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1 Definition and basic properties

Let (X, d) be a metric space. A function f : R — X is said to have one-sided limits if, for
each t € R, the limits f(t+) = lim, 4+ f(s) and f(t—) = lim, ;- f(s) both exist. These
functions are more well-behaved than one might initially expect, as the following theorems
demonstrate.

Theorem 1.1. A function with one-sided limits is bounded on compact sets.

Proof. Let f have one-sided limits and let K C R be compact. Fix any p € X. We want
to show that there exists r > 0 such that f(K) C B,(p).

Fix t € K. Since f(t+) exists, there exists §;y > 0 such that d(f(s), f(t+)) < 1 for all
s € (t,t + &4 ). Thus, if ry = 1+ d(f(t+),p), then

d(f(s),p) < d(f(s), f(t4)) + d(f(t+),p) < 7ey-

In other words, f(s) € B,,, (p), for all s € (t,t+ &, ).

Similarly, since f(t—) exists, there exists d,— > 0 such that f(s) € B, (p) for all
s € (t —d,,t), where r,_ = 14+ d(f(t—),p). Thus, for all s € Uy = (t — §_,t + 01),
we have that f(s) € B,,(p), where r, = max{r,_, ry,d(f(t),p) + 1}.

Since {U; : t € K} is an open cover of K, there exists {t1,...,¢,} C K such that
K c UyU---UU, It follows that, for all s € K, we have f(s) € B,.(p), where
r =max{ry,...,r, . Thatis, f(K) C B,(p). O

This next theorem shows that a function with one-sided limits cannot have large
discontinuities which accumulate.

Theorem 1.2. Let f have one-sided limits. Then for allt € R and € > 0, there exists 6 > 0
such that

d(f(s+), f(s) +d(f(s), f(s—)) <&,

whenever s # t and |t — s| < 4.

Proof. Suppose not. Then there exists ¢t € R, ¢ > 0, and a sequence {s,} of real numbers
such that, for all n, we have s, # ¢, |t — s,| < 1/n, and

d(f(snt), f(sn)) +d(f(sn), f(sn—)) = €,
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Consider the following four sets:

Si={n:s, >tand d(f(s,+), f(sn)) > &/2},
So={n:s, >tand d(f(s,), f(sn—)) > /2},
Sy ={n:s, <tand d(f(s,+), f(sn)) >¢€/2},
Sy=A{n:s, <tand d(f(sn), f(sn—)) > €/2}.

Since these sets cover N, at least one of them is infinite. By passing to a subsequence, we
may assume that the entire sequence {s,} is contained in one of these sets.
First assume that each s, € S;. For each n, choose u, € (s,,s, + 1/n) such that

d(f(up), f(sp+)) < e/4. Then
< d(f(snt), f(sn) < d(f(snt), flun)) +d(f(un), f(sn)) < Z +d(f(un), f(sn))-

But s, — t7 and u,, — t1, so d(f(un), f(sn)) — d(f(t+), f(t+)) = 0, a contradiction.
Next assume that each s, € Ss. For each n, choose w, € (t,s,) such that

d(f(“ﬂ)? f(sn_)) < 8/4 Then

< d(f(sn), f(sn=)) < d(f(sn), f(un)) +d(f(un), f(5n=)) < d(f(un), f(sn)) +

c
T
But s, — t7 and u,, — t1, so d(f(un), f(sn)) — d(f(t+), f(t+)) = 0, a contradiction.

Next assume that each s, € S;. For each n, choose w, € (s,,t) such that
d(f(uy), f(s,+)) < €/4. Then

< d(f(snt), f(sn)) < d(f(snt), fun)) + d(f(un), f(sn)) < Z +d(f(un), f(sn)).

But s,, — t~ and u, — t—, so d(f(u,), f(sn)) — d(f(t—), f(t—)) = 0, a contradiction.
Finally assume that each s, € S;. For each n, choose u, € (s, — 1/n,s,) such that
d(f(un), f(sn—)) < e/4. Then

DO ™

€

< d(f(sn), f(sa=)) = d(f(sn), fun)) +d(f(un), f(sn=)) < d(f(un), f(sa)) +

But s, — ¢t~ and u, — t7, so d(f(u,), f(sn)) — d(f(t—), f(t—)) = 0, a contradiction. [
Theorem 1.3. A function with one-sided limits has at most countably many discontinuities.

