Conditional expectation

Jason Swanson

April 23, 2014

1 Conditioning on c-algebras

Let (2, F, P) be a probability space and let A € F with P(A) > 0. Define

P(Bn A)

QB) = P(B|A) = =50

, for all B e F.

It is easy to to check that @ is a probability measure on (2, F). If X is a random variable,
we define the conditional expectation of X given A as

BIX | A] - fXdQ, (1.1)

whenever this integral is well-defined. Note that E[lg | A] = P(B | A).
Theorem 1.1. If E[|X|14] < o0, then X is Q-integrable. If X > 0 or E[|X|14] < oo, then

B E[X14]
E[X | A] = PA) (1.2)
Remark 1.2. Note that (1.2)) may be written as
_a(A)

where da = X dP. Also note that (1.2)) gives us the formula E[X14] = P(A)E[X | A]. If
X = 1p, then this reduces to the familiar multiplication rule, P(An B) = P(A)P(B | A).

Proof of Theorem[1.1 Note that if P(B) = 0, then Q(B) = 0. Hence @ « P. Also note
that

Q(B) = JB PA) dP, for all B € F.

Thus, dQ/dP = 14/P(A). It follows that if X > 0, then

B[X14]
P(A)

E[X|A]ZJXdQZJX%szElX;&)] _

Therefore, if E[|X|14] < o0, then X is Q-integrable, and the same formula holds. O
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Lemma 1.3. Any finite o-algebra F on 2 can be written as F = o({A;}]_,), where {A;}7_,
is a partition of Q, that is, Q = @?:1 Aj. Moreover, the partition {A;}7_, is unique.

Proof. For each w € , let A, be the smallest measurable set containing w. That is,
A, = (F.,, where F, = {A € F : w € A}. Since this is a finite intersection, A, € F.
In particular, & = {A,, : w e Q} is a finite set. We claim that £ is a partition of Q and that
F=0(&).

Clearly, Q = |J,_cq Aw, so to show that £ is a partition, it suffices to show that this is a
disjoint union. More specifically, we wish to show that if w,w’ € Q, then either A, = A, or
A, n Ay = . Let w,w' € Q. Note that for any A € F,if w e A, then A € F,,, which implies
A, < A. Hence, if we A,/, then A, < A,; and if w € AS,, then A, < AS,. That is, either
A, c Ay or A, c A°,. By symmetry, either A, < A, or A,, < A’. Taken together, this
shows that either A, = A, or A, n Ay = .

To see that F = (&), simply note that any A € F can be written as A = J
that this is a finite union.

For uniqueness, suppose that F = o({B;}7_,), where 2 = Lﬂ?:l B;. If w € Bj, then
A, = Bj. Therefore, & = {B;}7_,. O

A, and

weA

Exercise 1.4. Show that every infinite o-algebra is uncountable.

Let (2, F, P) be a probability space and X an integrable random variable. Let G = F be
a finite o-algebra. Write G = o({A;}7_,), where {A;}7_, is a partition of 2. The conditional
expectation of X given G, written E[X | G], is a random variable defined by

E[X | A ifwe A,

BE[X | Ay] ifwe A,
E[X | G](w) = .

E[X | A,] ifwe A,

Note that we may write
n

X|Q=Z [X | A1 (1.4)

We also define the conditional probablllty of A given G as P(A | G) = E[14 | G]. Note
that P(A|G)(w) = P(A| 4;) if we Aj.

To illustrate this concept, consider the following heuristic example. Imagine my friend is
at the local bar, and is about to throw a dart at a dartboard. If I model the dart board by
a unit circle, which I call €2, then his dart will land at some point w € €.

Unfortunately, I am not there with him and will not be able to observe the exact location
of w. But after he throws the dart, he is going to call me on the phone and tell me what
his score for that shot was. This information will not be enough for me to determine w. It
will, however, narrow it down. Before I receive his call, I can partition the dartboard €2 into
several pieces, Aq,...,A,, with each piece corresponding to a unique score. Once he calls
me, [ will know which piece contains his dart.

Let X be the distance from his dart to the bullseye. Suppose he calls me and I determine
that his dart is somewhere inside A;. I can then compute E[X | A;]. However, before
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he calls, I can get prepared by computing E[X | A;] for all j, and then encoding all this
information into the single random variable E[X | G].

