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1 Definition and basic properties

Let (X, d) be a metric space. A function f : R → X is said to have one-sided limits if, for
each t ∈ R, the limits f(t+) = lims→t+ f(s) and f(t−) = lims→t− f(s) both exist. These
functions are more well-behaved than one might initially expect, as the following theorems
demonstrate.

Theorem 1.1. A function with one-sided limits is bounded on compact sets.

Proof. Let f have one-sided limits and let K ⊂ R be compact. Fix any p ∈ X. We want
to show that there exists r > 0 such that f(K) ⊂ Br(p).

Fix t ∈ K. Since f(t+) exists, there exists δt+ > 0 such that d(f(s), f(t+)) < 1 for all
s ∈ (t, t + δt+). Thus, if rt+ = 1 + d(f(t+), p), then

d(f(s), p) ≤ d(f(s), f(t+)) + d(f(t+), p) < rt+.

In other words, f(s) ∈ Brt+(p), for all s ∈ (t, t + δt+).
Similarly, since f(t−) exists, there exists δt− > 0 such that f(s) ∈ Brt−(p) for all

s ∈ (t − δt−, t), where rt− = 1 + d(f(t−), p). Thus, for all s ∈ Ut = (t − δt−, t + δt+),
we have that f(s) ∈ Brt(p), where rt = max{rt−, rt+, d(f(t), p) + 1}.

Since {Ut : t ∈ K} is an open cover of K, there exists {t1, . . . , tn} ⊂ K such that
K ⊂ U1 ∪ · · · ∪ Un. It follows that, for all s ∈ K, we have f(s) ∈ Br(p), where
r = max{rt1 , . . . , rtn}. That is, f(K) ⊂ Br(p).

This next theorem shows that a function with one-sided limits cannot have large
discontinuities which accumulate.

Theorem 1.2. Let f have one-sided limits. Then for all t ∈ R and ε > 0, there exists δ > 0
such that

d(f(s+), f(s)) + d(f(s), f(s−)) < ε,

whenever s 6= t and |t− s| < δ.

Proof. Suppose not. Then there exists t ∈ R, ε > 0, and a sequence {sn} of real numbers
such that, for all n, we have sn 6= t, |t− sn| < 1/n, and

d(f(sn+), f(sn)) + d(f(sn), f(sn−)) ≥ ε,

1



Consider the following four sets:

S1 = {n : sn > t and d(f(sn+), f(sn)) ≥ ε/2},
S2 = {n : sn > t and d(f(sn), f(sn−)) ≥ ε/2},
S3 = {n : sn < t and d(f(sn+), f(sn)) ≥ ε/2},
S4 = {n : sn < t and d(f(sn), f(sn−)) ≥ ε/2}.

Since these sets cover N, at least one of them is infinite. By passing to a subsequence, we
may assume that the entire sequence {sn} is contained in one of these sets.

First assume that each sn ∈ S1. For each n, choose un ∈ (sn, sn + 1/n) such that
d(f(un), f(sn+)) < ε/4. Then

ε

2
≤ d(f(sn+), f(sn)) ≤ d(f(sn+), f(un)) + d(f(un), f(sn)) <

ε

4
+ d(f(un), f(sn)).

But sn → t+ and un → t+, so d(f(un), f(sn)) → d(f(t+), f(t+)) = 0, a contradiction.
Next assume that each sn ∈ S2. For each n, choose un ∈ (t, sn) such that

d(f(un), f(sn−)) < ε/4. Then

ε

2
≤ d(f(sn), f(sn−)) ≤ d(f(sn), f(un)) + d(f(un), f(sn−)) < d(f(un), f(sn)) +

ε

4
.

But sn → t+ and un → t+, so d(f(un), f(sn)) → d(f(t+), f(t+)) = 0, a contradiction.
Next assume that each sn ∈ S3. For each n, choose un ∈ (sn, t) such that

d(f(un), f(sn+)) < ε/4. Then

ε

2
≤ d(f(sn+), f(sn)) ≤ d(f(sn+), f(un)) + d(f(un), f(sn)) <

ε

4
+ d(f(un), f(sn)).