Proof. Let f have one-sided limit. Then f is continuous at ¢ if and only if f(t—) = f(t+) =
f(t), which happens if and only if

d(f(t+), f(1)) + d(f (), f(i=)) = 0.

Let
An ={t e R:d(f(i+), f(t)) +d(f(t), f(t=)) = 1/n}.
Then A =J 7, A, is the set of discontinuities of f.
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Fix M,n € N. Fix t € [-M, M]. By Theorem [1.2] with ¢ = 1/n, there exists 6, > 0 such
that ((t — i, t) U (t,t +6,)) N A, = 0. Thus, if Uy = (¢t — 0y, t + 0;), then U; N A, C {t}.
Since [—M, M] is compact, and {U; : t € [-M, M]} is an open cover of [—M, M], it follows
that there exists {ti,...,tx} C [-M,M] such that [-M, M| C U, U---UU,. Hence,
[—M,M]NA, C{t1,...,tx}. In particular, [-M, M| N A, is finite.

Therefore,

A= [—M, M]N A,

1

(G
G

n=1

is a countable set. O

2 Cadlag functions

If f has one-sided limits, we define f, : R — Rand f_ : R — R by f.(¢t) = f(t+) and
f-(t) = f(t—). Note that a function f with one-sided limits is right-continuous if and only if
f(t+) = f(t) for all t € R, which is equivalent to saying that f, = f. If f has one-sided limits
and is right-continuous, then we say that f is cadlag. This is an acronym for the French
phrase, “continu a droite, limite a gauche”. If f has one-sided limits and is left-continuous,
that is, if f(t—) = f(t) for all ¢ € R (which is equivalent to f_ = f), then we say that f is
caglad.

If f has one-sided limits, we also define the function Af : R — R by Af = f,. — f_.
Note that, by Theorem the set {t : Af(t) # 0} is countable.

Given any f: R — R, let us define Rf : R — R by Rf(t) = f(—t).

Lemma 2.1. If f has one-sided limits, then so does Rf. Moreover, (Rf), = Rf_ and
(Rf)- = Rf,.

Proof. Let f have one-sided limits. Then

lim Rf(s) = lim f(—s) = lim) f(z) = f-(=t),

s—tt s—tt z—(—t)~

and

lim Rf(s) = lim f(~s)= lim_f(z) = fi(~2),

s—t— s—t— z—(—t)*

which shows that Rf has one-sided limits, and that (Rf), = Rf_ and (Rf)_ = Rf,. O

Lemma 2.2. If f : R — R s nondecreasing, then f has one-sided limits, and f. and f_
are both nondecreasing.

Proof. Fix ¢t € R and fix some strictly increasing sequence {t,,} with ¢, — t. Then {f(¢,)}
is a nondecreasing sequence of real numbers, bounded above by f(t). Hence, there exists
L € R such that f(t,) — L.

Now let {s,} be any other strictly increasing sequence with s,, — t. As above, f(s,) — L’
for some L' € R. Now fix m € N. Since s,, < t and t,, — ¢, there exists N € N such that
for all n > N, we have s, < t,. This implies f(s,,) < f(t,). Letting n — oo, we have
f(sm) < L. But this holds for all m, so letting m — oo, we have L' < L. A similar argument
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shows that L < L. Thus, L' = L, so that f(s,) — L. Since this holds for any such sequence
{sn}, we have that L = lim, ;- f(s), and so f(t—) exists.

A similar argument shows that f(t+) exists for all ¢ € R.

Now let s < t. Choose a strictly decreasing sequence {s,} C (s,t) such that s, — s,
and choose a strictly decreasing sequence {t,} such that ¢, — ¢. Then s, < t < t, for all
n. Hence, f(s,) < f(t,) for all n. Letting n — oo gives f(s+) < f(t+), showing that f, is
nondecreasing. A similar argument shows that f_ is nondecreasing. m

Theorem 2.3. If f has one-sided limits, then

fe(t+) = f-(t4) = f(t+), and
fr(t=) = f-(t=) = f(t-),

for allt € R. In other words, (fy)+ = (f-)+ = f+ and (f+)- = (f-)- = f-. In particular,
f+ is cadlag and f_ is caglad.