In probability theory, we model information by o-algebras. In this example, the o-algebra
G generated by the partition {A;} models the information I will receive from my friend’s
phone call. Imagine that while I am waiting for my friend’s phone call, an interviewer starts
asking me questions. For various events A, the interviewer asks me, “After your friend calls,
will you know with certainty whether or not A has occurred?” Depending on the event A,
I will have to answer either yes, no, or maybe. The events A € G are precisely those events
for which I can answer yes.

Theorem 1.5. Let (0, F, P) be a probability space and X an integrable random variable.
Let G < F be a finite o-algebra, and let doo = X dP. Then

_ d(alg)
a(Plo)

Or equivalently, Z = E[X | G] is the unique random variable such that

E[X | G] . (1.5)

(1) Z is G-measurable, and
(i1) E[X14] = E[Z14], for all A€ gG.

Remark 1.6. First, note the similarity between ([1.5) and (1.3). Second, it should be
mentioned that Z = E[X | G] is unique in the following sense. If Z is another G-measurable
random variable such that E[X14] = E[Z14] for all A€ G, then Z = Z a.s.

Proof of Theorem[1.5 Let Z = E[X | G]. To prove (L.5]), we must show that Z is G-
measurable and that

(alg)(A) — L Zd(Plg), forall Aeg.

If Ae g, then (afg)(A) = a(A) = E[X14]; and if Z is G-measurable, then §, Zd(P|g) =
§,ZdP = E[Z1,4]. It therefore follows that is equivalent to (i) and (ii). Uniqueness
follows from the uniqueness for the Radon-Nikodym derivative.

Write G = o({A;}}_,), where {A;}"_, is a partition of Q. By (L4), it is clear that Z
is G-measurable, so we need only verify (ii). By the linearity of the expected value, it will

suffice to show that E[X1,,] = E[Z14,] for all j. Using (1.4), we have

E[Z14] = E[(i E[X | Ai]lAi) 1Aj] = E[i E[X | Ai]1AmAj]

i=1 =1

= E[E[X [ Aj]1a,] = E[X | 4]P(4;) = E[X14,],
where the last equality follows from (|1.2)]). O

We now extend the definition of E[X | G] to infinite o-algebras. Let (92, F, P) be a
probability space and X an integrable random variable. Let G < F be a o-algebra. The
conditional expectation of X given G is the unique random variable Z = E[X | G]
satisfying (i) and (ii) of Theorem Equivalently, E[X | G| can be defined by (L5,
where da = X dP. We also define the conditional probability of A given G as
P(A|G) = E[14] 4]



2 Conditioning on random variables

Let (€, F, P) be a probability space and X an integrable random variable. Let Y be a
discrete random variable taking values in a finite set S = {ki,...,k,}, and assume that
P(Y = kj) > 0 for all j. Define f(k) = E[X | Y = k] for all k € S. Since {Y = k} is an
event with positive probability, this is the simplest kind of conditional expectation we have
used so far, namely, the one defined in ([L.1)).

We now define the conditional expectation of X given Y as E[X | Y] = f(YV). In

other words, F[X | Y] is a random variable whose outcome depends on Y. Specifically, for
all we {Y =k}, we have E[X | Y](w) = f(k).

Theorem 2.1. Under the above definitions, E[X | Y] = E[X | o(Y)].

Proof. Under the above definitions, E[X | Y] = f(Y). In order to show that f(Y) = F[X |
o(Y)], we must show that (i) f(Y) is o(Y)-measurable, and (ii) E[X14] = E[f(Y)14] for
all Ae o(Y).

Recall that a random variable Z is o(Y')-measurable if and only if Z = ¢(Y") for some
measurable function g. Hence, (i) clearly holds. For (ii), let A € o(Y') be arbitrary. Then
A = {Y e B} for some B € R. This implies there is some subset C' < S such that
A = UeclY = k}. By the linearity of the expected value, we may assume without loss of
generality that A = {Y = k}. In this case,

Elf(Y)1a]l = E[f(Y)liy—ny] = E[f(k)ly=ry] = f(K)P(Y = k)
— BIX|Y = K]P(Y = k) = E[X1yy_y] = E[X14].

Note that we have again used ([1.2)). O]

We now extend the definition of E[X | Y] to arbitrary random variables. Let (2, F, P)
be a probability space and X an integrable random variable. Let Y be an arbitrary random
variable. The conditional expectation of X given Y is E[X | Y] = E[X | o(Y)]. We
also define the conditional probability of A given Y as P(A |Y) = E[14 | Y]. Note that
since E[X | Y] is o(Y)-measurable, there exists a measurable function g (which depends on
X) such that E[X | Y] = g(Y).

