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1 Introduction

A “standard” approach to SPDEs can be found in Walsh [11]. Upon first reading Walsh’s
notes, I became stuck at the point where I needed to understand the notion of an integral
of a real-valued function against a vector-valued measure. Walsh refers to this as the
“Bochner integral.” Diligently, I studied all references to the Bochner integral that I could
find. Strangely, though, every one of them defined the Bochner integral as an integral of a
vector-valued function against a real-valued measure, just the opposite of what Walsh meant.
At the time, I assumed there must be some alternate definition of the Bochner integral hidden
in some obscure reference that I had yet to discover. Only later did I come to realize that the
integral Walsh is using is not a Bochner integral. Rather than studying texts and papers on
the Bochner integral, I should have been reading the literature on vector-valued measures.
One such reference is Diestel and Uhl [4].

Seeking an alternative approach to SPDEs, I first considered Da Prato and Zabczyk [3],
who give a more functional-analytic approach to the subject. At the time, I found that
material quite difficult. Soon, however, I discovered Holden, Øksendal, Ubøe, and Zhang
[7]. They present an approach to SPDEs which uses the Wick product. The text was not
too difficult to digest and is mostly self-contained. A few key preliminary results, however,
are missing from the text and, yet, are essential to the development of the material. The
following notes are a summary of some of these needed results complete with references, and
proofs where references are unavailable. These notes are meant to be read in conjunction
with [7].

2 Measure Theory

To paraphrase Laurent Schwartz in the preface to [10], the standard approach to measure
theory consists of two parts: the general theory on arbitrary measure spaces and the theory
of Radon measures on locally compact Hausdorff spaces. The latter is a much more powerful
theory, but unfortunately the spaces that arise in probability are not locally compact. For
this reason, the theory of Radon measures on arbitrary topological spaces is needed in the
study of SPDEs. Some of the required theorems are included here.
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Let P and E be the algebras defined in the remark preceding Theorem 2.1.3 in [7].
Moreover, let Er denote the algebra generated by functions f : S ′(Rd) → R of the form

f(ω) = exp[〈ω, φ〉] where φ ∈ S(Rd).

If η = {ηj}j∈N ⊂ S(Rd) is any orthonormal basis of L2(Rd), let Pη denote the algebra
generated by functions f : S ′(Rd) → R of the form

f(ω) = 〈ω, ηj〉 where j ∈ N.

Theorem 2.1 The algebras P, E, Er, and Pη are dense in Lp(µ1), for all p ∈ [1,∞).
Moreover, E is dense in L∞(µ1).

Proof. This is Theorem 1.9 in [6]; they include a sketch of the proof. For further details, the
reader is referred to [10]. The idea of the proof is to use the Stone-Weierstrass Theorem. The
difficulty lies in the fact that S ′(Rd) is not a locally compact Hausdorff space. Overcoming
this hurdle relies on the theory of Radon measures on arbitrary topological spaces. 2

Comparing the above with the version presented as Theorem 2.1.3 in [7], one finds that
the above version is more complete. In particular, [7] fails to mention that E is dense in L∞.
This fact, for example, seems to be necessary to prove that a function in L1(µ1) is uniquely
determined by its Fourier transform.

Definition 2.2 Let (X,M, ν) be a σ-finite measure space. A function Z(t) : X → (S)∗ is
called (S)∗-integrable if 〈Z(t), f〉 ∈ L1(X) for all f ∈ (S).

Remark 2.3 Compare this with Definition 2.5.5 in [7].

Proposition 2.4 Let (X,M, ν) be a σ-finite measure space and let Z(t) : X → (S)∗ be
(S)∗-integrable. Then the map I : (S) → R given by

〈I, f〉 =

∫
X

〈Z(t), f〉 dν(t) for all f ∈ (S) (2.1)

belongs to (S)∗.