Proof. Fix ¢t € R and let {¢,} be a strictly decreasing sequence of real numbers such that
t, — t. Let ¢ > 0 be arbitrary. Using Theorem [I.2|and the fact that f(¢,) — f(t+), we may
choose N € N such that for all n > N, we have d(f(t,+), f(t,)) < e, d(f(tn—), f(tn)) < &,
and d(f(t,), f(t+)) < €. By the triangle inequality, this implies that d(f(t,+), f(t+)) < 2¢
and d(f(t,—), f(t+)) < 2e. Since € was arbitrary, this shows that f,(¢,) = f(t.+) — f(t+)
and f_(t,) = f(t,—) — f(t+). Since the sequence {¢,} was arbitrary, this shows
that f.(t+) = f(t+) and f_(t+) = f(t+). Since this holds for all ¢ € R, we have
(f+)+ = ([2)+ = [+

Now let ¢ = Rf. We have already shown that (¢9;)+ = (9-)+ = ¢+. By Lemma [2.1]
we have g = Rf_. Therefore, (g4+)+ = R(f-)_ and similarly, (¢_); = R(fy)_. Hence,
R(f.)- = R(f.). = Rf_, which implies (f.)_ = (f.)_ = f .

Lastly, since (fy)y = fy, it follows that f, is cadlag, and since (f_)_ = f_, it follows
that f_ is caglad. O

Remark 2.4. By Theorem , if f is cadlag (or any function with one-sided limits), then
g = f- is caglad. Conversely, if ¢ is any caglad function, then ¢ = g_ = (¢g4)_. In other
words, ¢ = f_, where f = g, is a cadlag function. What this shows is that a function
g: R — R is caglad if and only if ¢ = f_ for some cadlag function f.

3 Functions of bounded variation

Given G : [a,b] — R we define
Te(a,b) = sup { Z |G(t;)) —G(tj-)|:neNa=ty < - <t,= b}.
j=1

The quantity T¢(a,b) is called the total variation of G on [a,b]. If T (a,b) < oo, then G is
said to have bounded variation on [a, b], and the set of all such functions G is denoted by

BVa,b).



Given G : R — R, we define Tz = sup{T(a,b) : —0o < a < b < oo}. If Tz < oo, then
we say that G has bounded variation, and the set of all such functions G is denoted by BV.

Suppose G : [a,b] — R is in BV[a,b]. Let us extend G to be defined on the whole real
line by defining G(t) = G(a) for t < a, and G(t) = G(b) for t > b. Then G € BV and
T = Te(a,b). In this way, all facts about the set BV give rise to corresponding facts about
the set BV|a,b]. We will therefore focus our attention on the set BV.

A function G : R — R is in BV if and only if G can be written as G = G; — G5, where
each G; is a bounded, nondecreasing function (see Theorem 3.27 in [I]). Since nondecreasing
functions have one-sided limits, every BV function has one-sided limits. Moreover, by
Lemma [2.2] this shows that G and G_ are both BV functions.

If G € BV, then there exists a unique signed Borel measure pg, on R such that
pe, ((s,t]) = Go(t) — G4(s) for all s <t (see Theorem 3.29 in [1]). Note that

po+({t}) = lim pic ((5,1)
= SErg(G+(t) — G (s))
=G4 (t) — Gi(t—)
=G (1) — G_(t),

by Theorem If we recall that AG = G4 — G_, then pug, ({t}) = AG(2).
We define the Lebesgue-Stieltjes integral of a Borel measurable function f with respect

to a BV function G by
[ ra6= | fau..
A A

The following theorem illustrates a relationship between the Lebesgue-Stieltjes integral and
classical Riemann sums.

Theorem 3.1. Let G € BV and let f be a function with one-sided limits. Fix a < b. For
_ [4(m)yn(m) - : : : :

eachm € N, let P, = {tj }j:(] be a strictly increasing, finite sequence of real numbers with

a=t" <. . < t;m)) = b. Assume that ||P,,| = max{|t§.m) — tﬁ-’f“ :1<j<n(m)} —0as

(m
m — 0o. Let

1 =57 fEmH@E™) - G, and
j=1

17 =37 @) - GE)).
j=1

Then:
(1) If G is cadlag, then o f_dG as m — .
(a,b]
(i1) If f and G are both cadlag, then L(rm) — frdG = fdG as m — oo.