Example 2.2. Suppose X and Y are random variables with a joint density function f(z,y).
Note that P(X € A | Y = k) is undefined, since P(Y = k) = 0. Nonetheless, it should be
intuitively clear that the following equation ought to hold:

bty {J{wi -

The integral in the denominator is necessary in order to make the function x — f(x,k) a
probability density function. In this example, we will explore the sense in which this formula
is rigorously valid. (In an undergraduate class, it may be rigorously valid by definition. But
for us, as usual, it is a special case of something more general.)
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Theorem 2.3. Let X and Y have joint density f(x,y). Let g be a measurable function such
that E|g(X)| < c. Define
| s sy as
h(k) =

fka |

whenever §;, f(x,k)dz > 0, and h(k) = 0 otherwise. Then E[g(X) |Y] = h(Y).

Remark 2.4. If g(z) = 14(x), then h(k) agrees with the right-hand side of (22.1]). Also, as can
be seen from the proof below, we could have defined h(k) arbitrarily when {; f(z, k) dz = 0.

Proof of Theorem[2.5 Since h(Y') is o(Y)-measurable, it will suffice for us to show that
E[h(Y)14] = E[g(X)14] for all A€ o(Y). Let A € o(Y). Then A = {Y € B} for some
B e R. We now have

E[h(Y)14] = E[h(Y f J (z,y) dz dy

- JB (h(y) JR f(z,y) da:) dy = meO <h(y) fRf (z,9) das) dy,

Where C’ = {y : § f(=,y)dz > 0}. Note that for all y € C, we have h(y) {; f(z,y)dz =
S 9(@)f(z,y)de. Also, for all y € C°, we have f(x,y) = 0 for Lebesgue almost every x.
Thus y e C° implies SR g(x)f(z,y)dx = 0. It therefore follows that

Y)1a] = JBmchg(ac) .y dxdy—f J F@,y) dz dy

= Elg(X)1s(Y)] = E[g(X)14],
which was what we needed to prove. ]
In general, we interpret F[X | Y = y] to mean ¢(y), where ¢ is a measurable function

such that F[X | Y] = ¢g(Y). Some caution is needed in these cases, though, since such a
function g is only defined py-a.s., where py is the distribution of Y.

3 Properties of conditional expectation

3.1 Basic properties
Let (£, F, P) be a probability space, X an integrable random variable, and G  F.
Proposition 3.1. E[E[X | G]] = EX.

Proof. By the definition of conditional expectation, we have E[E[X | G|14] = E[X14] for
all Ae G. Take A = Q). ]

Proposition 3.2. If X is G-measurable, then E[X | G] =



Proof. 1t follows trivially, since X is G-measurable and E[X14] = E[X14] for all Ae G. O

Recall that X and G are independent if o(X) and G are independent, which in turn
means that P(A n B) = P(A)P(B) whenever A € 0(X) and B € G. Hence, X and G are
independent if and only if P({X € C} n B) = P(X € C)P(B) for all C € R and B € g.

Proposition 3.3. If X and G are independent, then E|X | G| = E[X]. In particular,
E[X [{2,Q}] = E[X].

Proof. A constant random variable is measurable with respect to every o-algebra, so E[X]
is trivially G-measurable. Also, for all A € G, we have E[X14]| = E[X]E[14] = E[E[X]14].
The final claim holds since every random variable is independent of the trivial o-algebra. []

Theorem 3.4. If G € Gy © F, then E[E[X | Gi] | G2] = E[E[X | G2] | G1] = E[X | G1].

Remark 3.5. In words, this says that in a battle between nested o-algebras, the smallest
o-algebra always wins.

Proof of Theorem[3.]. Since G; < Gy and E[X | Gi] is Gi-measurable, it is also Go-
measurable. Hence, by Proposition 3.2, E[E[X | Gi] | G2] = E[X | Gi]. The other
equality holds since E[X | G| is Gi-measurable and, for all A € G; < G, we have
E[E[X | Gi]14] = E[X14] = E[E[X | G2]14]. O

Theorem 3.6. IfY and XY are integrable, and X is G-measurable, then
E[XY | G] = XE[Y | G] a.s.