But sn → t− and un → t−, so d(f(un), f(sn)) → d(f(t−), f(t−)) = 0, a contradiction.
Finally assume that each sn ∈ S4. For each n, choose un ∈ (sn − 1/n, sn) such that

d(f(un), f(sn−)) < ε/4. Then

ε

2
≤ d(f(sn), f(sn−)) ≤ d(f(sn), f(un)) + d(f(un), f(sn−)) < d(f(un), f(sn)) +

ε

4
.

But sn → t− and un → t−, so d(f(un), f(sn)) → d(f(t−), f(t−)) = 0, a contradiction.

Theorem 1.3. A function with one-sided limits has at most countably many discontinuities.

Proof. Let f have one-sided limit. Then f is continuous at t if and only if f(t−) = f(t+) =
f(t), which happens if and only if

d(f(t+), f(t)) + d(f(t), f(t−)) = 0.

Let
An = {t ∈ R : d(f(t+), f(t)) + d(f(t), f(t−)) ≥ 1/n}.

Then A =
⋃∞

n=1 An is the set of discontinuities of f .
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Fix M, n ∈ N. Fix t ∈ [−M, M ]. By Theorem 1.2 with ε = 1/n, there exists δt > 0 such
that ((t − δt, t) ∪ (t, t + δt)) ∩ An = ∅. Thus, if Ut = (t − δt, t + δt), then Ut ∩ An ⊂ {t}.
Since [−M, M ] is compact, and {Ut : t ∈ [−M, M ]} is an open cover of [−M, M ], it follows
that there exists {t1, . . . , tk} ⊂ [−M, M ] such that [−M, M ] ⊂ Ut1 ∪ · · · ∪ Utk . Hence,
[−M, M ] ∩ An ⊂ {t1, . . . , tk}. In particular, [−M, M ] ∩ An is finite.

Therefore,

A =
∞⋃

n=1

∞⋃
M=1

[−M, M ] ∩ An

is a countable set.

2 Càdlàg functions

If f has one-sided limits, we define f+ : R → R and f− : R → R by f+(t) = f(t+) and
f−(t) = f(t−). Note that a function f with one-sided limits is right-continuous if and only if
f(t+) = f(t) for all t ∈ R, which is equivalent to saying that f+ = f . If f has one-sided limits
and is right-continuous, then we say that f is càdlàg. This is an acronym for the French
phrase, “continu à droite, limite à gauche”. If f has one-sided limits and is left-continuous,
that is, if f(t−) = f(t) for all t ∈ R (which is equivalent to f− = f), then we say that f is
càglàd.

If f has one-sided limits, we also define the function ∆f : R → R by ∆f = f+ − f−.
Note that, by Theorem 1.3, the set {t : ∆f(t) 6= 0} is countable.

Given any f : R → R, let us define Rf : R → R by Rf(t) = f(−t).

Lemma 2.1. If f has one-sided limits, then so does Rf . Moreover, (Rf)+ = Rf− and
(Rf)− = Rf+.

Proof. Let f have one-sided limits. Then

lim
s→t+

Rf(s) = lim
s→t+

f(−s) = lim
z→(−t)−

f(z) = f−(−t),

and
lim

s→t−
Rf(s) = lim

s→t−
f(−s) = lim

z→(−t)+
f(z) = f+(−t),

which shows that Rf has one-sided limits, and that (Rf)+ = Rf− and (Rf)− = Rf+.

Lemma 2.2. If f : R → R is nondecreasing, then f has one-sided limits, and f+ and f−
are both nondecreasing.

Proof. Fix t ∈ R and fix some strictly increasing sequence {tn} with tn → t. Then {f(tn)}
is a nondecreasing sequence of real numbers, bounded above by f(t). Hence, there exists
L ∈ R such that f(tn) → L.