Proof. This is Proposition 8.1 in [6]. 2

Definition 2.5 Let (X,M, ν) be a σ-finite measure space and let Z(t) : X → (S)∗ be (S)∗-
integrable. The Pettis-integral of Z(t) is the (unique) element I ∈ (S)∗ that satisfies (2.1)
and is denoted by

∫
X
Z(t) dν(t).

Lemma 2.6 Let (X,M, ν) be a σ-finite measure space and let Z(t) : X → (S)∗ be (S)∗-
integrable. Write

Z(t) =
∑

cα(t)Hα.

Then cα(t) ∈ L1(X) for all α, and
∫

X
Z(t) dν(t) =

∑
(
∫

X
cα(t) dν(t))Hα.

Proof. Trivial. 2
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Proposition 2.7 Let (X,M, ν) be a σ-finite measure space and let Z : X → (S)∗ be (S)∗-
integrable with I =

∫
Z dν. Then

(SI)(λφ) =

∫
X

(SZ(t))(λφ) dν(t)

for all φ ∈ S(Rd) and all λ ∈ C.

Proof. Unwinding definitions, we have

(SI)(λφ) = 〈I, exp�[〈·, λφ〉]〉 =

∫
X

〈Z(t), exp�[〈·, λφ〉]〉 dν(t) =

∫
X

(SZ(t))(λφ) dν(t)

for any φ ∈ S(Rd) and λ ∈ C. 2

Proposition 2.8 Let (X,M, ν) be a σ-finite measure space and let Z : X → (S)∗ be (S)∗-
integrable with I =

∫
Z dν. Suppose there exists q ∈ (1,∞) and δ > 0 such that

M(t) = sup
z∈Kq(δ)

|Z̃(t; z)| ∈ L1(X).

Then Ĩ(z) =
∫

X
Z̃(t; z) dν(t) for all z ∈ K3q(δ).

Remark 2.9 Compare this with Lemma 2.8.5 in [7].

Proof. Write Z(t) =
∑
cα(t)Hα. By Proposition 2.6.8 in [7],

∑
|cα(t)zα| ≤ M(t)A(q) for

all z ∈ K3q(δ), where A(q) =
∑

(2N)−qα <∞, since q > 1. Thus, by Lemma 2.6 and Fubini’s
Theorem,

Ĩ(z) =
∑(∫

X

cα(t) dν(t)

)
zα =

∫
X

∑
cα(t)zα dν(t) =

∫
X

Z̃(t; z) dν(t)

for all z ∈ K3q(δ). 2

The reason for this more general treatment of the Pettis integral can be seen in Chapter
4 of [7]. In particular, the construction of the solution (4.3.5) to the SPDE (4.3.2) requires
us to take the expectation of a random variable taking values in (S)∗. For this, we need a
way to interpret the integral of this random variable over the underlying probability space.

3 Analytic Functions

The Hermite transform of an element of (S)−1 is a power series of infinitely many complex
variables. Namely, it is a series of the form f(z) =

∑
aαz

α, where z ∈ CN, α ∈ (ZN
+)c, and

zα =
∏
z

αj

j , where z0
j = 1. The function f is said to be analytic on

Kq(R) =

{
(z1, z2, . . .) ∈ CN :

∑
α 6=0

|zα|2(2N)qα < R2

}
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if the series converges absolutely for all z ∈ Kq(R). Here, 2N denotes the element w ∈ CN

with wj = 2j for all j, that is, 2N = (2, 4, 6, . . .).
Many of the results in the theory of several complex variables have analogues in this

setting, some of which can be found in Section 2.6 of [7]. What follows is a proposition
which is a generalization of Montel’s Theorem to analytic functions on CN. This proposition
is then applied to the situation in Theorem 4.1.1 of [7] to produce a result which is useful
in verifying the hypotheses of that theorem and which is used implicitly throughout all of
Chapter 4.

