Practice problems

- 1. Let $\{p_n\}$ be a Cauchy sequence in a metric space X. Suppose that $p \in X$ is a subsequential limit of $\{p_n\}$. Prove that $\lim_{n\to\infty} p_n = p$.
- 2. Let $E \subset \mathbb{R}^n$ be open, and suppose $f: E \to \mathbb{R}$ is differentiable. Show that if f has a local maximum at a point $x \in E$, then f'(x) = 0.
- 3. Let m be Lebesgue measure on \mathbb{R} . Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of Lebesgue measurable sets. We define $\liminf A_n := \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$ and $\limsup A_n := \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. Prove that $m(\liminf A_n) \leq \liminf m(A_n)$.
- 4. Let (X, \mathcal{M}, μ) be a measure space. For each n, let $f_n : X \to \mathbb{C}$ be measurable, with $f_n \to f$ a.e. Suppose there exists $g \in L^p(X)$, $p \in [1, \infty)$, such that $|f_n| \leq g$ a.e. Prove that $f_n \to f$ in $L^p(X)$.
- 5. If $f : \mathbb{R} \to \mathbb{R}$ and $y \in \mathbb{R}$, then we define $\tau_y f(x) = f(x y)$. If $f \in L^1(\mathbb{R})$, then $\|\tau_y f\|_1 = \|f\|_1$ and $\|\tau_y f f\|_1 \to 0$ as $y \to 0$. Also,

$$\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{dt}{(t^2 + 1)^2} = 1.$$

You may use all of the above without justification.

Suppose $f \in L^1(\mathbb{R})$. For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{nf(x-t)}{(n^2t^2+1)^2} dt.$$

Prove that $f_n \in L^1(\mathbb{R})$ and that $f_n \to f$ in $L^1(\mathbb{R})$.

6. For each n, let $f_n \in L^1([0,1])$. Suppose that $f_n \to 1$ a.e. and that

$$\lim_{n \to \infty} \int_0^1 |f_n(x)| \, dx = 2.$$

Prove that

$$\lim_{n \to \infty} \int_0^1 |f_n(x) - 1| \, dx = 1.$$

- 7. Let X and Y be topological spaces, and let $\pi_1: X \times Y \to X$ be the projection map, i.e. $\pi_1(x,y) = x$. Prove that π_1 is an open map. That is, prove that if $U \subset X \times Y$ is open in the product topology, then $\pi_1(U)$ is open in X.
- 8. Let $k:[0,1]^2\to\mathbb{R}$ be continuous and define $K\in\mathcal{B}(C([0,1]))$ by

$$Kf(x) = \int_0^1 k(x, y) f(y) \, dy.$$

Prove that K is compact.

9. Let X be a Banach space and $K \in \mathcal{B}(X)$. Prove that if ||K|| < 1, then I - K is invertible, and that

$$(I - K)^{-1} = \sum_{n=0}^{\infty} K^n,$$

where the above series converges uniformly in $\mathcal{B}(X)$.

10. Let f be a positive, Lebesgue measurable function on (0,1). Suppose that f and $\log f$ are both integrable on (0,1). Prove that

$$\int_0^1 f(x) \log f(x) dx \ge \left(\int_0^1 f(x) dx \right) \left(\int_0^1 \log f(x) dx \right).$$

- 11. Let X and Y be (nontrivial) normed spaces. Prove that if $\mathcal{B}(X,Y)$, the space of bounded operators from X to Y, is complete, then Y is a Banach space.
- 12. Let $p \in [1, \infty)$. Let $\{f_n\}$ be a sequence in $L^p(\mathbb{R})$ and $f \in L^p(\mathbb{R})$. Suppose that $f_n \to f$ pointwise. Prove that $f_n \to f$ in $L^p(\mathbb{R})$ if and only if $||f_n||_p \to ||f||_p$.
- 13. Let \mathcal{H} be a Hilbert space, and let $A: \mathcal{H} \to \mathcal{H}$ be linear. Suppose that $\langle x, Ay \rangle = \langle Ax, y \rangle$ for all $x, y \in \mathcal{H}$. Prove that A is bounded.
- 14. Let T be the distributional derivative of p.v. $\frac{1}{x}$. Prove that for all $\varphi \in \mathcal{S}(\mathbb{R})$,

$$\langle T, \varphi \rangle = \lim_{\varepsilon \downarrow 0} \int_{|x| > \varepsilon} \left(-\frac{1}{x^2} \right) (\varphi(x) - \varphi(0)) dx.$$

15. Prove that if $f \in L^2(\mathbb{R}^n)$, $a \in \mathbb{R}$, and g(x) = f(ax), then $g \in L^2(\mathbb{R}^n)$ and

$$\widehat{g}(k) = \frac{1}{|a|^n} \widehat{f}\left(\frac{k}{a}\right).$$

- 16. Let S be a linear subspace of $L^q([0,1])$ that is closed as a subspace of $L^p([0,1])$, where $1 . Let <math>\{f_n\}_{n=1}^{\infty}$ be a sequence in S. Prove that $\{f_n\}_{n=1}^{\infty}$ is convergent in $(L^q([0,1]), \|.\|)$ iff $\{f_n\}_{n=1}^{\infty}$ is convergent in $(L^p([0,1]), \|.\|)$.
- 17. Let X be the metric space (\mathbb{R}, d) where

$$d(x,y) = \frac{|x - y|}{1 + |x - y|}.$$

Show there is a decreasing sequence of nonempty closed bounded sets with empty intersection.

