Practice problems

1. Let $\left\{p_{n}\right\}$ be a Cauchy sequence in a metric space X. Suppose that $p \in X$ is a subsequential limit of $\left\{p_{n}\right\}$. Prove that $\lim _{n \rightarrow \infty} p_{n}=p$.
2. Let $E \subset \mathbb{R}^{n}$ be open, and suppose $f: E \rightarrow \mathbb{R}$ is differentiable. Show that if f has a local maximum at a point $x \in E$, then $f^{\prime}(x)=0$.
3. Let m be Lebesgue measure on \mathbb{R}. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of Lebesgue measurable sets. We define $\lim \inf A_{n}:=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_{n}$ and $\limsup A_{n}:=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{n}$. Prove that $m\left(\liminf A_{n}\right) \leq \liminf m\left(A_{n}\right)$.
4. Let (X, \mathcal{M}, μ) be a measure space. For each n, let $f_{n}: X \rightarrow \mathbb{C}$ be measurable, with $f_{n} \rightarrow f$ a.e. Suppose there exists $g \in L^{p}(X), p \in[1, \infty)$, such that $\left|f_{n}\right| \leq g$ a.e. Prove that $f_{n} \rightarrow f$ in $L^{p}(X)$.
5. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $y \in \mathbb{R}$, then we define $\tau_{y} f(x)=f(x-y)$. If $f \in L^{1}(\mathbb{R})$, then $\left\|\tau_{y} f\right\|_{1}=\|f\|_{1}$ and $\left\|\tau_{y} f-f\right\|_{1} \rightarrow 0$ as $y \rightarrow 0$. Also,

$$
\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{d t}{\left(t^{2}+1\right)^{2}}=1
$$

You may use all of the above without justification.
Suppose $f \in L^{1}(\mathbb{R})$. For each $n \in \mathbb{N}$, let

$$
f_{n}(x)=\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{n f(x-t)}{\left(n^{2} t^{2}+1\right)^{2}} d t
$$

Prove that $f_{n} \in L^{1}(\mathbb{R})$ and that $f_{n} \rightarrow f$ in $L^{1}(\mathbb{R})$.
6. For each n, let $f_{n} \in L^{1}([0,1])$. Suppose that $f_{n} \rightarrow 1$ a.e. and that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=2
$$

Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-1\right| d x=1
$$

7. Let X and Y be topological spaces, and let $\pi_{1}: X \times Y \rightarrow X$ be the projection map, i.e. $\pi_{1}(x, y)=x$. Prove that π_{1} is an open map. That is, prove that if $U \subset X \times Y$ is open in the product topology, then $\pi_{1}(U)$ is open in X.
8. Let $k:[0,1]^{2} \rightarrow \mathbb{R}$ be continuous and define $K \in \mathcal{B}(C([0,1]))$ by

$$
K f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Prove that K is compact.
9. Let X be a Banach space and $K \in \mathcal{B}(X)$. Prove that if $\|K\|<1$, then $I-K$ is invertible, and that

$$
(I-K)^{-1}=\sum_{n=0}^{\infty} K^{n}
$$

where the above series converges uniformly in $\mathcal{B}(X)$.
10. Let f be a positive, Lebesgue measurable function on $(0,1)$. Suppose that f and $\log f$ are both integrable on $(0,1)$. Prove that

$$
\int_{0}^{1} f(x) \log f(x) d x \geq\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} \log f(x) d x\right)
$$

11. Let X and Y be (nontrivial) normed spaces. Prove that if $\mathcal{B}(X, Y)$, the space of bounded operators from X to Y, is complete, then Y is a Banach space.
12. Let $p \in[1, \infty)$. Let $\left\{f_{n}\right\}$ be a sequence in $L^{p}(\mathbb{R})$ and $f \in L^{p}(\mathbb{R})$. Suppose that $f_{n} \rightarrow f$ pointwise. Prove that $f_{n} \rightarrow f$ in $L^{p}(\mathbb{R})$ if and only if $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.
13. Let \mathcal{H} be a Hilbert space, and let $A: \mathcal{H} \rightarrow \mathcal{H}$ be linear. Suppose that $\langle x, A y\rangle=\langle A x, y\rangle$ for all $x, y \in \mathcal{H}$. Prove that A is bounded.
14. Let T be the distributional derivative of p.v. $\frac{1}{x}$. Prove that for all $\varphi \in \mathcal{S}(\mathbb{R})$,

$$
\langle T, \varphi\rangle=\lim _{\varepsilon \downarrow 0} \int_{|x|>\varepsilon}\left(-\frac{1}{x^{2}}\right)(\varphi(x)-\varphi(0)) d x .
$$

15. Prove that if $f \in L^{2}\left(\mathbb{R}^{n}\right), a \in \mathbb{R}$, and $g(x)=f(a x)$, then $g \in L^{2}\left(\mathbb{R}^{n}\right)$ and

$$
\widehat{g}(k)=\frac{1}{|a|^{n}} \widehat{f}\left(\frac{k}{a}\right) .
$$

16. Let S be a linear subspace of $L^{q}([0,1])$ that is closed as a subspace of $L^{p}([0,1])$, where $1<p<q<\infty$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in S. Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is convergent in $\left(L^{q}([0,1]),\|\cdot\|\right)$ iff $\left\{f_{n}\right\}_{n=1}^{\infty}$ is convergent in $\left(L^{p}([0,1]),\|\cdot\|\right)$.