Lemma 3.1 Let G ⊂ Ck be a neighborhood of the origin and let fn(z) =
∑

α a
(n)
α zα be a

sequence of analytic functions on G with |fn(z)| ≤ M for all z ∈ G and all n ∈ N. Suppose
fn(z) → f(z) as n → ∞ for each z ∈ G. Then f is analytic on G and f(z) =

∑
α aαz

α,

where aα = limn→∞ a
(n)
α .

Proof. By Montel’s Theorem (Proposition 6, Chapter 1 of [9]), there is a subsequence {fnj
}

which converges uniformly on compact subsets of G. By Weierstrass’s Theorem (Proposition
5, Chapter 1 of [9]), f is analytic on G and Dαfnj

converges to Dαf , uniformly on compact
subsets of G. In particular,

a(nj)
α =

1

α!
Dαfnj

(0) → 1

α!
Dαf(0) = aα.

Applying this argument to a subsequence shows that every subsequence of {a(n)
α } has a

subsequence that converges to aα; hence, aα = limn→∞ a
(n)
α . 2

Lemma 3.2 Let fn(z) =
∑
a

(n)
α zα be analytic on Kq(R), where q > 1. Suppose |fn(z)| ≤M

for all z ∈ Kq(R) and all n ∈ N. If, for each α, a
(n)
α → aα as n →∞, then f(z) =

∑
aαz

α

is analytic on K3q(R) and fn(z) → f(z) for all z ∈ K3q(R).

Proof. Let z ∈ K3q(R). Define w ∈ CN by wj = (2j)qzj. Then

∑
α

|wα|2(2N)qα =
∑

α

∞∏
j=1

w
2αj

j

∞∏
j=1

(2j)qαj =
∑

α

∞∏
j=1

(2j)3qαjz
2αj

j =
∑

α

|zα|2(2N)3qα < R2

and w ∈ Kq(R). Also note that zα = wα(2N)−qα. By Proposition 2.6.8 in [7], |a(n)
α wα| ≤ M̃ ,

where M̃ = M
∑

α(2N)−qα < ∞ since q > 1. Thus, |a(n)
α zα| ≤ M̃(2N)−qα. Letting n go

to infinity shows that f is given by a convergent power series on K3q(R) and is therefore
analytic. Moreover, by dominated convergence

lim
n→∞

fn(z) = lim
n→∞

∑
α

a(n)
α zα =

∑
α

aαz
α = f(z)

and fn → f pointwise on K3q(R). 2

Proposition 3.3 Let fn(z) =
∑
a

(n)
α zα be analytic on Kq(R), where q > 1. Suppose

|fn(z)| ≤ M for all z ∈ Kq(R) and all n ∈ N. If fn → f pointwise on Kq(R), then f

is analytic on K3q(R) and f(z) =
∑
aαz

α, where aα = limn→∞ a
(n)
α .
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Proof. For each k ∈ N, we may restrict the functions in question to a neighborhood of the
origin in Ck and apply Lemma 3.1 to conclude that aα = limn→∞ a

(n)
α are well-defined. Thus,

by Lemma 3.2,
∑
aαz

α defines an analytic function on K3q(R) which is the pointwise limit
of the sequence {fn} and therefore agrees with f on K3q(R). 2

Proposition 3.4 Let G ⊂ Rd be a bounded open set. Suppose u(x, z) : G×Kq(R) → C and
α ∈ Nd satisfy

(i) u(x, ·) is analytic on Kq(R) for each x ∈ G, and

(ii) ∂α
xu(x, z) is uniformly bounded for (x, z) ∈ G×Kq(R).

Then there exists q̃ such that ∂α
xu(x, ·) is analytic on K

eq(R).

Proof. Without loss of generality, we may assume q > 1. Note that if β < α, then by
the mean value theorem, ∂β

xu(x, z) is uniformly bounded for (x, z) ∈ G × Kq(R). Thus, by
induction, it suffices to assume that |α| = 1, that is, ∂α

x = ∂xj
for some 1 ≤ j ≤ d. Fix x ∈ G.