Proof. Let da =Y dP, so that E[Y | G] = d(alg)/d(P|g). Let df; = X day, dfs = X da_,
and § = 1 — B, so that df = XY dP and E[XY | G] = d(B|g)/d(P|g). Since X is
G-measurable, we have d(f1|g)/d(ay|g) = d(Bs|g)/d(a_|g) = X. Hence,

Blxy |g] = 2Wlo) _ dlbrlg) _ d(Blg)

d(Plg)  d(Plg)  d(Plg)
_ d(Bilg) dailg)  d(Balg) d(a—|g)

d(ailg) d(Plg)  d(a_lg) d(Plg)

B d(aylg) B d(a,\g)_ _ d(afg) — -a.S
X (GRg  Urie) = Kb = XEW 19) Pas,

and we are done. ]
Theorem 3.7. (linearity) F[aX +Y |G| = aE[X | G] + E[Y | G].

Proof. The right-hand side is clearly G-measurable. Let A € G. Then

E[(aE[X | G] + E[Y' | G])14] = aE[E[X | G]14] + E[E[Y | G]14]
— aE[X14] + E[Y14] = E[(aX + Y)14],

and we are done. ]



Lemma 3.8. Suppose U and V' are H-measurable random variables. If E[U1l4] < E[V14]
for all Ae H, then U <V a.s. If E[Ul4] = E[V14] for all Ae H, thenU =V a.s.

Proof. By reversing the roles of U and V', the second claim follows from the first. To prove
the first, suppose E[Uls] < E[V14] for all A € H. Let A = {U > V} € H and define
Z = (U —=V)1a, so that Z > 0. Note that EZ = E[Ul4] — E[V14] < 0. Hence, EZ = 0,
so Z = 0 a.s., which implies P(A) = 0. O

Theorem 3.9. (monotonicity) If X <Y a.s., then E[X | G] < E[Y | G] a.s.

Proof. For all A € G, we have E[E[X | G|14] = E[X14] < E[Y14] = E[E[Y | G]14].
Hence, by Lemma[3.8] E[X | §] < E[Y | G] ass. 0

Theorem 3.10. Suppose X and Y are independent and ¢ is a measurable function such
that E|o(X,Y)| < oo, then E[p(X,Y) | X] = g(X), where g(x) = E[p(z,Y)].

Remark 3.11. It is important here that X and Y are independent. This result is not true
when X and Y are dependent.

Proof of Theorem [3.10. Clearly, g(X) is (X )-measurable. Let A € R. Then

Elo(X, Y )1 ixen] = f f o, ) La(@) oy (dy)pix (de)

= flA(x) (Jgp(m,y)uy(dy)) px (dx) = JlA(x)g<x)NX(dx) = Elg(X)1{xeal,

and we are done. ]

Example 3.12. Let X, Y, Z be iid, uniformly distributed on (0,1). We shall compute the
distribution of (XY)Z. We begin by computing the distribution of W = XY. Let w € (0, 1).
Then

P(W <w)=P(XY <w) = E[lixy<w}] = E[E[lxv<w | X]]-

By Theorem [3.10, E[l{xy<w} | X] = f(X), where

w w
f(2) = E[ligy<w)] = P(z¥ <w) = P (Y < ;) = Lpmu) + = Lizu).

1
PW <w)=E[f(X)]=F [1{X<w} + %1{)(21”}] =w +J %dw =w —wlogw.

Differentiating, we find that W has density fy (w) = (—logw)1 1) (w).
Similarly, for = € (0,1), we now compute

P((XY)? <) = E[P(W? < |W)] = E[g(W)],

where

log x log x
=Pw?<x)=P(Z> =(1- i<z
g(w) (w 7) ( logw) < logw) {wsa}
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Thus,

log = v log =
P(XY)Y <z)=E||1- Liwest | = 1— —1 d
(XY)" <<) [( 10gW) = }] L ( logw)< ogw)dw

In other words, (XY)? is uniformly distributed on (0, 1).

3.2 Limit theorems and inequalities

Theorem 3.13. (monotone convergence) If 0 < X, 1 X a.s. and X is integrable, then
E[X,|G] 1 E[X |G] as.