(a,b] (a,b]



(iii) If G is caglad, then [im) — f+dG as m — oo.
[a,b)

(i) If f and G are both caglad, then m fodG = fdG as m — oo.
[a,b) [a,b)

Proof. In this proof, for notational simplicity, we will suppress the dependence of n, t;, and
I on m.
Let us first assume that G is cadlag. Then G = GG, and so

=3 e (Gt = [ i di,

(a,b]

where
n

fr(nl)(t) = Z f(tj_l)]‘(tjfl,tj](t)'
j=1
For each fixed ¢, we have fr(nl)(t) = f(tj—1), where t;_y < t and |t — t;_1] < ||Pn|]. Thus,
ﬁ(nl)(t) — f_(t). By Theorem there exists M < oo such that |f7(nl)| < M for all m. Thus,
by dominated convergence, I_ — f(a o /- dbc, = f(a y /- dG, and this proves (i).
Similarly,
I = Zf e+ ((tj-1,t5]) = £ dpe,,

(a,b]

where
n

FE =Y F )10, (D).
j=1
For each fixed t, we have j}(,?)(t) = f(t;), where t < t; and |t — t;| < ||Pn||. Because
of the possibility that ¢ = t;, we cannot conclude that fg)(t) — fi(t) as m — oo.
However, if we make the further assumption that f is cadlag, so that f, = f, then we
do obtain f,gf)(t) — f(t) as m — oo, and again by dominated convergence, we have

I, — f(a o f duc, = f(a y [ dG, and this proves (ii).
Next assume that G is caglad. Then G = G_ = G, — AG, and so for any s < t, we have
G(t) — G(s) =G4 (t) — Gi(s) — AG(t) + AG(s)
= pia, ((5,1]) — pa, ({t}) + pa, ({s})
= tia. ([s,1)).

Hence,

]+—Zf i+ ([tj-1,t5)) = f )dMG+a

[a,b)

where



For each fixed ¢, we have f\(t) = f(t;), where t < t; and |t — t;| < ||Pn|. Thus,
() = fi(t). Again, by dominated convergence, I, — f[a p [+ dlic, = f[a » f+dG, and
this proves (iii). ’ 7

Similarly,

n

L= Zf(tj—l)MG+([tj—1,tj)) = / fWdug,

j=1 [a,b)

where

fr(;;l)(t> - Z f(tj—l)l[tj—l,tj)(t)'
j=1

For each fixed ¢, we have fﬁf)(t) = f(tj_1), where t;_; <t and |t — t;| < ||Pn||. Because
of the possibility that ¢t = t;_;, we cannot conclude that fﬁ)(t) — f_(t) as m — oc.

However, if we make the further assumption that f is caglad, so that f- = f, then we
do obtain f,(,?)(t) — f(t) as m — oo, and again by dominated convergence, we have
I — f[a w [ dbc, = f[a » [ dG, and this proves (iv). O

Remark 3.2. In (ii) and (iv) of Theorem [3.1] the assumptions on f cannot be omitted. For
example, let f = 1(9.x), G = ljp,x), a = —1, and b = 1. In this case, G is cadlag and f is
caglad, but L(rm) need not converge to anything.

To see this, let {P,,} be a sequence of partitions with ||P,,|| — 0, satisfying the following
conditions:

(i) If m is even, then there exists k = k(m) such that t,im) = 0.
(ii) If m is odd, then then there exists k = k(m) such that tgf)l <0< t,(gm).

In this case, G(tgm)) - G(tg.’fi) = 11if j = k(m), and 0 otherwise. Thus,

0 if m is even,

70 _ pgm)y
+ =) 1 if mis odd,

and so L(rm) does not converge. Similarly, if f = 1j9), G = 1(0,x), and {P,,} are the above
partitions, then I ™ Joes not converge.