17 . Let X be the metric space (\mathbb{R}, d) where

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

Show there is a decreasing sequence of nonempty closed bounded sets with empty intersection.
18. Let K be a continuous function on the unit square $Q=[0,1] \times[0,1]$ with the property that $|K(x, y)|<1$ for all $(x, y) \in Q$. Show that there is a continuous function g defined on $[0,1]$ so that

$$
g(x)+\int_{0}^{1} K(x, y) g(y) d y=\frac{e^{x}}{1+x^{2}}
$$

for $x \in[0,1]$.
19. Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue measurable functions on $[0,1]$, and assume $\int_{0}^{1}\left|f_{n}(x)\right|^{2} d x \leq \frac{1}{n^{2}}$.
(a) Fix $\varepsilon>0$ and let

$$
A_{N}=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty}\left\{x:\left|f_{n}(x)\right| \geq \varepsilon\right\}
$$

Prove that $m\left(A_{N}\right)=0$, where m is Lebesgue measure.
(b) Use part (a) to show that $f_{n} \rightarrow 0$ a.e. on $[0,1]$.
20. Let $\left\{f_{n}\right\}$ be a sequence in $C^{1}([0,1])$ such that $\left\|f_{n}^{\prime}\right\|_{\infty} \leq 1$ for all $n \in \mathbb{N}$. Suppose that there exists a complex number a and a measurable function $g:[0,1] \rightarrow \mathbb{C}$ such that $f_{n}(0) \rightarrow a$ and $f_{n}^{\prime} \rightarrow g$ a.e. on $[0,1]$. Show that there exists a continuous function $f:[0,1] \rightarrow \mathbb{C}$ such that $f_{n} \rightarrow f$ uniformly.
21. Let $X=C([0,1])$ with the uniform norm. Define $K: X \rightarrow X$ by

$$
K f(x)=\int_{0}^{1} t \cos (t x) f(t) d t
$$

Show that K is a bounded linear operator with $\|K\|=1 / 2$.
22. Let V be the space of complex-valued sequences $a=\left(a_{1}, a_{2}, \ldots\right)$ which satisfy

$$
\sum_{n=1}^{\infty} n\left|a_{n}\right|<\infty
$$

With the norm $\|a\|=\sum_{n=1}^{\infty} n\left|a_{n}\right|$, the vector space V becomes a Banach space (this you may assume). Consider the bounded linear operator $B: V \rightarrow V$ defined by

$$
B\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

Show that if $|\lambda|>1$, then $B-\lambda I$ is invertible.
23. Suppose $A \subset \mathbb{R}$ is Lebesgue measurable and satisfies $m(A \cap(a, b)) \leq(b-a) / 2$ for all $a<b$, where m is Lebesgue measure on \mathbb{R}. Prove that $m(A)=0$.
24. Suppose that \mathcal{H} is a separable Hilbert space.
(a) Prove that if $T: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded linear operator such that $\|I-T\|<1$, then T is invertible.
(b) Assume that $\left\{e_{n}\right\}$ is an orthonormal basis for \mathcal{H}. Prove that if $\left\{f_{n}\right\}$ is an orthonormal set in \mathcal{H} such that

$$
\sum_{n=1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}<1
$$

then $\left\{f_{n}\right\}$ is also an orthonormal basis for \mathcal{H}. (Hint: Let $T x=\sum_{n=1}^{\infty}\left\langle x, f_{n}\right\rangle e_{n}$. Prove that T is a well-defined, bounded linear operator on \mathcal{H}, and apply part (a).)
25. For $x \in \mathbb{R}$, let

$$
f_{n}(x)= \begin{cases}n x^{n} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Show that f_{n} is a tempered distribution on \mathbb{R}, and find a tempered distribution $T \in \mathcal{S}^{*}(\mathbb{R})$ such that $f_{n} \rightarrow T$.
26. Consider the operator $T: C([0,1]) \rightarrow C([0,1])$ defined by

$$
(T f)(t)=\int_{0}^{1} \frac{f(s)}{1+s+t} d s
$$

(a) Show that T is a bounded linear operator.
(b) Show that $S: C([0,1]) \rightarrow C([0,1])$ defined by $S f=f-T f$ is invertible and its inverse is bounded.
27. Let \mathcal{F} be the collection of twice continuously differentiable functions on \mathbb{R} satisfying $f \geq 0$ on \mathbb{R} and $f^{\prime \prime} \leq 1$ on \mathbb{R}. Find the smallest constant $C \in(0, \infty)$ such that for each $f \in \mathcal{F}$ and for each $x \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(f^{\prime}(x)\right)^{2} \leq C f(x) \tag{1}
\end{equation*}
$$