Proof. By monotonicity, there exists a G-measurable random variable Z such that E[X,, |
G| 1 Z a.s. Let A € G. Using monotone convergence,

E[Z14] = lim E[E[X, | G]14] = lim B[X,14] = E[X1,],

n—oo
which shows Z = E[X | G]. [

Theorem 3.14. (Fatou’s lemma) If X,, > 0 a.s., each X,, is integrable, and liminf,,_,,, X,

18 1ntegrable, then
E[liminf X,, | G] < liminf E[X,, | ] a.s.
n—ao n—a0
Eroof Let X,, = inf,;>, X; and X = liminf,_,, X,,. Note that 0 < X,, 1 X. In particular,
X, is integrable. For each j > n, we have X, < X, as. Hence, by monotonicity,

E[X, | G] < E[X; | G] a.s. It follows that

E[X, | g] < inf E[X; | G] as.
Jj=n

Monotone convergence implies

B[X | G] = lim E[X, | g] <liminf B[X, | §] as.

and we are done. ]

Theorem 3.15. (dominated convergence) Let X,, be random variables with X, — X
a.s. Suppose there exists an integrable random variable Y such that | X,| <Y a.s. for all n.
Then

T}l_r)rgo E[X,|G] = E[X |G] as.
Exercise 3.16. Prove Theorem by mimicking the proof of the ordinary dominated
convergence theorem.



Exercise 3.17. Show that if ¢ : R — R is convex, then the left-hand derivative,

, . plc) —p(c—h)
- (c) = lim .

exists for all ¢. Moreover,

p(r) = p(c) = (x = c)p_(c) = 0, (3.1)
for all  and c.

Theorem 3.18. (Jensen’s inequality) If ¢ is convexr and X and ¢(X) are integrable,
then p(E[X | G]) < E[p(X) | G].

Proof. Let Z = (X — E[X | G)¢'(E[X | G]), so that by (1)), o(X) —@(E[X | G]) - Z >0,
which implies

0 < E[p(X) —(E[X | G]) = Z | G] = Elp(X) | G] — (E[X | G]) - E[Z | G].
It therefore suffices to show that E[Z | G] = 0. To see this, we calculate

ElZ ]G] = E[(X - E[X [ GD)¢"(E[X | G]) | 9]
PL(E[X | GDE[X - E[X | G]|d]
PL(E[X [ GD(E[X | 9] - E[E[X | G] [ G])
PLEX [GD(EIX | 9] - E[X | G]) =

and we are done. ]

Theorem 3.19. (Holder’s inequality) Let p,q € (1,20) be conjugate exponents, so that
1/p+1/q = 1. Suppose that | X|P and |Y|? are integrable. Then

E[IXY[|G] < (BIXI"| gD (ENY]" | gD a.s.

Proof. Note that by the ordinary Hélder’s inequality, XY is integrable, so that E[|XY| | G]
is well-defined. Let U = (E[|X|P | G]))Y? and V = (E[|Y]? | G])"/9. Note that both U and V/
are G-measurable. Observe that

E[|X[P1w-o] = E[E[[X["Liy—0y | G]] = E[Lw—y E[|X]" | G]] = E[Ly—0yU?] = 0.
Hence, | X|1{y—o; = 0 a.s., which implies
E[XY] ]G]0y = E[IXY [1y- [ G] = 0.

Similarly, E[|XY] | G]lyy_o = 0. It therefore suffices to show that E[|XY| | G|ly < UV,
where H = {U > 0,V > 0}. For this, we will use Lemma [3.8| to prove that

BIXY] ]G],
uv

Note that the left-hand side is defined to be zero on H°.

g <1a.s.



Let A € G be arbitrary and define G = H n A. Then
25 s ] ]

- - & [l
(s
3y

2] o)
[ X7 |G ])VP(E[EEE;;BQJG]>VQ

l/p(E[l ) /g _ = E[lg] < E[14].

Applying Lemma [3.8] finishes the proof. O

3.3 Minimizing the mean square error

We say that a random variable X is square integrable if F|X|> < o. Let X be square
integrable and consider the function f(a) = E|X —a|? = a*>—2(EX)a+ E|X|*. This function
has a minimum at a = EX. In other words, if we wish to approximate X by a constant,
then the constant £'X is the one which minimizes our mean square error.

The conditional expectation has a similar property. If we wish to approximate X by
a square integrable, G-measurable random variable, then E[X | G] is the random variable
which minimizes our mean square error. This is made precise in the following theorem.

Theorem 3.20. Let (2, F, P) be a probability space and let X be square integrable. Let
G c F and define Z = E|X | G]. If Y is any square integrable, G-measurable random
variable, then E|X — Z|> < E|X — Y.