For each z ∈ Kq(R), ∂xj
u(x, z) is the limit of difference quotients which are analytic in z by

(i) and uniformly bounded by (ii) and the mean value theorem. The conclusion therefore
follows by Proposition 3.3. 2

4 Estimates for PDEs

The general method for solving SPDEs as presented in [7] is to first take the Hermite
transform of the SPDE, then solve the resulting PDE, then finally take the inverse Hermite
transform of the solution. Before proceeding with the final stage of this procedure, one
must verify that the solution to the PDE satisfies a certain boundedness condition given
by Theorem 4.1.1 in [7]. For this, we need certain tools from the theory of (deterministic)
PDEs.

4.1 Elliptic Equations

A priori estimates for elliptic equations are used in section 4.2 of [7] when solving the
stochastic Dirichlet problem. The authors refer to [1] as the source of their estimates. These
estimates, however, are also listed without proof in sections 2.2.14 and 2.2.17 of [5], which
is a nice general reference for classical PDE theory. The source for these estimates, as listed
in [5], is [2]. Looking at [2], however, we find that proofs are omitted even there and the
authors refer to the original papers of J. Schauder. The following discussion is taken from
Chapter IV, §7 of [2].

J. Schauder derived certain a priori estimates for solutions u of linear elliptic equations
of the form

L[u](x) ≡
d∑

i,j=1

aij(x)
∂2u(x)

∂xi∂xj

+
d∑

j=1

bj(x)
∂u(x)

∂xj

+ c(x)u(x) = f(x) (4.1)

in a bounded domain G. The estimates hold for uniformly elliptic equations (4.1) with
bounded Hölder continuous coefficients, that is, for equations satisfying the following
conditions: there exist positive constants m, M , and α ∈ (0, 1) such that
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(i)
∑d

i,j=1 aij(x)ξiξj ≥ m‖ξ‖2 for all x ∈ G and all ξ ∈ Rd,

(ii) |aij(x)|, |bj(x)|, |c(x)| ≤M for all x ∈ G, (i, j = 1, 2, . . . , d), and

(iii) the coefficients aij, bj, c satisfy a Hölder condition with exponent α and coefficient M .

A function µ is said to satisfy a Hölder condition with exponent α and coefficient M if
supx,y∈G |µ(x)− µ(y)|/|x− y|α ≤M .

Recall that the space Ck(G) is the space of functions on G that are k times continuously
differentiable and that the space Ck+α(G) consists of those functions in Ck(G) whose k-th
order derivatives satisfy a Hölder condition in G with exponent α. The norms in these spaces
are

‖u‖k =
∑
|α|≤k

sup
x∈G

|∂αu(x)|

and

‖u‖k+α = ‖u‖k +
∑
|α|=k

sup
x,y∈G

|u(x)− u(y)|
|x− y|α

. (4.2)

For the estimates we will present, we also require that the domain G and the boundary values
ϕ of u be sufficiently smooth. We call a domain G smooth if its boundary is smooth, that is,
if we can cover ∂G by a finite number of balls which have the property that, singling out one
coordinate, say xd, one can express the part of the boundary contained in each of these balls
in the form xd = g(x1, x2, . . . , xd−1), where g is assumed to have Hölder continuous second
derivatives with exponent α. In addition, in terms of the local parameters x1, x2, . . . , xd−1,
the boundary values ϕ are also assumed to be smooth, that is, to have Hölder continuous
second derivatives with exponent α. Using the fixed finite number of local parameter systems
on the boundary and the norms ‖ϕ‖2+α in each ball, we may define a norm ‖ϕ‖′2+α for the
function ϕ as the maximum of the ‖ϕ‖2+α.