Now let {sn} be any other strictly increasing sequence with sn → t. As above, f(sn) → L′

for some L′ ∈ R. Now fix m ∈ N. Since sm < t and tn → t, there exists N ∈ N such that
for all n ≥ N , we have sm < tn. This implies f(sm) ≤ f(tn). Letting n → ∞, we have
f(sm) ≤ L. But this holds for all m, so letting m →∞, we have L′ ≤ L. A similar argument
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shows that L ≤ L′. Thus, L′ = L, so that f(sn) → L. Since this holds for any such sequence
{sn}, we have that L = lims→t− f(s), and so f(t−) exists.

A similar argument shows that f(t+) exists for all t ∈ R.
Now let s < t. Choose a strictly decreasing sequence {sn} ⊂ (s, t) such that sn → s,

and choose a strictly decreasing sequence {tn} such that tn → t. Then sn < t < tn for all
n. Hence, f(sn) ≤ f(tn) for all n. Letting n →∞ gives f(s+) ≤ f(t+), showing that f+ is
nondecreasing. A similar argument shows that f− is nondecreasing.

Theorem 2.3. If f has one-sided limits, then

f+(t+) = f−(t+) = f(t+), and

f+(t−) = f−(t−) = f(t−),

for all t ∈ R. In other words, (f+)+ = (f−)+ = f+ and (f+)− = (f−)− = f−. In particular,
f+ is càdlàg and f− is càglàd.

Proof. Fix t ∈ R and let {tn} be a strictly decreasing sequence of real numbers such that
tn → t. Let ε > 0 be arbitrary. Using Theorem 1.2 and the fact that f(tn) → f(t+), we may
choose N ∈ N such that for all n ≥ N , we have d(f(tn+), f(tn)) < ε, d(f(tn−), f(tn)) < ε,
and d(f(tn), f(t+)) < ε. By the triangle inequality, this implies that d(f(tn+), f(t+)) < 2ε
and d(f(tn−), f(t+)) < 2ε. Since ε was arbitrary, this shows that f+(tn) = f(tn+) → f(t+)
and f−(tn) = f(tn−) → f(t+). Since the sequence {tn} was arbitrary, this shows
that f+(t+) = f(t+) and f−(t+) = f(t+). Since this holds for all t ∈ R, we have
(f+)+ = (f−)+ = f+.

Now let g = Rf . We have already shown that (g+)+ = (g−)+ = g+. By Lemma 2.1,
we have g+ = Rf−. Therefore, (g+)+ = R(f−)− and similarly, (g−)+ = R(f+)−. Hence,
R(f+)− = R(f−)− = Rf−, which implies (f+)− = (f−)− = f−.

Lastly, since (f+)+ = f+, it follows that f+ is càdlàg, and since (f−)− = f−, it follows
that f− is càglàd.

Remark 2.4. By Theorem 2.3, if f is càdlàg (or any function with one-sided limits), then
g = f− is càglàd. Conversely, if g is any càglàd function, then g = g− = (g+)−. In other
words, g = f−, where f = g+ is a càdlàg function. What this shows is that a function
g : R → R is càglàd if and only if g = f− for some càdlàg function f .

3 Functions of bounded variation

Given G : [a, b] → R we define

TG(a, b) = sup

{ n∑
j=1

|G(tj)−G(tj−1)| : n ∈ N, a = t0 < · · · < tn = b

}
.

The quantity TG(a, b) is called the total variation of G on [a, b]. If TG(a, b) < ∞, then G is
said to have bounded variation on [a, b], and the set of all such functions G is denoted by
BV [a, b].
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Given G : R → R, we define TG = sup{TG(a, b) : −∞ < a < b < ∞}. If TG < ∞, then
we say that G has bounded variation, and the set of all such functions G is denoted by BV .

Suppose G : [a, b] → R is in BV [a, b]. Let us extend G to be defined on the whole real
line by defining G(t) = G(a) for t < a, and G(t) = G(b) for t > b. Then G ∈ BV and
TG = TG(a, b). In this way, all facts about the set BV give rise to corresponding facts about
the set BV [a, b]. We will therefore focus our attention on the set BV .

A function G : R → R is in BV if and only if G can be written as G = G1 −G2, where
each Gj is a bounded, nondecreasing function (see Theorem 3.27 in [1]). Since nondecreasing
functions have one-sided limits, every BV function has one-sided limits. Moreover, by
Lemma 2.2, this shows that G+ and G− are both BV functions.