Proof. First note that by Jensen’s inequality,
2] = |E[X | GII* < E[IX]* | G] as

Hence, F|Z|* < E[E[|X|? | G]] = E|X|* < w0 and Z is square integrable. Let W = Z — Y.
Since W is G-measurable,

E[WZ] = E[WE[X | G]] = E[E[WX | G]] = E[WX].
Hence, E[W (X — Z)] = 0, which implies
EI X -YP?=E|X-Z+WP=E|X—-Z?+2E[W(X — 2)] + E|[W|?
=E|X-ZP+E|W|* > E|X - Z|?,
and we are done. ]

Remark 3.21. In the language of Hilbert spaces and LP spaces, this theorem says the

following: X is an element of the Hilbert space L?(Q, F, P), and E[X | G] is the orthogonal
projection of X onto the subspace L*(Q, G, P).
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4 Regular conditional distributions

4.1 Introduction

If X is a real-valued random variable, then px(A) = P(X € A) defines a measure jy on the
real line which we call the distribution (or law) of X. One feature of the distribution is that
it provides us with a way to calculate expectations:

E[f(X)] = f £(2) x (da).

Likewise, if B is an event, then pux g(A) = P(X € A | B) defines a measure px g on R which
is the conditional distribution of X given B, and we have

ELFCX) | B] = | f(0) ()
R
If G is a finite o-algebra, so that G = o({A;}}_,), where {A;}7_, is a partition of 2, then

P(XEA’A1> ifCL)EAl,
P(XEA’AQ) ifWEAQ,
P(XeA|G)w) = |
P(XeA|A,) ifweA,.

In other words, P(X € - | G) is just a conditional probability distribution that happens to
depend on w. Another way of saying it is that P(X € - | G) is a random probability measure
on the real line.

Conditional expectations can be computed by integrating against this random measure.
That is, if we define pxg(w, A) = px,,(A) for w e A;, then

E[f(X) | G)(w) = fRﬂx) i g(w, dz).

With a structure such as this, expectations conditioned on o-algebras behave very much
like ordinary expectations. When this happens, we are able to make valuable intuitive
connections to mathematical ideas that we are already familiar with. It would be nice if
P(X € -] G) was always a random measure, even when G is infinite. The following theorem
is a step in this direction.

Theorem 4.1. Let (2, F, P) be a probability space and (S,S) a measurable space. Let X be
an S-valued random variable and G < F a o-algebra. Then

(i) P(X e A|G)e|0,1] a.s., forall Ae S.
(i) P(X e &|G) =0 as., forall A€ S.
(ii)) P(X €S |G)=1 as., forall A€ S.
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(iv) PX el A, |G) =" P(XeA,|G) as., for all disjoint collections {A,} = S.
Exercise 4.2. Prove Theorem [4.1l

Unfortunately, Theorem does not show that A — P(X € A | G)(w) is a measure for
P-a.e. w e . This is because the null set in (iv) can depend on the collection {A,}. So
there may not exist a single event of probability one on which (iv) holds simultaneously for
all disjoint collections.

However, when X takes values in a space that is “nice”, such as the real line, it is
possible to express P(X € - | G) as a genuine random measure. The remainder of this
sections elaborates on this topic.

4.2 Random measures

Let (S,8) be a measurable space and let M(S) be the space of all o-finite measures on
(S,8). Let M(S) be the o-algebra on M (S) generated by sets of the form {v : v(A) € B},
where A € § and B € R. Note that M(S) is the smallest o-algebra such that the projection
functions w4 : M(S) — R, defined by ma(r) = v(A), are Borel measurable for all A € S.
Taking A = S and B = {1} shows that M;(S), the space of all probability measures on
(S,S) is measurable. Let M;(S) denote M(S) restricted to M;(.S).

Let (T,T) be another measurable space. If p : T — M(S), we will write u(t, A) =
(u(t))(A). Note that p is (7, M(S))-measurable if and only if 74 o p = (-, A) is (T, R)-
measurable for all A € §. Any such measurable function is called a kernel from T to S. If
u takes values in M;(.S), then p is a probability kernel.

Let (2, F, P) be a probability space. A random measure on S is an M(S)-valued
random variable. In other words, it is a kernel from 2 to S. If a random measure takes
values in M;(S), then it is a random probability measure on S. Note that if u is a kernel
from T to S and Y is a T-valued random variables, then p(7') is a random measure.

4.3 Regular conditional distributions

Let (2, F, P) be a probability space and (S5,S) and (7', 7T) measurable spaces. Let X and Y
be S- and T-valued random variables, respectively. Let G — F be a o-algebra. If there exists
a random measure p = px g on S such that P(X € A| G) = u(-, A) a.s. for every A € S, then
i is a regular conditional distribution for X given G, and we write X | G ~ p. Similarly,
if there exists a probability kernel y = pxy from T to S such that P(X € A|Y) = p(Y, A)
a.s. for every A € S, then p(Y') is a regular conditional distribution for X given o(Y), and
we write X | Y ~ p(Y).