Prove that your chosen constant works in (1), and show by example that the constant constant cannot be improved.
28. Let $n \in \mathbb{N}$. Define $P: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
P(x)=\frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right) .
$$

Prove that if $x \in \mathbb{R}$ satisfies $P(x)=0$, then $x \in(-1,1)$.
29. Give an example of a normed vector space $(X,\|\cdot\|)$ and a linear functional φ on X such that φ does not belong to the dual space X^{*}.
30. A subset S of a Banach space X is called weakly bounded if, for each $\lambda \in X^{*}$, we have $\sup _{x \in S}|\lambda(x)|<\infty$. The set S is strongly bounded if $\sup _{x \in S}\|x\|<\infty$. Prove that a subset of a Banach space is strongly bounded if and only if it is weakly bounded.
31. Let $\left\{s_{n}\right\}$ be a sequence of complex numbers such that $\lim _{n \rightarrow \infty} s_{n}$ exists. Prove that

$$
s=\lim _{n \rightarrow \infty} \frac{s_{1}+s_{2}+\cdots+s_{n}}{n}
$$

exists, and that $s=\lim _{n \rightarrow \infty} s_{n}$.
32. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \rightarrow \mathcal{H}$ a linear operator. Suppose that for all sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathcal{H}, if $x_{n} \rightarrow x$ in norm, then $A x_{n} \rightarrow A x$ weakly. Prove that A is bounded.
33. Let X be a connected metric space, Y a metric space, and $f: X \rightarrow Y$ continuous. Suppose that for all $p \in X$, there exists $\varepsilon>0$ such that f is constant on $B_{\varepsilon}(p)$. Prove that f is constant.
34. Let d be the Euclidean metric on \mathbb{R}^{n} and let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote the standard basis in \mathbb{R}^{n}. Suppose $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ satisfies $d\left(A e_{j}, e_{j}\right)<n^{-1}$ for all $j \in\{1, \ldots, n\}$. Prove that A is invertible.
35. Let $E \subset \mathbb{R}$ be Lebesgue measurable with $0<m(E)<\infty$. Prove that for every $\varepsilon>0$, there exists a nonempty open interval I such that

$$
\frac{m(E \cap I)}{m(I)}>1-\varepsilon
$$

36. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable. Prove that

$$
\int_{0}^{1} f(x) d x \geq f(1)-\sqrt[3]{\frac{4}{25} \int_{0}^{1}\left|f^{\prime}(x)\right|^{3} d x}
$$

37. Let $f:[0,1] \rightarrow \mathbb{R}$ be bounded and Lebesgue measurable. Suppose that for every $0 \leq a<b \leq 1$, we have

$$
\int_{a}^{b} f(x) d x=0
$$

Prove that $f=0$ a.e.
38. Let (X, \mathcal{M}, μ) be a finite measure space, and $f: X \rightarrow \mathbb{R}$ and integrable function. Compute and justify the limit

$$
\lim _{n \rightarrow \infty} \int_{X}|f(x)|^{1 / n} \mu(d x)
$$

39. Let $f:[0,1] \rightarrow[0, \infty)$ be Lebesgue measurable with $f \in L^{p}([0,1], \mathcal{L}, m)$ for all $p \in[1, \infty)$. Suppose that

$$
\int_{0}^{1}(f(x))^{n} d x=\int_{0}^{1} f(x) d x
$$

for all $n \in \mathbb{N}$. Prove that $f=\chi_{E}$ a.e. for some measurable set $E \subset[0,1]$.
40. Let \mathscr{H} be a Hilbert space and let $x_{n}, x, y_{n}, y \in \mathscr{H}$. Suppose $x_{n} \rightarrow x$ weakly and $y_{n} \rightarrow y$ in norm. Prove that $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
41. Let $f \in L^{2}(\mathbb{R}, \mathcal{L}, m)$ and suppose that

$$
\int_{\mathbb{R}} f(y) e^{-(x-y)^{2} / 2} d y=0
$$

for all $x \in \mathbb{R}$. Prove that $f=0$ a.e.
42. Let \mathscr{H} be a Hilbert space, and let $T \in \mathcal{B}(\mathscr{H})$ with $\|T\| \leq 1$. Let $x \in \mathscr{H}$ and suppose that $T x=x$. Prove that $T^{*} x=x$.
43. Let $\left(X,\|\cdot\|_{1}\right)$ and $\left(X,\|\cdot\|_{2}\right)$ be Banach spaces, and suppose there exists $K \in \mathbb{R}$ such that $\|x\|_{1} \leq K\|x\|_{2}$ for all $x \in X$. Prove that the two norms, $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, are equivalent.
44. (a) Find all distributions $T \in S^{*}(\mathbb{R})$ such that $x T=0$.
(b) Find all distributions $T \in S^{*}(\mathbb{R})$ such that $x^{2} T=0$.