18. Let K be a continuous function on the unit square $Q = [0, 1] \times [0, 1]$ with the property that |K(x, y)| < 1 for all $(x, y) \in Q$. Show that there is a continuous function g defined on [0, 1] so that

$$g(x) + \int_0^1 K(x, y)g(y) \, dy = \frac{e^x}{1 + x^2}$$

for $x \in [0, 1]$.

- 19. Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on [0,1], and assume $\int_0^1 |f_n(x)|^2 dx \leq \frac{1}{n^2}$.
 - (a) Fix $\varepsilon > 0$ and let

$$A_N = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x : |f_n(x)| \ge \varepsilon\}.$$

Prove that $m(A_N) = 0$, where m is Lebesgue measure.

- (b) Use part (a) to show that $f_n \to 0$ a.e. on [0,1].
- 20. Let $\{f_n\}$ be a sequence in $C^1([0,1])$ such that $||f'_n||_{\infty} \leq 1$ for all $n \in \mathbb{N}$. Suppose that there exists a complex number a and a measurable function $g:[0,1] \to \mathbb{C}$ such that $f_n(0) \to a$ and $f'_n \to g$ a.e. on [0,1]. Show that there exists a continuous function $f:[0,1] \to \mathbb{C}$ such that $f_n \to f$ uniformly.
- 21. Let X = C([0,1]) with the uniform norm. Define $K: X \to X$ by

$$Kf(x) = \int_0^1 t \cos(tx) f(t) dt.$$

Show that K is a bounded linear operator with ||K|| = 1/2.

22. Let V be the space of complex-valued sequences $a = (a_1, a_2, \ldots)$ which satisfy

$$\sum_{n=1}^{\infty} n|a_n| < \infty.$$

With the norm $||a|| = \sum_{n=1}^{\infty} n|a_n|$, the vector space V becomes a Banach space (this you may assume). Consider the bounded linear operator $B: V \to V$ defined by

$$B(a_1, a_2, \ldots) = (a_2, a_3, \ldots).$$

Show that if $|\lambda| > 1$, then $B - \lambda I$ is invertible.

- 23. Suppose $A \subset \mathbb{R}$ is Lebesgue measurable and satisfies $m(A \cap (a,b)) \leq (b-a)/2$ for all a < b, where m is Lebesgue measure on \mathbb{R} . Prove that m(A) = 0.
- 24. Suppose that \mathcal{H} is a separable Hilbert space.
 - (a) Prove that if $T: \mathcal{H} \to \mathcal{H}$ is a bounded linear operator such that ||I T|| < 1, then T is invertible.
 - (b) Assume that $\{e_n\}$ is an orthonormal basis for \mathcal{H} . Prove that if $\{f_n\}$ is an orthonormal set in \mathcal{H} such that

$$\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1,$$

then $\{f_n\}$ is also an orthonormal basis for \mathcal{H} . (Hint: Let $Tx = \sum_{n=1}^{\infty} \langle x, f_n \rangle e_n$.) Prove that T is a well-defined, bounded linear operator on \mathcal{H} , and apply part (a).)

25. For $x \in \mathbb{R}$, let

$$f_n(x) = \begin{cases} nx^n & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that f_n is a tempered distribution on \mathbb{R} , and find a tempered distribution $T \in \mathcal{S}^*(\mathbb{R})$ such that $f_n \to T$.

26. Consider the operator $T: C([0,1]) \to C([0,1])$ defined by

$$(Tf)(t) = \int_0^1 \frac{f(s)}{1+s+t} ds.$$

- (a) Show that T is a bounded linear operator.
- (b) Show that $S: C([0,1]) \to C([0,1])$ defined by Sf = f Tf is invertible and its inverse is bounded.
- 27. Let \mathcal{F} be the collection of twice continuously differentiable functions on \mathbb{R} satisfying $f \geq 0$ on \mathbb{R} and $f'' \leq 1$ on \mathbb{R} . Find the smallest constant $C \in (0, \infty)$ such that for each $f \in \mathcal{F}$ and for each $x \in \mathbb{R}$, we have

$$(f'(x))^2 \le Cf(x). \tag{1}$$

Prove that your chosen constant works in (1), and show by example that the constant constant cannot be improved.