If G ∈ BV , then there exists a unique signed Borel measure µG+ on R such that
µG+((s, t]) = G+(t)−G+(s) for all s < t (see Theorem 3.29 in [1]). Note that

µG+({t}) = lim
s→t−

µG+((s, t])

= lim
s→t−

(G+(t)−G+(s))

= G+(t)−G+(t−)

= G+(t)−G−(t),

by Theorem 2.3. If we recall that ∆G = G+ −G−, then µG+({t}) = ∆G(t).
We define the Lebesgue-Stieltjes integral of a Borel measurable function f with respect

to a BV function G by ∫
A

f dG =

∫
A

f dµG+ .

The following theorem illustrates a relationship between the Lebesgue-Stieltjes integral and
classical Riemann sums.

Theorem 3.1. Let G ∈ BV and let f be a function with one-sided limits. Fix a < b. For
each m ∈ N, let Pm = {t(m)

j }n(m)
j=0 be a strictly increasing, finite sequence of real numbers with

a = t
(m)
0 < . . . < t

(m)
n(m) = b. Assume that ‖Pm‖ = max{|t(m)

j − t
(m)
j−1| : 1 ≤ j ≤ n(m)} → 0 as

m →∞. Let

I
(m)
− =

n(m)∑
j=1

f(t
(m)
j−1)(G(t

(m)
j )−G(t

(m)
j−1)), and

I
(m)
+ =

n(m)∑
j=1

f(t
(m)
j )(G(t

(m)
j )−G(t

(m)
j−1)).

Then:

(i) If G is càdlàg, then I
(m)
− →

∫
(a,b]

f− dG as m →∞.

(ii) If f and G are both càdlàg, then I
(m)
+ →

∫
(a,b]

f+ dG =

∫
(a,b]

f dG as m →∞.
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(iii) If G is càglàd, then I
(m)
+ →

∫
[a,b)

f+ dG as m →∞.

(iv) If f and G are both càglàd, then I
(m)
− →

∫
[a,b)

f− dG =

∫
[a,b)

f dG as m →∞.

Proof. In this proof, for notational simplicity, we will suppress the dependence of n, tj, and
I± on m.

Let us first assume that G is càdlàg. Then G = G+, and so

I− =
n∑

j=1

f(tj−1)µG+((tj−1, tj]) =

∫
(a,b]

f (1)
m dµG+ ,

where

f (1)
m (t) =

n∑
j=1

f(tj−1)1(tj−1,tj ](t).

For each fixed t, we have f
(1)
m (t) = f(tj−1), where tj−1 < t and |t − tj−1| ≤ ‖Pm‖. Thus,

f
(1)
m (t) → f−(t). By Theorem 1.1, there exists M < ∞ such that |f (1)

m | ≤ M for all m. Thus,
by dominated convergence, I− →

∫
(a,b]

f− dµG+ =
∫

(a,b]
f− dG, and this proves (i).

Similarly,

I+ =
n∑

j=1

f(tj)µG+((tj−1, tj]) =

∫
(a,b]

f (2)
m dµG+ ,

where

f (2)
m (t) =

n∑
j=1

f(tj)1(tj−1,tj ](t).

For each fixed t, we have f
(2)
m (t) = f(tj), where t ≤ tj and |t − tj| ≤ ‖Pm‖. Because

of the possibility that t = tj, we cannot conclude that f
(2)
m (t) → f+(t) as m → ∞.

However, if we make the further assumption that f is càdlàg, so that f+ = f , then we

do obtain f
(2)
m (t) → f(t) as m → ∞, and again by dominated convergence, we have

I+ →
∫

(a,b]
f dµG+ =

∫
(a,b]

f dG, and this proves (ii).

Next assume that G is càglàd. Then G = G− = G+−∆G, and so for any s < t, we have

G(t)−G(s) = G+(t)−G+(s)−∆G(t) + ∆G(s)

= µG+((s, t])− µG+({t}) + µG+({s})
= µG+([s, t)).