In this setting, we are finally prepared to state the Schauder estimates. Let u be a
solution in C2+α(G) of (4.1) in a smooth domain G with smooth boundary values ϕ. Then

‖u‖2+α ≤ K(‖u‖0 + ‖f‖α + ‖ϕ‖′2+α),

where K is a constant depending only on m, α, M , and the domain G. Moreover,

‖u‖2+α ≤ K(‖f‖α + ‖ϕ‖′2+α)

whenever c ≤ 0 in (4.1).

4.2 Parabolic Equations

A priori estimates for parabolic equations are used in the proof of Theorem 4.3.1 in [7].
The authors cite Theorem 2.78 in [5] and the references therein. It is difficult, however, to
understand even the statement of Theorem 2.78. In particular, it is not clear how to define
the norms being used on submanifolds (boundaries of regions involved) since these norms
involve the use of a distinguished time variable. The original source for these estimates, as
cited in [5], is [8], which is much more understandable and from which the following is taken.
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Let Ω ⊂ Rd be a bounded domain and let D = (0, T ) × Ω. Let S = (0, T ] × ∂Ω and
Γ = S ∪ Ω. For a function u(t, x), t ∈ (0, T ), x ∈ Ω, defined on D and 0 < α < 1, let
|u|α = ‖u‖α, where ‖u‖α is its norm in Cα(D) (see (4.2) with k = 0). We then define the
norms

|u|1+α = |u|α +
d∑

j=1

∣∣∣∣ ∂u∂xj

∣∣∣∣
α

,

|u|2+α = |u|α +
d∑

j=1

∣∣∣∣∂2u

∂xj

∣∣∣∣
α

+
d∑

i,j=1

∣∣∣∣ ∂u

∂xi∂xj

∣∣∣∣
α

+

∣∣∣∣∂u∂t
∣∣∣∣
α

.

The function u(t, x) belongs to the class Hk+α(D) if the norm |u|k+α is finite, k = 0, 1, 2.
The surface S belongs to the class Ak+α if it can be locally expressed as the graph of a Ck+α

function (that is, if ∂Ω is of class Ck+α).
With these preliminaries, we can now state the main a priori estimate for parabolic

equations which is Theorem 5 in Chapter 2 of [8].

Theorem 4.1 Consider the parabolic equation

L(u) ≡
d∑

i,j=1

aij(t, x)
∂2u

∂xi∂xj

+
d∑

j=1

bj(t, x)
∂u

∂xj

+ c(t, x)u− ∂u

∂t
= f(t, x), (4.3)

where the functions aij, bj, c, and f are real, with finite values, aij = aji, and

d∑
i,j=1

aijξiξj ≥ µ
d∑

j=1

ξ2
j

for all ξ ∈ Rd. Suppose the coefficients of (4.3) in the domain D satisfy the conditions

|aij|α ≤M1 |bj|α ≤M1 |c|α ≤M1

and a solution u(t, x) of (4.3) belongs to the class H2+α(D). Also suppose that S belongs to
the class A2+α. Then

|u|2+α ≤M(|f |α + |ψ|2+α),

where the function ψ is defined in D and u|Γ = ψ; the constant M depends only on M1, µ,
and the domain D.

This estimate is utilized at the end of the proof of Theorem 4.3.1 in [7]. Note, however,
that making use of this estimate requires knowledge of the (2 + α)-norm of the boundary
values of u, not just at time t = 0, but at later times as well. It is for this reason that it
is unclear how the authors of [7] intended to make use of this estimate in their particular
setting.
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5 Miscellaneous Formulas

The following formula is helpful in determining, among other things, the chaos expansion
for functions of Brownian motion.

Proposition 5.1 Let ϕ =
∑
ajξj ∈ L2(R). Then

〈·, ϕ〉�n =

∫
Rn

ϕ⊗n dB⊗n =
∑
|α|=n

n!

α!
aαHα.