Remark 3.3. If f and G are both cadlag, then
pic - [ fac= [ (f-f)d6= [ Afdu..
(a,b] (a,b] (a,b] (a,b]
Since A f vanishes outside a countable set, we have

/( ; Afdpc, = ) Afpe,({t}) = Y AfHAG(),

te(a,b) te(a,b]



where this sum is, in fact, a countable sum. In particular, this shows that I ™ and L(rm) need
not converge to the same limit. More specifically,

n

1 =1 =3 (f(t) = ()G (L) = Glt) = D AFBAG(),

=1 te(a,b]
as m — oo. This quantity is called the covariation of f and G.

If f has one-sided limits, but is not of bounded variation, then the integral f(a i G df is

undefined. More specifically, the map (s,t] — fi(t) — fi(s) cannot be extended to a signed
measure. But, even though the integral is undefined, we can still obtain convergence of the
Riemann sums in Theorem [3.1] provided that the integrand is of bounded variation.

Theorem 3.4. Let G € BV and let f be a function with one-sided limits. Assume f
and G are both cadlag. Fix a < b. For each m € N, let P, = {t m)}nm be a strictly
increasing, finite sequence of real numbers with a = t(gm) < ...o<t"™ = b Assume that

n(m) —
| Pl = HlaX{|t§m) - Yfgnf“ :1<j<n(m)} -0 asm— oco. Let

n(m)

ZG (FE™) — F@E™)), and

n(m

ZGt“” () — FEm)).

Then
J™ s F(D)G(b) — f(a)G(b) — ( ]f_ dG — Y Af()AG(L), and (3.1)
a,b t€(a,b)
I FO)G) — F@)GE) - /( G+ S ASHAGH), (3.2)
ab te(a,b]

Proof. As before, for notational simplicity, we will suppress the dependence of n, t;, and
Ji on m.
We begin by observing that

ZG j-1) ) G(t;)f(t)
= f(b)G(b) f(a)G(a)—Zf(t])(G(ty)—G(tg—l))



By Theorem we have J_ — f(b)G(b) — f(a)G(b) — f(a g/ dG. By Remark this prove
D).

Next, we write

n+1 n

Jy = Z G(tj1)f(tj1) = Y G(t;) f(tj-)

J=1
n

= f(O)G®) = f(@)G(a) = Y ft;-)(G () — G(t;-1))-

j=1
By Theorem , we have J; — f(b)G(b) — f(a)G(b) — f(a y /- dG. By Remark , this
prove (3.2).

As a corollary, we obtain the following integration-by-parts formulas.
Corollary 3.5. If f and G are both cadlag functions of bounded variation, then

/(b] G_df = f(0)G(b) — f(a)G(a) — f-dG = > Af(HAG(t), and

(a,0] te(a,b]

Gdf:f(b)G(b)—f(a)G(a)—/ fdG+ S AF(DAGH).

(a.b] t€(a,b]

Proof. Combine Theorem [3.4] with Theorem [B.11 m

(a,b]

4 The Stratonovich integral for cadlag functions

If g and h are cadlag, with h € BV, then let us define the Stratonovich integral of g with

respect to h as
t
/ g(s) odh(s) := / g-+9 dh
0 04 2
By Theorem [3.1], we have

Zg”1+g D (h(ty) - ht .H/ ) o dh(s

as the mesh of the partition tends to zero.

Theorem 4.1. Let f, g, and h be cadlag functions, with h € BV . Let

k(t) = /0 g(s) o dh(s).

Then k s cadlag, k € BV, and

/f ) o di(s /f 5) o dh(s ——ZAf )Ag(s)Ah(s).

s€(0,¢]



Proof. Since

k) = [ S an,
01 2
we have

! B -+f f-+f\ (9-+y9
[wemn= [ Eae [ (EF)(550) o

:/ <f—g—+fg_(f—f—)(g—g—)) ih
(0,1] 2 4
f-9- +fg
/t] dh — 4/(0t]Angdh

/f $)odh(s) — 7 3 Af(s)Ag(s)Ah(s).

s€(0,t]

]

Remark 4.2. This theorem shows that as long as f, g, and h have no simultaneous
discontinuities, then the Stratonovich integral satisfies the usual transformation rule of
calculus that if dk = g o dh, then f odk = fg o dh. In general, however, the transformation

rule involves a correction term which represents the triple covariation of the three functions,
f, g, and h.
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