A measurable space (S, S) is a Borel space if there exists an (S, R)-measurable bijection
¢ S — R such that ¢! is (R,S)-measurable. The following two theorems are Theorem
1.4.12 [1] and Theorem 5.3 in [2], respectively.

Theorem 4.3. If S is a Borel subset of a complete separable metric space, and S is the
collection of Borel subsets of S, then (S,S) is a Borel space.
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Theorem 4.4. Let (0, F, P) be a probability space and (S,S) and (T, T ) measurable spaces.
Let X and Y be S- and T-valued random variables, respectively. If S is a Borel space, then
there exists a probability kernel p = puxy from T to S such that X | Y ~ w(Y). If it is
another such probability kernel, then = [, py-a.e.

Corollary 4.5. Let (2, F, P) be a probability space and (S,S) a measurable space. Let X be
an S-valued random variable and G < F a o-algebra. If S is a Borel space, then there exists
a G-measurable random probability measure p = uxg such that X | G ~ p. If [t is another
such random probability measure, then p = i a.s.

Proof. Apply Theorem [4.4) with (7,7) = (2,G) and Y the identity function. O

The first example of what we can do with regular conditional distributions is the following
theorem, which can be regarded as a generalized version of Theorem [3.10]

Theorem 4.6. Let (2, F, P) be a probability space and (S,S) a measurable space. Let X
be an S-valued random variable, G < F a o-algebra, and suppose X | G ~ p. Let (T,7T) be
a measurable space and Y a T-valued random variable. Let f : S x T — R be (S x T,R)-
measurable with E|f(X,Y)| <. IfY € G, then

E[f(X,Y) | 6] = Lf(x,Y)u(»dx)

Proof. If f = 14xp, where A€ S and B € T, then

Elann(X.Y) | G] = 15(Y)P(X € A| G) = 15(Y)u(-, A) — L Laep(@.Y) p( dz)  as.

By the 7-\ theorem, this proves the result for f = 1, where C' € § x T. By linearity
(Theorem , the result holds for all simple functions f. By monotone convergence
(Theorem [3.13)), the result holds for all nonnegative functions f satisfying E|f(X,Y)| < 0.
And finally, by considering the positive and negative parts, the result holds for all measurable
functions f satisfying E|f(X,Y)| < . O

Corollary 4.7. Let (Q,F, P) be a probability space and (S,S) a measurable space. Let X
be an S-valued random variable, G < F a o-algebra, and suppose X |G ~ u. If f: S —> R
is (S, R)-measurable with E|f(X)| < oo, then

E[f(X)| 6] = Lfm u(dz) as.

Proof. Apply Theorem with Y a constant random variable. O

For our second example, we give a simple proof of Theorem m (Holder’s inequality).

Proof of Theorem [3.19, Since (R?, R?) is a Borel space, there exists a random measure
p on R? such that (X,Y) | G ~ p. Since | X[ and |Y|¢ are integrable, the ordinary Holder’s
inequality implies | XY is integrable. Thus, by Theorem

E[IXY]| G] = j 2yl p dady) as.
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For P-a.e. w € ), we may apply the ordinary Hélder’s inequality to the measure p(w, ),

yielding
1/p 1/q
ﬂWWWK(LMW@Mm><JﬁMmM@0 s
R R

Applying Theorem [4.6] once again finishes the proof. O

For our final example, let us first consider a property of unconditioned expectations. If
X is a real-valued random variable, and h : R — [0, c0) is absolutely continuous with A’ > 0
a.e. and h(x) | 0 as v — —oo, then

EMMH-&M@HX>QM

This is the content of Exercise 2.2.7 in [I], and one way to see it is to use Fubini’s theorem:

EWXﬂ=LMXMP=L[iﬁ@ﬁw%iLthMﬁMMP
=LH@thwWﬁ=JM@HX>wﬁ

R
It is then natural to ask whether a similar thing is true for conditional expectations, and
whether a similar proof can demonstrate it. We will answer both questions in the affirmative
by using regular conditional probabilities.

Theorem 4.8. Let X be a real-valued random variable on a probability space (Q, F, P) and
G c F ao-algebra. Let h : R — [0,00) be absolutely continuous with h' = 0 a.e. and h(zx) | 0
as © — —oo. Suppose that E|h(X)| < co. Then it is possible to choose, for each t € R, a
version of P(X >t | G) so that the function t — h'(t)P(X >t | G) is almost surely Lebesque
integrable on R, and satisfies

EWXH@=LM@HX>ﬂ@ﬁ a.s.