Hence,

I+ =
n∑

j=1

f(tj)µG+([tj−1, tj)) =

∫
[a,b)

f (3)
m dµG+ ,

where

f (3)
m (t) =

n∑
j=1

f(tj)1[tj−1,tj)(t).
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For each fixed t, we have f
(3)
m (t) = f(tj), where t < tj and |t − tj| ≤ ‖Pm‖. Thus,

f
(3)
m (t) → f+(t). Again, by dominated convergence, I+ →

∫
[a,b)

f+ dµG+ =
∫

[a,b)
f+ dG, and

this proves (iii).
Similarly,

I− =
n∑

j=1

f(tj−1)µG+([tj−1, tj)) =

∫
[a,b)

f (4)
m dµG+ ,

where

f (4)
m (t) =

n∑
j=1

f(tj−1)1[tj−1,tj)(t).

For each fixed t, we have f
(4)
m (t) = f(tj−1), where tj−1 ≤ t and |t − tj| ≤ ‖Pm‖. Because

of the possibility that t = tj−1, we cannot conclude that f
(4)
m (t) → f−(t) as m → ∞.

However, if we make the further assumption that f is càglàd, so that f− = f , then we

do obtain f
(4)
m (t) → f(t) as m → ∞, and again by dominated convergence, we have

I− →
∫

[a,b)
f dµG+ =

∫
[a,b)

f dG, and this proves (iv).

Remark 3.2. In (ii) and (iv) of Theorem 3.1, the assumptions on f cannot be omitted. For
example, let f = 1(0,∞), G = 1[0,∞), a = −1, and b = 1. In this case, G is càdlàg and f is

càglàd, but I
(m)
+ need not converge to anything.

To see this, let {Pm} be a sequence of partitions with ‖Pm‖ → 0, satisfying the following
conditions:

(i) If m is even, then there exists k = k(m) such that t
(m)
k = 0.

(ii) If m is odd, then then there exists k = k(m) such that t
(m)
k−1 < 0 < t

(m)
k .

In this case, G(t
(m)
j )−G(t

(m)
j−1) = 1 if j = k(m), and 0 otherwise. Thus,

I
(m)
+ = f(t

(m)
k ) =

{
0 if m is even,

1 if m is odd,

and so I
(m)
+ does not converge. Similarly, if f = 1[0,∞), G = 1(0,∞), and {Pm} are the above

partitions, then I
(m)
− does not converge.

Remark 3.3. If f and G are both càdlàg, then∫
(a,b]

f dG−
∫

(a,b]

f− dG =

∫
(a,b]

(f − f−) dG =

∫
(a,b]

∆f dµG+ .

Since ∆f vanishes outside a countable set, we have∫
(a,b]

∆f dµG+ =
∑

t∈(a,b]

∆f(t)µG+({t}) =
∑

t∈(a,b]

∆f(t)∆G(t),
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where this sum is, in fact, a countable sum. In particular, this shows that I
(m)
− and I

(m)
+ need

not converge to the same limit. More specifically,

I
(m)
+ − I

(m)
− =

n∑
j=1

(f(tj)− f(tj−1))(G(tj)−G(tj−1)) →
∑

t∈(a,b]

∆f(t)∆G(t),

as m →∞. This quantity is called the covariation of f and G.

If f has one-sided limits, but is not of bounded variation, then the integral
∫

(a,b]
G df is

undefined. More specifically, the map (s, t] 7→ f+(t)− f+(s) cannot be extended to a signed
measure. But, even though the integral is undefined, we can still obtain convergence of the
Riemann sums in Theorem 3.1, provided that the integrand is of bounded variation.

Theorem 3.4. Let G ∈ BV and let f be a function with one-sided limits. Assume f
and G are both càdlàg. Fix a < b. For each m ∈ N, let Pm = {t(m)

j }n(m)
j=0 be a strictly

increasing, finite sequence of real numbers with a = t
(m)
0 < . . . < t

(m)
n(m) = b. Assume that

‖Pm‖ = max{|t(m)
j − t

(m)
j−1| : 1 ≤ j ≤ n(m)} → 0 as m →∞. Let

J
(m)
− =

n(m)∑
j=1

G(t
(m)
j−1)(f(t

(m)
j )− f(t

(m)
j−1)), and

J
(m)
+ =

n(m)∑
j=1

G(t
(m)
j )(f(t

(m)
j )− f(t

(m)
j−1)).