28. Let $n \in \mathbb{N}$. Define $P : \mathbb{R} \to \mathbb{R}$ by

$$P(x) = \frac{d^n}{dx^n}((x^2 - 1)^n).$$

Prove that if $x \in \mathbb{R}$ satisfies P(x) = 0, then $x \in (-1, 1)$.

- 29. Give an example of a normed vector space $(X, \|\cdot\|)$ and a linear functional φ on X such that φ does not belong to the dual space X^* .
- 30. A subset S of a Banach space X is called weakly bounded if, for each $\lambda \in X^*$, we have $\sup_{x \in S} |\lambda(x)| < \infty$. The set S is strongly bounded if $\sup_{x \in S} ||x|| < \infty$. Prove that a subset of a Banach space is strongly bounded if and only if it is weakly bounded.
- 31. Let $\{s_n\}$ be a sequence of complex numbers such that $\lim_{n\to\infty} s_n$ exists. Prove that

$$s = \lim_{n \to \infty} \frac{s_1 + s_2 + \dots + s_n}{n}$$

exists, and that $s = \lim_{n \to \infty} s_n$.

32. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \to \mathcal{H}$ a linear operator. Suppose that for all sequences $\{x_n\}_{n=1}^{\infty}$ in \mathcal{H} , if $x_n \to x$ in norm, then $Ax_n \to Ax$ weakly. Prove that A is bounded.

4

- 33. Let X be a connected metric space, Y a metric space, and $f: X \to Y$ continuous. Suppose that for all $p \in X$, there exists $\varepsilon > 0$ such that f is constant on $B_{\varepsilon}(p)$. Prove that f is constant.
- 34. Let d be the Euclidean metric on \mathbb{R}^n and let $\{e_1, \ldots, e_n\}$ denote the standard basis in \mathbb{R}^n . Suppose $A \in L(\mathbb{R}^n, \mathbb{R}^n)$ satisfies $d(Ae_j, e_j) < n^{-1}$ for all $j \in \{1, \ldots, n\}$. Prove that A is invertible.
- 35. Let $E \subset \mathbb{R}$ be Lebesgue measurable with $0 < m(E) < \infty$. Prove that for every $\varepsilon > 0$, there exists a nonempty open interval I such that

$$\frac{m(E\cap I)}{m(I)} > 1 - \varepsilon.$$

36. Let $f:[0,1]\to\mathbb{R}$ be continuously differentiable. Prove that

$$\int_0^1 f(x) \, dx \ge f(1) - \sqrt[3]{\frac{4}{25} \int_0^1 |f'(x)|^3 \, dx}.$$

37. Let $f:[0,1]\to\mathbb{R}$ be bounded and Lebesgue measurable. Suppose that for every $0\leq a< b\leq 1,$ we have

$$\int_a^b f(x) \, dx = 0.$$

Prove that f = 0 a.e.

38. Let (X, \mathcal{M}, μ) be a finite measure space, and $f: X \to \mathbb{R}$ and integrable function. Compute and justify the limit

$$\lim_{n \to \infty} \int_X |f(x)|^{1/n} \, \mu(dx).$$

39. Let $f:[0,1]\to [0,\infty)$ be Lebesgue measurable with $f\in L^p([0,1],\mathcal{L},m)$ for all $p\in [1,\infty)$. Suppose that

$$\int_0^1 (f(x))^n \, dx = \int_0^1 f(x) \, dx,$$

for all $n \in \mathbb{N}$. Prove that $f = \chi_E$ a.e. for some measurable set $E \subset [0,1]$.

- 40. Let \mathscr{H} be a Hilbert space and let $x_n, x, y_n, y \in \mathscr{H}$. Suppose $x_n \to x$ weakly and $y_n \to y$ in norm. Prove that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
- 41. Let $f \in L^2(\mathbb{R}, \mathcal{L}, m)$ and suppose that

$$\int_{\mathbb{R}} f(y)e^{-(x-y)^2/2} \, dy = 0,$$

for all $x \in \mathbb{R}$. Prove that f = 0 a.e.

- 42. Let \mathscr{H} be a Hilbert space, and let $T \in \mathcal{B}(\mathscr{H})$ with $||T|| \leq 1$. Let $x \in \mathscr{H}$ and suppose that Tx = x. Prove that $T^*x = x$.
- 43. Let $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ be Banach spaces, and suppose there exists $K \in \mathbb{R}$ such that $\|x\|_1 \leq K\|x\|_2$ for all $x \in X$. Prove that the two norms, $\|\cdot\|_1$ and $\|\cdot\|_2$, are equivalent.
- 44. (a) Find all distributions $T \in S^*(\mathbb{R})$ such that xT = 0.
 - (b) Find all distributions $T \in S^*(\mathbb{R})$ such that $x^2T = 0$.