s theorem:

ErhpXqs “

ż

Ω

hpXq dP “

ż

Ω

ż X

´8

h1ptq dt dP “

ż

Ω

ż

R
1tXątuh

1
ptq dt dP

“

ż

R
h1ptq

ż

Ω

1tXątu dP dt “

ż

R
h1ptqP pX ą tq dt.

It is then natural to ask whether a similar thing is true for conditional expectations, and
whether a similar proof can demonstrate it. We will answer both questions in the affirmative
by using regular conditional probabilities.

Theorem 4.8. Let X be a real-valued random variable on a probability space pΩ,F , P q and
G Ă F a σ-algebra. Let h : RÑ r0,8q be absolutely continuous with h1 ě 0 a.e. and hpxq Ó 0
as x Ñ ´8. Suppose that E|hpXq| ă 8. Then it is possible to choose, for each t P R, a
version of P pX ą t | Gq so that the function t ÞÑ h1ptqP pX ą t | Gq is almost surely Lebesgue
integrable on R, and satisfies

ErhpXq | Gs “
ż

R
h1ptqP pX ą t | Gq dt a.s.

Proof. Since pR,Rq is a Borel space, there exists a random measure µ such that X | G „ µ.
For each t P R, let us choose the version of P pX ą t | Gq determined by µ, that is,
P pX ą t | Gqpωq “ µpω, pt,8qq. Then for P -a.e. ω P Ω, we have

ż

R

ż

R
1txątuh

1
ptq dt µpω, dxq “

ż

R
hpxqµpω, dxq “ ErhpXq | Gspωq ă 8.

By Fubini’s theorem, the function

t ÞÑ

ż

R
1txątuh

1
ptqµpω, dxq “ h1ptqµpω, pt,8qq “ h1ptqP pX ą t | Gqpωq

is Lebesgue integrable on R and
ż

R
h1ptqP pX ą t | Gqpωq dt “

ż

R

ż

R
1txątuh

1
ptqµpω, dxq dt

“

ż

R

ż

R
1txątuh

1
ptq dt µpω, dxq “ ErhpXq | Gspωq,

which proves the theorem. l

14



5 A preview of stochastic processes

A stochastic process is a collection of random variable tXptq : t P T u indexed by some set
T . We usually think of T as time. A discrete time stochastic process is where T “ N,
in which case the process is just a sequence of random variables.

Let tXn : n P Nu be a discrete time stochastic process. Define Fn “ σpX1, . . . , Xnq. The
σ-algebra Fn represents all the information at time n that we would have from observing
the values X1, . . . , Xn. Note that Fn Ă Fn`1.

More generally, a filtration is a sequence of σ-algebras tFnu
8
n“1 such that Fn Ă Fn`1.

A stochastic process tXn : n P Nu is said to be adapted to the filtration tFnu
8
n“1 if Xn

is Fn-measurable for all n. The special case Fn “ σpX1, . . . , Xnq is called the filtration
generated by X, and is denoted by tFX

n u
8
n“1.

An important class of discrete time stochastic processes is the martingales. A stochastic
process tXn : n P Nu is a martingale with respect to the filtration tFnu

8
n“1 if

(i) Xn is integrable for all n,

(ii) tXn : n P Nu is adapted to tFnu
8
n“1, and

(iii) ErXn`1 | Fns “ Xn for all n.

The critical item is (iii). Imagine that Xn models our cumulative wealth as we play a
sequence of gambling games. Condition (iii) says that, given all the information up to time
n, our expected wealth at time n` 1 is the same as our wealth at time n. In other words, a
martingale models a “fair” game.

Another important class of discrete time stochastic processes is the Markov chains. A
stochastic process tXn : n P Nu is a Markov chain with respect to the filtration tFnu

8
n“1 if

(i) tXn : n P Nu is adapted to tFnu
8
n“1, and

(ii) P pXn`1 P B | Fnq “ P pXn`1 P B | Xnq for all B P R.

Here, the critical item is (ii). It is called the Markov property. In words, it says that the
conditional distribution of Xn`1 given all the information up to time n is the same as if we
were only given Xn. In other words, the future behavior of a Markov chain depends only on
the present location of the chain, and not on how it got there.

The canonical example of a Markov chain is a random walk. If tXju
8
j“1 are iid and

Sn “ X1 ` ¨ ¨ ¨ `Xn, then tSn : n P Nu is a random walk. The random walk is a Markov
chain with respect to the filtration generated by S. Moreover, if each Xj is integrable with
mean zero, then the random walk is also a martingale.

A continuous time stochastic process has the form tXptq : t P r0,8qu. Examples
include the Poisson process and Brownian motion. Concepts such as filtrations, adaptedness,
martingales, and the Markov property can all be extended to continuous time. Care is needed
however, because (for one thing) the time domain is uncountable. Brownian motion is the
continuous time analog of a random walk. It is the canonical example in continuous time
of both a martingale and a Markov process. It can be realized as the limit of a sequence of
random walks, where the step sizes are becoming smaller and the steps are occurring more
frequently.
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More specifically, let tSn : n P Nu be a mean zero random walk. Let Sptq “ Sttu, where
t¨u denotes the greatest integer function. Then the sequence of processes

"

Spntq
?
n

: t P r0,8q

*

converges (in a certain sense) as n Ñ 8 to a continuous time stochastic process called
Brownian motion. This is the conclusion of Donsker’s theorem, which is a kind of central
limit theorem for stochastic processes.

Differential equations that involve Brownian motion are referred to as stochastic
differential equations (SDEs). SDEs are used to model dynamical systems that involve
randomness, and are very common in scientific applications. In order to understand SDEs,
one must first understand the stochastic integral (with respect to Brownian motion), which
behaves quite differently from the ordinary Lebesgue-Stieltjes integral. In particular, the
classical fundamental theorem of calculus no longer applies when one is working with
stochastic integrals. It must be replaced by a new rule called Itô’s rule. Itô’s rule gives
rise to a whole new calculus called stochastic calculus.
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