Proof. By induction, the first equality is an easy consequence of Proposition 2.4.2 in [7].
Now, let S = {δ ∈ Nn : δ1 ≤ · · · ≤ δn} and T = {α ∈ (Z+)N

c : |α| = n}. Note that for each
δ ∈ S, there exists a unique α(δ) ∈ T such that

zα(δ) = zδ ≡
n∏

j=1

zδj
for all z ∈ CN.

Note also that the map δ 7→ α(δ) is a bijection from S to T and that

ξ⊗α(δ) = ξδ ≡ ξδ1 ⊗ · · · ⊗ ξδn .

Since ϕ⊗n ∈ L2(Rn), it has an expansion

ϕ⊗n =
∑
δ∈Nn

c(δ)ξδ,

where

c(δ) =

∫
ϕ⊗nξδ =

n∏
j=1

∫
ϕξδj

=
n∏

j=1

aδj
= aδ.

Since ϕ⊗n is symmetric in the variables x1, . . . , xn, we may write ϕ⊗n =
∑

δ∈Nn aδ ξ̂δ, where ξ̂δ

is the symmetrization of ξδ. Since neither aδ nor ξ̂δ is affected by permuting the components
of δ and since each δ ∈ S has n!/α(δ)! distinct permutations, we have

ϕ⊗n =
∑
δ∈S

n!

α(δ)!
aδ ξ̂δ

=
∑
δ∈S

n!

α(δ)!
aα(δ)ξ̂⊗α(δ)

=
∑
|α|=n

n!

α!
aαξ

b⊗α.

It now follows from the discussion preceding Theorem 2.2.7 in [7] that∑
|α|=n

n!

α!
aαHα =

∫
Rn

ϕ⊗n dB⊗n = 〈·, ϕ〉�n,

which completes the proof. 2

For the formulas that follow, we begin with two combinatorial lemmas.
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Lemma 5.2 For k ∈ Z+, (2k − 1)!! = (2k)!/(2kk!).

Proof. Since (−1)!! = 1 by convention, the lemma is trivial if k = 0 or k = 1. If the lemma
holds for some m ∈ N, then

(2(m+ 1)− 1)!! = (2m+ 1)!!

= (2m+ 1)(2m− 1)!!

= (2m+ 1)
(2m)!

2mm!

=
(2m+ 2)!

2m(2m+ 2)m!

=
(2(m+ 1))!

2m+1(m+ 1)!
.

By induction, this completes the proof. 2

Lemma 5.3 Suppose k,M, n ∈ N. Then(
M

k

)
k! +

(
M

k − 1

)(
n

k − 1

)
(k − 1)!(M + n+ 2− 2k)

−
(
M − 1

k − 1

)(
n

k − 1

)
(k − 1)!M =

(
M + 1

k

)(
n

k

)
k!

whenever k ≤M ≤ n.

Proof. First observe that(
M

k − 1

)(
n

k − 1

)
(M + 1− k) =

M !n!

(M − k)!(n− k + 1)!(k − 1)!2
=

(
M − 1

k − 1

)(
n

k − 1

)
M,

so that it suffices to prove(
M

k

)(
n

k

)
k +

(
M

k − 1

)(
n

k − 1

)
(n+ 1− k) =

(
M + 1

k

)(
n

k

)
k.

Since
(

M+1
k

)
=

(
M
k

)
+

(
M

k−1

)
, it suffices to show that

(
n

k−1

)
(n+ 1− k) =

(
n
k

)
k. This, however,

is trivial since both sides are equal to n!/((n− k)!(k − 1)!). 2

In Appendix C of [7], the authors provide the formula

xn =

bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!hn−2k(x).

An interesting observation is the following analogous formula.

Proposition 5.4 The function

hn(x) =

bn/2c∑
k=0

(−1)k

(
n

2k

)
(2k − 1)!!xn−2k

is the n-th Hermite polynomial.
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Proof. This follows immediately from (C.2) in [7] and Lemma 5.2. 2

The following proposition can be used to prove Itô’s rule for f(Bt) in the case that f is
analytic.