Proof. Since (R, R) is a Borel space, there exists a random measure y such that X | G ~ p.
For each t € R let us choose the version of P(X > t | G) determined by u, that is,
P(X >t]|G)(w) = pu(w,(t,©)). Then for P-a.e. w € 2, we have

J J L=y B/ (t) dt p(w, dz) = J h(z) p(w,dx) = E[h(X) | G](w) <

By Fubini’s theorem, the function

o [ La(0) e ) = WO (0,0) = KOP(X > ] G)(e)

is Lebesgue integrable on R and
f W (t)P(X >t|G)(w) dt:f f L=y B (t) p(w, dz) dt
R R JR

:LLhmmwmwwdszWXH@W%

which proves the theorem. ]
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5 A preview of stochastic processes

A stochastic process is a collection of random variable {X(¢) : t € T'} indexed by some set
T. We usually think of 7" as time. A discrete time stochastic process is where 7' = N,
in which case the process is just a sequence of random variables.

Let {X,, : n € N} be a discrete time stochastic process. Define F,, = o(X3,...,X,). The
o-algebra F, represents all the information at time n that we would have from observing
the values X, ..., X,,. Note that F, < F, ;1.

More generally, a filtration is a sequence of o-algebras {F,}>_, such that F, < F,;1.
A stochastic process {X,, : n € N} is said to be adapted to the filtration {F,}_, if X,
is F,-measurable for all n. The special case F,, = o(X3,...,X,) is called the filtration
generated by X, and is denoted by {FX}2_,.

An important class of discrete time stochastic processes is the martingales. A stochastic
process {X,, : n € N} is a martingale with respect to the filtration {F,}_; if

(i) X, is integrable for all n,
(i) {X, :n e N} is adapted to {F,}>_;, and
(ili) E[Xni1 | Fn] = X, for all n.

The critical item is (iii). Imagine that X, models our cumulative wealth as we play a
sequence of gambling games. Condition (iii) says that, given all the information up to time
n, our expected wealth at time n + 1 is the same as our wealth at time n. In other words, a
martingale models a “fair” game.

Another important class of discrete time stochastic processes is the Markov chains. A
stochastic process {X,, : n € N} is a Markov chain with respect to the filtration {F,}r_, if

(i) {X, : n e N} is adapted to {F,}*_;, and
(ii) P(Xns1 € B|Fp) = P(Xps1 € B| X,) for all Be R.

Here, the critical item is (ii). It is called the Markov property. In words, it says that the
conditional distribution of X, given all the information up to time n is the same as if we
were only given X,,. In other words, the future behavior of a Markov chain depends only on
the present location of the chain, and not on how it got there.

The canonical example of a Markov chain is a random walk. If {X;}32, are iid and
Sp = X1+ -+ X, then {S,, : n € N} is a random walk. The random walk is a Markov
chain with respect to the filtration generated by S. Moreover, if each X; is integrable with
mean zero, then the random walk is also a martingale.

A continuous time stochastic process has the form {X(¢) : ¢ € [0,00)}. Examples
include the Poisson process and Brownian motion. Concepts such as filtrations, adaptedness,
martingales, and the Markov property can all be extended to continuous time. Care is needed
however, because (for one thing) the time domain is uncountable. Brownian motion is the
continuous time analog of a random walk. It is the canonical example in continuous time
of both a martingale and a Markov process. It can be realized as the limit of a sequence of
random walks, where the step sizes are becoming smaller and the steps are occurring more
frequently.
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More specifically, let {S, : n € N} be a mean zero random walk. Let S(t) = S|y, where
|-| denotes the greatest integer function. Then the sequence of processes

converges (in a certain sense) as n — o to a continuous time stochastic process called
Brownian motion. This is the conclusion of Donsker’s theorem, which is a kind of central
limit theorem for stochastic processes.

Differential equations that involve Brownian motion are referred to as stochastic
differential equations (SDEs). SDEs are used to model dynamical systems that involve
randomness, and are very common in scientific applications. In order to understand SDEs,
one must first understand the stochastic integral (with respect to Brownian motion), which
behaves quite differently from the ordinary Lebesgue-Stieltjes integral. In particular, the
classical fundamental theorem of calculus no longer applies when one is working with
stochastic integrals. It must be replaced by a new rule called [to’s rule. Ito’s rule gives
rise to a whole new calculus called stochastic calculus.
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