Then

J
(m)
− → f(b)G(b)− f(a)G(b)−

∫
(a,b]

f− dG−
∑

t∈(a,b]

∆f(t)∆G(t), and (3.1)

J
(m)
+ → f(b)G(b)− f(a)G(b)−

∫
(a,b]

f dG +
∑

t∈(a,b]

∆f(t)∆G(t), (3.2)

as m →∞.

Proof. As before, for notational simplicity, we will suppress the dependence of n, tj, and
J± on m.

We begin by observing that

J− =
n∑

j=1

G(tj−1)f(tj)−
n−1∑
j=0

G(tj)f(tj)

= f(b)G(b)− f(a)G(a)−
n∑

j=1

f(tj)(G(tj)−G(tj−1)).
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By Theorem 3.1, we have J− → f(b)G(b)−f(a)G(b)−
∫

(a,b]
f dG. By Remark 3.3, this prove

(3.1).
Next, we write

J+ =
n+1∑
j=2

G(tj−1)f(tj−1)−
n∑

j=1

G(tj)f(tj−1)

= f(b)G(b)− f(a)G(a)−
n∑

j=1

f(tj−1)(G(tj)−G(tj−1)).

By Theorem 3.1, we have J+ → f(b)G(b) − f(a)G(b) −
∫

(a,b]
f− dG. By Remark 3.3, this

prove (3.2).

As a corollary, we obtain the following integration-by-parts formulas.

Corollary 3.5. If f and G are both càdlàg functions of bounded variation, then∫
(a,b]

G− df = f(b)G(b)− f(a)G(a)−
∫

(a,b]

f− dG−
∑

t∈(a,b]

∆f(t)∆G(t), and∫
(a,b]

G df = f(b)G(b)− f(a)G(a)−
∫

(a,b]

f dG +
∑

t∈(a,b]

∆f(t)∆G(t).

Proof. Combine Theorem 3.4 with Theorem 3.1.

4 The Stratonovich integral for càdlàg functions

If g and h are càdlàg, with h ∈ BV , then let us define the Stratonovich integral of g with
respect to h as ∫ t

0

g(s) ◦ dh(s) :=

∫
(0,t]

g− + g

2
dh

By Theorem 3.1, we have

n∑
j=1

g(tj−1) + g(tj)

2
(h(tj)− h(tj)) →

∫ t

0

g(s) ◦ dh(s),

as the mesh of the partition tends to zero.

Theorem 4.1. Let f , g, and h be càdlàg functions, with h ∈ BV . Let

k(t) =

∫ t

0

g(s) ◦ dh(s).

Then k is càdlàg, k ∈ BV , and∫ t

0

f(s) ◦ dk(s) =

∫ t

0

f(s)g(s) ◦ dh(s)− 1

4

∑
s∈(0,t]

∆f(s)∆g(s)∆h(s).
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Proof. Since

k(t) =

∫
(0,t]

g− + g

2
dh,

we have∫ t

0

f(s) ◦ dk(s) =

∫
(0,t]

f− + f

2
dk =

∫
(0,t]

(
f− + f

2

) (
g− + g

2

)
dh

=

∫
(0,t]

(
f−g− + fg

2
− (f − f−)(g − g−)

4

)
dh

=

∫
(0,t]

f−g− + fg

2
dh− 1

4

∫
(0,t]

∆f∆g dh

=

∫ t

0

f(s)g(s) ◦ dh(s)− 1

4

∑
s∈(0,t]

∆f(s)∆g(s)∆h(s).

Remark 4.2. This theorem shows that as long as f , g, and h have no simultaneous
discontinuities, then the Stratonovich integral satisfies the usual transformation rule of
calculus that if dk = g ◦ dh, then f ◦ dk = fg ◦ dh. In general, however, the transformation
rule involves a correction term which represents the triple covariation of the three functions,
f , g, and h.
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