Proposition 5.5 Let ϕ ∈ L2(Rd) with ‖ϕ‖ = 1, and define

pn(x) = i−nhn(ix) =

bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!xn−2k.

Then 〈·, ϕ〉n = p�n(〈·, ϕ〉).

Proof. Use (C.4) and (2.4.17) in [7]. 2

If it were true that hm(x)hn(x) = hm+n(x), then the Wick product and the ordinary
product would coincide. Hence, in an attempt to better understand the relationship between
the two products, we present the following formula.

Proposition 5.6 If hn is the n-th Hermite polynomial, then

hm(x)hn(x) =
m∧n∑
k=0

(
m

k

)(
n

k

)
k!hm+n−2k(x)

for all m,n ∈ Z+.

Proof. Without loss of generality, assume m ≤ n. For m = 0, the proposition is trivial. For
m = 1, it is an immediate consequence of (C.7) in [7]. Now suppose n > 1 and assume the
proposition is true for all m ≤M , where M ∈ {1, . . . , n− 1}. Using (C.7) in [7], we have

hM+1(x)hn(x) = (xhM(x)−MhM−1(x))hn(x)

= x
M∑

k=0

(
M

k

)(
n

k

)
k!hM+n−2k(x)−M

M−1∑
k=0

(
M − 1

k

)(
n

k

)
k!hM−1+n−2k(x)

=
M∑

k=0

(
M

k

)(
n

k

)
k!hM+1+n−2k(x) +

M∑
k=0

(
M

k

)(
n

k

)
k!(M + n− 2k)hM−1+n−2k(x)

−
M−1∑
k=0

(
M − 1

k

)(
n

k

)
k!MhM−1+n−2k(x).

We now separate off the first term from the first sum and the last term from the second sum
and shift the index of summation in the second and third sums to obtain

hM+1(x)hn(x) = hM+1+n(x) +

(
n

M

)
M !(n−M)hn−(M+1)(x)

+
M∑

k=1

[(
M

k

)(
n

k

)
k! +

(
M

k − 1

)(
n

k − 1

)
(k − 1)!(M + n+ 2− 2k)

−
(
M − 1

k − 1

)(
n

k − 1

)
(k − 1)!M

]
hM+1+n−2k(x).

10



By Lemma 5.3, we can write this as

hM+1(x)hn(x) =
M+1∑
k=0

(
M + 1

k

)(
n

k

)
k!hM+1+n−2k(x),

which completes the proof. 2
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A. N. Milgram, With a preface by A. S. Householder, Reprint of the 1964 original,
Lectures in Applied Mathematics, 3A.

[2] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. II. Wiley Classics
Library. John Wiley & Sons Inc., New York, 1989. Partial differential equations, Reprint
of the 1962 original, A Wiley-Interscience Publication.

[3] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions,
volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1992.

[4] J. Diestel and J. J. Uhl, Jr. Vector measures. American Mathematical Society,
Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

[5] Yu. V. Egorov and M. A. Shubin. Foundations of the classical theory of partial
differential equations. Springer-Verlag, Berlin, 1998. Translated from the 1988
Russian original by R. Cooke, Reprint of the original English edition from the series
Encyclopaedia of Mathematical Sciences [Partial differential equations. I, Encyclopaedia
Math. Sci., 30, Springer, Berlin, 1992; MR1141630 (93a:35004b)].

[6] Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, and Ludwig Streit. White noise,
volume 253 of Mathematics and its Applications. Kluwer Academic Publishers Group,
Dordrecht, 1993. An infinite-dimensional calculus.

[7] Helge Holden, Bernt Øksendal, Jan Ubøe, and Tusheng Zhang. Stochastic partial
differential equations. Probability and its Applications. Birkhäuser Boston Inc., Boston,
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